JPH07155598A - Photocatalyst coating film and its formation - Google Patents
Photocatalyst coating film and its formationInfo
- Publication number
- JPH07155598A JPH07155598A JP5310165A JP31016593A JPH07155598A JP H07155598 A JPH07155598 A JP H07155598A JP 5310165 A JP5310165 A JP 5310165A JP 31016593 A JP31016593 A JP 31016593A JP H07155598 A JPH07155598 A JP H07155598A
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- sintering
- tio
- sol
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 19
- 238000000576 coating method Methods 0.000 title claims abstract description 19
- 239000011941 photocatalyst Substances 0.000 title abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000002245 particle Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims description 23
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 22
- 230000001699 photocatalysis Effects 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 24
- 229910006404 SnO 2 Inorganic materials 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はトイレや厨房の壁面等の
基板上に脱臭、抗菌作用等の目的で形成される光触媒被
膜とその形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst film formed on a substrate such as a wall of a toilet or a kitchen for the purpose of deodorizing, antibacterial action and the like, and a method for forming the same.
【0002】[0002]
【従来の技術】紫外線の照射を受けて光触媒反応を進行
させる光触媒としてアナターゼ型のTiO2が特公平2−
62499号公報等に提案されている。この光触媒は紫
外線の照射によって吸着水と光触媒の正孔とが反応して
水酸基ラジカル(OH*)を生成し、この水酸基ラジカ
ルとアンモニアとが以下のように反応して脱臭する。 NH3+2OH*=1/2N2+2H2O2. Description of the Related Art Anatase-type TiO2 is used as a photocatalyst for advancing a photocatalytic reaction upon irradiation with ultraviolet rays.
No. 62499 is proposed. The photocatalyst reacts with the adsorbed water and the holes of the photocatalyst by irradiation of ultraviolet rays to generate a hydroxyl radical (OH * ), and the hydroxyl radical and ammonia react as follows to deodorize. NH 3 + 2OH * = 1 / 2N 2 + 2H 2 O
【0003】また、TiO2からなる光触媒被膜の形成法
としては、スプレー法、ディッピング法或いはスピンコ
ート法等にてTiO2ゾル被膜を形成した後に熱処理(焼
成)する湿式法、スパッタリングやCVD等による乾式
法、或いは金属チタンを陽極酸化する方法等が知られて
いる。そして、湿式法としては特開平1−288321
号公報に開示されるものがあり、この方法は、TiO2ゾ
ルを繊維質材料であるセラミックペーパにスプレーして
400〜700℃で熱処理した後、SnO2ゾルをスプレ
ーし400〜700℃で熱処理することでアルデヒド類
の酸化分解を高め得る光触媒被膜を形成するようにして
いる。[0003] As the method of forming the photocatalytic film made of TiO 2, by spraying, wet method is heated (sintered) after forming the TiO 2 sol coating by dipping or spin coating method, sputtering, CVD, etc. A dry method or a method of anodizing metal titanium is known. And, as a wet method, JP-A-1-288321
In this method, TiO 2 sol is sprayed on ceramic paper which is a fibrous material and heat-treated at 400 to 700 ° C., and then SnO 2 sol is sprayed and heat-treated at 400 to 700 ° C. By doing so, a photocatalytic film capable of enhancing oxidative decomposition of aldehydes is formed.
