KR100744635B1 - Method for preparing of oxide semiconductive electrode for electrochemical device - Google Patents

Method for preparing of oxide semiconductive electrode for electrochemical device Download PDF

Info

Publication number
KR100744635B1
KR100744635B1 KR1020060078372A KR20060078372A KR100744635B1 KR 100744635 B1 KR100744635 B1 KR 100744635B1 KR 1020060078372 A KR1020060078372 A KR 1020060078372A KR 20060078372 A KR20060078372 A KR 20060078372A KR 100744635 B1 KR100744635 B1 KR 100744635B1
Authority
KR
South Korea
Prior art keywords
oxide semiconductor
electrochemical device
oxide
semiconductor electrode
titanium
Prior art date
Application number
KR1020060078372A
Other languages
Korean (ko)
Inventor
도석주
김참
이성준
이세근
김호영
Original Assignee
(재)대구경북과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (재)대구경북과학기술연구원 filed Critical (재)대구경북과학기술연구원
Priority to KR1020060078372A priority Critical patent/KR100744635B1/en
Application granted granted Critical
Publication of KR100744635B1 publication Critical patent/KR100744635B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A method for preparing an oxide semiconductor electrode of an electrochemical device is provided to effectively decompose liquid contaminant or pollutants existing in a water system. A glass substrate coated with an oxide conductor is coated with a mixture of titanium precursor, polymer compound and a solvent through a spin coating method to form a thin film. An annealing process is performed on the formed thin film. The oxide conductor contains a metal selected from the group consisting of indium, tin, zinc, aluminum and fluorine. The titanium precursor is an organic compound comprising Ti of titanium isopropoxide or titanium tetraethoxide.

Description

전기화학장치용 산화물 반도체 전극의 제조방법 {METHOD FOR PREPARING OF OXIDE SEMICONDUCTIVE ELECTRODE FOR ELECTROCHEMICAL DEVICE}Method for manufacturing oxide semiconductor electrode for electrochemical device {METHOD FOR PREPARING OF OXIDE SEMICONDUCTIVE ELECTRODE FOR ELECTROCHEMICAL DEVICE}

도 1은 본 발명의 일실시예에 따라 폴리비닐아세테이트의 TGA(thermal gravimetric analysis) 열분석 결과를 나타낸 것이다.Figure 1 shows the thermal gravimetric analysis (TGA) thermal analysis results of polyvinyl acetate in accordance with an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따라 열처리된 산화물 반도체 전극의 X-선 회절을 나타낸 것이다.Figure 2 shows the X-ray diffraction of the oxide semiconductor electrode heat-treated according to an embodiment of the present invention.

도 3a 및 도 3b는 본 발명의 일실시예에 따라 산화물 반도체 전극 제조시 스핀코팅 속도에 따른 표면 TiO2 산화물 반도체의 광분해율을 나타낸 것이다.3a and 3b show the photodegradation rate of the surface TiO 2 oxide semiconductor according to the spin coating speed when manufacturing the oxide semiconductor electrode in accordance with an embodiment of the present invention.

도 4는 본 발명의 일실시예에 따라 산화물 반도체 전극 제조시 스핀코팅 속도에 따른 최종 산화물 반도체 표면의 전자현미경(SEM) 사진을 나타낸 것이다.Figure 4 shows an electron micrograph (SEM) of the surface of the final oxide semiconductor according to the spin coating speed when manufacturing the oxide semiconductor electrode according to an embodiment of the present invention.

도 5a 및 5b는 본 발명의 일실시예에 따라 제조한 산화물 반도체 전극의 열처리 전/후의 전자현미경(SEM) 사진을 나타낸 것이다.5A and 5B show electron microscope (SEM) photographs before and after heat treatment of an oxide semiconductor electrode manufactured according to an embodiment of the present invention.

도 6은 본 발명의 일실시예에 따라 제조한 산화물 반도체 전극의 인가전압에 따른 BB26 염료의 분해특성을 나타낸 것이다.Figure 6 shows the decomposition characteristics of the BB26 dye according to the applied voltage of the oxide semiconductor electrode prepared according to an embodiment of the present invention.

도 7은 본 발명의 일실시예에 따라 제조한 산화물 반도체 전극에 전압을 인가 하기 전/후의 밴드-디아그램 도식도(schematic band-diagram)를 나타낸 것이다.FIG. 7 illustrates a schematic band-diagram before and after applying a voltage to an oxide semiconductor electrode prepared according to an embodiment of the present invention.

본 발명은 전기화학장치용 산화물 반도체 전극의 제조방법에 관한 것으로, 더욱 상세하게는 가정용 및 산업용 오염물질을 효율적으로 처리할 수 있으며, 화학적 내구성이 강하고, 제조가 매우 간단하며, 비용을 절감할 수 있는 전기화학장치용 산화물 반도체 전극의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an oxide semiconductor electrode for an electrochemical device, and more particularly, it can efficiently handle household and industrial contaminants, has a strong chemical durability, is very simple to manufacture, and can reduce costs. The present invention relates to a method for producing an oxide semiconductor electrode for an electrochemical device.

수중에서 질산성 질소(nitrate), 암모니아성 질소(ammonia/ammonium) 등의 상태로 존재하는 오염 물질 중의 하나인 질소는 수중의 용존 산소의 결핍을 야기하여 부영양화, 적조 현상, 어류 독소 등을 유발시키기 때문에 정부에서는 2003 년부터 총 질소 배출량을 규제하고 있다. 따라서, 상기 규제에 의거하여 수질 오염의 악화 및 확산을 방지하기 위해 수중의 질소 함량을 줄이기 위한 노력이 계속되고 있다.Nitrogen, one of the pollutants that exist in the state of nitrate and ammonia / ammonium in water, causes the lack of dissolved oxygen in the water, causing eutrophication, red tide, fish toxin, etc. The government has regulated total nitrogen emissions since 2003. Accordingly, efforts have been made to reduce the nitrogen content in water in order to prevent deterioration and spread of water pollution in accordance with the above regulations.

