KR20010031873A - Method for producing a sacrificial body for producing aluminal titanium aluminide composite bodies - Google Patents

Method for producing a sacrificial body for producing aluminal titanium aluminide composite bodies Download PDF

Info

Publication number
KR20010031873A
KR20010031873A KR1020007004953A KR20007004953A KR20010031873A KR 20010031873 A KR20010031873 A KR 20010031873A KR 1020007004953 A KR1020007004953 A KR 1020007004953A KR 20007004953 A KR20007004953 A KR 20007004953A KR 20010031873 A KR20010031873 A KR 20010031873A
Authority
KR
South Korea
Prior art keywords
sacrificial
starting mixture
binder
filler
temperature
Prior art date
Application number
KR1020007004953A
Other languages
Korean (ko)
Inventor
틸만 하우크
크리스토프 헤셀만
슈테펜 라우셔
미카엘 샤이데커
Original Assignee
다임러크라이슬러 아크티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다임러크라이슬러 아크티엔게젤샤프트 filed Critical 다임러크라이슬러 아크티엔게젤샤프트
Publication of KR20010031873A publication Critical patent/KR20010031873A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • C04B2111/00922Preforms as such

Abstract

본 발명은 Al2O3/티타늄 알루미나이드 복합재료로 성분 제조용 희생체를 출발 혼합물에서 제조하는 방법, 출발 혼합물 및 희생체에 관계한다. 산화물로서 티타늄, 탄소 또는 탄소 선구물질, 충진제 및 바인더가 첨가된 출발 혼합물을 압축하여 성형체가 형성된다. 전환온도에서 성형체는 열처리를 받아서 압력-안정성 희생체를 형성한다. 이 과정에서 충진제와 바인더가 제거되나 희생체는 압력하에서 알루미늄 또는 알루미늄 합금이 충진되고 충진은 전환온도 이상인 충진온도에서 이루어지며 충진된 희생체의 물질과 알루미늄이 충진온도 미만에서 고체상태 반응을 하여 Al2O3/티타늄 알루미나이드 복합체가 형성된다.The present invention relates to a process for preparing a saccharide for the preparation of a component with an Al 2 O 3 / titanium aluminide composite in a starting mixture, to a starting mixture and to a sacrifice. A molded body is formed by compressing the starting mixture to which titanium, carbon or carbon precursor, filler and binder are added as oxides. At the conversion temperature, the shaped body undergoes heat treatment to form a pressure-stable sacrificial body. In this process, the filler and the binder are removed, but the sacrificial body is filled with aluminum or an aluminum alloy under pressure, and the filling is performed at a filling temperature higher than the conversion temperature. A solid state reaction occurs between the material of the filled sacrificial material and aluminum, 2 O 3 / titanium aluminide complex is formed.

Description

알루미나 티타늄 알루미나이드 복합체 제조용 희생체 제조방법{METHOD FOR PRODUCING A SACRIFICIAL BODY FOR PRODUCING ALUMINAL TITANIUM ALUMINIDE COMPOSITE BODIES}FIELD OF THE INVENTION [0001] The present invention relates to a method for manufacturing a sacrificial body for alumina titanium alumina composite,

DE 196 05 858 A1은 Al2O3/티타늄 알루미나이드 복합재료로부터 성분을 제조하는 공정을 발표한다. 세라믹/금속 복합재료는 세라믹과 금속상의 성질을 조합하므로 고강도 및 고파쇄인성을 갖는다. 사전특징절의 기초를 형성하는 공정에서 알루미나이드와 Al2O3를 동시에 형성하기 위해서 알루미늄을 수단으로 환원될 수 있는 산화물을 포함한 출발 혼합물이 형성된다. 출발 혼합물의 한 구성성분은 TiO2이다. 최종형태에 가까운 희생체가 출발 혼합물로부터 제조되며 이후에 Al이 침투된다. 희생체는 안정화되고 알루미늄 충진을 위해서 침투에 앞서서 압력하에서 소결된다. 소결후 희생체의 온도는 알루미늄과 알루미늄 합금(이후에는 알루미늄이라 칭함)이 용융온도 이상인 충진온도가 된다. 게다가 충진온도는 알루미늄과 출발물질의 적어도 한 성분간에 소위 SHS 반응이 일어나는 반응온도 미만이다. SHS 반응(자체 진행 고온 합성반응)은 반응온도 이상에서 매우 빠르게 일어나며 고 발열성이고 거의 제어불능한 반응이다. 충진 온도에서 압력하에서 희생체에 알루미늄이 충진되고 재가열되고 이후에 알루미늄과 희생체 구성성분간에 교환반응이 일어나서 Al2O3/티타늄 알루미나이드 복합재료를 형성한다.DE 196 05 858 A1 discloses a process for making components from Al 2 O 3 / titanium aluminide composites. Ceramic / metal composite materials have high strength and high fracture toughness because they combine the properties of ceramics and metals. In the process of forming the basis of the pre-feature section, a starting mixture is formed containing oxides which can be reduced by means of aluminum in order to simultaneously form aluminide and Al 2 O 3 . The constituents of the starting mixture is TiO 2. A sacrifice close to the final form is prepared from the starting mixture and then Al is infiltrated. The sacrificial body is stabilized and sintered under pressure prior to penetration for aluminum filling. The temperature of the sacrificial body after sintering is the filling temperature at which the aluminum and the aluminum alloy (hereinafter referred to as aluminum) are above the melting temperature. Moreover, the fill temperature is below the reaction temperature at which the so-called SHS reaction takes place between aluminum and at least one component of the starting material. The SHS reaction (self-propagating high-temperature synthesis reaction) takes place very quickly above the reaction temperature and is highly pyrogenic and almost uncontrollable. Under pressure at the filling temperature, the sacrificial body is filled with aluminum and reheated, after which an exchange reaction takes place between aluminum and the sacrificial component to form an Al 2 O 3 / titanium aluminide composite.

그러나 희생체는 특정 영역에서만 Al2O3/티타늄 알루미나이드 복합재료로 변환된다. 게다가 DE 196 05 858 A1에서 TiO2를 함유한 희생체는 특정 경우에만 알루미늄으로 완전 충진된다. 또한, 이러한 성질을 갖는 희생체에 예외적인 경우에만 연속 티타늄 알루미나이드상이 완전 제공된다.However, the sacrifice is converted to Al 2 O 3 / titanium aluminide composites only in certain regions. In addition, the sacrifice containing TiO 2 in DE 196 05 858 A1 is completely filled with aluminum only in certain cases. In addition, the continuous titanium aluminide phase is provided only in exceptional cases to the sacrifice having this property.

