KR20000046142A - Film type photo-catalyst and preparation thereof - Google Patents

Film type photo-catalyst and preparation thereof Download PDF

Info

Publication number
KR20000046142A
KR20000046142A KR1019980062819A KR19980062819A KR20000046142A KR 20000046142 A KR20000046142 A KR 20000046142A KR 1019980062819 A KR1019980062819 A KR 1019980062819A KR 19980062819 A KR19980062819 A KR 19980062819A KR 20000046142 A KR20000046142 A KR 20000046142A
Authority
KR
South Korea
Prior art keywords
tin oxide
titanium oxide
film
substrate
coating
Prior art date
Application number
KR1019980062819A
Other languages
Korean (ko)
Inventor
권철한
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019980062819A priority Critical patent/KR20000046142A/en
Priority to JP37505999A priority patent/JP3389187B2/en
Publication of KR20000046142A publication Critical patent/KR20000046142A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A film type photo-catalyst having novel structure is provided to improve the efficiency of the photo-catalyst. CONSTITUTION: A film type photo-catalyst according to the present invention has two fold structure comprising tin oxide(SnO2) coating layer formed on a substrate and titanium oxide(TiO2) coating layer formed on the tin oxide coating layer. A method for preparing the film type photo-catalyst according to the present invention comprises the steps: a) preparing a substrate; b) coating tin oxide(SnO2) on the substrate and then drying; c) coating titanium oxide(TiO2) on the said coated tin oxide and then drying; and d) heat treating the said coated tin oxide and titanium oxide.

Description

필름형 광촉매 및 그 제조방법Film type photocatalyst and its manufacturing method

본 발명은 광촉매에 관한 것으로, 특히 효율이 높은 필름형 광촉매 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to photocatalysts, and more particularly, to a film type photocatalyst having high efficiency and a method of manufacturing the same.

일반적으로 광촉매란 빛을 받았을 때, 표면의 화학적 상태가 변화됨으로써 화학 반응을 촉진시키는 촉매 기능을 나타내는 소재를 일컫는 용어이다.In general, a photocatalyst is a term that refers to a material that exhibits a catalytic function of accelerating a chemical reaction by changing the chemical state of the surface when it receives light.

광촉매 기능이 우수한 소재로는 산화티탄(Titania,TiO2)을 들 수 있으며, 자외선 조사시에 산화티탄 표면에 활성이 높은 화학종(OH 라디칼)이 형성되어 인체에 유해한 유기물(organic compounds)을 산화 반응에 의해 무해한 안정한 물질로 변화시키는 작용을 한다.Examples of the material having excellent photocatalytic function include titanium oxide (Titania, TiO 2 ), and highly active chemical species (OH radicals) are formed on the surface of titanium oxide during ultraviolet irradiation to oxidize harmful organic compounds. It acts to transform it into a harmless and stable substance by reaction.

이러한 광촉매의 원리를 도 1을 참조하여 설명하면 다음과 같다.The principle of such a photocatalyst is described with reference to FIG. 1 as follows.

아나타제(anatase) 결정 구조의 산화티탄은 약 3.2eV 정도의 밴드갭 에너지(band-gap energy)를 가지고 있는데, 이에 해당하는 빛 에너지(photon energy)가 입사되면 전자가 전도대로 여기되면서 전자-정공 쌍(electron-hole pair)을 형성하게 되고, 이때 형성된 전자와 정공은 도 1에 도시된 바와 같이 표면에 흡착되어 있는 산소 또는 수분과 각각 화학 반응을 하여 산소 이온과 OH 라디칼(radical)을 만들게 된다.Titanium oxide with an anatase crystal structure has a band-gap energy of about 3.2 eV. When the corresponding photon energy is incident, electrons are excited as conduction bands and electron-hole pairs. (electron-hole pair) is formed, and the electrons and holes formed at this time chemically react with oxygen or moisture adsorbed on the surface to form oxygen ions and OH radicals (radical), respectively.

