JPH01212283A - Production of joined body of ceramics and metal - Google Patents

Production of joined body of ceramics and metal

Info

Publication number
JPH01212283A
JPH01212283A JP3843788A JP3843788A JPH01212283A JP H01212283 A JPH01212283 A JP H01212283A JP 3843788 A JP3843788 A JP 3843788A JP 3843788 A JP3843788 A JP 3843788A JP H01212283 A JPH01212283 A JP H01212283A
Authority
JP
Japan
Prior art keywords
metal
ceramics
porous
ceramic
porous part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3843788A
Other languages
Japanese (ja)
Other versions
JPH048398B2 (en
Inventor
Tadayoshi Nakamura
忠義 中村
Isao Tan
功 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP3843788A priority Critical patent/JPH01212283A/en
Publication of JPH01212283A publication Critical patent/JPH01212283A/en
Publication of JPH048398B2 publication Critical patent/JPH048398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the joined body which is adequate for a piston of an engine, etc., and has the high joint strength to ceramics even under severe conditions by pouring a molten metal to a ceramics molding having a porous part in such a manner as to pack the pores of the porous part, thereby integrating the molding and the metal. CONSTITUTION:The open-cellular ceramics molding 1 consisting of the porous part 3 and the solid ceramics part 2 is housed in a mold 10 and the melt 5 of the desired metal or alloy such as Al alloy is injected therein and is pressurized by a press 11 to pack the metal 5 into the pores 4 of the porous part 3; thereafter, the molding is taken out of the mold 10 and is cooled. The solid metal part 6 and the solid ceramics part 2 are thus securely joined by the joint part consisting of the metal or alloy packed in the pores 4 of the porous part 3 of the ceramics molding 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックスと金属の接合体を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic-metal bonded body.

[従来の技術・発明が解決しようとする課題]従来セラ
ミックスと金属とを接合するには接着剤による接着、メ
タライジング、溶融接合などの方法が採られている。
[Prior Art/Problems to be Solved by the Invention] Conventionally, methods such as adhesive bonding, metallization, and fusion bonding have been used to bond ceramics and metals.

しかしながら、これらの方法によるときは接合強度が弱
く、苛酷な条件下での使用に耐えない、あるいは用途が
制限されているなどの聞届がある。
However, it has been reported that these methods have low bonding strength, cannot withstand use under harsh conditions, or have limited applications.

たとえば近時セラミックスのすぐれた耐熱性、断熱性を
利用してエンジンなどに適用することが提案されており
、その1例としてアルミニウム合金などのピストン本体
のクラウン部にセラミックス成形体を接合することがあ
げられる。
For example, it has recently been proposed to utilize ceramics' excellent heat resistance and heat insulation properties to apply them to engines, etc. One example is joining a ceramic molded body to the crown of a piston body made of aluminum alloy. can give.

しかし、エンジンにおけるピストンなどのように苛酷な
条件下で実用に耐えうる金属とセラミックスとの接合方
法は知られていない。
However, there is no known method for joining metals and ceramics that can withstand practical use under harsh conditions, such as in the case of pistons in engines.

本発明は前記の点に鑑みて、苛酷な使用条件下において
もすぐれた接合強度を有するセラミックスと金属の接合
体を提供せんとするものである。
In view of the above points, the present invention aims to provide a ceramic-metal bonded body that has excellent bonding strength even under severe usage conditions.

[課題を解決するための手段] 本発明は、セラミックスと金属の接合体を製造するに際
し、多孔質部を冑するセラミックス成形体を使用し、該
セラミックス成形体に該多孔質部の孔に金属が充填され
るように金属部を一体的に設けることを特徴とするセラ
ミックスと金属の接合体の製法に関する。
[Means for Solving the Problem] The present invention uses a ceramic molded body that covers a porous part when producing a joined body of ceramics and metal, and injects metal into the pores of the porous part in the ceramic molded body. The present invention relates to a method for producing a joined body of ceramics and metal, characterized in that a metal part is integrally provided so as to be filled with the metal part.

[作 用] セラミックス成形体の方に多孔質部を設け、該多孔質部
において金属と一体化することによって、すなわち該多
孔質部の空孔に金属を充填するように金属部を設けるこ
とによって、セラミックス成形体と金属部とが多孔質部
で強固に一体化された接合体かえられる。
[Function] By providing a porous part on the ceramic molded body and integrating with metal in the porous part, that is, by providing a metal part so that the pores of the porous part are filled with metal. , a joined body in which the ceramic molded body and the metal part are firmly integrated in the porous part is obtained.

[実施例] つぎに図面に基づいて本発明の詳細な説明する。[Example] Next, the present invention will be explained in detail based on the drawings.

第1〜3図は本発明の方法の一実施例を工程順に示す説
明図である。
FIGS. 1 to 3 are explanatory diagrams showing one embodiment of the method of the present invention in the order of steps.

第1図において、(1)はセラミックス成形体であり、
(2)はそのセラミックス充実部、(3)はその多孔質
部である。多孔質部(3)は連続多孔体であり、(4)
はその空孔である。
In FIG. 1, (1) is a ceramic molded body,
(2) is the ceramic solid part, and (3) is the porous part. The porous part (3) is a continuous porous body, and (4)
is the hole.

つぎに、第2図に示すごとくこのセラミックス成形体(
1)を型(財)内に収め、溶湯鍛造する。すなわちアル
ミニウム合金などの金属の溶湯(5)を注入し、ブレス
01)で加圧して溶湯(5)を多孔質部(3)の空孔(
4)内に充填せしめ、ついで冷却後型ηから取出す。
Next, as shown in Fig. 2, this ceramic molded body (
1) is placed in a mold (goods) and forged with molten metal. That is, molten metal (5) such as aluminum alloy is injected, pressurized by press 01), and the molten metal (5) is poured into the pores (3) of the porous part (3).
4) Fill the container, and then remove from the mold η after cooling.

かくして第3図に示すごとき接合体かえられる。第3図
において、(6)は金属充実部、(7)は接合部であり
、接合部(7)は金属がセラミックス成形体(1)の多
孔質部(3)の孔(4)中に充填された構造を有してい
る。接合部(7)のこのような構造により、金属充実部
(6)とセラミックス成形体(1)とが強固に接合され
ることとなる。
In this way, a zygote as shown in FIG. 3 is obtained. In Fig. 3, (6) is a solid metal part, (7) is a joint part, and in the joint part (7), the metal is in the pores (4) of the porous part (3) of the ceramic molded body (1). It has a filled structure. Such a structure of the joint portion (7) allows the solid metal portion (6) and the ceramic molded body (1) to be firmly joined.

多孔質部(3)を有するセラミックス成形体(1)を製
造する方法はとくに制限されないが、ここでは泥漿鋳込
み成形法に準じた方法によるばあいについて説明する。
Although the method for manufacturing the ceramic molded body (1) having the porous portion (3) is not particularly limited, a method based on a slurry casting method will be described here.

セラミックスの泥漿鋳込み成形法は、セラミックス原料
、バインダー類および水などの媒体からなる泥漿を石コ
ウ型などの吸収性成形型に注入し、水分を成形型に吸収
させて所望の成形体をうるものである。
The slurry casting method for ceramics involves injecting slurry made of ceramic raw materials, binders, and a medium such as water into an absorptive mold such as a plaster mold, and allowing the mold to absorb moisture to form the desired molded product. It is.

第4図に示されるごとく、石コウ板製の底板(2TJと
外ワクのとからなる型頭に後に加熱により分解除去しう
る有機連続多孔体のを収め、そのうえから泥漿Q4を注
ぐ。このばあい型を密閉型とし、泥漿Q4を加圧下に注
入するようにしてもよい。そうすると泥漿は□有機連続
多孔体ツの連続孔中に侵入し、水分は石コウ板に吸収さ
れる。
As shown in Figure 4, an organic continuous porous material that can be decomposed and removed by heating is placed in the mold head made of a plasterboard bottom plate (2TJ) and an outer shell, and slurry Q4 is poured over it. The mold may be a closed type, and the slurry Q4 may be injected under pressure.The slurry then enters into the continuous pores of the organic continuous porous body □, and the water is absorbed by the plaster plate.

余った泥漿Q4は多孔体の上に堆積する。The remaining slurry Q4 is deposited on the porous body.

水分が吸収されたのち、外ワクを外し、多孔体のと一体
となっている成形体を取出し、低温(たとえば450〜
B00℃)で加熱して多孔体のを分解除去したのち高温
で焼成するか、あるいは直接焼成して多孔体のの分解除
去と焼結を同時に行なうことによって、第1図に示され
るごときセラミックス充実部(2)と多孔質部(3)と
からなるセラミックス焼結体(1)かえられる。
After the moisture has been absorbed, the outer shell is removed, the molded body integrated with the porous body is taken out, and heated at a low temperature (for example, 450~
By heating the porous body at 00°C to decompose and remove it, and then firing it at a high temperature, or by directly firing it to decompose and remove the porous body and sinter it at the same time, it is possible to create a ceramic material as shown in Figure 1. The ceramic sintered body (1) consisting of a portion (2) and a porous portion (3) is replaced.

有機連続多孔体のとしては加熱により分解除去しうるち
のであればとくに制限されないが、500℃程度の低温
で容易に分解除去しうる点から、樹脂発泡体、とくにポ
リウレタン発泡体が好ましく用いられる。
The organic continuous porous material is not particularly limited as long as it can be decomposed and removed by heating, but resin foams, particularly polyurethane foams, are preferably used because they can be easily decomposed and removed at a low temperature of about 500°C.

セラミックス原料としては接合体の用途に応じて各種の
アルミナ、シリカ、ジルコニア、イツトリアなどの酸化
物、チッ化ケイ素などのチッ化物、ホウ化ジルコニウム
などのホウ化物、炭化ケイ素などの炭化物などから適宜
選択使用され、バインダー剤、分散剤なども従来のもの
がいずれも使用される。
Ceramic raw materials are appropriately selected from various alumina, silica, zirconia, oxides such as yttria, nitrides such as silicon nitride, borides such as zirconium boride, carbides such as silicon carbide, etc., depending on the purpose of the joined body. Conventional binders, dispersants, etc. are also used.

エンジンにおけるピストンのクラウン部などに用いるば
あいは、チッ化ケイ素、アルミナ、イツトリアからなる
組成のセラミックス原料が好適に゛用いられる。
When used for the crown portion of a piston in an engine, a ceramic raw material having a composition consisting of silicon nitride, alumina, and yttoria is preferably used.

セラミックス成形体(1)の多孔質部(3)の空隙率(
容積%)が低すぎると、金属の侵入量が少なすぎて接合
強度が低下し、空隙率が高すぎると、多孔質部(3)の
セラミックス量が少なすぎてやはり接合強度が低下する
。この観点から多孔質部(3)の空隙率は10〜80%
の範囲が好ましい。
The porosity of the porous part (3) of the ceramic molded body (1) (
If the porosity (volume %) is too low, the amount of metal intrusion is too small and the bonding strength decreases, and if the porosity is too high, the amount of ceramic in the porous portion (3) is too small and the bonding strength also decreases. From this point of view, the porosity of the porous part (3) is 10 to 80%.
A range of is preferred.

またセラミックス成型体(1)の多孔質部(3)におけ
るセラミックス骨髄構造およびそこに侵入して形成され
た金属の骨髄構造に共に充分な強度を具備せしめる点か
ら、多孔質部(3)における連続孔(4)の平均孔径は
1−〜10 arm程度が好ましい。
In addition, from the viewpoint of providing sufficient strength to both the ceramic marrow structure in the porous part (3) of the ceramic molded body (1) and the metal marrow structure formed by penetrating therein, the continuous The average pore diameter of the pores (4) is preferably about 1-10 arms.

多孔質部(3)の厚さ(すなわち接合部(7)の厚さ)
は1〜50關程度が適当である。厚さが1111未満で
は所望の接合強度かえられがたく、一方厚さが5011
■を超えても接合強度の向上は期待しえない。
Thickness of porous part (3) (i.e. thickness of joint part (7))
Approximately 1 to 50 degrees is appropriate. If the thickness is less than 1111 mm, it is difficult to achieve the desired bonding strength;
Even if it exceeds (2), no improvement in bonding strength can be expected.

本発明における接合体における接合は主に機械的な絡み
合いによるものであるから、金属部(6)の金属の種類
はとくに限定されず、用途に応じて適宜選択すればよい
。たとえばエンジンにおけるピストンなどのばあいはア
ルミニウム合金、鋳鉄などが使用される。
Since the joining in the joined body in the present invention is mainly based on mechanical entanglement, the type of metal of the metal part (6) is not particularly limited, and may be appropriately selected depending on the application. For example, for pistons in engines, aluminum alloys, cast iron, etc. are used.

前記においては、溶湯鍛造によってセラミックス多孔体
と金属を接合するばあいについて述べたが、これに限定
されるものではなく、たとえば前記セラミックス成形体
(1)の多孔質部(3)の側に金属成形体を重ね、金属
成形体の多孔質部(3)と接する側を加熱溶融して多孔
質部(3)に含浸させて接合体を製造する方法なども採
用できる。
In the above, a case has been described in which a porous ceramic body and a metal are joined by molten metal forging, but the invention is not limited to this. It is also possible to adopt a method of manufacturing a bonded body by stacking the molded bodies and heating and melting the side of the metal molded body in contact with the porous part (3) to impregnate the porous part (3).

本発明の方法によりえられる接合体は過酷な条件下にお
いても大きな接合強度を有するので、エンジンのピスト
ン、ロッカーアーム、バルブ、バルブシートなどに好適
に使用される。
Since the joined body obtained by the method of the present invention has high joint strength even under severe conditions, it is suitably used for engine pistons, rocker arms, valves, valve seats, etc.

第5図にエンジンのピストンに適用したばあいの例を示
す。第5図において、ピストン本体■はアルミニウム合
金などの金属部(31)からなり、クラウン部(32)
はセラミックス部(33)からなり、金属部(31)と
セラミックス部(33)は本発明の接合方法により接合
されている。セラミックス部(33) (充実部)の厚
さは通常1〜101111程度とされる。
FIG. 5 shows an example of application to an engine piston. In Fig. 5, the piston body ■ consists of a metal part (31) such as an aluminum alloy, and a crown part (32).
consists of a ceramic part (33), and the metal part (31) and the ceramic part (33) are joined by the joining method of the present invention. The thickness of the ceramic portion (33) (solid portion) is usually about 1 to 101111 mm.

つぎに実施例をあげて本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例1 第4図に示される石コウ型の底部に厚さ2龍のポリウレ
タン連続発泡体(空隙率85%、平均孔径500ρ)を
収容し、その上からつぎの組成の鋳込み用泥漿を注いだ
Example 1 A polyurethane open foam (porosity 85%, average pore diameter 500ρ) with a thickness of 2 mm was placed in the bottom of the plaster mold shown in Figure 4, and a casting slurry with the following composition was poured over it. is.

成 分           重量部 ポリビニルアルコール         0,5イオン
交換水            B5.0セルナD−7
35(中東油脂■製分散剤)1.230分間放置後、成
形体を脱型し、焼成炉に入れて500℃で2時間加熱し
てポリウレタン連続発泡体を分解除去し、ついでチッ素
ガス雰囲気下(8,5kg/cj)に1850℃で4時
間加熱して焼結した。かくして厚さ2關の多孔質部(空
隙率75%、平均孔径350ρ)および厚さ2■■の充
実部からなるセラミックス成形体かえられた。
Ingredients Parts by weight Polyvinyl alcohol 0.5 Ion exchange water B5.0 Cerna D-7
35 (Dispersant manufactured by Middle East Yushi ■) 1. After being left for 30 minutes, the molded body was removed from the mold, placed in a firing furnace and heated at 500°C for 2 hours to decompose and remove the polyurethane continuous foam, and then placed in a nitrogen gas atmosphere. It was sintered by heating at 1850° C. for 4 hours at 8.5 kg/cj. In this way, a ceramic molded body consisting of a porous part with a thickness of 2 mm (porosity: 75%, average pore diameter of 350 ρ) and a solid part with a thickness of 2 mm was obtained.

か(してえられたセラミックス成形体を、第2図に示す
ごとく型に収め、そのうえからアルミニウム合金(Cu
 1.3%、3111〜13%、残部N)の溶湯を注ぎ
、プレスで1000kg/adの圧力下に1分間加圧し
、冷却後型から取出し、セラミックス充実部の厚さ21
111%接合部の厚さ211゜金属充実部の厚さ2鰭の
接合体をえた。
The ceramic molded body thus obtained is placed in a mold as shown in Figure 2, and then an aluminum alloy (Cu
1.3%, 3111 to 13%, balance N) was poured into the molten metal, pressed under a pressure of 1000 kg/ad for 1 minute, cooled, and removed from the mold.The thickness of the ceramic solid part was 21.
A joined body was obtained in which the thickness of the 111% joint part was 211° and the thickness of the metal solid part was 2 fins.

えられた接合体について引張強度(kg/nvli)を
測定した。なお比較のためにアルミニウム成形体とチッ
化ケイ素を主体とするセラミックス成形体を固体反応接
合(加圧カフ5kg / d、温度610℃、時間12
0秒)してえられた接合体についても同様に引張強度を
測定した。
The tensile strength (kg/nvli) of the obtained joined body was measured. For comparison, an aluminum molded body and a ceramic molded body mainly composed of silicon nitride were bonded by solid reaction bonding (pressure cuff 5 kg/d, temperature 610°C, time 12
The tensile strength of the bonded body obtained by 0 seconds) was also measured in the same manner.

結果を第1表に示す。The results are shown in Table 1.

第  1  表 【発明の効果] 本発明による接合体は、苛酷な条件下におけるセラミッ
クスと金属との接合強度が大きいので、エンジンにおけ
るピストンなどに好適に適用できる。
Table 1 [Effects of the Invention] The bonded body according to the present invention has a high bonding strength between ceramic and metal under severe conditions, so it can be suitably applied to pistons in engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明の方法の一実施例を工程順に示す説
明図、第4図は本発明に用いるセラミックス成形体を製
造する方法を示す説明図、第5図は本発明における接合
体をエンジンのピストンに適用した例を示す概略部分断
面図である。 (図面の主要符号) (1):セラミックス成形体 (2):セラミックス充実部 (3):多孔質部 (4):連続孔 (6):金属充実部 (7):接合部 第1 図
Figures 1 to 3 are explanatory diagrams showing an example of the method of the present invention in the order of steps, Figure 4 is an explanatory diagram showing a method for producing a ceramic molded body used in the present invention, and Figure 5 is a joined body in the present invention. FIG. 2 is a schematic partial cross-sectional view showing an example in which the method is applied to a piston of an engine. (Main symbols in the drawings) (1): Ceramic molded body (2): Ceramic solid part (3): Porous part (4): Continuous pore (6): Metal solid part (7): Joint part Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1 セラミックスと金属の接合体を製造するに際し、多
孔質部を有するセラミックス成形体を使用し、該セラミ
ックス成形体に該多孔質部の孔に金属が充填されるよう
に金属部を一体的に設けることを特徴とするセラミック
スと金属の接合体の製法。
1. When manufacturing a ceramic-metal bonded body, a ceramic molded body having a porous part is used, and the metal part is integrally provided in the ceramic molded body so that the pores of the porous part are filled with metal. A method for producing a joined body of ceramics and metal.
JP3843788A 1988-02-19 1988-02-19 Production of joined body of ceramics and metal Granted JPH01212283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3843788A JPH01212283A (en) 1988-02-19 1988-02-19 Production of joined body of ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3843788A JPH01212283A (en) 1988-02-19 1988-02-19 Production of joined body of ceramics and metal

Publications (2)

Publication Number Publication Date
JPH01212283A true JPH01212283A (en) 1989-08-25
JPH048398B2 JPH048398B2 (en) 1992-02-14

Family

ID=12525282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3843788A Granted JPH01212283A (en) 1988-02-19 1988-02-19 Production of joined body of ceramics and metal

Country Status (1)

Country Link
JP (1) JPH01212283A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397678A (en) * 1989-09-11 1991-04-23 Eagle Ind Co Ltd Production of jointed body of ceramics and metal
JPH03103369A (en) * 1989-09-13 1991-04-30 Eagle Ind Co Ltd Production of cemented body of ceramic-metal
JPH04119974A (en) * 1990-09-06 1992-04-21 Ozawa Concrete Kogyo Kk Production of ceramic-metal composite material
US6635993B1 (en) 1998-08-26 2003-10-21 Ngk Insulators, Ltd. Joined bodies, high-pressure discharge lamps and a method for manufacturing the same
US6642654B2 (en) 2000-07-03 2003-11-04 Ngk Insulators, Ltd. Joined body and a high pressure discharge lamp
US6703136B1 (en) 2000-07-03 2004-03-09 Ngk Insulators, Ltd. Joined body and high-pressure discharge lamp
US6812642B1 (en) 2000-07-03 2004-11-02 Ngk Insulators, Ltd. Joined body and a high-pressure discharge lamp
CN103240402A (en) * 2013-05-17 2013-08-14 山西银光华盛镁业股份有限公司 Production method for particle reinforced aluminum matrix composite ingots
JP2013159536A (en) * 2012-02-08 2013-08-19 Mino Ceramic Co Ltd Ceramic porous body-metal heat insulating material and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397678A (en) * 1989-09-11 1991-04-23 Eagle Ind Co Ltd Production of jointed body of ceramics and metal
JPH03103369A (en) * 1989-09-13 1991-04-30 Eagle Ind Co Ltd Production of cemented body of ceramic-metal
JPH04119974A (en) * 1990-09-06 1992-04-21 Ozawa Concrete Kogyo Kk Production of ceramic-metal composite material
US6635993B1 (en) 1998-08-26 2003-10-21 Ngk Insulators, Ltd. Joined bodies, high-pressure discharge lamps and a method for manufacturing the same
US6844677B2 (en) 1998-08-26 2005-01-18 Ngk Insulators, Ltd. Joined bodies, high-pressure discharge lamps and a method for manufacturing the same
US6642654B2 (en) 2000-07-03 2003-11-04 Ngk Insulators, Ltd. Joined body and a high pressure discharge lamp
US6703136B1 (en) 2000-07-03 2004-03-09 Ngk Insulators, Ltd. Joined body and high-pressure discharge lamp
US6812642B1 (en) 2000-07-03 2004-11-02 Ngk Insulators, Ltd. Joined body and a high-pressure discharge lamp
US6850009B2 (en) 2000-07-03 2005-02-01 Ngk Insulators, Ltd. Joined body and high pressure discharge lamp
JP2013159536A (en) * 2012-02-08 2013-08-19 Mino Ceramic Co Ltd Ceramic porous body-metal heat insulating material and method of manufacturing the same
CN103240402A (en) * 2013-05-17 2013-08-14 山西银光华盛镁业股份有限公司 Production method for particle reinforced aluminum matrix composite ingots

Also Published As

Publication number Publication date
JPH048398B2 (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US5626914A (en) Ceramic-metal composites
US5904993A (en) Joint body of aluminum and silicon nitride and method of preparing the same
US5503122A (en) Engine components including ceramic-metal composites
IE871790L (en) Ceramic composite.
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
JPH01212283A (en) Production of joined body of ceramics and metal
US6322608B1 (en) Method for producing a component from a composite Al2O3/titanium aluminide material
US5350609A (en) Insulating monolithic refractory material, manufacturing process and article according to the process
US4972898A (en) Method of forming a piston containing a cavity
JPH06506187A (en) Method of manufacturing ceramic bodies
US4651630A (en) Thermally insulating pistons for internal combustion engines and method for the manufacture thereof
US5676907A (en) Method for making near net shape ceramic-metal composites
US20040202883A1 (en) Metal-ceramic composite material and method for production thereof
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
JPS5815743A (en) Piston and its manufacture for internal-combustion engine
EP0753101B1 (en) Engine components including ceramic-metal composites
JPH01172536A (en) Heat insulating and heat-resistant ceramic porous body conjugate metallic material
JP4524591B2 (en) Composite material and manufacturing method thereof
JPS6343348B2 (en)
JP2560096B2 (en) Method of manufacturing compound piston for internal combustion engine
JP4579574B2 (en) Manufacturing method of fitting body
JPH09300060A (en) Sprue member for casting and manufacture thereof
JP4744722B2 (en) Method for producing metal-ceramic composite material having hollow structure
JPS6221456A (en) Production of hollow casting
JP3033324B2 (en) Insulated piston