DE-P 19710671.4 는 금속/세라믹 복합재료로부터 성분을 제조하는 방법을 발표하는데, 세라믹 선구물질을 포함하는 희생체에 열에 의해 연화된 금속, 특히 알루미늄 또는 금속합금이 충진된다. 충진온도는 반응온도 미만이고 반응온도에서 세라믹 선구물질의 금속과 충진 금속의 금속간에 교환반응이 일어난다. 희생체가 가능한 완전하게 충진된후 충진된 희생체는 변환온도 이상으로 가열되고 그 결과 방금 언급된 교환반응이 일어난다. 이러한 교환반응은 세라믹의 금속과 충진금속의 금속간에 금속간 결합을 갖는 세라믹상과 금속상을 포함한 금속/세라믹 복합재료로 제조된 성분을 생성한다. 충진 금속과 희생체의 물질간에 교환반응이 일어나는 반응온도 아래로 가열함으로써 연화된 금속이 희생체에 충진됨으로써 충진과 도입된 금속과 희생체 물질간 후속 교환반응동안 세라믹 매트릭스가 유지된다. 희생체의 기공은 완전 충진되어서 문제의 물질이 화학양론적인 양으로 사용될 때 성분은 모두 완전히 반응되고 균열 및 채널이 없다. 특히, 충진금속은 알루미늄이고 세라믹의 금속은 티타늄이어서 교환반응후 세라믹상은 TiBX또는 TiCy또는 TiCN 과 Al2O3를 포함하고 금속상의 금속간 화합물은 고내열성 티타늄 알루미나이드, 특히 TiAl이다. 이러한 금속/세라믹 복합재료의 성질은 양호하다. 따라서 충진금속으로서 알루미늄과 세라믹 희생체의 금속으로서 Ti를 사용하여 제조된 금속/세라믹 복합재료는 3.4g/㎤의 밀도를 가진다. 이 밀도는 MMC(금속 세라믹 복합체)의 밀도보다 약간 높지만 주철 밀도의 42%이다. 고내열성 화합물이 금속간 화합물 TiAl 형태로 존재하는 구체예에서 성분의 사용범위는 회색 주철의 경우보다 매우 높은 800℃ 이상이다. 제조된 금속/세라믹 복합재료는 디스크 브레이크 마찰반응 마찰링 제조에 사용된다. 이러한 마찰링은 스크루와 같은 수단에 의해 브레이크 디스크의 허브에 고정된다.DE-P 19710671.4 discloses a method for producing a component from a metal / ceramic composite wherein the sacrificial body comprising the ceramic precursor is filled with a thermally softened metal, in particular aluminum or a metal alloy. The filling temperature is less than the reaction temperature and the exchange reaction occurs between the metal of the ceramic precursor and the metal of the filling metal at the reaction temperature. After the sacrificial body is as completely filled as possible, the filled sacrificial body is heated above the conversion temperature and the exchange reaction just mentioned occurs. This exchange reaction produces components made of metal / ceramic composites including ceramic phases and metal phases with intermetallic bonds between the metal of the ceramic and the metal of the fill metal. By heating below the reaction temperature at which the exchange reaction occurs between the fill metal and the sacrificial material, the softened metal is filled into the sacrificial body, thereby maintaining the ceramic matrix during the subsequent exchange reaction between the filler and the introduced metal and the sacrificial material. The pores of the sacrificial body are completely filled so that when the material in question is used in stoichiometric amounts, all of the ingredients are fully reacted and there is no cracks or channels. Particularly, since the fill metal is aluminum and the metal of the ceramic is titanium, the ceramic phase includes TiB x or TiC y or TiCN and Al 2 O 3 after the exchange reaction, and the intermetallic compound on the metal is high heat-resistant titanium aluminide, especially TiAl. The properties of such a metal / ceramic composite material are good. Therefore, the metal / ceramic composite material prepared using aluminum as the filler metal and Ti as the metal of the ceramic sacrificial body has a density of 3.4 g / cm 3. This density is slightly higher than the density of the MMC (metal-ceramic composite) but is 42% of the cast iron density. In embodiments where the high heat resistant compound is present in the form of an intermetallic compound TiAl, the range of use of the component is at least 800 DEG C, which is much higher than that of gray cast iron. The fabricated metal / ceramic composites are used in the manufacture of disc brake friction response friction rings. Such a friction ring is fixed to the hub of the brake disc by means such as a screw.

그러나 희생체에 금속 또는 합금이 충진되기 전 희생체의 출발물질이 가열되어야 하며 선구물질간 교환반응이 일어나서 고급선구물질이 형성되어야 한다. 금속 충진 후 세라믹상과 금속상이 상기 선구물질과 금속으로부터 형성되며 선구물질과 충진 금속간에 교환반응이 다시 사용되어서 상을 형성한다.However, before the sacrificial body is filled with the metal or the alloy, the starting material of the sacrificial body must be heated and exchange reaction between the precursors should occur to form an advanced precursor. After the metal filling, the ceramic phase and the metal phase are formed from the precursor and the metal, and the exchange reaction is again used between the precursor and the filler metal to form an image.

US-A-4,988,645는 세라믹 희생체를 알루미늄으로 침투시키는 공정을 발표한다. 이 공정에서 SHS 반응(반응 혼합물 자체가 반응을 진행시켜 반응생성물로서 세라믹 매트릭스를 제공하는 자체 진행 고온 합성 반응)을 사용하여 세라믹 물체가 제조된다.US-A-4,988,645 discloses a process for impregnating ceramic sacrificial bodies with aluminum. In this process, a ceramic body is produced using an SHS reaction (a self-propagating high-temperature synthesis reaction in which the reaction mixture itself reacts to provide a ceramic matrix as a reaction product).

그러나 이 방식으로 제조된 성분은 허용할 수 없는 수준의 다공성을 가지므로 불량률이 높다. 특히 희생체의 선구물질로서 TiO2를 함유한 희생체의 충진이 매우 불량하다.However, the components produced in this way have an unacceptable level of porosity and thus have a high percentage of rejects. In particular, the filling of the sacrificial body containing TiO 2 as a precursor of the sacrificial body is very poor.

