KR20010019026A - An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization - Google Patents

An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization Download PDF

Info

Publication number
KR20010019026A
KR20010019026A KR1019990035225A KR19990035225A KR20010019026A KR 20010019026 A KR20010019026 A KR 20010019026A KR 1019990035225 A KR1019990035225 A KR 1019990035225A KR 19990035225 A KR19990035225 A KR 19990035225A KR 20010019026 A KR20010019026 A KR 20010019026A
Authority
KR
South Korea
Prior art keywords
substrate
chamber
reactive gas
post
treated
Prior art date
Application number
KR1019990035225A
Other languages
Korean (ko)
Inventor
정영만
이수원
김철환
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019990035225A priority Critical patent/KR20010019026A/en
Publication of KR20010019026A publication Critical patent/KR20010019026A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0433Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a reactive gas
    • B05D3/0453After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0466Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a non-reacting gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3382Polymerising

Abstract

PURPOSE: Continuous plasma polymerization device and method are provide to greatly improve properties of a polymerization film by installing a separate chamber so that each of reactive gas and non reactive gas are effectively acted, thereby increasing reaction efficiency of non reactive gas. CONSTITUTION: A continuous plasma polymerization device comprises an unwinding roll unwinding a substrate (1) of which surface is treated in order to transfer to other chamber, a deposition chamber (20) in which the substrate (1) introduced from an unwinding roll is used as an electrode, and separate electrodes (22) oppositely directed to upper and lower sides of the substrate are installed so that both sides of the substrate are polymerized by DC charging plasma, a post-treating chamber (20a) polymerizing again the substrate (1) of which surface is treated in the deposition chamber (20), a winding roll (12) winding the substrate of which surface is treated in the post-treating chamber (20a), a pumping means for maintaining the deposition chamber (20) and the post-treating chamber in vacuum, and a gas inlet introducing a reactive gas and a non reactive gas. A continuous plasma polymerization method comprises the steps of introducing a substrate (1) of which surface is treated into a deposition chamber (20), treating surface of the substrate, post-treating the surface treated substrate in a separate chamber, and discharging the post-treated substrate.

Description

플라즈마중합 연속처리장치 및 방법{AN APPARATUS FOR FORMING POLYMER CONTINUOUSLY ON THE SURFACE OF METAL BY DC PLASMA POLYMERIZATION}Plasma polymerization continuous processing apparatus and method {AN APPARATUS FOR FORMING POLYMER CONTINUOUSLY ON THE SURFACE OF METAL BY DC PLASMA POLYMERIZATION}

본 발명은 플라즈마중합 연속처리장치 및 방법에 관한 것이다.The present invention relates to a plasma polymerization continuous processing apparatus and method.

방전에 의한 플라즈마를 이용하여 금속판 등의 기재 표면을 처리할 때 경도, 내마모성 등이 뛰어난 피복층이 형성된다. 피복층이 형성된 제품은 자기디스크, 광디스크, 초경질공구 등으로 사용된다. 또한 강철판 표면에 형성된 도장막에 플라즈마처리를 하면 경질화되고, 내구성, 내식성 등이 뛰어난 도장 강판이 얻어진다. 특히, 기재 표면에 고분자중합처리를 하여 친수성 또는 소수성을 향상시키는 표면개질 효과를 얻을 수 있으며, 이렇게 표면개질된 물질은 다양한 범위에 응용되고 있다.When treating the surface of a substrate such as a metal plate using plasma by discharge, a coating layer excellent in hardness, wear resistance, and the like is formed. Products with a coating layer are used for magnetic disks, optical disks, ultra hard tools, and the like. In addition, when the coating film formed on the surface of the steel sheet is subjected to plasma treatment, the coated steel sheet is hardened and excellent in durability, corrosion resistance and the like is obtained. In particular, the surface modification effect to improve the hydrophilicity or hydrophobicity can be obtained by the polymer polymerization treatment on the surface of the substrate, the surface-modified material has been applied to various ranges.

플라즈마중합처리는 챔버 내에 주로 탄화수소계의 반응성 가스를 주입하고 플라즈마를 발생시켜 플라즈마가 증착되는 기재의 표면을 원하는 상태로 개질시킨다. 또한 질소, 산소, 이산화탄소 등과 같이 혼자서는 고분자를 중합할 수 없으나 다른 모노머 가스와 함께 사용되어져 고분자 중합을 도와줄 수 있는 비반응성 가스(nonpolymerizing gas)를 반응성 가스와 함께 주입하여 표면 개질 효과를 향상시킬 수 있다.The plasma polymerization process injects mainly hydrocarbon-based reactive gas into the chamber and generates a plasma to modify the surface of the substrate on which the plasma is deposited to a desired state. In addition, polymers such as nitrogen, oxygen, and carbon dioxide cannot be polymerized by themselves, but they can be used together with other monomer gases to improve the surface modification effect by injecting a non-polymerizing gas with reactive gas that can help polymer polymerization. Can be.