최근에는 암모니아성 질소의 이온 교환 및 흡착 성능을 가지는 화합물과, 질소 제거 효율을 향상시키는 광물질 등이 발견됨에 따라 이들을 혼합하여 담체 또는 여과막을 제조하거나, 다양한 구조로 수처리 장치를 제조하여 생물학적 및/또는 화학적 수처리 방법에 적용하는 시도가 계속되고 있으나, 비용 및 시간 면에서 현저한 효과를 얻을 수 있는 방법으로 평가받지는 못한다.Recently, as compounds having ion exchange and adsorption performances of ammonia nitrogen and minerals that enhance nitrogen removal efficiency have been found, they are mixed to prepare carriers or filtration membranes, or water treatment devices having various structures can be used to produce biological and / or Attempts have been made to apply chemical treatment methods, but they are not evaluated in terms of cost and time.

상기와 같은 기존의 방법들보다 효율적으로 수중의 질소를 처리하여 수질의 오염을 방지할 수 있는 기술이 기대되고 있는 가운데, 최근에는 전기화학적 처리 기술을 도입한 수처리 방법이 연구되고 있다. 전기화학적 처리 방법이란 오염된 폐수를 양극과 음극 사이에 두고 전류를 인가하여, 전극의 산화-환원 반응에 의한 전기화학적인 반응을 유도함으로써 수중의 오염 물질을 제거하거나 무해한 성분으로 변화시키는 방법을 말한다. 이러한 전기화학적 처리 방법에 의하면 응집제를 사용하지 않고서도 수중에 포함된 고형물과 담수 조류를 효율적으로 제거할 수 있고, 넓은 설치 면적을 필요로 하지 않으면서 단시간 내에 처리할 수 있어 경제적이며, 슬러지 발생량이 적을 뿐만 아니라, 필요에 따라 소량의 약품만을 사용하기 때문에 발생되는 슬러지를 비료로 재이용할 수 있다는 장점을 가진다. While a technique for preventing pollution of water by treating nitrogen in water more efficiently than the existing methods as described above is expected, recently, a water treatment method adopting an electrochemical treatment technology has been studied. The electrochemical treatment method refers to a method of removing contaminants in water or converting them into harmless components by inducing an electrochemical reaction by the oxidation-reduction reaction of the electrode by applying a current by placing the contaminated wastewater between the anode and the cathode. . According to this electrochemical treatment method, solids and freshwater algae contained in the water can be efficiently removed without using a flocculant and can be treated in a short time without requiring a large installation area. In addition to the small amount, only a small amount of the drug used as needed has the advantage that can be reused sludge produced as a fertilizer.

대한민국 등록특허 제72629호에는 금속 전극을 이용하여 오염물질을 제거하는 전기식 수처리 장치에 대하여 개시하고 있다. 상기 특허의 경우 장기간 사용에 따른 화학적 안정성이 우수하다는 장점은 있으나, 본 발명의 산화물 반도체 전극과는 다른 것이며, 본 발명에 비해 화학적 내구성이 떨어진다는 문제점이 있다.Korean Patent No. 72629 discloses an electric water treatment apparatus for removing contaminants using a metal electrode. In the case of the patent, there is an advantage that the chemical stability of the long-term use is excellent, but different from the oxide semiconductor electrode of the present invention, there is a problem that the chemical durability is lower than the present invention.

한편, 미국특허 제5,419,824호는 티타늄 금속 전극 위에 양극 산화 방식으로 티타늄옥사이드(TiO2)를 형성하는 방법에 대하여 개시하고 있다. 상기 특허의 경우 티타늄을 산화시켜 티타늄옥사이드로 제조하는 방식으로, 스핀코팅법에 의해 티타늄옥사이드 막을 형성하는 본 발명과는 다른 것이며, 본 발명에 비해 제조비용이 높다는 문제점이 있다.Meanwhile, US Patent No. 5,419,824 discloses a method of forming titanium oxide (TiO 2 ) on the titanium metal electrode by anodizing. In the case of the patent, a method of oxidizing titanium to produce titanium oxide, which is different from the present invention in which a titanium oxide film is formed by a spin coating method, has a problem in that manufacturing cost is higher than that of the present invention.

또한 논문(Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for Photocatalytic degradation of 4-Chlorophenol", K. Vinodgopal et al, J. Phys. Chem. (1993))는 슬러리 코팅방법으로 산화물 반도체를 제조하고, 이렇게 제조한 전극에 전압과 자외광을 동시에 인가하여 유해물질을 분해시키는 방법에 대하여 개시하고 있다. 그러나, 상기 논문 또한 스핀코팅법에 의해 산화물 전극을 형성하며, 자외광을 사용하지 않는 본 발명과는 전혀 다른 것이다.In addition, the article (Electrochemically assisted photocatalysis.TiO 2 particulate film electrodes for Photocatalytic degradation of 4-Chlorophenol ", K. Vinodgopal et al, J. Phys. Chem. (1993), prepared oxide semiconductors by slurry coating method, The present invention discloses a method for decomposing harmful substances by applying voltage and ultraviolet light to one electrode simultaneously, but the above paper also forms an oxide electrode by spin coating and does not use the present invention without using ultraviolet light. It is different.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 가정용 및 산업용 오염물질을 효율적으로 처리할 수 있으며, 화학적 내구성이 강하고, 제조가 매우 간단하며, 비용을 절감할 수 있는 전기화학장치용 산화물 반도체 전극의 제조방법 및 이렇게 제조된 산화물 반도체 전극을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention is an oxide semiconductor for an electrochemical device that can efficiently handle household and industrial contaminants, strong chemical durability, very simple manufacturing, and can reduce costs It is an object to provide a method for producing an electrode and an oxide semiconductor electrode thus produced.

상기 목적을 달성하기 위하여, 본 발명은 산화물 도체가 코팅된 기판에 티타늄 전구체, 고분자 화합물, 및 용매의 혼합물을 스핀코팅법으로 코팅하여 박막을 형성하는 단계; 및 상기 형성된 박막을 열처리하는 단계를 포함하는 전기화학장치용 산화물 반도체 전극의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of coating a mixture of a titanium precursor, a polymer compound, and a solvent by a spin coating method on a substrate coated with an oxide conductor to form a thin film; And it provides a method for producing an oxide semiconductor electrode for an electrochemical device comprising the step of heat-treating the formed thin film.