WO 84/02927 은 소위 압착-주조 공정을 사용하며 알루미늄을 함유한 섬유-보강된 다이캐스트 부품 제조공정을 발표한다. 이 공정에서 섬유 함유 출발혼합물로 된 다공성 초기 물체가 압축되고 알루미늄이 충진된다. 다공성 초기 물체를 안정시키고 초기 물체에 배열된 섬유의 배향성을 유지하기 위해서 출발혼합물에 바인더가 첨가되고 초기 물체의 충진동안 열에 의해 제거된다. 기공의 존재와 바인더의 강도 때문에 초기 물체는 변형을 겪지 않거나 무시할 정도로 변형된다. 이 경우에 충진 알루미늄과 초기 몸체의 출발물질간에 화학반응이 없으므로 이러한 반응이 다이캐스트 성분의 구조 및 형태에 미치는 효과가 미지이다.WO 84/02927 discloses a process for manufacturing fiber-reinforced die-cast parts containing aluminum using a so-called squeeze-cast process. In this process, the porous initial body of fiber-containing starting mixture is compressed and filled with aluminum. A binder is added to the starting mixture to stabilize the porous initial body and to maintain the orientation of the fibers arranged in the initial body and removed by heat during the filling of the initial body. Due to the presence of pores and the strength of the binder, the initial body undergoes no deformation or is negligibly deformed. In this case, there is no chemical reaction between the filled aluminum and the starting material of the initial body, so the effect of this reaction on the structure and form of the diecast component is unknown.

상기 모든 방법은 충진 온도보다 높은 온도에서 소결, 제 1 교환반응, 충진 및 후속 제 2 교환반응과 같은 다양한 열처리로 인해 높은 에너지를 필요로 한다. 따라서 공정 비용이 높다.All of the above methods require high energy due to various heat treatments such as sintering at a temperature higher than the filling temperature, the first exchange reaction, the filling and the subsequent second exchange reaction. Therefore, the process cost is high.

본 발명은 출발 혼합물로부터 청구항 1의 서문에 따른 Al2O3/티타늄 알루미나이드 복합재료로된 성분 제조용 희생체(sacrificial body) 제조방법, 청구항 16의 서문에 따른 희생체 제조용 출발 혼합물, 및 청구항 27의 서문에 따른 희생체에 관계하며, 이들은 DE 196 05 858 A1에 공지된다.The present invention relates to a process for the preparation of a sacrificial body for the production of a composition consisting of an Al 2 O 3 / titanium aluminide composite according to the preamble of claim 1, a starting mixture for preparing a sacrificial product according to the preamble of claim 16, , Which are known from DE 196 05 858 A1.

본 발명의 목적은 금속/세라믹 복합재료로부터 성분의 제조가 더 간단하고 더 빠르고 싸고 에너지 효율적이며 복합체에 가능한 최대로 신뢰성 있게 티타늄 알루미나이드가 제공되도록 공지 공정을 개량하는 것이다.It is an object of the present invention to improve the known processes so that the manufacture of the components from the metal / ceramic composites is simpler, faster, cheaper, more energy efficient and the titanium aluminide is provided as reliably as possible to the composite.

본 발명의 기초가 되는 희생체를 사용하여 이러한 목적은 청구항 1의 특징에 의해 달성된다. 환원된 티타늄 산화물 TiOX(x = 1, 1.5, 1.67) 또는 탄소에 의해 환원되는 TiO2를 함유하며 최종 형태에 가깝게 형성 및 기계가공된 압력에 안정적인 희생체를 사용함으로써 용융된 Al 이 동시에 침투되어서 매우 양호하게 압력에 의해 침투될 수 있다.This object is achieved by the features of claim 1 using a sacrificial body on which the present invention is based. Molten Al is simultaneously infiltrated by using a stable sacrificial body containing reduced titanium oxide TiO x (x = 1, 1.5, 1.67) or TiO 2 reduced by carbon and formed and machined close to the final shape Can be infiltrated by pressure very well.

알루미늄과 희생체의 재료를 출발물질로 형성된 Al2O3/티타늄 알루미나이드 복합재료로 전환시키는 두가지 공지 교환반응이 단일 가열공정으로 수행될 수 있다.Two known exchange reactions, which convert aluminum and sacrificial material into an Al 2 O 3 / titanium aluminide composite formed from the starting material, can be performed in a single heating process.

변환온도는 충진온도 미만, 특히 알루미늄 용융온도 미만, 더더욱 400℃ 미만이다. 필요한 에너지 소모와 제조시간이 단축된다.The conversion temperature is below the fill temperature, especially below the aluminum melting temperature, and even below 400 ° C. The required energy consumption and manufacturing time are shortened.

희생체에 알루미늄 또는 알루미늄 합금을 충진하기 위해서 희생체가 가열된다. 특정 상황하에서 환원된 티타늄 산화물 TiOX(TiO, Ti2O3, 또는 Ti3O5)이 가열될 때 TiO2및 C 로부터 형성될 수 있으므로 희생체 제조를 위해서 TiO2및 C를 사용하는 것이 좋다.The sacrificial body is heated to fill the sacrificial body with aluminum or an aluminum alloy. It is preferable to use TiO 2 and C for the preparation of the sacrificial material since the reduced titanium oxide TiO x (TiO 2 , Ti 2 O 3 , or Ti 3 O 5 ) under certain circumstances can be formed from TiO 2 and C when heated .

그러나 놀랍게도 희생체를 알루미늄으로 압력에 의해 침투하는 동안 Al2O3/티타늄 알루미나이드 복합재료를 형성하는 교환반응이 없다. Al2O3/티타늄 알루미나이드 복합재료는 고체-상태 반응을 통해서만 형성되고 이의 공정온도는 알루미늄의 용융온도 미만이다.Surprisingly, however, there is no exchange reaction to form the Al 2 O 3 / titanium aluminide composite while permeating the sacrificial body under pressure with aluminum. Al 2 O 3 / titanium aluminide composites are formed solely through solid-state reactions and their process temperatures are below the melting temperature of aluminum.

탄소 및 TiO2와 바인더와 충진제를 함유한 가루형 세라믹 출발 혼합물이 혼합되고 이후에 압축된다.Carbon and TiO 2 with a garuhyeong ceramic starting mixture contains a binder and filler are mixed and compacted at a later time.

진공 또는 질소나 CO2보호가스 하에서 350 내지 700℃, 특히 400℃에서 저온 열처리를 수단으로 충진제와 바인더가 진공 또는 보호 가스 하에서 연소되어 소결안된 다공성 압력-안정성 세라믹 희생체를 형성한다.The filler and the binder are fired under vacuum or protective gas by means of a low temperature heat treatment at 350 to 700 ° C, especially 400 ° C under vacuum or nitrogen or CO 2 protective gas to form a sintered porous pressure-stable ceramic sacrificial body.

동시에 열무게분석(TG)이 수행되어서 바인더와 충진제가 완전 제거되었는지를 확인한다.At the same time, thermogravimetric analysis (TG) is performed to confirm that the binder and filler are completely removed.