플라즈마중합하기 위하여 반응성 가스와 함께 넣어주는 비반응성 가스의 혼합비는 중합된 막의 성질에 큰 영향을 미친다. 비반응성 가스 화합물은 중합되는 고분자막을 비반응성 가스의 농도에 따라 소수성에서 물과의 친화력이 뛰어난 친수성으로 변화 시켜주는 역할을 한다. 특히 질소 등은 반응에 직접적으로 참여하여 고분자의 성질을 바꾸는 역할을 한다. 이러한 질소 화합물의 증가는 친수성기로 작용할 수 있으며, 친수성기는 접촉각을 감소시킨다. 즉 플라즈마를 형성시키기 위한 혼합가스(반응성 가스 및 비반응성 가스)에서 질소의 비율을 높임으로써 중합처리로 형성된 막이 향상된 친수특성을 나타내게 된다.The mixing ratio of the non-reactive gas, which is added with the reactive gas for plasma polymerization, has a great influence on the properties of the polymerized film. The non-reactive gas compound plays a role of changing the polymer film to be polymerized from hydrophobic to hydrophilic having excellent affinity with water according to the concentration of the non-reactive gas. In particular, nitrogen and the like directly participate in the reaction to change the properties of the polymer. This increase in nitrogen compound can act as a hydrophilic group, which reduces the contact angle. That is, by increasing the ratio of nitrogen in the mixed gas (reactive gas and non-reactive gas) for forming the plasma, the film formed by the polymerization treatment exhibits improved hydrophilic characteristics.

지금까지의 플라즈마중합장치의 대표적인 예로는 WO99/28530에 개시된 장치가 있다. 상기 장치의 구성은 크게 진공 챔버(20), 챔버 내에 설치된 전극(4), 진공 챔버의 압력을 조절하기 위한 진공 펌프(5, 6), 진공도를 측정하기 위한 계기(7, 8), 전극에 전위차를 발생시키기 위한 전력공급장치(40), 표면처리 하고자 하는 기재(4a) 주위에 반응성 가스 및 질소와 같은 비반응성 가스를 주입하는 반응 가스 조절장치(9, 10)로 이루어져 있다.A representative example of the plasma polymerization apparatus thus far is the apparatus disclosed in WO99 / 28530. The configuration of the apparatus is largely provided in the vacuum chamber 20, the electrode 4 installed in the chamber, the vacuum pumps 5 and 6 for adjusting the pressure of the vacuum chamber, the gauges 7 and 8 for measuring the degree of vacuum, and the electrodes. A power supply device 40 for generating a potential difference, and a reactive gas control device 9, 10 for injecting a reactive gas and a non-reactive gas such as nitrogen around the substrate 4a to be surface treated.

챔버(20)에 기재(4a)를 설치하고 로터리 펌프(5)를 기동하여 챔버 내부의 압력이 약 10-3Torr 정도의 진공으로 유지되는 것을 열전대게이지(thermocouple gauge)(7)로 확인한 후, 확산펌프(6)를 기동시켜 챔버 내부의 압력이 10-6Torr 정도로 유지되는 것을 이온게이지(8)로 확인한다. 기재는 전원(40)에 의하여 애노드(또는 능동 전극)로 바이어스되어 위치하며, 반대쪽 전극(4)은 접지 되어 있다. 챔버의 압력이 일정 진공으로 유지되면 반응성 가스와 비반응성 가스를 원하는 위치 주위에 차례로 주입한다. 상기 가스의 혼합비는 열전측정기의 압력으로 조절한다. 진공 챔버 내의 압력이 일정 압력이 되면 직류 또는 고주파로 방전시킨다. 그러면 직류 또는 고주파에 의하여 발생된 플라즈마 내에서 상기 가스들의 분자 결합이 끊어지게 되고, 끊어진 체인과 활성화된 양이온이나 음이온들이 결합하여 전극 사이에 놓아둔 기재 표면에 중합물을 형성하게 된다.After the substrate 4a was installed in the chamber 20 and the rotary pump 5 was started, the thermocouple gauge 7 confirmed that the pressure inside the chamber was maintained at a vacuum of about 10 -3 Torr. The diffusion pump 6 is started to confirm with the ion gauge 8 that the pressure inside the chamber is maintained at about 10 -6 Torr. The substrate is positioned biased to the anode (or active electrode) by the power source 40 and the opposite electrode 4 is grounded. When the pressure in the chamber is maintained at a constant vacuum, reactive and non-reactive gases are injected in turn around the desired location. The mixing ratio of the gas is controlled by the pressure of the thermoelectric meter. When the pressure in the vacuum chamber reaches a constant pressure, it is discharged by direct current or high frequency. Then, the molecular bonds of the gases are broken in the plasma generated by direct current or high frequency, and the broken chains and activated cations or anions combine to form a polymer on the surface of the substrate placed between the electrodes.