【0004】[0004]
【発明が解決しようとする課題】上述した光触媒被膜の
形成方法のうち、乾式法と陽極酸化法は光触媒被膜を形
成する相手方の部材が限定され、トイレや厨房の壁面等
に適用しにくい。また、湿式法による場合には、タイル
や板材等にも光触媒被膜を形成しやすいが、表面が繰り
返して擦られると膜が傷ついて脱落する等、被膜強度の
点で問題がある。また、被膜強度を高めるべく焼結温度
を高くすると、TiO2の構造がルチル型に変り、そのま
までは、光触媒活性が低下する。更に、特開平1−28
8321号公報に開示されるものにあっては、TiO2よ
りも活性の低いSnO2にて被膜の全表面を覆ってしまう
ことになる。Among the methods for forming a photocatalyst film described above, the dry method and the anodic oxidation method are limited in the counterpart member on which the photocatalyst film is formed, and are difficult to apply to the wall surfaces of toilets and kitchens. Further, when the wet method is used, a photocatalyst film is easily formed on tiles, plate materials, etc., but if the surface is repeatedly rubbed, the film is damaged and falls off, which causes a problem in film strength. Further, when the sintering temperature is increased to increase the film strength, the structure of TiO 2 changes to the rutile type, and the photocatalytic activity is lowered as it is. Furthermore, JP-A 1-28
In the case disclosed in Japanese Patent No. 8321, SnO 2 having a lower activity than TiO 2 covers the entire surface of the film.
【0005】更に、膜強度を高めようとした際には、ク
ラックが発生しやすい。即ち、図5(a)に示すように
タイル100の表面にTiO2粒子101を含むゾルを塗
布し、これを熱処理(焼結)すると、図5(b)に示す
ようにクラック102が発生する。この原因は、ルチル
型への相転移が体積収縮(密度が高くなる)を起こす他
に、焼結前にあってはTiO2粒子101間の間隔はL0
であったものが、ルチル型で焼結後は相手方への体積拡
散により粒子間の間隔はL1(L1<L0)と短くなり、
その結果としてクラックが生じると考えられる。Further, when trying to increase the film strength, cracks are likely to occur. That is, when the sol containing the TiO 2 particles 101 is applied to the surface of the tile 100 as shown in FIG. 5A and heat-treated (sintered), a crack 102 is generated as shown in FIG. 5B. . This is because the phase transition to the rutile type causes volume contraction (increased density), and the spacing between the TiO 2 particles 101 is L 0 before sintering.
However, after sintering in the rutile type, the distance between the particles was shortened to L 1 (L 1 <L 0 ) due to volume diffusion to the other party,
As a result, cracks are considered to occur.
【0006】[0006]
【課題を解決するための手段】上記課題を解決すべく本
発明に係る光触媒被膜は、アナターゼ型の酸化チタン粒
子をその主たる構成材とし、これら酸化チタン粒子の間
隔を焼結の前後において略等しく、且つ酸化チタン粒子
間のネック部には酸化チタンよりも蒸気圧が高い物質を
凝縮せしめた。In order to solve the above problems, the photocatalytic coating according to the present invention has anatase type titanium oxide particles as its main constituent material, and the intervals of these titanium oxide particles are substantially equal before and after sintering. Moreover, a substance having a higher vapor pressure than titanium oxide was condensed in the neck portion between the titanium oxide particles.
【0007】また、本発明に係る光触媒被膜の形成方法
は、酸化チタンゾルと酸化チタンよりも蒸気圧が高い物
質のゾルとを混合し、この混合ゾルをタイル等の基板上
に塗布した後に、ルチル型への相転移温度以下の温度で
焼結するようにした。Further, the method for forming a photocatalytic film according to the present invention comprises mixing a titanium oxide sol and a sol having a higher vapor pressure than titanium oxide, applying the mixed sol onto a substrate such as tile, and then applying rutile. Sintering was performed at a temperature below the phase transition temperature to the mold.
【0008】[0008]
【作用】酸化チタン粒子の正の曲率をもつ表面は、蒸気
圧が高くなり、負の曲率をもつ表面、つまり2つの酸化
チタン粒子によって形成されるネック部の表面は蒸気圧
が低くなる。その結果、ネック部には酸化チタンよりも
蒸気圧が高いSnO2等が凝縮し、この気化−凝縮機構に
よって焼結が行われる。The surface of the titanium oxide particles having a positive curvature has a high vapor pressure, and the surface having a negative curvature, that is, the surface of the neck formed by the two titanium oxide particles has a low vapor pressure. As a result, SnO 2 or the like having a higher vapor pressure than titanium oxide is condensed in the neck portion, and sintering is performed by this vaporization-condensation mechanism.