또한 본 발명은 기판; 상기 기판 상에 형성된 산화물 도체층; 및 상기 산화물 도체층 상에 형성된 산화물 반도체층을 포함하는 전기화학장치용 산화물 반도체 전극을 제공한다.The present invention also provides a substrate; An oxide conductor layer formed on the substrate; And it provides an oxide semiconductor electrode for an electrochemical device comprising an oxide semiconductor layer formed on the oxide conductor layer.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 오염물질을 분해시키기 위한 전기화학장치용 전극을 제조하기 위하여 전도성 기판 상에 스핀코팅법으로 산화물 반도체를 코팅한 결과, 스핀코팅 조건에 따라 코팅 두께가 달라지고 이에 따라 표면 모폴로지가 달라져 오염물질의 분해율에 영향을 미침을 확인하고, 최적의 스핀코팅 조건을 찾아냄으로써 본 발명을 완성하게 되었다.The present inventors coated an oxide semiconductor by a spin coating method on a conductive substrate in order to manufacture an electrode for an electrochemical device for decomposing contaminants. As a result, the coating thickness is changed according to the spin coating conditions, and thus the surface morphology is changed. The present invention was completed by confirming the influence on the decomposition rate of the material and finding the optimum spin coating condition.

본 발명의 전기화학장치용 산화물 반도체 전극은 산화물 도체가 코팅된 기판에 티타늄 전구체, 고분자 화합물, 및 용매의 혼합물을 스핀코팅법으로 코팅하여 박막을 형성하는 단계; 및 상기 형성된 박막을 열처리하는 단계로 제조되는 것을 특징으로 한다.An oxide semiconductor electrode for an electrochemical device according to the present invention comprises the steps of: coating a mixture of a titanium precursor, a polymer compound, and a solvent on a substrate coated with an oxide conductor by spin coating to form a thin film; And heat treating the formed thin film.

본 발명에 사용되는 상기 기판은 당업계에서 사용되는 통상의 투명 또는 불투명 기판을 모두 사용할 수 있다.The substrate used in the present invention may use all of the usual transparent or opaque substrates used in the art.

상기와 같은 기판에는 산화물 도체가 코팅되게 되는데, 이때 상기 산화물 도체는 도전성이 있는 산화물 도체이면 그 종류가 제한되지 않으며, 예를 들어 인듐, 주석, 아연, 알루미늄, 불소 등을 포함하는 금속산화물 도체를 사용할 수 있으며, 구체적으로 인듐 주석 산화물(Indium Tin Oxide; ITO), 인듐 아연 산화물(Indium Zinc Oxide; IZO), 또는 알루미늄이 도핑된 아연 산화물(Al doped Zinc Oxide) 등을 사용할 수 있다.The substrate is coated with an oxide conductor, and the oxide conductor is not limited if the oxide conductor is a conductive oxide conductor, for example, a metal oxide conductor including indium, tin, zinc, aluminum, fluorine, or the like. Indium tin oxide (ITO), indium zinc oxide (IZO), or aluminum doped zinc oxide (Al doped Zinc Oxide) may be used.

상기 산화물 도체는 기판상에 당업계에서 사용하는 통상의 방법에 따라 코팅될 수 있음은 물론이다.Of course, the oxide conductor may be coated on the substrate according to conventional methods used in the art.

상기와 같이 산화물 도체가 코팅된 기판상에 티타늄 전구체, 고분자 화합물, 및 용매를 혼합한 용액을 코팅한다. 이때, 상기 혼합물은 기판 상에 코팅되어 산 화물 반도체층을 형성하며 이렇게 형성된 산화물 반도체층은 TiO2 막으로, 본 발명에 따라 제조된 산화물 반도체 전극으로 오염물질 제거시 TiO2를 이용한 전기화학 촉매 반응으로 수용액상의 오염물질을 산화시켜 분해할 수 있다.A solution in which a titanium precursor, a high molecular compound, and a solvent are mixed is coated on the substrate coated with the oxide conductor as described above. In this case, the mixture is coated on a substrate to form an oxide semiconductor layer, the oxide semiconductor layer formed as a TiO 2 film, an electrochemical catalytic reaction using TiO 2 to remove contaminants with an oxide semiconductor electrode prepared according to the present invention. It is possible to oxidize and decompose contaminants in aqueous solution.

상기 티타늄 전구체는 티타늄 아이소프로포사이드(titanium isopropoxide, TTIP), 티타늄 테트라에톡사이드(titanium tetraethoxide) 등 Ti를 포함하는 유기 화합물을 사용할 수 있다.The titanium precursor may be an organic compound containing Ti such as titanium isopropoxide (TTIP), titanium tetraethoxide, and the like.

또한 본 발명의 혼합물에는 상기 티타늄 전구체에 TiO2를 혼합하여 사용함으로써 TiO2에 의한 오염물질의 산화 및 분해 효과를 더욱 높일 수 있다. 본 발명의 일실시예에서는 상기 TiO2로 데구사(Degussa)의 P-25를 사용한다.In addition, the mixture of the present invention can further increase the oxidation and decomposition effects of the contaminants caused by TiO 2 by mixing TiO 2 with the titanium precursor. In an embodiment of the present invention, Degussa P-25 is used as the TiO 2 .

또한, 본 발명에서는 상기 혼합물에 티타늄 전구체를 대신하여 SiO2, SnO2, WO3, ZnO, ZnS, CdSe, CdS, MoS2, 또는 RuS2 을 단독 또는 2 종 이상 혼합하여 사용할 수도 있다.In the present invention, in place of the titanium precursor, SiO 2 , SnO 2 , WO 3 , ZnO, ZnS, CdSe, CdS, MoS 2 , or RuS 2 may be used alone or in combination of two or more thereof.

상기 티타늄 전구체 또는 티타늄 전구체와 TiO2의 혼합물은 혼합물에 10 내지 40 중량%로 포함되는 것이 바람직하며, 그 함량이 상기 범위내일 경우에는 TiO2 박막형성에 있어 더욱 좋다.The titanium precursor or the mixture of the titanium precursor and TiO 2 is preferably included in the mixture 10 to 40% by weight, when the content is in the above range is more preferable in forming the TiO 2 thin film.

상기 고분자 화합물은 스핀코팅시 혼합물에 점도를 부여하는 작용을 한다.The polymer compound acts to impart viscosity to the mixture during spin coating.