충진제와 바인더의 조절된 첨가로 정확하게 한정된 다공성, 기공 구조 및 강도를 얻을 수 있으므로 알루미늄을 사용한 희생체의 압력 침투를 허용한다.Due to the controlled addition of fillers and binders, precisely defined porosity, pore structure and strength can be obtained, allowing pressure infiltration of the sacrificial body using aluminum.

본 발명의 장점 중 하나는 금속/세라믹 복합재료로부터 성분을 제조하는 전체 기간동안, 즉 희생체의 제조에서 시작하여 알루미늄을 사용한 희생체의 충진, 교환반응에 의한 복합재료의 형성까지 800℃ 이상, 특히 700℃ 이상에서 수행되는 단계가 없다는 것이다. 다른 한편으론 압력주조에 의한 충진이 단시간 이내에 이루어진다.One of the advantages of the present invention is that during the entire period of manufacturing the component from the metal / ceramic composite material, that is, from the preparation of the sacrificial body to the formation of the composite material by the filling and exchange reaction of the aluminum- Especially at temperatures above 700 ° C. On the other hand, filling by pressure casting takes place within a short time.

게다가 알루미늄이 고내열성 티타늄 알루미나이드로 전환된다. 추가로 매우 싼 원료가 사용된다. 원료 단가는 kg당 4 DM 이다.In addition, aluminum is converted to high heat-resistant titanium aluminide. In addition, very cheap raw materials are used. The raw material cost is 4 DM per kg.

출발 혼합물을 제조하기 위해서 서로에 대해 한정된 화학양론적인 비율로 이산화티타늄과 흑연이 혼합된다. 이후에 1-3중량%의 폴리비닐 알콜(PVA) 또는 폴리에틸렌 글리콜(PEG)와 같은 바인더 수용액이 균질 혼합물에 첨가되고 반죽된다. 바인더 첨가 후 분말 또는 섬유 형태의 수용성 유기 충진제, 특히 셀룰로오스 아세테이트와 같은 셀룰로오스 유도체가 혼합물에 첨가되고 반죽된다.Titanium dioxide and graphite are mixed in a defined stoichiometric ratio relative to each other to produce a starting mixture. Thereafter, a binder aqueous solution such as 1-3% by weight of polyvinyl alcohol (PVA) or polyethylene glycol (PEG) is added to the homogeneous mixture and kneaded. After binder addition, a water soluble organic filler in powder or fiber form, especially a cellulose derivative such as cellulose acetate, is added to the mixture and kneaded.

분말 형태로 첨가되는 충진제는 10 내지 100 ㎛, 특히 20 ㎛의 평균 크기를 가진다. 혼합물은 건조되거나 축축한 상태(잔류 수분 10-20%/ H20)로 방치되며 300 바아에서 단축 압축된다. 단축 압축공정 후 냉간 등압 압축공정이 수행된다.The filler added in powder form has an average size of 10 to 100 mu m, especially 20 mu m. The mixture is allowed to stand in a dry or moist state (moisture remaining 10-20% / H 2 0) is uniaxial compression at 300 bar. After the uniaxial compression process, the cold isostatic pressing process is performed.

최종 형태에 가깝게 압축된 희생체는 최종 칫수로 기계가공되고 다이-캐스팅 다이에 도입되고 희생체에 액체 알루미늄이 충진된다.The sacrificial body compressed to a final shape is machined to final dimensions and introduced into a die-casting die, and the sacrificial body is filled with liquid aluminum.

희생체의 강도, 탄성 모듈러스, 다공성 및 기공구조는 다이-캐스팅 공정에서 알루미늄 충진시 중요하다.The strength, elastic modulus, porosity and pore structure of the sacrificial body are important in the aluminum filling in the die-casting process.

이들 성질은 충진제 및 바인더의 선택, 충진제의 양 및 압축압력에 의해 영향을 받는다. 게다가 세라믹 분말(TiO2등)의 입자 크기와 충진제의 입자크기도 영향을 미친다.These properties are influenced by the choice of filler and binder, the amount of filler and the compression pressure. In addition, the particle size of the ceramic powder (TiO 2, etc.) and the particle size of the filler are also affected.

영향을 주는 매개변수와 목표 매개변수간의 관계가 표1에 제시된다.The relationship between the affecting and target parameters is presented in Table 1.

공정변수가 희생체의 성질에 미치는 효과Effects of Process Variables on the Properties of Sacrifices 목표 매개변수Goal parameters 영향을 주는 매개변수Affecting Parameters 충진제의 종류 충진제의 양 압축 압력 입자 크기Type of filler Amount of filler Compressive pressure Particle size 초기 강도탄성 모듈러스다공성기공구조Initial Strength Modulus Porous Pore Structure + + +++ ++ + +++ ++ ++ ++ ++++ ++ + ++++ + +++ ++ + +++ ++ ++ ++ ++++ +++ +++

+ = 약간 영향을 줌; ++ = 중간정도의 영향을 줌; +++ = 매우 큰 영향을 줌+ = Has some effect; ++ = moderate impact; +++ = very large impact

희생체 형성용 출발 혼합물이 제시된다.A starting mixture for sacrificial body formation is presented.

실시예 1Example 1

3몰 TiO2(평균 입자 직경 d50= 0.3㎛)를 반죽기(Eirich에 의해 제조된)에서 10 분간 1몰의 C(d50= 0.05㎛)와 혼합한다. 3중량 % 폴리에틸렌 글리콜(20 % 수용액)이 혼합물에 첨가되고 반죽된다. 이후에 10중량 % 셀룰로오스 아세테이트(CA)(d50= 20㎛)가 축축한 혼합물에 첨가되고 반죽기에서 혼합된다. 분말을 30 MPa에서 단축 압축된다. 이후에 200 MPa에서 냉간 등압 압축한다. 희생체를 700℃에서 1시간동안 질소하에서 가열하면 (350℃에서 유지되고 가열 속도는 1K/분이다) 모든 유기 첨가물이 연소되어 잔류물이 남지 않는다. 이 희생체는 7MPa 의 압축강도와 49%의 다공도를 가진다. 기공 직경은 0.1㎛와 20㎛에서 최대값을 갖는 바이모달 분포를 한다.3 mol TiO 2 (average particle diameter d 50 = 0.3 μm) is mixed with 1 mol of C (d 50 = 0.05 μm) in a kneader (manufactured by Eirich) for 10 minutes. 3 wt% polyethylene glycol (20% aqueous solution) is added to the mixture and kneaded. 10 wt% cellulose acetate (CA) (d 50 = 20 탆) is then added to the moist mixture and mixed in a kneader. The powder is uniaxially compacted at 30 MPa. After that, cold isostatic compression is performed at 200 MPa. When the sacrificial body is heated at 700 DEG C for 1 hour under nitrogen (maintained at 350 DEG C and the heating rate is 1 K / min), all the organic additives are burned to leave no residue. This sacrificial body has a compressive strength of 7 MPa and a porosity of 49%. The pore diameter has a bimodal distribution with a maximum at 0.1 탆 and 20 탆.