【0009】[0009]
【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る光触媒被膜を模
式的に示した図であり、光触媒被膜1はタイル等の表面
が平滑な基板2上に湿式法にて形成されている。Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram schematically showing a photocatalyst coating according to the present invention. The photocatalyst coating 1 is formed by a wet method on a substrate 2 having a smooth surface such as a tile.
【0010】光触媒被膜1は0.1μm以下のTiO2粒
子3…が焼結して構成され、そのネック部にはSnO24
が凝縮し、ネック部を太くしてTiO2粒子3同士の結合
を強め、結果として膜強度を高くしている。The photocatalyst film 1 is formed by sintering TiO 2 particles 3 of 0.1 μm or less, and SnO 2 4 is formed on the neck portion thereof.
Are condensed and the neck portion is thickened to strengthen the bonding between the TiO 2 particles 3 and, as a result, the film strength is increased.
【0011】以上の光触媒被膜1を形成するには、Ti
O2ゾルにSnO2ゾルを混合・攪拌して基板2上に塗布
し、所定の温度範囲で熱処理(焼結)する。尚、TiO2
ゾル濃度は4〜6wt%程度とし、NH3溶液でpH11
に調整され、TiO2粒子の平均1次粒径は0.01μm
(10nm)とし、SnO2ゾル濃度は約10wt%程度と
し、NH3溶液でpH11に調整され、SnO2粒子の平
均1次粒径は0.0035μmとする。ここで示した平
均1次粒径は、XRD(X線回析)の回析線の半値幅か
ら求めた結晶子サイズ(1次粒子)のことである。To form the above photocatalytic film 1, Ti
SnO 2 sol is mixed and stirred with O 2 sol, applied on the substrate 2, and heat-treated (sintered) in a predetermined temperature range. In addition, TiO 2
The sol concentration is about 4 to 6 wt% and the pH is 11 with NH 3 solution.
The average primary particle size of TiO 2 particles is 0.01 μm.
(10 nm), the SnO 2 sol concentration is about 10 wt%, the pH is adjusted to 11 with NH 3 solution, and the average primary particle diameter of SnO 2 particles is 0.0035 μm. The average primary particle size shown here is a crystallite size (primary particle) obtained from the half width of the diffraction line of XRD (X-ray diffraction).
【0012】ここで、SnO2はTiO2よりも蒸気圧が高
いため、焼結前にあってはTiO2粒子3の間隔は図2
(a)に示すようにL0であるが、酸化チタン粒子3の
正の曲率をもつ表面では蒸気圧が高く、負の曲率をもつ
表面、つまり2つの酸化チタン粒子3が当接するネック
部の表面は蒸気圧が低くなる。その結果、図2(b)に
示すようにネック部には酸化チタンよりも蒸気圧が高い
SnO2が入り込み、図2(c)に示すように凝縮し、気
化−凝縮機構によって焼結が行われる。そして、気化−
凝縮機構によって焼結が行われると、焼結後のTiO2粒
子の間隔L2は焼結前の間隔L0と略等しいため、クラッ
ク等は発生しない。[0012] Here, since SnO 2 is higher vapor pressure than TiO 2, In the prior sintering interval of the TiO 2 particles 3 2
As shown in (a), it is L 0 , but the vapor pressure is high on the surface of the titanium oxide particles 3 having a positive curvature, and the surface having a negative curvature, that is, the neck portion where the two titanium oxide particles 3 contact each other. The surface has a low vapor pressure. As a result, SnO 2 having a higher vapor pressure than titanium oxide enters the neck portion as shown in FIG. 2 (b), is condensed as shown in FIG. 2 (c), and is sintered by the vaporization-condensation mechanism. Be seen. And vaporization-
When the sintering is performed by the condensing mechanism, the interval L 2 between the TiO 2 particles after the sintering is substantially equal to the interval L 0 before the sintering, so that cracks and the like do not occur.