OH 라디칼은 산화력이 매우 강한 화학종으로 산화티탄의 표면에 남아 있다가 유기물을 접촉하게 되면 바로 산화시켜 분해 반응이 일어나도록 한다.The OH radical is a very oxidizing species that remains on the surface of titanium oxide and immediately oxidizes when it comes into contact with organics to cause decomposition reactions.

따라서, 산화티탄 광촉매를 공해 물질 분해에 이용할 수 있는데, 그때의 산화티탄 광촉매의 응용 형태는 다음 2가지가 있다.Therefore, the titanium oxide photocatalyst can be used for decomposing pollutants. There are two types of application of the titanium oxide photocatalyst at this time.

그 중 하나는 분말형(powder type)으로 아나타제 결정 구조의 산화티탄(입경 10∼50nm) 분말을 폐수 또는 오염된 대기와 혼합하고 자외선을 조사하여 정화 반응이 일어나도록 하는 형태이다.One of them is a powder type (powder type) in which titanium oxide (particle size of 10 to 50 nm) powder of anatase crystal structure is mixed with waste water or polluted atmosphere and irradiated with ultraviolet rays to cause a purification reaction.

그러나, 미세 분말인 산화티탄을 회수해야 하므로 여과(filtering) 공정이 필요한 단점이 있어 실제 응용에 장애가 되고 있다.However, since titanium oxide, which is a fine powder, has to be recovered, there is a disadvantage in that a filtering process is required, which impedes practical application.

나머지 하나는 필름형(film type)으로 분말형과 마찬가지로 아나타제 구조의 산화티탄을 합성하고 유리, 금속 등의 지지체 표면에 코팅하여 필름으로 만든 후, 폐수 또는 오염된 대기에 접촉할 수 있도록 설치하고 자외선을 조사하여 정화 처리한다.The other is film type, like powder type, synthesizes titanium oxide with anatase structure and coated it on the surface of glass, metal, etc. to make it into a film, and install it to contact wastewater or polluted atmosphere Irradiate and purify.

이 필름형은 기판에 산화티탄이 고정되어 있어 여과 공정은 필요 없으나 비표면적(specific surface area)이 적어서 효율이 분말형에 비해 매우 낮은 단점이 있다.This film type has a disadvantage that the efficiency is lower than that of the powder type because the titanium oxide is fixed to the substrate so that no filtration process is required but the specific surface area is small.

본 발명은 상기와 같은 문제를 해결하기 위한 것으로, 효율이 높은 필름형 광촉매 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a highly efficient film type photocatalyst and a method of manufacturing the same.

도 1은 일반적인 광촉매의 동작 원리를 보여주는 도면1 is a view showing the principle of operation of a general photocatalyst

도 2는 본 발명에 따른 필름형 광촉매의 구조를 보여주는 도면2 is a view showing the structure of a film-type photocatalyst according to the present invention

도 3은 본 발명에 따른 필름형 광촉매에서 전하 분리 현상에 의한 효율 향상을 보여주는 도면Figure 3 shows the efficiency improvement by the charge separation phenomenon in the film-type photocatalyst according to the present invention

도 4는 본 발명에 따른 필름형 광촉매의 제조 공정을 보여주는 순서도Figure 4 is a flow chart showing the manufacturing process of the film type photocatalyst according to the present invention

도 5는 본 발명에 따른 필름형 광촉매의 분해 반응 측정 결과를 보여주는 도면5 is a view showing the decomposition reaction measurement results of the film-type photocatalyst according to the present invention

본 발명에 따른 필름형 광촉매의 특징은 기판상에 형성되는 산화주석(SnO2) 코팅층과, 산화주석 코팅층상에 형성되는 산화티탄(TiO2) 코팅층으로 이루어진 2층 구조를 갖는데 있다.A feature of the film type photocatalyst according to the present invention is that it has a two-layer structure consisting of a tin oxide (SnO 2 ) coating layer formed on a substrate and a titanium oxide (TiO 2 ) coating layer formed on a tin oxide coating layer.