상기 장치의 경우 하나의 챔버 내에 반응성 가스 및 비반응성 가스를 혼합비율을 달리하며 함께 주입하고 있다. 상기 장치와 달리 연속적으로 플라즈마중합처리하는 장치(도 2 참고)에 있어서도 반응성 가스 및 비반응성 가스를 함께 주입함으로써 기재의 친수특성을 향상시키는데, 이러한 경우 다음과 같은 문제가 있다. 연속 장치에서는 혼합가스를 지속적으로 주입하고 진공배기하게 되는데, 이에 따라 중합처리되는 증착챔버의 시작부분에서 끝부분까지 반응성 가스의 중합이 일어나며 중합처리 과정 중 반응성 가스에 의한 분말이 형성되고 이로 인하여 비반응성 가스의 반응 효율이 낮아지기 때문이다. 이러한 경우 중합되는 기재 표면의 친수특성이 나쁘고, 중합막의 밀착성도 떨어지게 된다.In the case of the device, a reactive gas and a non-reactive gas are injected together at different mixing ratios in one chamber. Unlike the above apparatus, in the apparatus for continuously performing plasma polymerization treatment (see FIG. 2), the hydrophilic property of the substrate is improved by injecting a reactive gas and a non-reactive gas together. In the continuous apparatus, mixed gas is continuously injected and vacuum is exhausted. As a result, polymerization of reactive gas occurs from the beginning to the end of the deposition chamber to be polymerized, and powder by the reactive gas is formed during the polymerization process. This is because the reaction efficiency of the reactive gas is lowered. In this case, the hydrophilic property of the surface of the substrate to be polymerized is poor, and the adhesion of the polymerized film is also inferior.

본 발명은 상기의 문제점을 해결하기 위한 것으로서, 반응성 가스 및 비반응성 가스가 각각 효과적으로 작용할 수 있도록 장치를 개선하고, 특히 비반응성 가스의 반응 효율을 증진시킨 플라즈마중합 연속처리장치 및 방법을 제공함에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides an apparatus and method for plasma polymerizing continuous processing that improves the apparatus to effectively operate the reactive gas and the non-reactive gas, and enhances the reaction efficiency of the non-reactive gas. There is a purpose.

도 1은 종래 기술에 의한 플라즈마중합처리장치를 나타내는 모식도이다.1 is a schematic diagram showing a plasma polymerization apparatus according to the prior art.

도 2는 풀림챔버와 감김챔버가 분리되어 있는 플라즈마중합 연속처리장치를 나타내는 단면 모식도이다.2 is a schematic cross-sectional view of a plasma polymerization continuous processing apparatus in which an unwinding chamber and a winding chamber are separated.

도 3은 본 발명에 의한 후처리챔버가 추가로 구비된 플라즈마중합 연속처리장치를 나타내는 단면 모식도이다.Figure 3 is a schematic cross-sectional view showing a plasma polymerization continuous processing apparatus further provided with a post-treatment chamber according to the present invention.