【0013】上記したように、焼結の前後でTiO2粒子
の間隔を実質的に変化させずに、しかも光触媒被膜とし
ての光活性(R30)を50%以上とするには、図3に示
すようにSnO2のTiO2に対する割合(内比)を20〜
70%にする必要がある。尚、配合割合は、それぞれの
ゾルに含まれる固形分の重量比を示す。また、光活性の
評価は、メチルメルカプタンの分解で行い、光照射30
分後の除去率(R30)を指標とした。詳細には、11L
のガラス容器内に光触媒被膜を形成した150角タイル
を光源(BLB蛍光灯4W)から8cmの距離に配置
し、メチルメルカプタンガスを3〜5ppmとなるよう
に容器内に注入し、暗時の吸着がないことを確認した
後、蛍光灯を点灯し、ガスクロマトグラフィにて経時的
に濃度変化を測定した。 ここで、R30=(x0−x30)/x0×100% 但し、x0=初期濃度[ppm] x30=30分後の濃度
[ppm] また、膜強度の評価はプラスチック消しゴムを用いた摺
動摩耗を行い、外観の変化を比較し、4段階で以下のよ
うに評価した。 ◎:40回往復に対して変化なし ○:10〜40回の摺動で傷が入り、膜が剥がれ釉薬が
見えた △:5〜9回の摺動で傷が入り、膜が剥がれ釉薬が見え
た ×:4回以下の摺動で傷が入り、膜が剥がれ釉薬が見え
たAs described above, in order to make the photoactivity (R 30 ) of the photocatalytic coating 50% or more without substantially changing the interval between the TiO 2 particles before and after the sintering, FIG. As shown, the ratio (internal ratio) of SnO 2 to TiO 2 is 20 to
It needs to be 70%. The blending ratio indicates the weight ratio of solids contained in each sol. The photoactivity was evaluated by decomposing methyl mercaptan, and the light irradiation was performed.
The removal rate after the minute (R 30 ) was used as an index. In detail, 11L
A 150-square tile with a photocatalyst coating formed in the glass container is placed at a distance of 8 cm from the light source (BLB fluorescent lamp 4W), and methyl mercaptan gas is injected into the container at a concentration of 3 to 5 ppm, and adsorption in the dark is performed. After confirming that there was no light, the fluorescent lamp was turned on and the change in concentration was measured with time by gas chromatography. Here, R 30 = (x 0 −x 30 ) / x 0 × 100%, where x 0 = initial concentration [ppm] x 30 = concentration after 30 minutes [ppm] Further, a plastic eraser was used to evaluate the film strength. The sliding wear that was used was performed, the changes in appearance were compared, and the following four levels were evaluated. ◎: No change after 40 reciprocations ○: Scratch occurred after sliding 10 to 40 times, film peeled off and glaze was visible △: Scratch occurred after sliding 5 to 9 times, film peeled off glaze Visible ×: Scratches occurred by sliding 4 times or less, the film peeled off, and glaze was visible
【0014】また、図4は熱処理温度と光活性の関係を
示すグラフであり、TiO2ゾルに有機安定剤を添加した
場合には、光活性が低下するが、いずれにおいても熱処
理温度は300〜850℃とする。これは熱処理温度が
300℃未満では活性が生じにくく850℃を超えると
TiO2の構造がアナターゼからルチルに変化するからで
ある。FIG. 4 is a graph showing the relationship between the heat treatment temperature and the photoactivity. When the organic stabilizer is added to the TiO 2 sol, the photoactivity is lowered. The temperature is 850 ° C. This is because when the heat treatment temperature is lower than 300 ° C., activity is unlikely to occur, and when it exceeds 850 ° C., the structure of TiO 2 changes from anatase to rutile.