본 발명에 따른 필름형 광촉매 제조방법의 특징은 기판을 마련하는 제 1 단계와, 기판상에 산화주석(SnO2)을 코팅하고 건조시키는 제 2 단계와, 코팅된 산화주석상에 산화티탄(TiO2)을 코팅하고 건조시키는 제 3 단계와, 코팅된 산화주석과 산화티탄을 열처리하는 제 4 단계로 이루어지는데 있다.The film photocatalyst manufacturing method according to the present invention is characterized by the first step of preparing a substrate, the second step of coating and drying tin oxide (SnO 2 ) on the substrate, and the titanium oxide (TiO) on the coated tin oxide 2 ) a third step of coating and drying, and a fourth step of heat-treating the coated tin oxide and titanium oxide.

상기와 같은 특징을 갖는 본 발명에 따른 필름형 광촉매 제조방법 및 그 제조방법을 첨부된 도면을 참조하여 설명하면 다음과 같다.Referring to the accompanying drawings, a film-type photocatalyst manufacturing method and a manufacturing method according to the present invention having the characteristics as described above are as follows.

먼저, 본 발명의 개념은 종래의 필름형 광촉매의 통상 구조인 산화티탄(TiO2) 코팅층과 기판 사이에 산화주석(SnO2) 코팅층을 한 층 더 형성한 2층 구조로 형성함으로써 광촉매의 효율을 향상시키는데 있다.First, the concept of the present invention is to improve the efficiency of the photocatalyst by forming a two-layer structure in which a tin oxide (TiO 2 ) coating layer, which is a conventional structure of a conventional film type photocatalyst, and a tin oxide (SnO 2 ) coating layer is formed between the substrate. To improve.

도 2는 본 발명에 따른 필름형 광촉매의 구조를 보여주는 도면으로서, 도 2에 도시된 바와 같이 유리, 금속, 세라믹스와 같은 기판위에 산화주석(SnO2) 코팅층이 형성되고, 그 위에 산화티탄(TiO2) 코팅층이 형성된 2층 구조를 갖는다.Figure 2 is a tin oxide (SnO 2) coating layer formed on a substrate such as glass, metal, ceramic, as illustrated in Figure 2, a diagram showing a structure of a film-type photocatalyst according to the present invention, the above titanium oxide (TiO 2 ) It has a two-layer structure in which a coating layer is formed.

이와 같은 본 발명의 2층 구조 광촉매는 도 3에 도시된 바와 같이 입사된 빛에 의해 여기된 전자-정공 쌍이 산화주석과 산화티탄의 에너지 준위 차이에 의해 분리됨으로써 정공이 화학 반응에 참여할 확률을 높여줄 수 있고 그에 따라 광촉매 효율을 약 2배 이상 향상시킬 수 있다.In the two-layered photocatalyst of the present invention, as shown in FIG. 3, the electron-hole pairs excited by the incident light are separated by the energy level difference between the tin oxide and the titanium oxide, thereby increasing the probability of the holes participating in the chemical reaction. This can increase the photocatalytic efficiency by about 2 times or more.

도 4를 참조하여 본 발명에 따른 2층 구조의 필름형 광촉매 제조방법을 설명하면 다음과 같다.Referring to Figure 4 describes a film-type photocatalyst manufacturing method of a two-layer structure according to the present invention.

먼저, 광촉매를 코팅하고자 하는 유리, 금속, 세라믹스 등의 지지체 또는 기판을 알코올과 아세톤, 탈 이온수(deionized water) 등으로 깨끗이 세척한다.First, a support or a substrate such as glass, metal, ceramics, etc. to be coated with a photocatalyst is cleaned with alcohol, acetone, deionized water, and the like.

이어, 딥 코팅(dip coating)하기에 적절하게 제조된 산화주석 졸(sol) 용액을 이용하여 코팅한 다음, 대기 중에서 상온 건조시킨다..Subsequently, coating is performed using a tin oxide sol solution suitably prepared for dip coating, followed by drying at room temperature in air.