상기 고분자 화합물은 용매에 녹는 고분자이면 그 종류가 제한되지 않으며, 본 발명의 일실시예에서는 디메틸 포름아미드 용매에 용해되는 폴리비닐아세테이트(PVAc)를 사용하였다.The polymer compound is not limited as long as it is a polymer soluble in a solvent, and in one embodiment of the present invention, polyvinylacetate (PVAc) dissolved in a dimethyl formamide solvent was used.

상기 고분자 화합물은 혼합물에 1 내지 10 중량%로 포함되는 것이 바람직하며, 그 함량이 상기 범위내일 경우에는 스핀코팅에 있어 더욱 좋다.The polymer compound is preferably included in the mixture in 1 to 10% by weight, and if the content is in the above range is better for spin coating.

상기 용매는 혼합물에 사용되는 티타늄 전구체와 고분자 화합물을 모두 용해시킬 수 있는 용매이면 그 종류가 제한되지 않으며, 예를 들어 아세트산(aceitc acid), 에탄올(ethanol), 또는 디메틸 포름아미드(dimethyl formamide, DMF) 등을 단독 또는 2 종 이상 혼합하여 사용할 수 있다.The solvent is not limited as long as it is a solvent capable of dissolving both the titanium precursor and the polymer compound used in the mixture, for example acetic acid, ethanol, or dimethyl formamide (DMF). ) May be used alone or in combination of two or more thereof.

상기 용매는 혼합물에 40 내지 70 중량%로 포함되는 것이 바람직하며, 그 함량이 상기 범위내일 경우에는 티타늄 전구체와 고분자 화합물 용해에 있어 더욱 좋다.The solvent is preferably included in the mixture 40 to 70% by weight, when the content is in the above range is better for dissolving the titanium precursor and the polymer compound.

상기와 같은 혼합물은 산화물 도체가 코팅된 기판상에 스핀코팅법으로 코팅하는 것이 바람직하다. Such a mixture is preferably coated by spin coating on an oxide conductor-coated substrate.

상기 스핀코팅 속도는 형성하는 산화물 반도체 박막의 두께와 표면상태, 흡착능력, 및 오염물질 분해효율 등에 영향을 미친다. 상기 스핀코팅 속도는 500 내지 5,000 rpm인 것이 바람직하며, 더욱 바람직하게는 2,500 내지 4,500인 것이며, 가장 바람직하게는 3,000 rpm인 것이다.The spin coating speed affects the thickness and surface state of the oxide semiconductor thin film to be formed, the adsorption capacity, and the decomposition efficiency of contaminants. The spin coating speed is preferably 500 to 5,000 rpm, more preferably 2,500 to 4,500, and most preferably 3,000 rpm.

상기와 같이 형성된 산화물 반도체층은 그 두께가 50 ㎚ 내지 1,000 ㎚인 것이 좋다.The oxide semiconductor layer formed as described above may have a thickness of 50 nm to 1,000 nm.

상기 산화물 반도체 박막이 형성된 이후, 이 박막을 열처리하는 단계를 실시 한다.After the oxide semiconductor thin film is formed, a step of heat-treating the thin film is performed.

상기 열처리는 산화물 반도체 박막에 존재하는 용매 및 고분자 화합물을 제거하는 작용을 한다. 또한, 상기 열처리 단계에서는 티타늄 전구체에서 Ti를 둘러싸고 있는 고분자를 제거하는 작용을 한다.The heat treatment serves to remove the solvent and the polymer compound present in the oxide semiconductor thin film. In addition, the heat treatment step serves to remove the polymer surrounding Ti from the titanium precursor.

따라서, 상기 열처리 단계는 고분자가 완전히 분해 및 제거되는 온도 이상으로 실시하는 것이 좋으며, 구체적으로 450 내지 750 ℃의 온도에서 열처리하는 것이 좋다.Therefore, the heat treatment step is preferably carried out above the temperature at which the polymer is completely decomposed and removed, specifically, the heat treatment at a temperature of 450 to 750 ℃.

본 발명의 일실시예에서는 산화물 반도체 박막을 형성하기 위한 혼합물에 폴리비닐아세테이트를 사용하였으며, 이의 완전 분해 및 제거는 550 ℃ 이상에서 이루어지므로 고분자 화합물로 폴리비닐아세테이트를 사용할 경우 550 ℃에서 10 분 동안 열처리하는 것이 좋다.In an embodiment of the present invention, polyvinylacetate was used in the mixture for forming the oxide semiconductor thin film. Since the complete decomposition and removal thereof are performed at 550 ° C. or higher, when polyvinylacetate is used as the polymer compound, the polyvinylacetate is used for 10 minutes at 550 ° C. It is good to heat treatment.

상기와 같은 열처리 후 티타늄 전구체는 오염물질 분해 활성이 크다고 알려진 아나타제(anatase) 결정상으로 결정화된다. 일반적으로 아나타제 결정상의 TiO2가 루타일 결정상의 TiO2에 비하여 광촉매 활성이 뛰어나다고 알려져 있다.After such heat treatment, the titanium precursor is crystallized into an anatase crystal phase which is known to have high contaminant decomposition activity. In general, it is known that TiO 2 is anatase crystal on the excellent photocatalytic activity compared with the TiO 2 on the rutile crystal.

상기와 같은 방법으로 제조된 본 발명의 전기화학장치용 산화물 반도체 전극은 기판; 상기 기판 상에 형성된 산화물 도체층; 및 상기 산화물 도체층에 형성된 산화물 반도체층으로 구성되며, 이 산화물 반도체 전극은 전기화학장치에 사용됨으로써 수용액상의 오염물질이나 수계 환경에 존재하는 오염물질을 산화시킴으로써 효과적으로 분해할 수 있다.Oxide semiconductor electrode for an electrochemical device of the present invention prepared by the above method is a substrate; An oxide conductor layer formed on the substrate; And an oxide semiconductor layer formed on the oxide conductor layer, which can be effectively decomposed by oxidizing contaminants in an aqueous solution or contaminants present in an aqueous environment by being used in an electrochemical device.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

[실시예]EXAMPLE

실시예 1Example 1

유리에 인듐 주석 화합물을 150 ㎚ 두께로 코팅하여 전도성 기판을 준비하였다.A conductive substrate was prepared by coating the glass with an indium tin compound at a thickness of 150 nm.