【0015】[0015]
【発明の効果】以上に説明した如く本発明に係る光触媒
被膜は、酸化チタン粒子とこの酸化チタンよりも蒸気圧
が高い物質とを含むゾルをタイル等に塗布し、所定の温
度で焼結することで、気化−凝縮機構による焼結で被膜
形成が行われるようにしたので、焼結の前後において酸
化チタン粒子の間隔が略等しくクラックが発生しにく
い。また、酸化チタン粒子間のネック部にはSnO2等が
凝縮するため、被膜の剥離強度が高くなる。特に、Sn
O2等の添加量(TiO2との内比)を20〜70%とす
ることで、膜強度と光活性の双方を満足することがで
き、また300℃以上850℃以下の範囲で熱処理する
ことで、充分な光活性を得ることができる。As described above, in the photocatalyst coating according to the present invention, a sol containing titanium oxide particles and a substance having a vapor pressure higher than that of titanium oxide is applied to a tile or the like and sintered at a predetermined temperature. As a result, the coating is formed by sintering by the vaporization-condensation mechanism, so that the intervals of the titanium oxide particles are substantially equal before and after sintering, and cracks are less likely to occur. Further, since SnO 2 and the like are condensed in the neck portion between the titanium oxide particles, the peel strength of the coating film is increased. In particular, Sn
By setting the addition amount of O 2 and the like (internal ratio with TiO 2 ) to be 20 to 70%, both film strength and photoactivity can be satisfied, and heat treatment is performed in the range of 300 ° C to 850 ° C. As a result, sufficient photoactivity can be obtained.
【図1】本発明に係る光触媒被膜を模式的に示した図FIG. 1 is a diagram schematically showing a photocatalytic coating according to the present invention.
【図2】(a)は本願のTiO2粒子の焼結前の状態を示
す図、(b)は焼結途中の状態を示す図、(c)は焼結
後の状態を示す図2A is a diagram showing a state before sintering of the TiO 2 particles of the present application, FIG. 2B is a diagram showing a state during sintering, and FIG. 2C is a diagram showing a state after sintering.
【図3】TiO2とSnO2の配合と膜強度及び光活性の関
係を示すグラフFIG. 3 is a graph showing the relationship between the composition of TiO 2 and SnO 2 , film strength and photoactivity.
【図4】熱処理温度と光活性の関係を示すグラフFIG. 4 is a graph showing the relationship between heat treatment temperature and photoactivity.
【図5】(a)は従来のTiO2ゾルの焼結前の状態を示
す図、(b)はルチル型焼結後の状態を示す図5A is a diagram showing a state before sintering of a conventional TiO 2 sol, and FIG. 5B is a diagram showing a state after rutile type sintering.
【図6】(a)は従来のTiO2粒子の焼結前の状態を示
す図、(b)は焼結後の状態を示す図6A is a diagram showing a state before sintering of conventional TiO 2 particles, and FIG. 6B is a diagram showing a state after sintering.
1…光触媒被膜、2…基板、3…TiO2粒子、4…Sn
O2。1 ... Photocatalytic coating, 2 ... Substrate, 3 ... TiO 2 particles, 4 ... Sn
O 2 .
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01G 23/04 ZAB C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C01G 23/04 ZAB C
Claims (2)
膜において、この光触媒被膜はアナターゼ型の酸化チタ
ン粒子が焼結してなり、また酸化チタン粒子の間隔は焼
結の前後において略等しく、且つ酸化チタン粒子間のネ
ック部には酸化チタンよりも蒸気圧が高い物質が凝縮し
ていることを特徴とする光触媒被膜。1. A photocatalytic coating formed on a substrate such as a tile, wherein the photocatalytic coating is formed by sintering anatase-type titanium oxide particles, and the intervals of the titanium oxide particles are substantially equal before and after sintering. Further, a photocatalytic film characterized in that a substance having a higher vapor pressure than titanium oxide is condensed in the neck portion between the titanium oxide particles.
圧が高い物質のゾルとを混合し、この混合ゾルをタイル
等の基板上に塗布した後に、ルチル型への相転移温度以
下の温度で焼結するようにしたことを特徴とする光触媒
被膜の形成方法。2. A titanium oxide sol and a sol having a higher vapor pressure than titanium oxide are mixed, the mixed sol is applied onto a substrate such as tile, and then baked at a temperature not higher than a phase transition temperature to a rutile type. A method for forming a photocatalytic coating, characterized in that the photocatalytic coating is formed.
Priority Applications (25)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5310165A JPH07155598A (en) | 1993-12-10 | 1993-12-10 | Photocatalyst coating film and its formation |
CA 2155822 CA2155822C (en) | 1993-12-10 | 1994-12-09 | Multi-functional material with photocatalytic functions and method of manufacturing same |
ES95902937T ES2191043T3 (en) | 1993-12-10 | 1994-12-09 | MULTIFUNCTIONAL MATERIAL EQUIPPED WITH PHOTOCATALITIC FUNCTION AND METHOD TO PRODUCE IT. |
CN200610101461.3A CN1899696A (en) | 1993-12-10 | 1994-12-09 | Multi-functional material with photocatalytic functions and method of manufacturing same |
US08/501,110 US5853866A (en) | 1993-12-10 | 1994-12-09 | Multi-functional material with photocalytic functions and method of manufacturing same |
KR1019950703331A KR100357482B1 (en) | 1993-12-10 | 1994-12-09 | Multi-functional material with photo-catalytic functions and method of manufacturing same |
AU11998/95A AU1199895A (en) | 1993-12-10 | 1994-12-09 | Multi-functional material having photo-catalytic function and production method therefor |
CNB2005100729417A CN100378038C (en) | 1993-12-10 | 1994-12-09 | Multi-functional material with photocatalytic functions and method of manufacturing same |
EP95902937A EP0684075B1 (en) | 1993-12-10 | 1994-12-09 | Multi-functional material having photo-catalytic function and production method therefor |
CN94191730A CN1102445C (en) | 1993-12-10 | 1994-12-09 | Multi-functional material having photo-catalytic function and production method therefor |
PCT/JP1994/002077 WO1995015816A1 (en) | 1993-12-10 | 1994-12-09 | Multi-functional material having photo-catalytic function and production method therefor |
CN02122422.6A CN1289195C (en) | 1993-12-10 | 1994-12-09 | Multifunctional material with optical catalytic function and its mfg. method |
AT95902937T ATE235314T1 (en) | 1993-12-10 | 1994-12-09 | MULTIFUNCTIONAL MATERIAL WITH PHOTOCATALYTIC FUNCTION AND METHOD FOR PRODUCING SAME |
DE69432348T DE69432348T8 (en) | 1993-12-10 | 1994-12-09 | MULTIFUNCTIONAL MATERIAL WITH PHOTOCATALYTIC FUNCTION AND METHOD FOR THE PRODUCTION THEREOF |
TW083112001A TW406031B (en) | 1993-12-10 | 1994-12-21 | Multi-functional material having photo-catalytic function and production method therefor |
US09/167,323 US6268050B1 (en) | 1993-10-12 | 1998-10-07 | Multi-functional material with photocatalytic functions and method of manufacturing same |
US09/167,327 US6294247B1 (en) | 1993-10-12 | 1998-10-07 | Multi-functional material with photocatalytic functions and method of manufacturing same |
US09/167,326 US6210779B1 (en) | 1993-12-10 | 1998-10-07 | Multi-functional material with photocatalytic functions and method of manufacturing same |
US09/167,324 US6027797A (en) | 1993-12-10 | 1998-10-07 | Multi-functional material with photocatalytic functions and method of manufacturing same |
US09/167,325 US6294246B1 (en) | 1993-12-10 | 1998-10-07 | Multi-functional material with photocatalytic functions and method of manufacturing same |
HK98113672A HK1017810A1 (en) | 1993-12-10 | 1998-12-16 | Multi-functional material having photo-catalytic function and production method therefor |
KR1019990055031A KR100358851B1 (en) | 1993-12-10 | 1999-12-04 | Multi-functional material having photo-catalytic function and produing method of thereof |
KR1019990055032A KR100361563B1 (en) | 1993-12-10 | 1999-12-04 | Multi-functional material having photo-catalytic function and producing method therefor |
KR1019990055034A KR100361564B1 (en) | 1993-12-10 | 1999-12-04 | Multi-functional material having photo-catalytic function and producing method therefor |
HK06105716A HK1085719A1 (en) | 1993-12-10 | 2006-05-17 | Multi-functional tile having photocatalytic function and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5310165A JPH07155598A (en) | 1993-12-10 | 1993-12-10 | Photocatalyst coating film and its formation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000314691A Division JP2001121001A (en) | 2000-10-16 | 2000-10-16 | Photocatalyst coating film and method for forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07155598A true JPH07155598A (en) | 1995-06-20 |
Family
ID=18001950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5310165A Withdrawn JPH07155598A (en) | 1993-10-12 | 1993-12-10 | Photocatalyst coating film and its formation |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH07155598A (en) |
CN (2) | CN1899696A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11512336A (en) * | 1995-09-15 | 1999-10-26 | ロディア シミ | Substrate with photocatalytic coating based on titanium dioxide and organic dispersion based on titanium dioxide |
US6235401B1 (en) | 1996-08-06 | 2001-05-22 | Tao Inc. | Method for coating amorphous titanium peroxide |
JP2002293542A (en) * | 2001-03-30 | 2002-10-09 | Taki Chem Co Ltd | Coating liquid forming titanium oxide thin membrane, method for producing the same and substrate carrying the same |
US7833340B2 (en) | 2004-04-26 | 2010-11-16 | Showa Denko K.K. | Coating material and use thereof |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5390630B2 (en) * | 2009-10-20 | 2014-01-15 | 株式会社フジコー | Filter and air purifier |
MY163255A (en) * | 2010-02-02 | 2017-08-30 | Nat Univ Singapore | A buoyant multifunctional composite material for effective removal of organic compounds in water and wastewater |
KR101493601B1 (en) * | 2013-07-17 | 2015-02-13 | 쌩-고벵 글래스 프랑스 | A laminate for a light emitting device and process for preparing thereof |
KR101493612B1 (en) | 2013-10-08 | 2015-02-13 | 쌩-고벵 글래스 프랑스 | A laminate for a light emitting device and process for preparing thereof |
CN107626326B (en) * | 2017-09-12 | 2020-05-19 | 东南大学 | Catalyst for degrading coal chemical industry wastewater and preparation method and application thereof |
CN110361912B (en) * | 2018-04-10 | 2021-08-17 | 深圳光峰科技股份有限公司 | Wavelength conversion device |
JP7115900B2 (en) * | 2018-04-26 | 2022-08-09 | シャープ株式会社 | Photocatalyst layer, photocatalyst, and method for producing photocatalyst |
CN109999781B (en) * | 2019-03-27 | 2019-11-08 | 江苏金环环保设备有限公司 | A kind of boracic rare earth oxide composite material and its processing method handling uns-dimethylhydrazine waste water |
TW202214787A (en) * | 2020-10-01 | 2022-04-16 | 日商Dic股份有限公司 | Coating composition |
JP2022076643A (en) * | 2020-11-10 | 2022-05-20 | Dic株式会社 | Coating, and article coated with the coating |
JP2022076642A (en) * | 2020-11-10 | 2022-05-20 | Dic株式会社 | Aqueous coating, and article coated with the aqueous coating |
CN113243794B (en) * | 2021-05-12 | 2023-01-03 | 惠州自然道智能家居用品有限公司 | Metal hand washing basin and manufacturing process thereof |
CN113429222B (en) * | 2021-07-16 | 2023-02-21 | 重庆大学 | Ag/TiO material 2 Photocatalytic ceramic tile and preparation method thereof |
CN116920831B (en) * | 2023-09-01 | 2024-08-13 | 广州谛业科技有限公司 | VOCs decomposition photocatalyst coating and preparation method and application thereof |
CN118235776B (en) * | 2024-05-28 | 2024-08-30 | 山东净霸制药有限公司 | High-efficiency potassium hydrogen persulfate bottom-modified tablet and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2667331B2 (en) * | 1992-03-13 | 1997-10-27 | 東陶機器株式会社 | Member having photocatalytic function and method for manufacturing the same |
-
1993
- 1993-12-10 JP JP5310165A patent/JPH07155598A/en not_active Withdrawn
-
1994
- 1994-12-09 CN CN200610101461.3A patent/CN1899696A/en active Pending
- 1994-12-09 CN CNB2005100729417A patent/CN100378038C/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11512336A (en) * | 1995-09-15 | 1999-10-26 | ロディア シミ | Substrate with photocatalytic coating based on titanium dioxide and organic dispersion based on titanium dioxide |
US6235401B1 (en) | 1996-08-06 | 2001-05-22 | Tao Inc. | Method for coating amorphous titanium peroxide |
US6344278B1 (en) | 1996-08-06 | 2002-02-05 | Tao Inc. | Coating method of amorphous type titanium peroxide |
US6344277B1 (en) | 1996-08-06 | 2002-02-05 | Tao Inc. | Coating method of amorphous type titanium peroxide |
JP2002293542A (en) * | 2001-03-30 | 2002-10-09 | Taki Chem Co Ltd | Coating liquid forming titanium oxide thin membrane, method for producing the same and substrate carrying the same |
US7833340B2 (en) | 2004-04-26 | 2010-11-16 | Showa Denko K.K. | Coating material and use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1715250A (en) | 2006-01-04 |
CN1899696A (en) | 2007-01-24 |
CN100378038C (en) | 2008-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07155598A (en) | Photocatalyst coating film and its formation | |
AU676299B2 (en) | Photocatalyst composite and process for producing the same | |
Yu et al. | Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films | |
US5897958A (en) | Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent | |
JP4803180B2 (en) | Titanium oxide photocatalyst, its production method and use | |
Hattori et al. | Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer‐type catalyst | |
JP4672822B2 (en) | Hydrophilic coating agent and surface hydrophilic substrate | |
JP5118068B2 (en) | PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT | |
JP2001303276A (en) | Enamel material | |
JP3027739B2 (en) | Photocatalyst and method for producing the same | |
JPH10167727A (en) | Modified titanium oxide sol, photocatalyst composition and its forming agent | |
JP4112691B2 (en) | Surface hydrophilic substrate | |
JPH07222928A (en) | Production of member having catalyst containing metal fine particles | |
JP2001121001A (en) | Photocatalyst coating film and method for forming the same | |
JPH08309203A (en) | Photocatalyst composition | |
JPH08117606A (en) | Multifunctional material having photocatalytic function and its production | |
JP3794067B2 (en) | Method for producing photocatalyst composition | |
JP2002241522A (en) | Method and apparatus for carrying out prevention of pollution, purification of polluted fluid or production of radical by electroconductive polymer and electroconductive polymer and structure therefor | |
KR100631104B1 (en) | Hydrophilic glass coated with metal oxide and method for producing it | |
JPH11188272A (en) | Photocatalytic body and its production | |
JPH10113563A (en) | Photocatalyst and production thereof | |
JP3024748B2 (en) | Hydrophilic member | |
JPH11290696A (en) | Photocatalyst base material | |
JPH11188271A (en) | Photocatalytic body and its production | |
JPH11124546A (en) | Paint composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040625 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20040823 |