실시예 2Example 2

TiO2와 C의 몰비율이 3/2인 것을 제외하고는 실시예 1과 동일하다. 이 경우에 300MPa에서 추가 등압 압축이 필요하다.Except that the molar ratio of TiO 2 and C was 3/2. In this case, additional iso-compression is required at 300 MPa.

실시예 3Example 3

셀룰로오스 아세테이트의 양이 20중량%인 것을 제외하고는 실시예 1과 동일하다.And the amount of cellulose acetate was 20% by weight.

실시예 4Example 4

단축 압축전 10중량%의 물이 TiO2/C/PEG/CA 혼합물에 첨가된 것을 제외하고는 실시예 1과 동일하다.The same as Example 1 except that 10 wt% of water was added to the TiO 2 / C / PEG / CA mixture before uniaxial compression.

실시예 5Example 5

단축 압축전 1중량%의 물이 TiO2/C/PEG/CA 혼합물에 첨가된 것을 제외하고는 실시예 1과 동일하다.The same as Example 1 except that 1 wt% of water was added to the TiO 2 / C / PEG / CA mixture before uniaxial compression.

실시예 6Example 6

짧은 콘스탄탄 와이어 섬유 또는 C 섬유가 TiO2/C/PEG/CA 혼합물에 첨가된 것을 제외하고는 실시예 1과 동일하다. 이것은 파괴 신장률을 증가시킨다.A short constontane wire or C fiber was added to the TiO 2 / C / PEG / CA mixture. This increases fracture elongation.

실시예 7Example 7

TiO2입자크기가 평균 15㎛의 직경을 가진 것을 제외하고는 실시예 1과 동일하다. 압축강도가 7.5MPa 까지 증가한다.The TiO 2 particle size is the same as in Example 1 except that it has a diameter of 15 mu m on average. The compressive strength increases to 7.5 MPa.

희생체에 압력을 가해 알루미늄이 충진된다. 충진 후 희생체는 알루미늄 융점 미만에서 열처리를 받아 균질 분포된 TiC, Al2O3, Al3Ti를 포함한 복합재료가 형성된다.The sacrificial body is pressurized and filled with aluminum. After filling, the sacrificial body is subjected to heat treatment at a temperature lower than the melting point of aluminum to form a composite material including TiC, Al 2 O 3 and Al 3 Ti uniformly distributed.

후속 열처리동안 고체상태 반응이 일어나서 복합재료가 생성된다. 그러므로 이 반응을 알루미늄의 융점 미만에서 일어난다. 이러한 균질 복합재료는 고내열성 및 내마모성이다.A solid state reaction takes place during the subsequent heat treatment to produce a composite material. Therefore, this reaction takes place below the melting point of aluminum. These homogeneous composite materials have high heat resistance and wear resistance.

본 발명에 따른 제조방법, 출발혼합물 또는 희생체는 마찰시스템, 엔진성분, 차량성분 또는 브레이크 디스크의 마찰면 제조에 특히 적합하다. 마찰 시스템은 브레이크 디스크뿐만 아니라 젯트엔진 및 모터의 구조성분, 특히 미끄럼 접촉 베어링 및 절삭재료를 의미한다.The manufacturing method, starting mixture or sacrificial body according to the invention is particularly suitable for the production of friction surfaces of friction systems, engine components, vehicle components or brake discs. The friction system means the structural components of the jet engine and motor as well as the brake disc, in particular the sliding contact bearing and the cutting material.

Claims (40)

산화물로서 티타늄이 출발 혼합물에 첨가되고 출발혼합물이 압축되어 성형체가 형성되고 성형체가 전환온도에서 열처리를 받아서 희생체가 형성되고 희생체에 압력하에서 알루미늄 또는 알루미늄 합금이 충진되어서 희생체의 물질과 알루미늄이 반응하여 Al2O3/티타늄 알루미나이드 복합체를 형성하는 단계로 구성된 출발 혼합물로부터 Al2O3/티타늄 알루미나이드 복합체 제조용 희생체를 제조하는 방법에 있어서, 탄소 또는 탄소 선구물질, 충진제 및 바인더가 출발 혼합물에 첨가되고 출발혼합물이 압축되어 성형체가 형성되고 출발 혼합물의 각 성분이 바인더에 의해 압력-안정화 방식으로 서로 결합되며 충진제와 바인더의 분해온도가 충진온도 이하가 되게 선택되어서 출발물질을 압축시켜 형성된 희생체를 알루미늄으로 충진하는 동안 또는 이전에 충진제 및 바인더가 제거되며 전환온도가 충진온도 미만으로 설정되어서 후속 가압 충진을 위한 충진 온도로 가열하는 동안 성형체가 희생체로 전환됨을 특징으로 하는 희생체 제조방법.Titanium as an oxide is added to the starting mixture, the starting mixture is compressed to form a compact, the compact is heat-treated at the conversion temperature to form a sacrificial body, and the sacrificial body is filled with aluminum or an aluminum alloy under pressure, the Al 2 O 3 / titanium aluminide from a starting mixture consisting of forming a composite according to the method of producing the Al 2 O 3 / titanium aluminide composites for preparing the sacrificial material, carbon or a carbon precursor, filler and binder is the starting mixture And the starting mixture is compressed to form a shaped body and each component of the starting mixture is bound together by a binder in a pressure-stabilized manner and the decomposition temperature of the filler and the binder is selected to be below the fill temperature, While filling the sieve with aluminum or Wherein the filler and the binder are previously removed and the conversion temperature is set below the fill temperature so that the formed body is converted to the sacrifice during heating to the fill temperature for subsequent pressurization. 제 1항에 있어서, 압축된 소결안된 희생체에 알루미늄이 충진됨을 특징으로 하는 제조방법.The method of claim 1, wherein the compressed sintered sacrificial body is filled with aluminum. 제 1항에 있어서, 희생체가 최종 모양에 가깝게 생성됨을 특징으로 하는 제조방법.The method according to claim 1, wherein the sacrificial material is produced close to the final shape. 제 1항에 있어서, 희생체가 압축되고 이후에 최종 모양에 가깝게 기계가공됨을 특징으로 하는 제조방법.2. A method according to claim 1, wherein the sacrificial body is compressed and subsequently machined close to the final shape. 제 1항에 있어서, 사용된 티타늄 산화물이 TiO, Ti2O3, Ti3O5또는 TiO2임을 특징으로 하는 제조방법.The method according to claim 1, wherein the titanium oxide used is TiO, Ti 2 O 3 , Ti 3 O 5 or TiO 2 . 제 1항에 있어서, 사용된 티타늄 산화물이 TiO2이고 TiO2가 탄소에 의해 환원되고 충진제와 바인더의 열제거동안 환원 작용을 하는 탄소가 형성되어서 희생체에 남음을 특징으로 하는 제조방법.The method of claim 1, wherein the titanium oxide used is TiO 2 , TiO 2 is reduced by the carbon, and the reducing carbon is formed during the thermal removal of the filler and the binder and remains in the sacrificial material. 제 1항에 있어서, 충진제가 충진온도 미만에서 증발되거나 탄소로 결합됨을 특징으로 하는 제조방법.The process according to claim 1, wherein the filler is evaporated below the fill temperature or bound to the carbon. 제 1항에 있어서, 바인더가 충진온도 미만에서 증발되거나 탄소로 전환됨을 특징으로 하는 제조방법.The method of claim 1, wherein the binder is evaporated below the fill temperature or converted to carbon. 제 1항에 있어서, 충진제가 전분, 밀가루 또는 셀룰로오스 아세테이트와 같은 셀룰로오스 유도체에서 선택된 열가소성 또는 열경화성 유기 재료임을 특징으로 하는 제조방법.The method according to claim 1, wherein the filler is a thermoplastic or thermosetting organic material selected from starch, wheat flour or a cellulose derivative such as cellulose acetate. 제 1항에 있어서, 출발혼합물의 출발물질이 균일하게 분산됨을 특징으로 하는 제조방법.2. A process according to claim 1, characterized in that the starting material of the starting mixture is homogeneously dispersed. 제 1항에 있어서, 1-3중량%의 바인더가 출발혼합물에 첨가됨을 특징으로 하는 제조방법.The process according to claim 1, wherein 1-3% by weight of the binder is added to the starting mixture. 제 1항에 있어서, 선택된 바인더가 폴리비닐알콜(PVA) 또는 폴리에틸렌글리콜(PEG) 수용액임을 특징으로 하는 제조방법.The method according to claim 1, wherein the selected binder is an aqueous solution of polyvinyl alcohol (PVA) or polyethylene glycol (PEG). 제 1항에 있어서, 선택된 충진제가 10 내지 100㎛, 특히 20㎛의 입자크기를 갖는 분말임을 특징으로 하는 제조방법.The method according to claim 1, wherein the selected filler is a powder having a particle size of 10 to 100 μm, especially 20 μm. 제 1항에 있어서, 비휘발성 첨가물 TiC, SiC, BaC 또는 TiB2가 충진온도에서 출발혼합물에 첨가됨을 특징으로 하는 제조방법.The process according to claim 1, wherein the nonvolatile additives TiC, SiC, BaC or TiB 2 are added to the starting mixture at the charging temperature. 제 1항에 있어서, 무기 또는 세라믹 섬유가 출발 혼합물에 첨가됨을 특징으로 하는 제조방법.The process according to claim 1, wherein inorganic or ceramic fibers are added to the starting mixture. 산화물로서 티타늄을 포함한 출발혼합물이 압축되어 성형체가 형성되고 성형체가 전환온도에서 열처리를 받아서 희생체가 형성되고 충진온도에서 희생체에 알루미늄 또는 알루미늄 합금이 충진되어서 희생체의 물질과 알루미늄이 반응하여 Al2O3/티타늄 알루미나이드 복합재료로된 성분을 형성하며 출발 혼합물로부터 Al2O3/티타늄 알루미나이드 복합재료를 형성하고 희생체 제조용 출발혼합물에 있어서, 탄소 또는 탄소 선구물질, 충진제 및 바인더가 출발 혼합물에 첨가되고 출발혼합물이 압축되어 성형체가 형성되고 출발 혼합물의 각 성분이 바인더에 의해 압력-안정화 방식으로 서로 결합되며 충진제와 바인더의 분해온도가 충진온도 이하가 되게 선택되어서 출발물질을 압축시켜 형성된 소결안된 희생체를 알루미늄으로 충진하는 동안 또는 이전에 충진제 및 바인더가 제거되며 전환온도가 충진온도 미만으로 설정되어서 충진 온도로 가열하는 동안 성형체가 희생체로 전환됨을 특징으로 하는 희생체 제조용 출발혼합물.The starting mixture including titanium as an oxide is compressed shaped body being formed receives a heat treatment in a molded article is conversion temperature and the formed body is sacrificed during the filling temperature be aluminum or an aluminum alloy filled into the sacrificial material with the material and the aluminum of the sacrificial body reaction Al 2 O 3 / titanium aluminide composite to form an Al 2 O 3 / titanium aluminide composite from the starting mixture and to prepare a starting mixture for sacrificial preparation, wherein the carbon or carbon precursor, the filler and the binder are the starting mixture And the starting mixture is compressed to form a shaped body and each component of the starting mixture is bound together by a binder in a pressure-stabilized manner and the decomposition temperature of the filler and binder is selected to be below the fill temperature, While the unfilled sacrificial body is filled with aluminum, Before the filler and the binder is removed, and the sacrificial material for preparing the starting mixture to a shaped article characterized in that the switched body sacrificed during the transition temperature is set to be less than filled with a filling temperature heating temperature. 제 16항에 있어서, 사용된 티타늄 산화물 TiO, Ti2O3, Ti3O5또는 TiO2가 환원작용을 하는 탄소와 반응됨을 특징으로 하는 출발 혼합물.17. The method of claim 16 wherein the titanium oxide TiO, Ti 2 O 3, Ti 3 O 5 , or the starting mixture, characterized in that the carbon and reaction of the TiO 2 used a reducing action. 제 16항에 있어서, 사용된 티타늄 산화물이 TiO2이고 TiO2가 탄소에 의해 환원되고 충진제와 바인더의 열제거동안 환원 작용을 하는 탄소가 형성됨을 특징으로 하는 출발 혼합물.17. The method of claim 16 wherein the titanium oxide is TiO 2 and the starting mixture, characterized in that the carbon is formed a reducing activity while TiO 2 is reduced by the carbon filler and thermal removal of the binder used. 제 16항에 있어서, 충진제와 바인더가 충진온도 이하에서 증발되거나 탄소로 전환됨을 특징으로 하는 제조방법.17. The method of claim 16, wherein the filler and the binder are evaporated below the fill temperature or converted to carbon. 제 16항에 있어서, 충진제가 전분, 밀가루 또는 셀룰로오스 아세테이트와 같은 셀룰로오스 유도체에서 선택된 열가소성 또는 열경화성 유기 재료임을 특징으로 하는 출발 혼합물.The starting mixture according to claim 16, characterized in that the filler is a thermoplastic or thermosetting organic material selected from starches, wheat flour or cellulose derivatives such as cellulose acetate. 제 16항에 있어서, 희생체 형성을 위한 압축에 앞서서 출발 혼합물의 출발물질이 균일하게 분산됨을 특징으로 하는 출발 혼합물.17. A starting mixture according to claim 16, characterized in that the starting material of the starting mixture is homogeneously dispersed prior to compression for sacrificial formation. 제 16항에 있어서, 출발 혼합물이 1-3중량%의 바인더를 포함함을 특징으로 하는 출발 혼합물.17. A starting mixture according to claim 16, characterized in that the starting mixture comprises from 1 to 3% by weight of binder. 제 16항에 있어서, 바인더가 폴리비닐알콜(PVA) 또는 폴리에틸렌글리콜(PEG) 수용액임을 특징으로 하는 출발 혼합물.The starting mixture according to claim 16, wherein the binder is an aqueous solution of polyvinyl alcohol (PVA) or polyethylene glycol (PEG). 제 16항에 있어서, 충진제가 10 내지 100㎛, 특히 20㎛의 입자크기를 갖는 분말임을 특징으로 하는 출발 혼합물.The starting mixture according to claim 16, characterized in that the filler is a powder having a particle size of from 10 to 100 μm, in particular 20 μm. 제 16항에 있어서, 출발 혼합물이 희생체 충진온도에서 비휘발성인 첨가물 TiC, SiC, BaC 또는 TiB2를 포함함을 특징으로 하는 출발 혼합물.The method of claim 16, wherein the starting mixture, characterized in that the starting mixture comprises a non-volatile additives, TiC, SiC, BaC or TiB 2 in the sacrificial material filling temperature. 제 16항에 있어서, 무기 또는 세라믹 섬유가 출발 혼합물에 포함됨을 특징으로 하는 출발 혼합물.17. A starting mixture according to claim 16 wherein inorganic or ceramic fibers are included in the starting mixture. 희생체가 산화물로서 티타늄을 함유하고 출발혼합물이 압축되어 형성된 성형체가 전환온도에서 열처리를 받아서 희생체가 형성되고 희생체에 알루미늄 또는 알루미늄 합금이 충진되어서 희생체의 물질과 알루미늄이 반응하여 Al2O3/티타늄 알루미나이드 복합재료로 된 성분을 제조하는 Al2O3/티타늄 알루미나이드 복합재료로된 성분 제조용 희생체에 있어서, 탄소 또는 탄소 선구물질, 충진제 및 바인더가 출발 혼합물에 첨가되고 출발혼합물이 압축되어 성형체가 형성되고 출발 혼합물의 각 성분이 바인더에 의해 압력-안정화 방식으로 서로 결합되며 충진제와 바인더의 분해온도가 충진온도 이하가 되게 선택되어서 출발물질을 압축시켜 형성된 소결안된 희생체를 알루미늄으로 충진하는 동안 또는 이전에 충진제 및 바인더가 제거되며 전환온도가 충진온도 미만임을 특징으로 하는 Al2O3/티타늄 알루미나이드 복합재료로된 성분 제조용 희생체.The sacrificial body contains titanium as an oxide and the starting mixture is compressed, and the formed body is subjected to heat treatment at the transition temperature to form a sacrificial body, and the sacrificial body is filled with aluminum or an aluminum alloy so that the sacrificial body and aluminum react with each other to form Al 2 O 3 / In a sacrificial body for preparing a component made of an Al 2 O 3 / titanium aluminide composite which produces a component made of a titanium aluminide composite, a carbon or carbon precursor, a filler and a binder are added to the starting mixture and the starting mixture is compressed The molded body is formed and each component of the starting mixture is bonded to each other in a pressure-stabilized manner by a binder, and the decomposition temperature of the filler and the binder is selected to be below the fill temperature to compress the starting material to fill the unfired sacrificial body formed with aluminum During or before the filler and binder are removed and the conversion on The Al 2 O 3 / Ti alumina sacrificial member id in the composite material for preparing component, characterized in that the filling temperature is less than. 제 27항에 있어서, 티타늄 산화물이 TiO, Ti2O3, Ti3O5또는 TiO2임을 특징으로 하는 희생체.The method of claim 27, wherein the titanium oxide is a sacrificial member, characterized in that the TiO, Ti 2 O 3, Ti 3 O 5 or TiO 2. 제 27항에 있어서, 티타늄 산화물이 TiO2이고 TiO2가 탄소에 의해 환원되고 충진제와 바인더의 열제거동안 환원 작용을 하는 탄소가 형성됨을 특징으로 하는 희생체.The method of claim 27, wherein the titanium oxide is a sacrificial member, characterized in that the carbon is formed during the reduction action TiO 2 and TiO 2 is reduced by the carbon filler and thermal removal of the binder. 제 27항에 있어서, 충진제와 바인더가 충진온도 이하에서 증발되거나 탄소로 결합됨을 특징으로 하는 희생체.28. The sacrificial compound of claim 27, wherein the filler and the binder are vaporized below the fill temperature or bound to the carbon. 제 27항에 있어서, 충진제가 전분, 밀가루 또는 셀룰로오스 아세테이트와 같은 셀룰로오스 유도체에서 선택된 열가소성 또는 열경화성 유기 재료임을 특징으로 하는 희생체.28. The sacrificial product of claim 27, wherein the filler is a thermoplastic or thermoset organic material selected from starch, flour or a cellulose derivative such as cellulose acetate. 제 27항에 있어서, 출발물질이 희생체에 균일하게 분산됨을 특징으로 하는 희생체.28. The sacrificial composition of claim 27, wherein the starting material is uniformly dispersed in the sacrificial material. 제 27항에 있어서, 1-3중량%의 바인더가 희생체에 포함됨을 특징으로 하는 희생체.28. The sacrificial composition of claim 27, wherein 1-3% by weight of the binder is included in the sacrificial material. 제 27항에 있어서, 바인더가 폴리비닐알콜(PVA) 또는 폴리에틸렌글리콜(PEG) 수용액임을 특징으로 하는 희생체.28. The sacrificial product of claim 27, wherein the binder is an aqueous solution of polyvinyl alcohol (PVA) or polyethylene glycol (PEG). 제 27항에 있어서, 충진제가 10 내지 100㎛, 특히 20㎛의 입자크기를 갖는 분말임을 특징으로 하는 희생체.A sacrificial body according to claim 27, wherein the filler is a powder having a particle size of 10 to 100 탆, particularly 20 탆. 제 27항에 있어서, 충진온도에서 비휘발성인 첨가물 TiC, SiC, BaC 또는 TiB2가 희생체에 포함됨을 특징으로 하는 희생체.28. The method of claim 27, the filling temperature is non-volatile additives, TiC, SiC, TiB 2 BaC or sacrificial material, characterized by contained in a sacrificial material. 제 27항에 있어서, 무기 또는 세라믹 섬유가 희생체에 포함됨을 특징으로 하는 희생체.28. A sacrificial body according to claim 27, wherein the inorganic or ceramic fiber is contained in the sacrificial body. 마찰 시스템, 엔진 성분, 차량 성분, 또는 브레이크 디스크의 마찰면 제조용 청구항 1의 제조방법.A manufacturing method according to claim 1 for manufacturing a friction surface of a friction system, an engine component, a vehicle component, or a brake disk. 마찰 시스템, 엔진 성분, 차량 성분, 또는 브레이크 디스크의 마찰면 제조용 청구항 16의 출발 혼합물.A starting mixture according to claim 16 for the preparation of a friction system, an engine component, a vehicle component, or a friction disc of a brake disc. 마찰 시스템, 엔진 성분, 차량 성분, 또는 브레이크 디스크의 마찰면 제조용 청구항 27의 희생체.A friction body, an engine component, a vehicle component, or a sacrificial body of claim 27 for manufacturing a friction surface of a brake disk.
KR1020007004953A 1997-11-28 1998-11-14 Method for producing a sacrificial body for producing aluminal titanium aluminide composite bodies KR20010031873A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19752775A DE19752775C1 (en) 1997-11-28 1997-11-28 Sacrificial body for aluminum oxide-titanium aluminide composite body production by molten aluminum filling
DE19752775.2 1997-11-28
PCT/EP1998/007294 WO1999028276A1 (en) 1997-11-28 1998-11-14 Method for producing a sacrificial body for producing aluminal titanium aluminide composite bodies

Publications (1)

Publication Number Publication Date
KR20010031873A true KR20010031873A (en) 2001-04-16

Family

ID=7850098

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007004953A KR20010031873A (en) 1997-11-28 1998-11-14 Method for producing a sacrificial body for producing aluminal titanium aluminide composite bodies

Country Status (8)

Country Link
EP (1) EP1036050A1 (en)
JP (1) JP2001524607A (en)
KR (1) KR20010031873A (en)
CN (1) CN1279659A (en)
BR (1) BR9815038A (en)
CZ (1) CZ20001961A3 (en)
DE (1) DE19752775C1 (en)
WO (1) WO1999028276A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012214847B2 (en) * 2011-01-15 2015-04-23 Scott Richard Holloway Electric power transmission cable comprising continuously synthesized titanium aluminide intermetallic composite wire
CN103831421A (en) * 2014-03-26 2014-06-04 铜仁学院 Method for preparing local enhancement aluminum matrix composite
CN110893460B (en) * 2019-06-05 2020-10-02 南京工业大学 Additive manufacturing metallurgical structure regulation and control method based on mismatching degree of titanium alloy and boron carbide particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929476A (en) * 1972-05-05 1975-12-30 Minnesota Mining & Mfg Precision molded refractory articles and method of making
GB8301320D0 (en) * 1983-01-18 1983-02-16 Ae Plc Reinforcement of articles of cast metal
US4988645A (en) * 1988-12-12 1991-01-29 The United States Of America As Represented By The United States Department Of Energy Cermet materials prepared by combustion synthesis and metal infiltration
US5536686A (en) * 1992-10-20 1996-07-16 The Research Foundation Of State University Of New York At Buffalo Phosphate binders for metal-matrix composites
JP3618106B2 (en) * 1992-12-21 2005-02-09 独立行政法人科学技術振興機構 Composite material and method for producing the same
DE19605858A1 (en) * 1996-02-16 1997-08-21 Claussen Nils Process for the production of Al¶2¶O¶3¶ aluminide composites, their execution and use
DE19619500A1 (en) * 1996-05-14 1997-11-20 Claussen Nils Metal-ceramic moldings and process for their production
DE19710671C2 (en) * 1997-03-14 1999-08-05 Daimler Chrysler Ag Method for producing a component and use of a component produced in this way

Also Published As

Publication number Publication date
WO1999028276A1 (en) 1999-06-10
EP1036050A1 (en) 2000-09-20
CZ20001961A3 (en) 2001-12-12
JP2001524607A (en) 2001-12-04
BR9815038A (en) 2000-10-03
CN1279659A (en) 2001-01-10
DE19752775C1 (en) 1999-04-29

Similar Documents

Publication Publication Date Title
CA2486067C (en) Fiber reinforced filter for molten metal filtration and method for producing such filters
KR20010024193A (en) METHOD FOR PRODUCING A COMPONENT FROM A COMPOSITE Al2O3/TITANIUM ALUMINIDE MATERIAL
EP0593474B1 (en) B4c/al cermets and method for making same
KR20000076057A (en) Fibre-reinforced composite ceramics infiltrated with molten metal
CN100410211C (en) Method for producing a composite part and metal/ceramic part
US5925405A (en) Method of manufacturing ceramic, metallic or ceramo-metallic, shaped bodies and layers
JPS6152111B2 (en)
KR20010031873A (en) Method for producing a sacrificial body for producing aluminal titanium aluminide composite bodies
US20050035055A1 (en) Filter for molten metal filtration and method for producing such filters
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
US6022505A (en) Process for manufacturing ceramic metal composite bodies, the ceramic metal composite body and its use
US20040202883A1 (en) Metal-ceramic composite material and method for production thereof
JPH01212283A (en) Production of joined body of ceramics and metal
JP2614061B2 (en) Nitride composite ceramics
JP4552103B2 (en) Silicon nitride composite and method for producing silicon nitride composite
JPS6364967A (en) Silicon carbide base composite body and manufacture
JPS5860675A (en) Silicon nitride sintered body and manufacture
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JPS62128968A (en) Nitroxide ceramic material and manufacture
JP2759290B2 (en) Manufacturing method of aluminum oxide sintered body
JPH11152530A (en) Production of metal-ceramics composite
JP2000034174A (en) Production of ceramic composite material
Lee Selective Laser Sintering of Alumina Using an Inorganic Binder
JPH01167277A (en) Production of ceramic
JPH0328158A (en) Fiber-reinforced ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application