상기 전도성 기판에 티타늄 아이소프로포사이드 10 g, 폴리비닐아세테이트 1 g, 아세트산 5 g, 및 디메틸 포름아미드 20 mL, 및 TiO2 1 g의 혼합물을 스핀코팅법으로 코팅하여 150∼1,000 ㎚ 두께의 박막을 형성하였다. 이때, 상기 스핀코팅 속도는 500∼5,000 rpm으로 속도를 달리하여 실시하였다.The conductive substrate was coated with a mixture of 10 g of titanium isopropoxide, 1 g of polyvinylacetate, 5 g of acetic acid, 20 mL of dimethyl formamide, and 1 g of TiO 2 by spin coating to form a thin film having a thickness of 150 to 1,000 nm. Formed. At this time, the spin coating speed was performed by varying the speed at 500 ~ 5,000 rpm.

그 다음, 상기 형성된 박막을 20∼800 ℃에서 10 분간 열처리하여 박막에 존재하는 고분자와 용매를 제거하여 산화티타늄 산화물 반도체 전극을 제조하였다.Then, the formed thin film was heat-treated at 20 to 800 ° C. for 10 minutes to remove the polymer and the solvent present in the thin film, thereby preparing a titanium oxide semiconductor electrode.

도 1은 최적의 열처리 온도를 얻기 위한 폴리비닐아세테이트의 TGA(thermal gravimetric analysis) 열분석 결과를 나타낸 것으로, 폴리비닐아세테이트는 550 ℃ 이상의 온도에서 완전히 분해 및 제거됨을 확인할 수 있었다. 따라서, 고분자 화합물로 폴리비닐아세테이트를 사용할 경우 열처리는 550 ℃에서 10 분간 실시하는 것이 최적임을 확인할 수 있었다.Figure 1 shows the results of the thermal gravimetric analysis (TGA) thermal analysis of polyvinyl acetate to obtain the optimum heat treatment temperature, polyvinylacetate was confirmed that completely decomposed and removed at a temperature of 550 ℃ or more. Therefore, when polyvinyl acetate is used as the polymer compound, it was confirmed that the heat treatment was optimally performed at 550 ° C. for 10 minutes.

또한, 도 2는 열처리된 산화물 반도체 전극의 X-선 회절을 나타낸 것으로 오 염물질 분해 활성이 크다고 알려진 아나타제(anatase) 상으로 산화티타늄이 결정화된 것을 확인할 수 있었다. 이때, 인듐 주석 화합물의 경우 산화물 반도체 코팅 전에 이미 결정화된 상태이며, 열처리 온도에 따른 인듐 주석 화합물의 결정구조 변화는 없음을 알 수 있었다.In addition, FIG. 2 shows X-ray diffraction of the heat-treated oxide semiconductor electrode, and it was confirmed that titanium oxide was crystallized on an anatase known to have high contaminant decomposition activity. In this case, the indium tin compound is already crystallized before the oxide semiconductor coating, it can be seen that there is no change in the crystal structure of the indium tin compound according to the heat treatment temperature.

상기 실시예 1의 산화물 반도체 전극 제조시 스핀코팅 속도에 따른 염료에 대한 광활성(흡착 및 분해율)을 측정하기 위하여, 스핀코팅 속도를 각각 500, 1000, 2000, 3000, 4000, 및 5000 rpm으로 달리하였으며, 염료로 Basic Blue 26(이하, 'BB26'이라 함)을 이용하여 광활성을 측정하고, 그 결과를 하기 표 1에 나타내었다.In order to measure the photoactivity (adsorption and decomposition rate) of the dye according to the spin coating speed in the oxide semiconductor electrode of Example 1, the spin coating speed was varied at 500, 1000, 2000, 3000, 4000, and 5000 rpm, respectively. , Dye was measured using Basic Blue 26 (hereinafter referred to as 'BB26') and the results are shown in Table 1 below.

구분division 광활성 (Basic blue 26, 1 hr)Photoactive (Basic blue 26, 1 hr) 500 rpm500 rpm 37.1 %37.1% 1,000 rpm1,000 rpm 30.3 %30.3% 2,000 rpm2,000 rpm 31.3 %31.3% 3,000 rpm3,000 rpm 44.2 %44.2% 4,000 rpm4,000 rpm 39.5 %39.5% 5,000 rpm5,000 rpm 32.9 %32.9%

또한, 상기 실시예 1의 산화물 반도체 전극 제조시 스핀코팅 속도에 따른 표면 TiO2 산화물 반도체의 광분해율을 측정하고, 그 결과를 도 3a 및 3b에 나타내었다. 이때, 본 발명은 UV를 사용하지 않고 전기장 인가 방식으로 오염물질을 분해하는 것이나, 상기 광분해율 측정시 실험의 용이성 측면에서 UV를 사용하였다.In addition, the photodegradation rate of the surface TiO 2 oxide semiconductor according to the spin coating speed when the oxide semiconductor electrode of Example 1 was manufactured was measured, and the results are shown in FIGS. 3A and 3B. In this case, the present invention is to decompose contaminants by applying an electric field without using UV, but UV was used in view of the ease of experiment when measuring the photodegradation rate.

도 3a에 나타낸 바와 같이 UV 조사시간에 따른 BB26 염료의 광분해율 측정 결과, 3,000 rpm의 속도에서 가장 큰 광분해율을 나타냄을 알 수 있었다. 또한, 도 3b에 나타낸 바와 같이 1 시간 UV 조사 조건에서 각 스핀코팅 속도에 따른 염료의 광분해율 측정 결과, 3,000 rpm의 속도에서 가장 큰 분해율(44.2%)를 나타내었으며, 이로부터 스핀코팅의 최적 속도는 3,000 rpm임을 확인할 수 있었다.As shown in FIG. 3A, the photodegradation rate of the BB26 dye according to UV irradiation time was found to show the largest photodegradation rate at a speed of 3,000 rpm. In addition, as shown in FIG. 3B, the photodegradation rate of the dye according to each spin coating speed under 1 hour UV irradiation condition showed the largest decomposition rate (44.2%) at a speed of 3,000 rpm, from which the optimum speed of spin coating was obtained. Was found to be 3,000 rpm.