이때, 산화주석 졸 용액은 코팅한 직후에는 액체 상태의 막이 얻어지지만, 상온 건조시킴으로써 고체 상태의 겔(gel) 필름이 된다.At this time, the tin oxide sol solution is obtained in a liquid film immediately after coating, but becomes a gel film in a solid state by drying at room temperature.

이 산화주석 코팅층 위에 다시 딥 코팅하기에 적절하게 제조된 산화티탄 졸 용액을 코팅하고 건조시킨다.The tin oxide sol solution suitably prepared for dip coating again on this tin oxide coating layer is coated and dried.

이후, 겔 상태의 2층 구조 코팅층을 전기로나 또는 오븐에서 약 100 ∼ 500℃로 열처리하면 산화물 형태의 결정질 코팅막을 얻을 수 있다.Thereafter, the gel-like two-layer structure coating layer is heat-treated at about 100 to 500 ° C. in an electric furnace or an oven to obtain an oxide crystalline coating film.

이때, 열처리 온도를 500℃ 이상 높이면 막의 접착력이나 투명성 등의 물리적 성질이 개선되어지나 산화티탄의 결정 구조가 아나타제에서 루틸(rutile) 구조로 전이되어 광촉매 특성이 낮아지므로 주의해야 한다.At this time, if the heat treatment temperature is increased to 500 ° C. or more, physical properties such as adhesion and transparency of the film may be improved, but care should be taken because the crystal structure of titanium oxide is transferred from anatase to rutile structure to lower photocatalytic properties.

도 5는 이와 같이 제조된 본 발명에 따른 2층 구조 광촉매의 분해 반응 측정 결과를 보여주는 그래프로서, 염색 폐수의 일종인 메틸오렌지(methylorange) 분해 반응으로 평가한 결과, 산화티탄 1층만 코팅된 광촉매에 비해 2층 구조인 산화주석-산화티탄 코팅막의 분해 반응 속도가 현저히 향상되는 것을 알 수 있다.FIG. 5 is a graph showing the measurement of the decomposition reaction of the two-layered photocatalyst according to the present invention. As a result of evaluation by methylorange decomposition, a kind of dyeing wastewater, only one layer of titanium oxide was coated on the photocatalyst. It can be seen that the decomposition reaction rate of the two-layered tin oxide-titanium oxide coating film is significantly improved.

본 발명에 따른 필름형 광촉매 및 그 제조방법에 있어서는 다음과 같은 효과가 있다.In the film type photocatalyst according to the present invention and a manufacturing method thereof, the following effects are obtained.

본 발명에 따른 2층 구조의 필름형 광촉매는 자외선에 의해 여기된 전자와 정공이 서로 재결합되지 않고 분리되어 화학작용에 기여하게 됨으로써 처리 효율이 종래에 비해 약 2배 이상 향상되어질 뿐만 아니라 광범위한 응용이 가능하다.In the film-type photocatalyst of the two-layer structure according to the present invention, electrons and holes excited by ultraviolet rays are separated from each other without recombination, thereby contributing to chemical reactions, thereby improving the processing efficiency by about two times or more compared to the conventional method, and providing a wide range of applications. It is possible.

Claims (5)

기판상에 형성되는 산화주석(SnO2) 코팅층과, 상기 산화주석 코팅층상에 형성되는 산화티탄(TiO2) 코팅층으로 이루어진 2층 구조를 갖는 필름형 광촉매.A film type photocatalyst having a two-layer structure consisting of a tin oxide (SnO 2 ) coating layer formed on a substrate and a titanium oxide (TiO 2 ) coating layer formed on the tin oxide coating layer. 기판을 마련하는 제 1 단계;A first step of preparing a substrate; 상기 기판상에 산화주석(SnO2)을 코팅하고 건조시키는 제 2 단계;Coating and drying tin oxide (SnO 2 ) on the substrate; 상기 코팅된 산화주석상에 산화티탄(TiO2)을 코팅하고 건조시키는 제 3 단계; 그리고,A third step of coating and drying titanium oxide (TiO 2 ) on the coated tin oxide; And, 상기 코팅된 산화주석과 산화티탄을 열처리하는 제 4 단계로 이루어지는 것을 특징으로 하는 필름형 광촉매 제조방법.The film-type photocatalyst manufacturing method comprising the fourth step of heat-treating the coated tin oxide and titanium oxide. 제 2 항에 있어서, 상기 제 1 단계는The method of claim 2, wherein the first step 상기 기판을 세척하는 단계를 더 포함하는 것을 특징으로 하는 필름형 광촉매 제조방법.Film-type photocatalyst manufacturing method further comprises the step of washing the substrate. 제 2 항에 있어서, 상기 제 2, 제 3 단계에서 건조시 대기 중에서 상온 건조시키는 것을 특징으로 하는 필름형 광촉매 제조방법.The method of claim 2, wherein the drying is performed at room temperature in the second and third steps at room temperature. 제 2 항에 있어서, 상기 제 4 단계에서 열처리시 열처리 온도는 100 ∼ 500℃인 것을 특징으로 하는 필름형 광촉매 제조방법.The method of claim 2, wherein the heat treatment temperature during the heat treatment in the fourth step is 100 to 500 ℃.
KR1019980062819A 1998-12-31 1998-12-31 Film type photo-catalyst and preparation thereof KR20000046142A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980062819A KR20000046142A (en) 1998-12-31 1998-12-31 Film type photo-catalyst and preparation thereof
JP37505999A JP3389187B2 (en) 1998-12-31 1999-12-28 Film type photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980062819A KR20000046142A (en) 1998-12-31 1998-12-31 Film type photo-catalyst and preparation thereof

Publications (1)

Publication Number Publication Date
KR20000046142A true KR20000046142A (en) 2000-07-25

Family

ID=19569434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980062819A KR20000046142A (en) 1998-12-31 1998-12-31 Film type photo-catalyst and preparation thereof

Country Status (1)

Country Link
KR (1) KR20000046142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027319A1 (en) * 2008-09-04 2010-03-11 Wallenius Water Aktiebolag A method to produce a photocatalytic surface, including layers of sno2 and tio2.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027319A1 (en) * 2008-09-04 2010-03-11 Wallenius Water Aktiebolag A method to produce a photocatalytic surface, including layers of sno2 and tio2.

Similar Documents

Publication Publication Date Title
JP3592727B2 (en) Photocatalyst
Ohko et al. Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films
Benedix et al. Application of titanium dioxide photocatalysis to create self-cleaning building materials
JPH07155598A (en) Photocatalyst coating film and its formation
Mori Photo-Functionalized Materials Using Nanoparticles: Photocatalysis [Translated]
JP2001070802A (en) Photocatalyst film and its production
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
JP3389187B2 (en) Film type photocatalyst
US8343282B2 (en) Photocatalytic auto-cleaning process of stains
KR20000046142A (en) Film type photo-catalyst and preparation thereof
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP3885248B2 (en) Photocatalyst composition
JPH10174883A (en) Aluminum material having photocatalytic function and its production
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
KR102060521B1 (en) Water proofing material comprising visible light active photocatalyst for air cleaning
JPH11262672A (en) High efficiency metal supported photocatalyst and highly functional porous glass material
KR20000055960A (en) High efficiency photocatalyst
US20120270722A1 (en) Ultra-Porous Photocatalytic Material, Method for the Manufacture and the Uses Thereof
KR100520479B1 (en) Photo-catalyst sol and preparation method thereof
KR100308818B1 (en) Hydrophilic coating glass coated with porous thin layer of TiO2
KR100744635B1 (en) Method for preparing of oxide semiconductive electrode for electrochemical device
KR102175462B1 (en) Visible light-activated photocatalyst and preparation method thereof
JPH0824666A (en) Immobilized photocatalyst
US11680506B2 (en) Muffler including an internal photocatalyst and a light source
EP1831131B1 (en) Photocatalytic auto-cleaning process of stains

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application