*** 도면의 주요부분에 대한 부호의 설명 ****** Explanation of symbols for main parts of drawing ***

1:기재(시료전극) 4:대향전극(캐소드전극)1: substrate (sample electrode) 4: counter electrode (cathode electrode)

4a:기재 5:로터리펌프4a: Base 5: Rotary Pump

6:확산펌프 7:열전대게이지6: Diffusion pump 7: Thermocouple gauge

8:이온게이지 9:가스주입구8: Ion gauge 9: Gas inlet

10:가스주입구 11:풀림롤10: gas inlet 11: unwinding roll

12:감김롤 20:증착챔버12: winding roll 20: deposition chamber

20a:후처리챔버 21:차압롤20a: after-treatment chamber 21: differential pressure roll

22:대향전극 23:가스주입구22: counter electrode 23: gas inlet

24:배기구 25:가스주입구24: exhaust port 25: gas inlet

26:배기구 36:풀림챔버26: exhaust vent 36: loosening chamber

38:감김챔버 40:전원공급장치38: winding chamber 40: power supply

42:텐션롤42: tension roll

본 발명은 플라즈마중합 연속처리장치 및 방법에 관한 것으로, 상기의 문제점을 해결하기 위해 비반응 가스로 후처리하는 플라즈마중합 연속처리장치 및 방법을 제공한다.The present invention relates to a plasma polymerization continuous processing apparatus and method, to provide a plasma polymerization continuous processing apparatus and method for post-treatment with an unreacted gas in order to solve the above problems.

상세하게는 표면처리되는 기재를 풀어주어 다른 챔버로 이송시키는 풀림롤(unwinding roll)과, 상기 풀림롤로부터 도입되는 기재를 전극으로 사용하고 상기 기재의 상하에 대향되는 별도의 대향전극을 설치하여 직류방전 플라즈마에 의해 상기 기재 양 표면 상을 플라즈마중합처리하는 증착챔버와, 상기 증착챔버에서 표면처리된 기재에 다시 플라즈마중합처리하는 후처리챔버와, 상기 후처리챔버에서 표면처리된 기재를 감아주는 감김롤(winding roll)과, 상기 증착챔버 및 후처리챔버를 진공으로 유지하기 위한 펌핑수단 및 반응성 가스 및 비반응성 가스를 도입하는 가스유입구를 포함하여 구성되는 직류전원 플라즈마중합 연속처리장치를 제공한다.In detail, an unwinding roll for releasing the substrate to be surface treated and transported to another chamber, and a substrate introduced from the unrolling roll as an electrode, and a separate counter electrode facing the upper and lower sides of the substrate are installed. A deposition chamber for performing plasma polymerization on both surfaces of the substrate by the discharge plasma, a post-treatment chamber for plasma-polymerizing the substrate surface-treated in the deposition chamber, and a winding for winding the substrate surface-treated in the post-treatment chamber. Provided is a DC power plasma polymerization continuous processing apparatus including a winding roll, a pumping means for maintaining the deposition chamber and the after-treatment chamber in a vacuum, and a gas inlet for introducing a reactive gas and a non-reactive gas.

또한 본 발명은 표면처리하고자하는 기재를 증착챔버로 도입하는 단계와, 상기 기재를 전극으로 사용하고 상기 기재 상하 또는 좌우에 대향전극을 설치한 상태에서 반응성 가스 및 비반응성 가스를 증착챔버 내로 주입하고 직류전원플라즈마를 발생시켜 표면처리하는 단계와, 상기 표면처리한 기재를 별도의 챔버에서 후처리하는 단계 및 후처리된 기재를 배출하는 단계로 이루어지는 플라즈마중합 연속처리 방법을 제공한다.In addition, the present invention is a step of introducing a substrate to be surface-treated into the deposition chamber, and using the substrate as an electrode and injecting a reactive gas and a non-reactive gas into the deposition chamber while the opposite electrode is installed on the upper, lower, left and right sides of the substrate and It provides a plasma polymerization continuous processing method comprising the step of generating a DC power plasma surface treatment, the post-treatment of the surface-treated substrate in a separate chamber and the step of discharging the post-treated substrate.

상기 비반응성 가스는 산소, 질소, 아르곤 또는 이들 기체의 혼합가스로 이루어지며, 증착챔버에는 반응성 가스 대비 10 ~ 100%의 양을 주입하고, 후처리챔버에는 반응성 가스 대비 10 ~ 500%의 양을 주입한다.The non-reactive gas is composed of oxygen, nitrogen, argon or a mixture of these gases, the amount of 10 to 100% of the reactive gas is injected into the deposition chamber, and the amount of 10 to 500% of the reactive gas to the post-treatment chamber. Inject.

이하, 도면을 참조하며 본 발명에 관하여 실시예를 통하여 구체적으로 설명한다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.

도 3에 나타난 본 발명에 관한 일실시예인 플라즈마중합 연속처리장치는, 표면처리되는 기재를 풀어주어 다른 챔버로 이송시키는 풀림롤(11)을 포함하는 풀림챔버(36)와, 상기 풀림챔버의 풀림롤로부터 도입되는 기재(1)를 애노드로 하고 상기 애노드인 기재의 상하에 대향되는 별도의 캐소드(22)를 설치하여 직류방전 플라즈마에 의해 상기 기재 양 표면 상을 플라즈마중합처리하는 증착챔버(20)와, 상기 증착챔버에서 표면처리된 기재에 다시 플라즈마중합처리하는 후처리챔버(20a)와, 상기 후처리챔버에서 표면처리된 기재를 감아주는 감김롤(12)을 포함하고 있는 감김챔버(38)와, 상기 증착챔버 및 후처리챔버를 진공으로 유지하기 위한 펌핑수단(미도시) 및 반응성 가스 및 비반응성 가스를 도입하는 가스유입구(23, 25)를 포함하여 구성된다.Plasma polymerization continuous processing apparatus according to an embodiment of the present invention shown in Figure 3, an unwinding chamber 36 including a unwinding roll 11 for releasing the substrate to be surface-treated and transferred to another chamber, and unwinding of the unwinding chamber A deposition chamber 20 in which a substrate 1 introduced from a roll is used as an anode, and a separate cathode 22 facing each other above and below the anode, the substrate, is plasma-polymerized on both surfaces of the substrate by a direct-current discharge plasma. And a winding chamber 38 including a post-treatment chamber 20a for performing plasma polymerization on the substrate treated in the deposition chamber and a winding roll 12 for winding the substrate treated in the post-treatment chamber. And pumping means (not shown) for maintaining the deposition chamber and the aftertreatment chamber under vacuum, and gas inlets 23 and 25 for introducing a reactive gas and a non-reactive gas.

본 발명에 의한 장치는 증착챔버 이외에 후처리챔버(20a)를 별도로 구비함으로써 증착된 기재에 대하여 또 다른 공정을 수행하여 중합막의 특성을 더욱 개선시킬 수 있다. 도 3에 나타난 경우와 달리 풀림롤과 감김롤이 하나의 이송챔버에 포함되는 장치에 있어서는 증착챔버와 이송챔버의 감김롤 사이에 후처리 챔버를 구비하는 것이 바람직할 것이다.The apparatus according to the present invention can further improve the properties of the polymerized film by performing another process on the deposited substrate by separately providing a post-treatment chamber 20a in addition to the deposition chamber. Unlike the case shown in FIG. 3, in the apparatus in which the unwinding roll and the winding roll are included in one transfer chamber, it may be preferable to provide a post-treatment chamber between the deposition chamber and the winding roll of the transfer chamber.

또한 상기 증착챔버(20)와 상기 후처리챔버(20a) 사이에는 차압수단으로서 차압롤(21)을 구비하고 있다. 상기 차압수단은 증착챔버와 후처리챔버간의 가스 분위기를 다르게 유지하는 역할을 한다.In addition, a differential pressure roll 21 is provided between the deposition chamber 20 and the post-treatment chamber 20a as a differential pressure means. The differential pressure means serves to maintain a different gas atmosphere between the deposition chamber and the aftertreatment chamber.

도 3에 나타난 장치는 다음 방법에 의하여 플라즈마중합 연속처리를 수행한다.The apparatus shown in Fig. 3 performs a plasma polymerization continuous process by the following method.

표면처리하고자하는 기재를 증착챔버로 도입하는 단계와, 상기 기재를 애노드로 사용하고 상기 기재 상하 또는 좌우에 대향전극(캐소드 전극)을 설치한 상태에서 반응성 가스 및 비반응성 가스를 증착챔버 내로 주입하고 직류전원플라즈마를 발생시켜 표면처리하는 단계와, 상기 표면처리한 기재를 별도의 챔버에서 후처리하는 단계 및 후처리된 기재를 배출하는 단계로 이루어진다.Introducing a substrate to be surface-treated into the deposition chamber, injecting a reactive gas and a non-reactive gas into the deposition chamber while using the substrate as an anode and having opposing electrodes (cathode electrodes) disposed above, below, left, and right of the substrate; Surface treatment by generating a DC power plasma, post-processing the surface-treated substrate in a separate chamber and discharging the post-treated substrate.

상기 후처리는 비반응성 가스만을 주입할 수도 있고, 반응성가스와 비반응성 가스를 일정 비율로 함께 주입하여 중합처리할 수도 있다.The post-treatment may inject only a non-reactive gas, or may be polymerized by injecting a reactive gas and a non-reactive gas together at a predetermined ratio.