도 4에는 상기 실시예 1의 산화물 반도체 전극 제조에서 스핀코팅 속도를 달리하여 제조한 최종 산화물 반도체 표면의 전자현미경(SEM) 사진을 나타내었다. 오염물질의 분해율은 일반적으로 산화물 반도체 전극의 표면적의 증가에 비례하는 것으로 알려져 있다.Figure 4 shows an electron micrograph (SEM) of the surface of the final oxide semiconductor prepared by varying the spin coating speed in the oxide semiconductor electrode manufacturing of Example 1. The rate of decomposition of contaminants is generally known to be proportional to the increase in the surface area of the oxide semiconductor electrode.

실험결과, 스핀코팅 속도가 증가함에 따라 산화물 반도체 전극 표면의 형상, 표면적, 및 두께가 감소하는 것을 확인할 수 있었으며, 3,000 rpm의 속도에서 가장 최적화된 표면을 가짐을 확인할 수 있었다. As a result, as the spin coating speed was increased, it was confirmed that the shape, surface area, and thickness of the oxide semiconductor electrode surface were decreased, and that the surface had the most optimized surface at a speed of 3,000 rpm.

도 5a 및 5b에는 상기 실시예 1에서 스핀코팅 속도를 3,000 rpm으로 하여 제조하여 TiO2/ITO/유리의 구조를 가지는 산화물 반도체 전극을 이용하여 열처리 전/후의 전자현미경(SEM) 사진을 나타내었다.5A and 5B show electron microscopy (SEM) images before and after heat treatment using an oxide semiconductor electrode having a structure of TiO 2 / ITO / glass prepared at a spin coating speed of 3,000 rpm in Example 1.

실험결과, 도 5a에 나타낸 바와 같이 열처리 전에는 대부분이 최대 32 ㎚ 크기의 비결정의 TiO2(P-25)가 관찰되었으며, 열처리 후에는 도 5b에 나타낸 바와 같이 TiO2(P-25) 이외에 최대 17 ㎚ 크기의 결정화된 TiO2도 함께 관찰되었다. 이는 열처리로 인하여 티타늄 아이소프로포사이드로부터 고분자 성분이 제거되고 Ti만 남게 되어 최대 17 ㎚ 크기의 결정화된 TiO2가 관찰된 것임을 알 수 있었다.As a result, as shown in FIG. 5A, most of amorphous TiO 2 (P-25) having a maximum size of 32 nm was observed before heat treatment, and after heat treatment, as shown in FIG. 5B, a maximum of 17 except TiO 2 (P-25) Crystallized TiO 2 of nm size was also observed. It can be seen that due to the heat treatment, the polymer component was removed from the titanium isopropoxide, leaving only Ti, and crystallized TiO 2 having a maximum size of 17 nm was observed.

상기 실시예 1에서 스핀코팅 속도를 3,000 rpm으로 하고, 열처리를 550 ℃에서 10 분간 실시하여 제조한 산화물 반도체 전극을 이용하여 인가전압을 각각 (+)5V 및 (+)10V로 달리하여 BB26 염료의 분해특성을 측정하고, 그 결과를 도 6a 및 6b에 나타내었다. 이때, 전압은 TiO2/ITO/유리 전극에 인가하였으며, 비교예로 ITO/유리 전극에도 인가하여 실험을 진행하였다. 상대 전극으로는 백금(Pt)를 사용하였고, 실험은 UV가 완전히 차단된 암실에서 진행하였다.In Example 1, the spin coating speed was set at 3,000 rpm, and the applied voltage was changed to (+) 5V and (+) 10V, respectively, using an oxide semiconductor electrode prepared by performing heat treatment at 550 ° C. for 10 minutes to obtain BB26 dye. Decomposition characteristics were measured and the results are shown in FIGS. 6A and 6B. At this time, the voltage was applied to the TiO 2 / ITO / glass electrode, the experiment was also applied to the ITO / glass electrode as a comparative example. Platinum (Pt) was used as the counter electrode, and the experiment was conducted in a dark room where UV was completely blocked.

도 6a는 인가전압이 (+)5V일 때 시간에 따른 BB26 염료의 분해를 나타낸 것이다. 도 6a와 같이 전압을 인가하지 않은 Bias=None 조건에서는 전극의 종류에 관계없이 염료의 분해가 거의 이루어지지 않았으며, (+)5V 전압을 인가할 경우에는 TiO2/ITO/유리 전극 및 ITO/유리 전극 모두에서 분해 현상이 관찰되었다. 그러나, 분해율은 크지 않았으며, 1 시간 전압 인가 조건에서 ITO/유리 전극을 사용한 경우 7.5 %가, TiO2/ITO/유리 전극을 사용한 경우 3.0 %가 분해됨을 확인할 수 있었다. 이같이 ITO/유리 전극이 TiO2/ITO/유리 전극과 비교하여 더 큰 분해율을 보이는 것은 (+)5V 정도의 전압은 전자가 TiO2의 전자 전도대 영역으로 터널링(tunneling)하기에 충분하지 않은 전압이기 때문인 것으로 판단되었다(도 7b 참조).Figure 6a shows the decomposition of BB26 dye over time when the applied voltage is (+) 5V. As shown in FIG. 6A, dyes were hardly decomposed regardless of the electrode type under Bias = None under no voltage, and when TiO 2 / ITO / glass electrode and ITO / were applied when a positive 5V voltage was applied. Decomposition was observed at both glass electrodes. However, the decomposition rate was not large, and it was confirmed that 7.5% of the ITO / glass electrode was used and 3.0% of the TiO 2 / ITO / glass electrode was decomposed under a 1 hour voltage application condition. As such, the ITO / glass electrode exhibits a higher decomposition rate compared to the TiO 2 / ITO / glass electrode because a voltage of about 5V is not enough for the electrons to tunnel into the electron conduction band region of TiO 2 . It was judged to be due to (see Fig. 7b).

또한, 도 6b는 인가전압이 (+)10V일 때 시간에 따른 BB26 염료의 분해를 나타낸 것으로, 전압을 인가하지 않은 Bias=None 조건에서는 전극의 종류에 관계없이 염료의 분해가 거의 이루어지지 않았다. 그러나, 전압을 (+)10V로 인가하였을 경우에는 TiO2/ITO/유리 전극 및 ITO/유리 전극 모두에서 분해 현상이 관찰되었으며, 1 시간 전압 인가 조건에서 ITO/유리 전극을 사용한 경우에는 14.1 %로, TiO2/ITO/유리 전극을 사용한 경우에는 53.3 %로 분해됨을 확인할 수 있었다. In addition, Figure 6b shows the decomposition of BB26 dye with time when the applied voltage is (+) 10V, almost no decomposition of the dye regardless of the type of electrode under the condition Bias = None without voltage applied. However, decomposition was observed at both TiO 2 / ITO / glass electrodes and ITO / glass electrodes when the voltage was applied at (+) 10V, and 14.1% when ITO / glass electrodes were used at 1 hour voltage application conditions. When TiO 2 / ITO / glass electrode was used, it was confirmed that the decomposition was 53.3%.

이상과 같은 결과를 하기 표 2에 정리하였다.The above results are summarized in Table 2 below.

DC 인가 전압DC applied voltage ITO/유리 전극ITO / Glass Electrode TiO2/ITO/유리 전극TiO 2 / ITO / Glass Electrode NoneNone 0 %0 % 0 %0 % 5V5 V 7.5 %7.5% 3.0 %3.0% 10V10 V 14.1 %14.1% 53.3 %53.3%

상기 표 2에 나타낸 바와 같이, ITO/유리 전극의 경우에는 (+)5V일 때 7.5 %, (+)10V일 때 14.1 %로 전압에 비례하여 분해율이 증가하였으며, 이는 ITO 전극이 n-타입(type)의 전극으로 일반적인 전기분해에 의해 염료가 분해되기 때문이었다. 그러나, TiO2/ITO/유리 전극의 경우에는 (+)5V일 때 3.0 %, (+)10V일 때 53.5 %로 전자가 TiO2의 전자 전도대 영역으로 터널링하기에 충분한 전압 이상에서는 기하급수적으로 분해율이 증가하였으며(도 7b 참조), 이는 산화물 반도체를 이용할 경우 물 분자(H2O)의 전자가 산화물 반도체의 전자 전도대로 터널링하여 이동하고, 수산화 라디칼(OH radical)로 변화되어 산화효율이 매우 커졌기 때문이었다.As shown in Table 2, in the case of the ITO / glass electrode, the decomposition rate was increased to 7.5% at (+) 5V, 14.1% at (+) 10V, which is proportional to the voltage. This is because the dye is decomposed by an electrode of the type). However, for TiO 2 / ITO / glass electrodes 3.0% at (+) 5V and 53.5% at (+) 10V, the rate of decomposition is exponentially above the voltage sufficient for the electrons to tunnel into the electron conduction band region of TiO 2 . This increased (see FIG. 7B), which means that when the oxide semiconductor is used, electrons of water molecules (H 2 O) tunnel and move to the electron conduction band of the oxide semiconductor, and are converted into OH radicals, thereby increasing oxidation efficiency. It was because.

따라서, 본 발명에 따라 제조한 산화물 반도체 전극을 이용할 경우 임계 전압 이상에서 UV 램프의 사용 없이 오염물질을 효율적으로 처리할 수 있음을 예측할 수 있었다.Therefore, when using the oxide semiconductor electrode prepared according to the present invention it can be expected that the contaminant can be efficiently processed without the use of a UV lamp above the threshold voltage.

도 7은 DC 전압 인가 전/후의 밴드-디아그램 도식도(schematic band-diagram)를 나타낸 것으로, DC 인가 전에는 용액과 산화물 반도체 전극 사이에 쇼트키 베리어(shottky barrier)가 점점 낮아지며, 임계 전압 이후에서는 쇼트키 베리어를 통해 전자가 이동하여 물 분자가 수산화 라디칼로 변화되어 오염물질을 처리하게 됨을 확인할 수 있었다.FIG. 7 shows a schematic band-diagram before / after DC voltage application, in which a Schottky barrier between the solution and the oxide semiconductor electrode is gradually lowered before DC application, and after the threshold voltage. The electrons move through the Schottky barrier, which turns the water molecules into hydroxyl radicals to treat the pollutants.

본 발명에 따르면 가정용 및 산업용 오염물질을 효율적으로 처리할 수 있으며, 화학적 내구성이 강하고, 제조가 매우 간단하며, 비용을 절감할 수 있는 효과가 있다.According to the present invention, it is possible to efficiently treat household and industrial contaminants, has a strong chemical durability, very simple manufacturing, and can reduce costs.

이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although only described in detail with respect to the described embodiments of the present invention, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, it is natural that such variations and modifications belong to the appended claims. .

Claims (9)

산화물 도체가 코팅된 유리 기판에 티타늄 전구체, 고분자 화합물, 및 용매의 혼합물을 스핀코팅법으로 코팅하여 박막을 형성하는 단계; 및 상기 형성된 박막을 열처리하는 단계를 포함하는 전기화학장치용 산화물 반도체 전극의 제조방법.Coating a mixture of a titanium precursor, a polymer compound, and a solvent on a glass substrate coated with an oxide conductor by spin coating to form a thin film; And heat treating the formed thin film. 제1항에 있어서,The method of claim 1, 상기 산화물 도체가 인듐, 주석, 아연, 알루미늄, 및 불소로 이루어지는 군으로부터 선택된 적어도 하나의 금속을 포함하는 금속산화물 도체인 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극의 제조방법.The oxide conductor is a metal oxide conductor comprising at least one metal selected from the group consisting of indium, tin, zinc, aluminum, and fluorine. 제1항에 있어서,The method of claim 1, 상기 티타늄 전구체가 티타늄 아이소프로포사이드(titanium isopropoxide, TTIP) 또는 티타늄 테트라에톡사이드(titanium tetraethoxide)의 Ti를 포함하는 유기 화합물인 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극의 제조방법.The titanium precursor is an organic compound comprising an organic compound containing Ti of titanium isopropoxide (TTIP) or titanium tetraethoxide (Titanium tetraethoxide). 제1항에 있어서,The method of claim 1, 상기 혼합물이 TiO2를 더 포함하는 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극의 제조방법.Method for producing an oxide semiconductor electrode for an electrochemical device, characterized in that the mixture further comprises TiO 2 . 제1항에 있어서,The method of claim 1, 상기 용매가 아세트산(aceitc acid), 에탄올(ethanol), 및 디메틸 포름아미드(dimethyl formamide, DMF)로 이루어지는 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극의 제조방법.The solvent is a method for producing an oxide semiconductor electrode for an electrochemical device, characterized in that at least one selected from the group consisting of acetic acid, ethanol, and dimethyl formamide (DMF). 제1항에 있어서,The method of claim 1, 상기 스핀코팅이 500 내지 5,000 rpm의 속도로 실시되는 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극의 제조방법.The spin coating is a manufacturing method of the oxide semiconductor electrode for an electrochemical device, characterized in that carried out at a speed of 500 to 5,000 rpm. 제1항에 있어서,The method of claim 1, 상기 열처리가 450 내지 750 ℃의 온도에서 실시되는 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극의 제조방법.The heat treatment is carried out at a temperature of 450 to 750 ℃ manufacturing method of the oxide semiconductor electrode for an electrochemical device. 유리 기판;Glass substrates; 상기 유리 기판 상에 형성된 산화물 도체층; 및An oxide conductor layer formed on the glass substrate; And 상기 산화물 도체층 상에 형성된 산화물 반도체층을 포함하는 전기화학장치용 산화물 반도체 전극.An oxide semiconductor electrode for an electrochemical device, comprising an oxide semiconductor layer formed on the oxide conductor layer. 제8항에 있어서,The method of claim 8, 상기 산화물 반도체층의 두께가 50 ㎚ 내지 1,000 ㎚인 것을 특징으로 하는 전기화학장치용 산화물 반도체 전극.The oxide semiconductor electrode for an electrochemical device, characterized in that the thickness of the oxide semiconductor layer is 50 nm to 1,000 nm.
KR1020060078372A 2006-08-18 2006-08-18 Method for preparing of oxide semiconductive electrode for electrochemical device KR100744635B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060078372A KR100744635B1 (en) 2006-08-18 2006-08-18 Method for preparing of oxide semiconductive electrode for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060078372A KR100744635B1 (en) 2006-08-18 2006-08-18 Method for preparing of oxide semiconductive electrode for electrochemical device

Publications (1)

Publication Number Publication Date
KR100744635B1 true KR100744635B1 (en) 2007-08-01

Family

ID=38601468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060078372A KR100744635B1 (en) 2006-08-18 2006-08-18 Method for preparing of oxide semiconductive electrode for electrochemical device

Country Status (1)

Country Link
KR (1) KR100744635B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673292B1 (en) 2016-05-30 2016-11-08 주식회사 레티아 A Gabion Wall Supporter
KR20200102290A (en) 2019-02-21 2020-08-31 지평토건(주) A Gabion Wall Supporter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040099693A (en) * 2003-05-20 2004-12-02 주식회사 유진텍 이십일 TiO2 plate produced by oxidizing Ti plate
KR20050055590A (en) * 2003-12-08 2005-06-13 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Purification of hydride gases
KR20050090700A (en) * 2004-03-09 2005-09-14 (주)에이엠티기술 Metal mixed oxide electrode and making method of the same
KR20060080362A (en) * 2005-01-05 2006-07-10 유재원 Trash separate collection unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040099693A (en) * 2003-05-20 2004-12-02 주식회사 유진텍 이십일 TiO2 plate produced by oxidizing Ti plate
KR20050055590A (en) * 2003-12-08 2005-06-13 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Purification of hydride gases
KR20050090700A (en) * 2004-03-09 2005-09-14 (주)에이엠티기술 Metal mixed oxide electrode and making method of the same
KR20060080362A (en) * 2005-01-05 2006-07-10 유재원 Trash separate collection unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673292B1 (en) 2016-05-30 2016-11-08 주식회사 레티아 A Gabion Wall Supporter
KR20200102290A (en) 2019-02-21 2020-08-31 지평토건(주) A Gabion Wall Supporter

Similar Documents

Publication Publication Date Title
Zhao et al. Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation
Derikvandi et al. Synergistic effect of pn heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2
Doudrick et al. Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100)
Li et al. Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation
Fakhouri et al. Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering
Bessegato et al. Enhancement of photoelectrocatalysis efficiency by using nanostructured electrodes
Hunge et al. Photoelectrocatalytic degradation of methyl red using sprayed WO 3 thin films under visible light irradiation
CN105442012B (en) A kind of composite nano materials MoS2/TiO2The preparation method and applications of nano-tube array
Zhang et al. Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst
US20090263314A1 (en) Method for producing catalyst for wastewater treatment
JPH07100378A (en) Photocatalyst of titanium oxide thin film and its production
García-Ramírez et al. Influence of ruthenium doping on UV-and visible-light photoelectrocatalytic color removal from dye solutions using a TiO2 nanotube array photoanode
Oliveira et al. Photoelectrochemical and photocatalytic properties of TiO2, WO3 and WO3-TiO2 porous films in the photodegradation of rhodamine 6G in aqueous solution
Nyongesa et al. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems
Sadeghzadeh-Attar Binary Zn-doped SnO2/Al2O3 nanotube composites for visible-light-driven photocatalytic degradation of basic blue 41
Wahyuningsih et al. Visible light photoelectrocatalytic degradation of rhodamine B using Ti/TiO2-NiO photoanode
CN102276011B (en) Simple method for preparing TiO2 membrane electrode
Mori Photo-Functionalized Materials Using Nanoparticles: Photocatalysis [Translated]
Habibi et al. Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation
KR100744635B1 (en) Method for preparing of oxide semiconductive electrode for electrochemical device
KR101903991B1 (en) Composite having high photocatalytic activity in visible range and preparation method thereof
KR101680053B1 (en) Porous semiconductor film-forming coating material and photovoltaic cell
Ong et al. Control of photoactivity over polycrystalline anatase TiO2 thin films via surface potential
US9468920B2 (en) Ultra-porous photocatalytic material, method for the manufacture and the uses thereof
CN109574127B (en) Method for treating ammonia nitrogen pollutants in water by sulfide photoanode activated sulfite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120628

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130716

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee