JPH01167277A - Production of ceramic - Google Patents

Production of ceramic

Info

Publication number
JPH01167277A
JPH01167277A JP62326378A JP32637887A JPH01167277A JP H01167277 A JPH01167277 A JP H01167277A JP 62326378 A JP62326378 A JP 62326378A JP 32637887 A JP32637887 A JP 32637887A JP H01167277 A JPH01167277 A JP H01167277A
Authority
JP
Japan
Prior art keywords
silicon
molded body
ceramics
composition
molten silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62326378A
Other languages
Japanese (ja)
Inventor
Takuji Yoshimura
卓二 吉村
Mikio Shimokata
幹生 下方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62326378A priority Critical patent/JPH01167277A/en
Publication of JPH01167277A publication Critical patent/JPH01167277A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain ceramic having excellent flexural strength at high temperature and excellent dimensional accuracy, by reacting a molded article comprising carbon as an essential component with molten silicon and nitriding a remaining metal silicon. CONSTITUTION:A composition obtained by blending 5-50wt.% carbon component-containing material (e.g. graphite) with 50-95wt.% SiC powder, 0.1-20wt.% binder (e.g. PVA) and a filler (e.g. Al2O3) to give a composition, which is packed into a mold and molded to give a molded article. Then the molded article is immersed in molten silicon, reacted and sintered in vacuum or in an inert atmosphere at 1,450-1,800 deg.C to give a sintered material. Then the sintered material is heated under 1-10atm in a nitrogen atmosphere at 1,300-1,600 deg.C to nitride a remaining metal silicon in the sintered material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高温での強度に優れたセラミックスの製法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ceramics having excellent strength at high temperatures.

〔従来の技術〕[Conventional technology]

炭化珪素の焼成体は、高温での強度、耐熱衝撃性、耐蝕
性、耐薬品性および耐摩耗性に優れておりエンジニアリ
ング用材料として注目されている。
Sintered bodies of silicon carbide are attracting attention as engineering materials because they have excellent strength at high temperatures, thermal shock resistance, corrosion resistance, chemical resistance, and abrasion resistance.

このようなセラミックスの製法としては、■常圧焼結法
、■ホットプレス焼結法、■反応焼結法等が知られてい
る。
Known methods for producing such ceramics include (1) normal pressure sintering method, (2) hot press sintering method, and (2) reaction sintering method.

■の常圧焼結法は、緻密な焼成体の製造に際し、形体に
比べて得られた焼成体の寸法が小さくなってしまうとい
う欠点を有している。そのため、製品の寸法精度を高め
るには原料および焼成条件等の充分な管理による収縮率
の制御が必要となる。
The pressureless sintering method (2) has the disadvantage that when producing a dense fired body, the dimensions of the resulting fired body are smaller than the shaped body. Therefore, in order to improve the dimensional accuracy of the product, it is necessary to control the shrinkage rate through sufficient management of raw materials, firing conditions, etc.

また、高密度の焼成体を得るためには、焼結助剤を原料
に添加しなければならない。しかしながら、上記焼結助
剤は一般に焼成体の高温特性を低下させる性質を有する
物質が用いられるため、常圧焼結法では緻密で高温での
強度に優れた焼成体を得るのは困難である。■のボット
プレス焼結法は、■の常圧焼結法で用いられる上記焼結
助剤を原料中に添加する必要がなく、比較的緻密な焼成
体を得ることができる。しかしなから、製法上の理由に
より単純な形状の焼成体しか製造することができない。
Furthermore, in order to obtain a high-density fired body, a sintering aid must be added to the raw materials. However, since the above-mentioned sintering aid is generally a substance that reduces the high-temperature properties of the fired product, it is difficult to obtain a dense fired product with excellent strength at high temperatures using the pressureless sintering method. . The bot press sintering method (2) does not require adding the above-mentioned sintering aid used in the pressureless sintering method (2) to the raw material, and can produce a relatively dense sintered body. However, due to manufacturing method reasons, only fired bodies with simple shapes can be manufactured.

したかつて、複雑な形状の焼成体を得るには焼成後に加
工する工程を経由させなければならず、量産性および経
済的に不適当である。
In the past, in order to obtain a fired body with a complicated shape, it was necessary to go through a processing step after firing, which was unsuitable in terms of mass production and economy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来の製法の■の反応焼結法は、炭素成分を必須成
分とした成形体に溶融珪素を含浸させて炭化珪素焼成体
を得る製法である。この製法は、焼成前の成形体と焼成
体とは夕りど寸法に変化がなく、寸法精度の優れた製法
である。しかしながら、この製法では焼成体中に金属珪
素が残存するため、得られる製品の高温特性が低下する
という問題を有している。
The reaction sintering method (ii) of the conventional manufacturing method is a method for obtaining a fired silicon carbide body by impregnating a molded body containing carbon as an essential component with molten silicon. This manufacturing method has excellent dimensional accuracy, with no difference in dimensions between the molded body before firing and the fired body. However, this manufacturing method has a problem in that metal silicon remains in the fired product, resulting in a reduction in the high-temperature properties of the resulting product.

この発明は、このような事情に鑑みなされたもので、高
温での強度に優れ、焼成前と焼成後の寸法変化の少ない
セラミックスの製法の提供をその目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing ceramics that has excellent strength at high temperatures and has little dimensional change before and after firing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明のセラミックスの
製法は、炭素成分を必須成分とする成形体を準備し、こ
の成形体を溶融珪素と反応させたあと、残存する金属珪
素を窒化するという構成をとる。
In order to achieve the above object, the method for producing ceramics of the present invention includes preparing a molded body containing carbon as an essential component, reacting this molded body with molten silicon, and then nitriding the remaining metallic silicon. Take.

〔作用〕[Effect]

すなわち、本発明者らは、上記の目的を達成するため一
連の研究を重ねた結果、通常の反応焼結法を用いて炭化
珪素の焼成体を作製するという工程に引き続き、得られ
た炭化珪素焼成体中に残存する金属珪素を窒化する窒化
反応工程を設けることにより、高温での強度に優れ、焼
成前と焼成後の寸法変化の少ないセラミックスが得られ
ることを見出しこの発明に到達した。
That is, as a result of a series of studies to achieve the above object, the present inventors succeeded in producing a fired silicon carbide body using a normal reaction sintering method. The present inventors have discovered that by providing a nitriding reaction step to nitride the metallic silicon remaining in the fired body, it is possible to obtain ceramics that have excellent strength at high temperatures and have little dimensional change before and after firing.

この発明に係るセラミックスは、炭素成分および炭化珪
素粉末、結合剤等を原料とし、必要に応じてさらに他の
原料を配合して組成物化し、これを用いて得られる。
The ceramic according to the present invention is obtained by using a carbon component, silicon carbide powder, a binder, etc. as raw materials, and further blending other raw materials as necessary to form a composition.

上記炭素成分としては、黒鉛、カーボンブラック、コー
クス等の粉末、クールピッチ等があげられる。また、後
記の結合剤を多量に用い非酸化性雰囲気下で加熱処理す
る際に生成する炭素を上記炭素成分として用いることも
可能である。
Examples of the carbon component include powders such as graphite, carbon black, and coke, and cool pitch. Further, it is also possible to use carbon generated when heat-treating in a non-oxidizing atmosphere using a large amount of the binder described below as the carbon component.

上記炭化珪素粉末としては、α型炭化珪素粉末およびβ
型炭化珪素粉末があげられるが、一般にはα型炭化珪素
粉末か多用される。
The above-mentioned silicon carbide powder includes α-type silicon carbide powder and β-type silicon carbide powder.
Examples include type silicon carbide powder, but α type silicon carbide powder is generally used.

上記結合剤としては、ポリヒニルアルコール。The binder is polyhinyl alcohol.

ヒドロキシプロピルセルロース、メチルセルロース、ヒ
ドロキシエチルセルロースおよびカルボキシメチルセル
ロース等の水溶性樹脂、エポキシ樹脂、フェノール樹脂
、尿素樹脂、メラミン樹脂等の熱硬化型樹脂、ポリエチ
レン、ポリプロピレン。
Water-soluble resins such as hydroxypropyl cellulose, methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose; thermosetting resins such as epoxy resins, phenol resins, urea resins and melamine resins; polyethylene and polypropylene.

ナイロン、ポリエステル、ブチラールおよびワックス等
の熱可塑性樹脂等が用いられる。これら樹脂は、焼成す
る前の成形体(以下「グリーン体」と称す)の成形方法
に応じて適宜選択される。
Thermoplastic resins such as nylon, polyester, butyral and wax are used. These resins are appropriately selected depending on the molding method of the molded body (hereinafter referred to as "green body") before firing.

セラミックスを得るための組成物における上記各原料配
合量は、炭素成分含有物が5〜50重量%(以下「%」
と略す)、炭化珪素粉末が50〜95%、結合剤が0.
1〜20%であるが、炭素成分含有物を5〜30%、炭
化珪素粉末を65〜95%、結合剤を0.3〜10%に
設定することが効果の点で好ましい。
The blending amount of each of the above raw materials in the composition for obtaining ceramics is such that the carbon component content is 5 to 50% by weight (hereinafter referred to as "%").
(abbreviated as ), silicon carbide powder is 50-95%, and binder is 0.
However, from the viewpoint of effectiveness, it is preferable to set the carbon component content to 5 to 30%, the silicon carbide powder to 65 to 95%, and the binder to 0.3 to 10%.

なお、上記組成物には、得られる焼成体の強度、熱衝撃
性、靭性を向上させるために無機質繊維を添加すること
もできる。無機質繊維としては、炭化珪素、窒化珪素等
のウィスカー、酸化アルミニウム、珪酸アルミニウム、
酸化珪素、酸化ジルコニウム、炭化珪素およびカーボン
等の短繊維または長繊維があげられる。
In addition, inorganic fibers can also be added to the above composition in order to improve the strength, thermal shock resistance, and toughness of the obtained fired body. Inorganic fibers include whiskers such as silicon carbide and silicon nitride, aluminum oxide, aluminum silicate,
Examples include short fibers or long fibers of silicon oxide, zirconium oxide, silicon carbide, and carbon.

さらに、この発明の目的を妨げない範囲で、酸化アルミ
ニウム、酸化ジルコニウム、酸化珪素等の酸化物、窒化
珪素、窒化アルミニウム、窒化硼素、サイアロンおよび
炭化チタニウム等の非酸化物のセラミック粒子を適宜添
加してもよい。
Furthermore, ceramic particles of oxides such as aluminum oxide, zirconium oxide, and silicon oxide, and non-oxides such as silicon nitride, aluminum nitride, boron nitride, sialon, and titanium carbide may be added as appropriate to the extent that the objects of the present invention are not hindered. You can.

上記のような原料を用いセラミックスを製造する場合は
、例えばつぎのようにして行うことができる。すなわち
、上記に例示した炭素成分、炭化珪素粉末、結合剤およ
びその他の添加剤を適宜配合し、この配合物(組成物)
からグリーン体を得る。なお、グリーン体は、プレス成
形法、シート成形法、射出成形法、押し出し成形法およ
び鋳込成形法等の従来公知の方法によって成形される。
When manufacturing ceramics using the above raw materials, it can be performed, for example, as follows. That is, the carbon component, silicon carbide powder, binder, and other additives exemplified above are appropriately blended, and this mixture (composition) is prepared.
We get a green body from . Note that the green body is molded by conventionally known methods such as a press molding method, a sheet molding method, an injection molding method, an extrusion molding method, and a casting molding method.

つぎに、得られたグリーン体を、■溶融珪素に徐々に浸
漬したり、または■金属珪素とともに加熱して溶融珪素
を含浸させたりすることにより反応焼結を行う。この焼
結温度は、基本的には金属珪素の融点1414℃以上で
あることが必要であり、通常、上記反応焼結は、真空も
しくは不活性雰囲気下1450〜1800℃の温度条件
で行われる。
Next, the obtained green body is subjected to reaction sintering by (1) gradually immersing it in molten silicon, or (2) heating it together with metal silicon to impregnate it with molten silicon. This sintering temperature basically needs to be higher than the melting point of metal silicon, 1414°C, and the reaction sintering is usually carried out at a temperature of 1450 to 1800°C in a vacuum or an inert atmosphere.

つぎに、このようにして得られた焼成体中の残存金属珪
素の窒化処理を、窒素雰囲気下1300〜1600℃の
温度条件で行いセラミックス体を得る。なお、上記窒化
処理を行う際、ガス圧力が高いほど残存金属珪素と窒素
の反応が短時間で完了するが、経済性を考慮して1〜1
0気圧が好ましい。
Next, the residual metal silicon in the fired body thus obtained is nitrided at a temperature of 1300 to 1600° C. in a nitrogen atmosphere to obtain a ceramic body. Note that when performing the above nitriding treatment, the higher the gas pressure, the faster the reaction between the remaining metal silicon and nitrogen will be completed;
Zero atmosphere is preferred.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、従来の反応焼結法の工程に
引き続き、さらに焼成体中の残存金属珪素を窒化処理す
る工程を設けることによってセラミックスを製造するも
のである。したがって、得られるセラミックスは、殆ど
金属珪素が残存せず、しかも窒化処理により生成した窒
化珪素は、炭化珪素と並び高温特性を有するセラミック
ス材料でありセラミックスの強度向上環に寄与する。こ
のように、この発明により製造されるセラミックスは、
高温領域においても優れた強度を有し、しかも焼成前と
焼成後の寸法に殆ど変化がなく焼き上がり寸法の精度に
優れたものである。
As described above, the present invention manufactures ceramics by further providing a step of nitriding the metal silicon remaining in the fired body following the steps of the conventional reaction sintering method. Therefore, in the obtained ceramic, almost no metallic silicon remains, and silicon nitride produced by the nitriding treatment is a ceramic material that has high-temperature properties along with silicon carbide, and contributes to improving the strength of the ceramic. In this way, the ceramics produced by this invention are
It has excellent strength even in high-temperature ranges, and has excellent dimensional accuracy after firing, with almost no change in dimensions before and after firing.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例〕〔Example〕

黒鉛粒子の分散液(ヒタゾルAB−1:日立粉末冶金社
製)30重量部(以下「部Jと略す)。
30 parts by weight of a graphite particle dispersion (Hitasol AB-1: manufactured by Hitachi Powdered Metals) (hereinafter abbreviated as "Part J").

α型炭化珪素粉末(UFP−1:信濃電気製錬社製)7
0部、結合剤(マクセロンA:中京油脂社製)1部2分
散剤(セラモD114:第−工業製薬社製)0.5部お
よび蒸留水80部を混合、撹拌しスラリー状の組成物を
得た。得られたスラリー状組成物を石膏型に注型し鋳込
成形法で成形体を作製した。つぎに、成形体を乾燥後、
5X10X50mmの寸法に切断してグリーン体を得た
。得られたグリーン体を真空度10−2torr、温度
1500℃の条件で溶融珪素に30分間浸漬したのち、
溶融珪素から引き上げ、さらに30分間放置して焼成体
を得た。つぎに、この焼成体を窒素雰囲気下、1気圧、
1400℃で3時間、さらに9.5気圧、1500℃で
5時間窒化処理をした。
α-type silicon carbide powder (UFP-1: manufactured by Shinano Electric Smelting Co., Ltd.) 7
0 parts of binder (Maxelon A: manufactured by Chukyo Yushi Co., Ltd.), 1 part of 2 parts of dispersing agent (Ceramo D114: manufactured by Dai-Kogyo Seiyaku Co., Ltd.), and 80 parts of distilled water were mixed and stirred to form a slurry composition. Obtained. The obtained slurry composition was cast into a plaster mold to produce a molded body using a cast molding method. Next, after drying the molded body,
A green body was obtained by cutting into a size of 5 x 10 x 50 mm. The obtained green body was immersed in molten silicon for 30 minutes at a vacuum level of 10-2 torr and a temperature of 1500°C, and then
It was pulled out from the molten silicon and left to stand for an additional 30 minutes to obtain a fired body. Next, this fired body was heated to 1 atm under a nitrogen atmosphere.
Nitriding treatment was carried out at 1400° C. for 3 hours and then at 9.5 atm and 1500° C. for 5 hours.

この窒化処理のなされた焼成体の粉末X線回折から、焼
成体中の金属珪素の含有率は1%以下であり、主成分は
炭化珪素と窒化珪素であることが確認された。また、常
温および1400″Cにおける曲げ強度の測定結果は、
後記の表に示したとおり良好であった。
Powder X-ray diffraction of the nitrided fired body confirmed that the content of metallic silicon in the fired body was 1% or less, and that the main components were silicon carbide and silicon nitride. In addition, the bending strength measurement results at room temperature and 1400″C are as follows:
As shown in the table below, the results were good.

〔比較例〕[Comparative example]

窒化処理を行わなかった。それ以外は実施例1と同様に
して焼成体を得た。
No nitriding treatment was performed. A fired body was obtained in the same manner as in Example 1 except for the above.

この焼成体の粉末X線回折から、焼成体中の金属珪素の
含有率は12%であることがわかった。
Powder X-ray diffraction of this fired body revealed that the content of metallic silicon in the fired body was 12%.

また、常温および1350″Cにおける曲げ強度の測定
結果は下記の表のとおりてあった。
Further, the measurement results of bending strength at room temperature and 1350''C are shown in the table below.

表から、実施例品が比較例品に比べて高温での曲げ強度
が優れていることがわかる。
From the table, it can be seen that the example products have better bending strength at high temperatures than the comparative example products.

Claims (4)

【特許請求の範囲】[Claims] (1)炭素成分を必須成分とする成形体を準備し、この
成形体を溶融珪素と反応させた後、残存する金属珪素を
窒化することを特徴とするセラミックスの製法。
(1) A method for producing ceramics, which comprises preparing a molded body containing a carbon component as an essential component, reacting this molded body with molten silicon, and then nitriding the remaining metallic silicon.
(2)成形体が、炭素成分含有物および充填材からなる
組成物を成形型で成形することにより得られるものであ
る特許請求の範囲第1項記載のセラミックスの製法。
(2) The method for producing ceramics according to claim 1, wherein the molded body is obtained by molding a composition comprising a carbon component-containing material and a filler using a mold.
(3)組成物が粉末状組成物である特許請求の範囲第2
項記載のセラミックスの製法。
(3) Claim 2, in which the composition is a powder composition
Manufacturing method of ceramics described in section.
(4)成形体を溶融珪素と反応させた後、残存する金属
珪素を窒化することが、成形体に溶融珪素を含浸させ真
空下もしくは不活性雰囲気下のいずれか一方において1
450〜1800℃の温度領域で焼成する工程と、上記
焼成体を窒素雰囲気下およびアンモニア雰囲気下の少な
くとも一方において1300〜1600℃の温度領域で
焼成することにより行われる特許請求の範囲第1項記載
のセラミックスの製法。
(4) After reacting the molded body with molten silicon, the remaining metallic silicon is nitrided by impregnating the molded body with molten silicon and performing 1 step in either a vacuum or an inert atmosphere.
Claim 1, which is performed by firing in a temperature range of 450 to 1800°C, and firing the fired body in a temperature range of 1300 to 1600°C in at least one of a nitrogen atmosphere and an ammonia atmosphere. manufacturing method of ceramics.
JP62326378A 1987-12-22 1987-12-22 Production of ceramic Pending JPH01167277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326378A JPH01167277A (en) 1987-12-22 1987-12-22 Production of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326378A JPH01167277A (en) 1987-12-22 1987-12-22 Production of ceramic

Publications (1)

Publication Number Publication Date
JPH01167277A true JPH01167277A (en) 1989-06-30

Family

ID=18187135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326378A Pending JPH01167277A (en) 1987-12-22 1987-12-22 Production of ceramic

Country Status (1)

Country Link
JP (1) JPH01167277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636594A2 (en) * 1993-07-26 1995-02-01 Kabushiki Kaisha Toshiba Ceramic matrix composite material and method of producing thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636594A2 (en) * 1993-07-26 1995-02-01 Kabushiki Kaisha Toshiba Ceramic matrix composite material and method of producing thereof
EP0636594A3 (en) * 1993-07-26 1995-11-22 Toshiba Kk Ceramic matrix composite material and method of producing thereof.
US5510303A (en) * 1993-07-26 1996-04-23 Kabushiki Kaisha Toshiba Ceramic matrix composite material
US5762863A (en) * 1993-07-26 1998-06-09 Kabushiki Kaisha Toshiba Method of producing ceramic matrix composite material

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
US4320204A (en) Sintered high density boron carbide
JPS63185864A (en) Composite ceramics and manufacture
JPH0139989B2 (en)
JPS6152111B2 (en)
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
EP0170889B1 (en) Zrb2 composite sintered material
JP2535768B2 (en) High heat resistant composite material
JP3607945B2 (en) Reactive synthesis of high-strength zirconium boride-silicon carbide composites
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
Semen et al. Structural ceramics derived from a preceramic polymer
JPS5891061A (en) Silicon carbide ceramics
KR100299099B1 (en) Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering
JPH01167277A (en) Production of ceramic
JPS632913B2 (en)
JPH0224789B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JPH025711B2 (en)
JPH03141161A (en) Composite sintered compact
JP3151663B2 (en) Method for producing Mo (Al, Si) 2-based material at low temperature
JPH07108815B2 (en) Method for manufacturing silicon nitride sintered body
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JPS6331433B2 (en)
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same