이와 같이 증착챔버와 후처리챔버간에 다른 가스 분위기로 중합처리하게 되면, 증착챔버에서는 반응성 가스에 의한 중합처리가 주도적으로 일어나 기재 표면에 막증착이 이루어지고, 후처리챔버에서는 비반응성 가스가 주도적으로 작용하여 중합막의 친수특성을 높이게 된다.When the polymerization process is performed in a different gas atmosphere between the deposition chamber and the aftertreatment chamber as described above, the polymerization chamber by the reactive gas is dominant in the deposition chamber to deposit a film on the surface of the substrate. This increases the hydrophilicity of the polymer film.

상기 비반응성 가스는 산소, 질소, 아르곤 또는 이들 기체의 혼합가스로 이루어진다.The non-reactive gas consists of oxygen, nitrogen, argon or a mixture of these gases.

또한 플라즈마중합하기 위하여 반응성 가스와 함께 넣어주는 비반응성 가스의 혼합비는 중합된 막의 성질에 큰 영향을 미치고, 비반응성 가스 화합물은 중합되는 고분자막을 비반응성 가스의 농도에 따라 소수성에서 물과의 친화력이 뛰어난 친수성으로 변화 시켜주는 역할을 하게 되는데, 상기 비반응성 가스는 증착챔버에는 반응성 가스 대비 10 ~ 100%의 양을 주입하고, 후처리챔버에는 반응성 가스 대비 10 ~ 500%의 양을 주입하는 것이 적당하다.In addition, the mixing ratio of the non-reactive gas added with the reactive gas for plasma polymerization has a great influence on the properties of the polymerized film, and the non-reactive gas compound has a high affinity with water in hydrophobicity depending on the concentration of the non-reactive gas. The non-reactive gas is suitable to inject 10 to 100% of the reactive gas into the deposition chamber and 10 to 500% of the reactive gas into the aftertreatment chamber. Do.

[실시예 1]Example 1

본 발명에 의한 중합처리효과를 알아보고자 다음과 같은 실험을 하였다. 먼저 증착챔버에는 반응성 가스로 C2H2를 비반응성 가스로 N2를 1:1의 비율로 주입하고, 후처리챔버에는 상기 비반응 가스인 N2만을 주입하였다. 방전전류는 2A, 챔버의 내부진공도는 0.3Torr, 가스유량은 각각 250SCCM, 처리시간은 30초이었다. 플라즈마중합처리 후 접촉각 측정을 통해 처리효과를 알아보았다. 또한 1시간 동안 수분처리한 후 다시 1시간동안 건조시키는 것을 1사이클로 하여 수 십회에 걸쳐 친수성의 지속여부를 측정(Aging Test)하여 후처리없이 표면처리된 경우와 비교한 결과를 표 1에 나타내었다.In order to find out the effect of polymerization according to the present invention, the following experiment was carried out. First, C 2 H 2 was injected into the deposition chamber and N 2 was injected into the non-reactive gas at a ratio of 1: 1, and only N 2 , the non-reactive gas, was injected into the aftertreatment chamber. The discharge current was 2A, the internal vacuum degree of the chamber was 0.3 Torr, the gas flow rate was 250 SCCM, and the processing time was 30 seconds. After the plasma polymerization treatment, the treatment effect was examined by measuring the contact angle. In addition, the result of comparing the case of surface treatment without post-treatment after measuring water for 1 hour and drying it for 1 hour as a cycle was measured for the duration of hydrophilicity for several decades. .

표 1. 후처리 없는 경우와 후처리한 경우의 특성 비교Table 1. Comparison of properties with and without post-treatment

구 분division 후처리없는 경우If no post-processing 후처리한 경우Post-processing 접촉각 측정 (도)Contact angle measurement (degrees) 8484 4040 Aging TestAging Test 20 cycle 후 친수특성 나쁨Poor hydrophilicity after 20 cycles 100 cycle 후 친수특성 양호Good hydrophilicity after 100 cycles

위 표에서 알 수 있듯이 후처리를 함으로써 접촉각이 감소되고 즉, 친수특성이 향상되고 표면 개질에 의한 친수성이 보다 오랫동안 지속되는 것을 알 수 있다.As can be seen from the above table, the post-treatment reduces the contact angle, that is, the hydrophilic property is improved and the hydrophilicity due to surface modification lasts longer.

[실시예 2]Example 2

실시예 1과 유사하게 실험을 하였다. 증착챔버에는 반응성 가스로 C2H2를 비반응성 가스로 N2를 1:1의 비율로 주입하고, 후처리챔버에는 상기 C2H2와 N2를 1:9의 비율로 주입하였다. 방전전류는 1A, 챔버의 내부진공도는 0.3Torr, 가스유량은 각각 250SCCM, 처리시간은 30초이었다. 플라즈마중합처리 후 접촉각 측정을 통해 처리효과를 알아보았다. 또한 친수성의 지속여부를 함께 측정하여(Aging Test) 후처리없이 표면처리된 경우와 비교한 결과를 표 2에 나타내었다.The experiment was conducted similarly to Example 1. Deposition chamber has an N 2 to C 2 H 2 as a reactive gas to the reactive gas 1: injection at a ratio of 1: 1, and the post-processing chamber, the C 2 H 2 and N 2 1: was injected at a rate of 9. The discharge current was 1A, the internal vacuum degree of the chamber was 0.3 Torr, the gas flow rate was 250 SCCM, and the treatment time was 30 seconds. After the plasma polymerization treatment, the treatment effect was examined by measuring the contact angle. In addition, the sustainability of the hydrophilicity was measured together (Aging Test) and the results compared with the surface treatment without post-treatment are shown in Table 2.

표 1. 후처리 없는 경우와 후처리한 경우의 특성 비교Table 1. Comparison of properties with and without post-treatment

구 분division 후처리없는 경우If no post-processing 후처리한 경우Post-processing 접촉각 측정 (도)Contact angle measurement (degrees) 105105 5050 Aging TestAging Test 30 cycle 후 친수특성 나쁨Poor hydrophilicity after 30 cycles 100 cycle 후 친수특성 양호Good hydrophilicity after 100 cycles

위 표 2에서 알 수 있듯이 후처리챔버에 소량의 반응성 가스를 비반응성 가스와 함께 중비함으로써 친수특성이 향상되하고 지속성도 양호한 것으로 나타났다.As can be seen in Table 2 above, by adding a small amount of reactive gas to the aftertreatment chamber together with the non-reactive gas, the hydrophilic property was improved and the sustainability was good.

이러한 결과는 증착챔버에서 형성된 중합막을 후처리챔버에서 다시 비반응성 가스에 의해 중합처리함으로써 친수성이 우수한 모포로지(Morphology)가 형성되고 중합막의 밀착성도 향상시켰기 때문으로 판단된다.This result is judged to be because the polymer film formed in the deposition chamber was polymerized with the non-reactive gas again in the post-treatment chamber to form a morphology having excellent hydrophilicity and improved adhesion of the polymer film.

본 발명에 의하면 반응성 가스 및 비반응성 가스가 각각 효과적으로 작용할 수 있도록 별도의 챔버를 설치하여 비반응성 가스의 반응 효율을 증진시킴으로써 중합막의 성질을 크게 향상시키며, 특히 비반응성 가스의 농도에 따라 친수특성이 뛰어난 양질의 중합막을 형성하는 플라즈마중합 연속처리장치를 제공한다.According to the present invention, by installing a separate chamber so that the reactive gas and the non-reactive gas can work effectively, the reaction efficiency of the non-reactive gas is improved, thereby greatly improving the properties of the polymerized membrane, and in particular, the hydrophilic characteristics are increased depending on the concentration of the non-reactive gas. Provided is a plasma polymerization continuous processing apparatus for forming an excellent quality polymer film.

Claims (4)

표면처리되는 기재를 풀어주어 다른 챔버로 이송시키는 풀림롤과,An unwinding roll for releasing the surface-treated substrate and transferring it to another chamber; 상기 풀림롤로부터 도입되는 기재를 전극으로 사용하고 상기 기재의 상하에 대향되는 별도의 대향전극을 설치하여 직류방전 플라즈마에 의해 상기 기재 양 표면 상을 플라즈마중합처리하는 증착챔버와,A deposition chamber which uses a substrate introduced from the unwinding roll as an electrode and installs a separate counter electrode facing each other above and below the substrate to perform plasma polymerization on both surfaces of the substrate by direct-current discharge plasma; 상기 증착챔버에서 표면처리된 기재에 다시 플라즈마중합처리하는 후처리챔버와,A post-treatment chamber for performing plasma-polymerization treatment again on the surface-treated substrate in the deposition chamber; 상기 후처리챔버에서 표면처리된 기재를 감아주는 감김롤과,Winding rolls for winding the substrate treated in the post-treatment chamber, 상기 증착챔버 및 후처리챔버를 진공으로 유지하기 위한 펌핑수단 및Pumping means for maintaining the deposition chamber and the aftertreatment chamber in vacuum; 반응성 가스 및 비반응성 가스를 도입하는 가스유입구를 포함하여 구성되는 직류전원 플라즈마중합 연속처리장치.DC power plasma polymerization continuous processing apparatus comprising a gas inlet for introducing a reactive gas and non-reactive gas. 표면처리하고자하는 기재를 증착챔버로 도입하는 단계와,Introducing a substrate to be surface treated into the deposition chamber; 상기 기재를 전극으로 사용하고 상기 기재 상하 또는 좌우에 대향전극을 설치한 상태에서 반응성 가스 및 비반응성 가스를 증착챔버 내로 주입하고 직류전원플라즈마를 발생시켜 표면처리하는 단계와,Injecting a reactive gas and a non-reactive gas into the deposition chamber using the substrate as an electrode and opposing electrodes on the top, bottom, left and right sides of the substrate, generating a DC power plasma, and performing surface treatment; 상기 표면처리한 기재를 별도의 챔버에서 후처리하는 단계 및Post-treating the surface treated substrate in a separate chamber; and 후처리된 기재를 배출하는 단계로 이루어지는 플라즈마중합 연속처리 방법.Plasma polymerization continuous processing method comprising the step of discharging the post-treated substrate. 제 2항에 있어서, 상기 후처리는 비반응성 가스만을 주입하여 중합처리하는 플라즈마중합 연속처리 방법.The plasma polymerization continuous processing method according to claim 2, wherein the post-treatment is polymerized by injecting only a non-reactive gas. 제 2항에 있어서, 상기 후처리는 반응성가스와 비반응성 가스를 주입하여 중합처리하는 플라즈마중합 연속처리 방법.The method of claim 2, wherein the post-treatment is performed by injecting a reactive gas and a non-reactive gas to polymerize.
KR1019990035225A 1999-08-24 1999-08-24 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization KR20010019026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990035225A KR20010019026A (en) 1999-08-24 1999-08-24 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990035225A KR20010019026A (en) 1999-08-24 1999-08-24 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization

Publications (1)

Publication Number Publication Date
KR20010019026A true KR20010019026A (en) 2001-03-15

Family

ID=19608501

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990035225A KR20010019026A (en) 1999-08-24 1999-08-24 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization

Country Status (1)

Country Link
KR (1) KR20010019026A (en)

Similar Documents

Publication Publication Date Title
CN111519171A (en) Hydrophobic film plating method by plasma chemical vapor deposition method with compact film layer
KR20010019026A (en) An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization
CN111188032B (en) Hydrophobic film plating method by plasma chemical vapor deposition method in inter-film combination mode
KR100320198B1 (en) Electrode of dc plasma polymerization system
KR20020086139A (en) Surface modifying method by plasma polymerization
KR100610645B1 (en) Method and apparatus for nitriding by post-plasma
US20030221950A1 (en) Plasma polymerization system and method for plasma polymerization
KR20010086971A (en) Supplying and exhausting system in plasma polymerizing apparatus
KR100438941B1 (en) Multi-layer deposition method using plasma
CN111020535A (en) Preparation method of plasma chemical vapor deposition nano-film of cell counting plate
KR20010088068A (en) Plasma polymerizing apparatus having gas injection line
KR20010019019A (en) An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization
Weichart et al. Preparation and characterization of glassy plasma polymer membranes
KR20020037994A (en) Hollow structure for electrode including a lot of holes and plasma poymerizing apparatus using the structure
KR100383170B1 (en) Deposition apparatus of continuous polymerizing system using plasma
WO2021164616A1 (en) Method for coating of dense hydrophobic film by plasma chemical vapor deposition method
KR100390794B1 (en) A continuous plasma polymerizing apparatus
KR100386506B1 (en) Gas system for a continuous plasma polymerizing apparatus
KR20010019025A (en) An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization
KR20020037997A (en) Power supplying method in an apparatus for continuous plasma polymerization
KR20010019015A (en) Plasma polymerization system
JP2004520493A (en) Plasma polymerization continuous processing apparatus with vertical chamber
KR20000021091A (en) Surface treatment unit using plasma having concentration injecting means
KR20010077659A (en) Plasma polymerization apparatus having hollow type gas inlet
Berné Nitrogen Microwave Plasma Flowing Afterglow Polymerization and Deposition of Polypyrrole Films for Preparation of Biocompatible and Conductive Graphene Composite Materials

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination