JPH08117606A - Multifunctional material having photocatalytic function and its production - Google Patents

Multifunctional material having photocatalytic function and its production

Info

Publication number
JPH08117606A
JPH08117606A JP6297760A JP29776094A JPH08117606A JP H08117606 A JPH08117606 A JP H08117606A JP 6297760 A JP6297760 A JP 6297760A JP 29776094 A JP29776094 A JP 29776094A JP H08117606 A JPH08117606 A JP H08117606A
Authority
JP
Japan
Prior art keywords
photocatalytic function
layer
particles
base material
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6297760A
Other languages
Japanese (ja)
Other versions
JP3246235B2 (en
Inventor
Makoto Hayakawa
信 早川
Toshiya Watabe
俊也 渡部
Atsushi Kitamura
厚 北村
Keiichiro Norimoto
圭一郎 則本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP29776094A priority Critical patent/JP3246235B2/en
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to AT95902937T priority patent/ATE235314T1/en
Priority to CN02122422.6A priority patent/CN1289195C/en
Priority to KR1019950703331A priority patent/KR100357482B1/en
Priority to PCT/JP1994/002077 priority patent/WO1995015816A1/en
Priority to US08/501,110 priority patent/US5853866A/en
Priority to CN94191730A priority patent/CN1102445C/en
Priority to EP95902937A priority patent/EP0684075B1/en
Priority to ES95902937T priority patent/ES2191043T3/en
Priority to CA 2155822 priority patent/CA2155822C/en
Priority to DE69432348T priority patent/DE69432348T8/en
Priority to AU11998/95A priority patent/AU1199895A/en
Publication of JPH08117606A publication Critical patent/JPH08117606A/en
Priority to US09/167,326 priority patent/US6210779B1/en
Priority to US09/167,325 priority patent/US6294246B1/en
Priority to US09/167,323 priority patent/US6268050B1/en
Priority to US09/167,327 priority patent/US6294247B1/en
Priority to US09/167,324 priority patent/US6027797A/en
Priority to HK98113672A priority patent/HK1017810A1/en
Priority to KR1019990055034A priority patent/KR100361564B1/en
Priority to KR1019990055031A priority patent/KR100358851B1/en
Priority to KR1019990055032A priority patent/KR100361563B1/en
Application granted granted Critical
Publication of JP3246235B2 publication Critical patent/JP3246235B2/en
Priority to HK06105716A priority patent/HK1085719A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE: To provide a member hardly soiled and having deodorant and antimicrobial properties. CONSTITUTION: A layer having photocatalytic function is formed on the surface of a base material and smaller particles than gaps formed on the surface of the layer are filled into the gaps. Further at least one kind of a metal selected from Cu, Ag, Zn, Fe, Co, Ni, Pd, Pt is fixed on the surface. And the layer having the photocatalytic function is composed of crystalline TiO2 particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面に光触媒薄膜を形
成して抗菌機能または防臭機能を付加した多機能材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multifunctional material having a photocatalytic thin film formed on the surface thereof to have an antibacterial function or a deodorant function.

【0002】[0002]

【従来技術】基材表面に光触媒を塗布することで、抗菌
機能または防臭機能を付加することが最近提案されてい
る。例えば、基材表面に光触媒を塗布することで抗菌機
能を付加させた文献には特公平5−50294および特
開平6−65012号がある。特公平5−50294号
では、光半導体微粒子を基材表面に固定化して成る光滅
菌性充填材を有することを特徴とする滅菌リアクターが
開示されている。また特開平6−65012号では銀、
銅、亜鉛、白金の内から選ばれた少なくとも一種の金属
イオンを含有した酸化チタン膜を基板に被覆したことを
特徴とする抗菌抗カビ性セラミックスが開示されてい
る。
2. Description of the Related Art Recently, it has been proposed to add an antibacterial function or a deodorant function by applying a photocatalyst on the surface of a base material. For example, Japanese Patent Publication No. 5-50294 and Japanese Patent Laid-Open No. 6-65012 are known as documents in which an antibacterial function is added by coating a photocatalyst on the surface of a substrate. Japanese Patent Publication No. 5-50294 discloses a sterilization reactor characterized by having a photo-sterilizable filler formed by immobilizing optical semiconductor fine particles on the surface of a base material. Further, in JP-A-6-65012, silver,
Disclosed is an antibacterial / antifungal ceramics characterized in that a substrate is coated with a titanium oxide film containing at least one metal ion selected from copper, zinc and platinum.

【0003】基材表面に光触媒を塗布することで防臭機
能を付加させた文献には特公平4−46609がある。
特公平4−46609では、車室内空気中の臭気に含ま
れる悪臭物質を分解あるいは改質して車室内臭気を浄化
する方法であって、半導体に金属または金属酸化物を担
持した半導体の固体光触媒に光を照射すると共に該光触
媒に浄化すべき車室内空気を接触させることにより、該
空気中の臭気に含まれる悪臭物質を光化学反応により分
解あるいは改質することを特徴とする車室内臭気の浄化
方法について開示されている。
Japanese Patent Publication No. 46609/1992 discloses a document in which a deodorizing function is added by coating a photocatalyst on the surface of a substrate.
Japanese Patent Publication No. 4-46609 discloses a method for decomposing or modifying a malodorous substance contained in an odor in a vehicle interior air to purify an odor in the vehicle interior, which is a semiconductor solid photocatalyst in which a semiconductor carries a metal or a metal oxide. Purification of vehicle interior odor characterized by decomposing or modifying a malodorous substance contained in the odor in the air by photochemical reaction by irradiating the inside of the vehicle interior air to be purified with light A method is disclosed.

【0004】しかし基材表面に光触媒を塗布した基材
を、例えば汚水中や外壁のような環境で用いると、大気
中あるいは水中に含まれる高分子、塵芥、菌類等によ
り、汚れが付着しやすく、汚れの種類によってはその汚
れの付着のために光触媒機能が低下する場合もある。従
来における汚れ付着による光触媒機能の低下の対策とし
ては特公平6−7905がある。特公平6−7905で
は、半導体からなる光触媒層と、それに対向して設けら
れた紫外線灯および発熱体と、送風機からなり、光触媒
層全体が順次加熱されるように、光触媒層あるいは発熱
体、または光触媒層及び発熱体が移動する光触媒による
脱臭装置について開示されており、400℃付近まで加
熱することにより高分子、塵芥等による汚れを取り除
き、光触媒層の再生を図っている。
However, when a substrate having a photocatalyst coated on the surface of the substrate is used in an environment such as dirty water or an outer wall, stains are likely to adhere due to polymers, dust, fungi, etc. contained in the air or water. Depending on the type of dirt, the photocatalytic function may be deteriorated due to the adhesion of the dirt. Japanese Patent Publication No. 6-7905 is a conventional measure against the deterioration of the photocatalytic function due to the adhesion of dirt. In Japanese Patent Publication No. 6-7905, a photocatalyst layer made of a semiconductor, an ultraviolet lamp and a heating element provided to face the photocatalyst layer, and a blower are provided so that the entire photocatalyst layer is heated sequentially, or A deodorizing device using a photocatalyst in which a photocatalyst layer and a heating element move is disclosed. By heating up to around 400 ° C., stains due to polymers, dust and the like are removed, and the photocatalyst layer is regenerated.

【0005】[0005]

【発明の解決すべき課題】しかしながら、かかる光触媒
の再生による方法では、室内に取り付けた設備に用いた
部材についてこれを行うのは現実的に困難である。した
がって、光触媒層に汚れが付着してから取り除くのでは
なく、むしろ光触媒層に汚れが付着しにくい、または汚
れの付着により光触媒機能が低下しないようにするとい
うより根本的な解決が望まれる。
However, with such a method by regenerating the photocatalyst, it is practically difficult to do this for the members used for the equipment installed in the room. Therefore, rather than removing the stain after the stain adheres to the photocatalyst layer, the stain is less likely to adhere to the photocatalyst layer, or a more fundamental solution is desired so that the stain does not reduce the photocatalytic function.

【0006】そこで本発明では、表面に光触媒薄膜を形
成して抗菌機能または防臭機能を付加した部材におい
て、汚れが付着しにくく、なおかつ汚れを原因とする機
能低下を防止しうる光触媒薄膜構造を見出だし、得られ
た知見に基づいて汚れが付着しにくく、なおかつ汚れを
原因とする機能低下を防止しうる抗菌性または防臭性を
有する部材を提供することを目的とした。
In view of the above, the present invention provides a photocatalytic thin film structure in which a photocatalytic thin film is formed on the surface to impart an antibacterial function or a deodorant function, and dirt is less likely to adhere to the member, and the functional deterioration due to the dirt can be prevented. It is an object of the present invention to provide a member having antibacterial properties or deodorant properties, which is difficult to attach stains based on the obtained knowledge and can prevent functional deterioration due to stains.

【0007】[0007]

【課題を解決するための手段】本発明では上記課題を解
決すべく、基材表面に光触媒機能を有する層が形成さ
れ、その層の表面に生成した間隙にその間隙よりも小さ
な粒子が充填されていることを特徴とする光触媒機能を
有する多機能材を要旨とする。
In the present invention, in order to solve the above problems, a layer having a photocatalytic function is formed on the surface of a base material, and the gaps formed on the surface of the layer are filled with particles smaller than the gaps. The gist is a multifunctional material having a photocatalytic function.

【0008】以下詳述する。ここで基材の材質は、陶磁
器、セラミック、金属、ガラス、熱硬化性樹脂、熱可塑
性樹脂あるいはそれらの複合物等基本的に何でもよい。
基材の形状もどのようなものでもよく、球状物やタイ
ル、壁材、床材等の板状物などの単純形状のものでも、
衛生陶器、洗面台、浴槽などの複雑形状のものでも構わ
ない。基材表面とは、基材表面の一部でも全面でもよ
い。
The details will be described below. Here, the material of the base material may be basically ceramics, ceramics, metal, glass, thermosetting resin, thermoplastic resin, or a composite thereof.
The shape of the base material may be any shape, such as a spherical shape or a simple shape such as a tile, a wall material, a plate material such as a floor material,
It may have a complicated shape such as sanitary ware, washbasin, or bathtub. The substrate surface may be a part of the substrate surface or the entire surface.

【0009】光触媒機能を有する層とは、主として光触
媒機能を有する粒子からなる層のことである。光触媒機
能を有する粒子には、防臭機能または抗菌機能を有する
程度の、すなわち活性酸素を生成しうる程度の光活性を
要する。そのためには伝導帯の位置がバンドモデルで表
すとき水素発生電位より上方にあり、かつ価電子帯の上
端が酸素発生電位より下方にある物質で構成する必要が
ある。この条件を満たす物質にはTiO2、SrTiO
3、ZnO、SiC、GaP、CdS、CdSe、Mo
S3等がある。また微粒化すると伝導帯の位置は上方に
移行するので、1〜10nm程度の微粒子で層を構成で
きれば、SnO2、WO3、Fe2O3、Bi2O3等
も活性酸素を生成しうる可能性がある。このうち、大気
焼成可能なことからTiO2、SrTiO3、ZnO、
SnO2、WO3、Fe2O3、Bi2O3が好まし
い。以下これらの金属化合物を光触媒と称す。光触媒粒
子は、充分な光活性を有するためには、0.5μm以下
より好ましくは0.1μm以下がよい。
The layer having a photocatalytic function is a layer mainly composed of particles having a photocatalytic function. The particles having a photocatalytic function need to have a photoactivity that has a deodorizing function or an antibacterial function, that is, an amount that can generate active oxygen. For that purpose, it is necessary that the position of the conduction band is higher than the hydrogen generation potential and the upper end of the valence band is lower than the oxygen generation potential in the band model. Materials satisfying this condition include TiO2 and SrTiO
3, ZnO, SiC, GaP, CdS, CdSe, Mo
There are S3 etc. Further, when atomized, the position of the conduction band shifts upward, so if the layer can be composed of fine particles of about 1 to 10 nm, SnO2, WO3, Fe2O3, Bi2O3, etc. may also be able to generate active oxygen. Of these, TiO2, SrTiO3, ZnO, and
SnO2, WO3, Fe2O3, Bi2O3 are preferred. Hereinafter, these metal compounds will be referred to as photocatalysts. In order to have sufficient photoactivity, the photocatalyst particles have a particle size of 0.5 μm or less, preferably 0.1 μm or less.

【0010】ここで、基材表面に光触媒機能を有する層
を形成する工程は、基本的に上記光触媒の出発原料ある
いはそれに適当な処理を施したものを基材表面に塗布す
ることにより行う。出発原料としては、光触媒ゾル、金
属アルコキシド、金属の硫酸塩、金属の塩化物溶液、有
機金属塩等を用いる。例えば、TiO2ゾルを用いる場
合は、TiO2の等電点がPH6.5とほぼ中性である
ことから、酸またはアルカリで分散した水溶液を用いて
基材表面に塗布すると均一に塗布しやすい。このとき基
材が金属のときは耐蝕性の観点からアルカリ分散が好ま
しい。陶磁器、タイル、セラミック等の場合は酸、アル
カリいずれの分散液を用いてもよい。酸としては、硝
酸、硫酸、塩酸、酢酸、リン酸、有機酸等があげられ
る。アルカリの場合はアンモニア、アルカリ金属または
アルカリ土類金属を含む水酸化物等があげられるが、熱
処理後に金属汚染物が生成しないことからアンモニアが
特に好ましい。なお、これらの分散液に、さらに有機
系、リン酸系の分散剤、表面活性剤、表面処理剤等を添
加してもよい。なお光触媒ゾルの平均粒径は0.05μ
m以下好ましくは0.01μm以下がよい。粒径が小さ
いほど光触媒の光活性が高いからである。基材上への塗
布方法としては、これら出発原料をスプレー・コーティ
ング、ロール・コーティング、ディップ・コーティン
グ、スピン・コーティング、CVD、電子ビーム蒸着、
スパッタなどして塗布する方法があり、そのいずれでも
よいし、それ以外の方法でもよい。ただしスプレー・コ
ーティング、ロール・コーティング、ディップ・コーテ
ィングは、CVD、電子ビーム蒸着、スパッタなどと比
較して特別の設備を必要とせず、安価に塗膜可能である
利点がある。塗布後乾燥、焼成等の手段を用いて光触媒
機能を有する層を形成する。この層の膜厚を0.4μm
未満にしておくことで、後述する間隙を埋める粒子量
(塗布回数)を極力少なくして汚れのつきにくさ(表面
平滑性)及び耐摩耗性を満足できるので、生産性が向上
し、コストを低減することができる。
Here, the step of forming a layer having a photocatalytic function on the surface of the base material is basically carried out by applying the starting material of the above-mentioned photocatalyst or a material which has been subjected to an appropriate treatment to the surface of the base material. As a starting material, a photocatalyst sol, a metal alkoxide, a metal sulfate, a metal chloride solution, an organic metal salt, or the like is used. For example, when a TiO2 sol is used, the isoelectric point of TiO2 is approximately pH 6.5, so that it is easy to apply uniformly if it is applied to the surface of the substrate using an aqueous solution dispersed with an acid or an alkali. At this time, when the substrate is a metal, alkali dispersion is preferable from the viewpoint of corrosion resistance. In the case of ceramics, tiles, ceramics, etc., either an acid or alkali dispersion may be used. Examples of the acid include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, organic acids and the like. Examples of the alkali include ammonia and hydroxides containing an alkali metal or an alkaline earth metal, but ammonia is particularly preferable because no metal contaminant is generated after the heat treatment. In addition, an organic or phosphoric acid-based dispersant, a surface-active agent, a surface treatment agent, or the like may be further added to these dispersions. The average particle size of the photocatalytic sol is 0.05μ
m or less, preferably 0.01 μm or less. This is because the smaller the particle size, the higher the photoactivity of the photocatalyst. As a coating method on a substrate, these starting materials are spray-coated, roll-coated, dip-coated, spin-coated, CVD, electron beam evaporation,
There is a method of applying by sputtering or the like, any of which may be used, or any other method. However, spray coating, roll coating, and dip coating have the advantage that they do not require special equipment and can be coated at low cost, as compared with CVD, electron beam evaporation, sputtering, and the like. After coating, a layer having a photocatalytic function is formed by means such as drying and baking. The thickness of this layer is 0.4 μm
By setting the amount to be less than the above, the amount of particles filling the gap described below (the number of times of application) can be reduced as much as possible, and stain resistance (surface smoothness) and abrasion resistance can be satisfied, thus improving productivity and reducing costs. It can be reduced.

【0011】尚、光触媒機能を有する層は、基材との密
着性を向上させるために、釉薬層又は基材より低融点の
ガラス層といったグレーズ層を介してもよい。これは、
光触媒機能を有する層が、一部グレーズ層に埋設される
ことによると考えられる。基材表面にグレーズ層を形成
する工程は、基材にその軟化温度が基材よりも低いグレ
ーズ成分を塗布することにより行う。このときのグレー
ズ成分は必ずしも部材完成時のにグレーズ層の組成と一
致している必要はない。したがってこのときのグレーズ
成分の塗布物は、粒状、フリット状、塊状、粉末等のグ
レーズ組成物の懸濁液でもよいし、構成金属成分を含む
塩の混合液でもよい。塗布方法には、スプレー・コーテ
ィング法、ロール・コーティング法、ディップ・コーテ
ィング法等があるがそのいずれでもよい。
The layer having a photocatalytic function may have a glaze layer such as a glaze layer or a glass layer having a melting point lower than that of the base material in order to improve the adhesion to the base material. this is,
It is considered that the layer having the photocatalytic function is partially embedded in the glaze layer. The step of forming the glaze layer on the surface of the base material is performed by applying a glaze component having a softening temperature lower than that of the base material to the base material. The glaze component at this time does not necessarily have to match the composition of the glaze layer when the member is completed. Therefore, the application product of the glaze component at this time may be a suspension of the glaze composition in the form of particles, frit, lump, powder or the like, or may be a mixed solution of salts containing constituent metal components. The coating method includes a spray coating method, a roll coating method, a dip coating method and the like, and any of them may be used.

【0012】光触媒層の最表面が露出されかつ下層の一
部が前記グレーズ層に埋設されるような温度で熱処理す
る工程は、基材の軟化点より低く、グレーズ層が部材完
成時のグレーズ層の組成に変化しなおかつ軟化する温度
で熱処理することにより行う。具体的にはグレーズ層の
軟化温度より20〜320℃高い温度で熱処理するとよ
い。そうすることにより、光触媒粒子は適度にグレーズ
層中に移動し、光触媒層の最表面が露出されかつ下層の
一部が前記グレーズ層に埋設される状態になる。グレー
ズ層の上に光触媒層を形成する工程を行う前に塗布した
グレーズ層を乾燥し、水分等を蒸発させてもよい。この
際の乾燥方法は、室温放置による方法、基材とともに加
熱する方法等がある。
The step of heat treatment at a temperature at which the outermost surface of the photocatalyst layer is exposed and a part of the lower layer is embedded in the glaze layer is lower than the softening point of the base material, and the glaze layer is the glaze layer when the member is completed. The heat treatment is carried out at a temperature at which the composition changes and the material softens. Specifically, the heat treatment may be performed at a temperature 20 to 320 ° C. higher than the softening temperature of the glaze layer. By doing so, the photocatalyst particles are appropriately moved into the glaze layer, and the outermost surface of the photocatalyst layer is exposed and a part of the lower layer is embedded in the glaze layer. The glaze layer applied before the step of forming the photocatalyst layer on the glaze layer may be dried to evaporate water or the like. The drying method at this time includes a method of standing at room temperature, a method of heating with a base material, and the like.

【0013】更に、グレーズ層の上に光触媒層を形成す
る工程を行う前に、塗布したグレーズ層を基材の軟化温
度より低く、グレーズ層が部材完成時のグレーズ層の組
成に変化しなおかつ軟化する温度で熱処理してもよい。
この方法によればグレーズ層の上に光触媒層を形成する
時に予めグレーズ層がより平滑になるので、塗布する光
触媒粒子が少量でも充分な効果を発揮できるようにな
る。
Further, before performing the step of forming the photocatalyst layer on the glaze layer, the applied glaze layer is lower than the softening temperature of the base material, and the glaze layer has not changed to the composition of the glaze layer when the member is completed and softened. You may heat-process at the temperature which does.
According to this method, when the photocatalyst layer is formed on the glaze layer, the glaze layer becomes smoother in advance, so that a sufficient effect can be exhibited even with a small amount of photocatalyst particles applied.

【0014】また、薄膜の表面に生成した間隙とは具体
的には、図1(a)の粒子間の隙間すなわち開気孔と、
図1(b)に示すネック部の凹部の双方をさす。尚、薄
膜は、緻密なほうが膜強度、汚れのつきにくさの点で、
優れているものの、一般に薄膜を形成させる温度が、高
くなり、基材の材質が限定されるので、後工程でこの間
隙に粒子を充填する本願によると間隙粒子添加前の薄膜
の気孔率は、10%以上あってもよい。また、10%以
上の気孔率の膜は防臭性に優れているので、充填量を調
整することで、防汚性、防臭性の両面に優れた多機能材
を提供できる。
The gaps formed on the surface of the thin film are specifically the gaps between particles in FIG. 1A, that is, open pores,
Both of the concave portions of the neck portion shown in FIG. It should be noted that the thin film is denser in terms of film strength and stain resistance,
Although excellent, in general, the temperature for forming a thin film becomes high, and the material of the base material is limited.According to the present application that fills the gap with particles in a later step, the porosity of the thin film before the addition of the gap particles is: It may be 10% or more. Further, a film having a porosity of 10% or more is excellent in deodorizing property, and therefore by adjusting the filling amount, a multi-functional material excellent in both antifouling property and deodorizing property can be provided.

【0015】間隙に充填される間隙よりも小さな粒子
は、無機結晶質の素材からなることが好ましく、より好
ましくは光触媒活性を有することからTiO2、SnO
2、Fe2O3、ZnO、Bi2O3、WO3、SrT
iO3等の酸化物半導体がよい。間隙よりも小さな粒子
の大きさは、基本的には生成する気孔径の平均値より小
さければよい。間隙の減少及び光触媒機能を有する粒子
表面に付着する粒子を減少させることによる表面平滑性
の向上および表面欠陥の減少により、汚れのつきにくさ
と膜強度の向上を図れる点で、具体的には、0.01μ
m未満、好ましくは0.008μm以下の小さな粒子が
良い。ただし、TiO2薄膜がアナターゼで、850℃
以下で熱処理して基材上に固定した場合には、電子顕微
鏡で観察すると、おおむね平均気孔径とTiO粒子径が
等しいことからTiO粒子径より小さければよい。光触
媒活性を有するTiO2薄膜の出発原料は一般的に0.
05μm以下の原料が使用されるので、0.05μm以
下であるのがよい。
Particles smaller than the gap filled in the gap are preferably made of an inorganic crystalline material, and more preferably have a photocatalytic activity, and therefore, TiO2 and SnO.
2, Fe2O3, ZnO, Bi2O3, WO3, SrT
An oxide semiconductor such as iO3 is preferable. The size of the particles smaller than the gap basically needs to be smaller than the average value of the pore diameters generated. Specifically, in terms of improving the surface smoothness and reducing the number of surface defects by decreasing the number of particles adhering to the surface of the particles having the photocatalytic function and the reduction of the voids, the stain resistance and the film strength can be improved. , 0.01μ
Small particles of less than m, preferably 0.008 μm or less are good. However, TiO2 thin film is anatase, 850 ℃
When heat-treated below and fixed on a substrate, the average pore diameter and the TiO particle diameter are generally the same when observed with an electron microscope, and therefore the particle diameter may be smaller than the TiO particle diameter. The starting material for the TiO2 thin film having photocatalytic activity is generally 0.1.
Since a raw material of 05 μm or less is used, it is preferably 0.05 μm or less.

【0016】ここで、間隙に粒子を充填した光触媒機能
を有する層の表面の気孔率が20%未満であるようする
ことで、より汚れがつきにくくなる。更に、その開気孔
の最大幅は、0.04μm以下であることが望ましい。
ここで、気孔率とは、基材表面の開気孔率をいい、開気
孔の最大幅とは、図1(c)に示すように基材表面を構
成する光触媒機能を有する粒子のうちの隣接した2つの
粒子間の隙間の距離の最大値(平均値+3×標準偏差)
のことである。
Here, by setting the porosity of the surface of the layer having a photocatalytic function in which the gaps are filled with particles to be less than 20%, it becomes more difficult for dirt to attach. Further, the maximum width of the open pores is preferably 0.04 μm or less.
Here, the porosity refers to the open porosity of the surface of the base material, and the maximum width of the open pores means that adjacent particles among the particles having a photocatalytic function that form the surface of the base material as shown in FIG. Value of the gap distance between the two particles (average value + 3 x standard deviation)
That is.

【0017】尚、上記間隙に粒子を充填する前の光触媒
機能を有する層の気孔率を10%近傍のものを利用する
と気孔率は10%未満に減少するが、ここで埋設される
気孔径は結晶径0.01μm未満の粒子が入る大きさで
あり、ガスの大きさ(数A)と比較して大きいので、防
臭性に影響を及ぼすことはなく、予め作製された気孔率
10%以上のTiO2薄膜と同等の防臭特性を保持する
ことができる。
When a layer having a photocatalytic function before filling the gaps with particles having a porosity of about 10% is used, the porosity is reduced to less than 10%, but the diameter of the buried pores is reduced. Since the size is such that particles with a crystal diameter of less than 0.01 μm can be entered, and it is large compared to the size of gas (several A), it does not affect the deodorant property and has a porosity of 10% or more that is prepared in advance. It is possible to maintain the deodorant properties equivalent to those of the TiO2 thin film.

【0018】また、形成された光触媒機能を有する層を
主として結晶質の光触媒粒子とすることで、ミズあか
が、ガラスの付着するよう強固な付着形態で汚れが付着
しなくなると共にたとえ付着しても比較的容易にふき取
れるようになる。また、水回りに利用した際いは、藻が
生えにくくなるといった効果がある。ここで、結晶質の
光触媒粒子とは、部材から剥がした光触媒粒子を50k
V−300mAの条件で粉末X線回折したときに結晶の
最大ピーク(例えば、TiO2粒子において、アナター
ゼでは2θ=25.3°、ルチルでは2θ=27.4
°)が検出される程度に結晶化した光触媒粒子のことで
ある。
Further, by making the formed layer having a photocatalytic function mainly crystalline photocatalyst particles, the stains do not adhere in a strong adhesion form like glass adheres, and even if the dirt adheres. It can be wiped off relatively easily. In addition, when used around water, there is an effect that it becomes difficult for algae to grow. Here, the crystalline photocatalyst particles are the photocatalyst particles peeled off from the member at 50 k.
The maximum peak of the crystal when powder X-ray diffraction was performed under the condition of V-300 mA (for example, in TiO 2 particles, 2θ = 25.3 ° for anatase and 2θ = 27.4 for rutile).
The photocatalyst particles are crystallized to the extent that (°) is detected.

【0019】上記間隙に粒子を充填する方法としては、
金属アルコキシド、有機金属塩、硫酸塩等を用いて、塗
布、乾燥、熱処理を行うことにより形成する。例えば、
金属アルコキシドを用いる工程は、金属アルコキシドを
適当な希釈剤及び塩酸と混合した溶液を光触媒層の最表
面に塗布後乾燥熱処理して行う。ここで適当な希釈剤と
はエタノール、プロパノール、メタノール等のアルコー
ル類が好ましいがそれに限定されるものではない。ただ
し水はできる限り含まないほうがよい。水が含まれると
金属アルコキシドの加水分解が爆発的に促進され、クラ
ック発生の一因をなすからである。また塩酸を添加する
のは、乾燥時や熱処理時にクラックが入るのを防ぐため
である。金属アルコキシドの塗布方法は通常はフロー・
コーティングで行うが、それに限定されるものではな
い。フロー・コーティングは、乾燥空気中で行うのが好
ましい。通常の空気(大気)でコーティングすると、空
気中の水分で加水分解が促進されて、膜厚の制御が困難
になる。コーティングは1回の塗布でもよいし、数回の
塗布でもよい。それは塗布前の光触媒層の充填性により
決定する。その後乾燥空気中で数分放置すると、光触媒
層の間隙に粒子が充填された膜が形成される。ここで、
充填粒子を塗布する前の層と充填粒子を同じ素材にして
おくと、熱膨張率が同じこともあり、機械的強度に優れ
た膜を形成できる点で望ましい。
As a method of filling the above gap with particles,
It is formed by applying a metal alkoxide, an organic metal salt, a sulfate or the like, coating, drying and heat treatment. For example,
The step of using the metal alkoxide is performed by applying a solution in which the metal alkoxide is mixed with an appropriate diluent and hydrochloric acid on the outermost surface of the photocatalyst layer and then performing a dry heat treatment. Here, as the suitable diluent, alcohols such as ethanol, propanol and methanol are preferable, but the diluent is not limited thereto. However, it is better not to include water as much as possible. This is because when water is contained, the hydrolysis of the metal alkoxide is explosively promoted, which contributes to the occurrence of cracks. Hydrochloric acid is added to prevent cracking during drying or heat treatment. The metal alkoxide coating method is usually flow
It is performed by coating, but is not limited thereto. Flow coating is preferably performed in dry air. When coating with normal air (atmosphere), water content in the air accelerates hydrolysis, making it difficult to control the film thickness. The coating may be applied once or several times. It is determined by the filling property of the photocatalyst layer before coating. After that, when left for several minutes in dry air, a film in which particles are filled in the gaps of the photocatalyst layer is formed. here,
It is preferable to use the same material as the layer before applying the filler particles and the filler particles, because the coefficient of thermal expansion may be the same and a film having excellent mechanical strength can be formed.

【0020】尚、具体例として、Tiアルコキシドを用
いたものについて更に説明を加える。Tiアルコキシド
をさらに光触媒層表面に塗布し、乾燥熱処理する工程に
おいて、1回当りのTiアルコキシド塗布量は、TiO
2に換算して10μg/cm2以上100μg/cm2
以下であるようにした。量が少なすぎると塗布回数を増
加させねばならないので能率的でなく、逆に量が多すぎ
ると1回の塗布当りの膜厚が厚くなりすぎて乾燥時や熱
処理時にクラックが入るからである。
As a specific example, the one using a Ti alkoxide will be further described. In the step of further coating the surface of the photocatalyst layer with Ti alkoxide and performing heat treatment for drying, the coating amount of Ti alkoxide per time is TiO 2.
Converted to 2, 10 μg / cm 2 or more 100 μg / cm 2
It was set as follows. This is because if the amount is too small, the number of coatings must be increased, which is not efficient. On the contrary, if the amount is too large, the film thickness per coating becomes too thick and cracks occur during drying or heat treatment.

【0021】上記乾燥熱処理する工程において、熱処理
温度は400℃以上800℃以下であるようにした。4
00℃未満では無定型TiO2がアナターゼ型TiO2
に結晶化せず、800℃以上では急激な粒成長が生じ、
光活性が低下するからである。また、塗布液中のTiア
ルコキシドに対する塩酸量は1重量%以上10重量%以
下であるようにした。1重量%未満ではクラック防止効
果が充分でなく、10重量%をこえると塩酸は通常36
%水溶液なので水分が多量に入り加水分解が促進されす
ぎてクラックが生成するからである。塩酸の量が多いと
きは希釈剤も多いほうがよい。希釈剤は加水分解を抑制
するからである。その比は塩酸(水分除く):希釈剤が
1:100〜1:1000程度がよい。
In the dry heat treatment step, the heat treatment temperature was set to 400 ° C. or higher and 800 ° C. or lower. Four
Amorphous TiO2 is below anatase type TiO2
Does not crystallize, and abrupt grain growth occurs above 800 ° C.
This is because the photoactivity is reduced. Further, the amount of hydrochloric acid with respect to the Ti alkoxide in the coating liquid was set to be 1% by weight or more and 10% by weight or less. If it is less than 1% by weight, the crack prevention effect is not sufficient, and if it exceeds 10% by weight, hydrochloric acid is usually 36%.
% Aqueous solution, a large amount of water enters and hydrolysis is promoted too much and cracks are generated. When the amount of hydrochloric acid is large, it is better to use a large amount of diluent. This is because the diluent suppresses hydrolysis. The ratio of hydrochloric acid (excluding water): diluent is preferably about 1: 100 to 1: 1000.

【0022】更に、光触媒機能を有する層が形成され、
その層の表面に生成した間隙にその間隙よりも小さな粒
子が充填された層のさらにその上にCu、Ag、Zn、
Fe、Co、Ni、Pd、Ptのうちの少なくとも1種
の金属が固定されているようにしてもよい。このような
構成にすることにより、光触媒機能を有する層の吸着性
の高いサイトを前記金属が予め占有するので、この部分
に塵芥成分中のアルカリ金属、カルシウム等が付着して
光触媒活性を失うことはない。したがって光触媒による
抗菌作用が損なわれにくく、菌類の付着による汚れも防
止できる。さらに上記金属として、Ag、Cu、Znを
用いれば、これらの金属自体が抗菌性を有するのでより
菌類の付着による汚れを有効に防止できる。さらにこれ
ら金属の電子捕捉効果により光触媒層の光活性が向上す
る。固定される金属の大きさは、光触媒層の吸着性の高
いサイトを予め占有しうる程度に大きく、かつ高い活性
を維持する程度に小さい方がよい。この観点から数nm
〜10nm程度が好ましい。
Further, a layer having a photocatalytic function is formed,
Cu, Ag, Zn, on top of the layer in which the voids formed on the surface of the layer are filled with particles smaller than the voids,
At least one metal selected from Fe, Co, Ni, Pd, and Pt may be fixed. With such a structure, since the metal having a high adsorptive site of the layer having a photocatalytic function occupies in advance, the alkali metal in the dust component, calcium, etc. adheres to this portion and loses the photocatalytic activity. There is no. Therefore, the antibacterial action of the photocatalyst is not easily impaired, and the stain due to the adhesion of fungi can be prevented. Furthermore, when Ag, Cu, or Zn is used as the above-mentioned metal, these metals themselves have antibacterial properties, so that stains due to adhesion of fungi can be effectively prevented. Further, the photocatalytic layer has improved photoactivity due to the electron-trapping effect of these metals. The size of the metal to be fixed is preferably large enough to occupy the highly adsorptive site of the photocatalyst layer in advance and small enough to maintain high activity. From this viewpoint, several nm
It is preferably about 10 nm.

【0023】ここで上記した金属を固定する方法として
は、光還元法、熱処理法、スパッタ法、CVD法等が利
用できるが、大規模な設備を要さず比較的簡便な方法で
且つ強固に固定できる点で、光還元法が望ましい。光還
元を用いる工程は、Ag、Cu、Zn、Fe、Co、N
i、Pd、Ptのうちの少なくとも1種の金属イオンを
含む水溶液を塗布し、紫外線を含む光を照射して行う。
Ag、Cu、Zn、Fe、Co、Ni、Pd、Ptのう
ちの少なくとも1種の金属イオンを含む水溶液には、酢
酸銅、硝酸銀、炭酸銅、硫酸銅、塩化第一銅、塩化第二
銅、塩化白金酸、塩化パラジウム、塩化ニッケル、硝酸
亜鉛、塩化コバルト、塩化第一鉄、塩化第二鉄などがあ
げられる。これら金属塩水溶液の塗布方法は基本的にど
のような方法でもよいが、スプレー・コーティング法ま
たはディップ・コーティング法が簡便である。その両者
を比較すると、使用する溶液の量が少なくてすむこと、
均一に塗布できること、膜厚を制御しやすいこと、裏面
に付けたくないときにそれが可能であることなどの理由
によりスプレー・コーティング法がより好ましい。紫外
線を含む光を照射する光源は、紫外線を含む光を照射し
うるものであればよく、具体的には紫外線ランプ、BL
Bランプ、キセノンランプ、水銀灯、蛍光灯のいずれで
もよい。紫外線を含む光の照射方法は、照射面に垂直に
光があたるように試料を配置するのが好ましい。照射効
率が最も優れるからである。照射時間は10秒〜10分
程度が好ましい。照射時間が短すぎると光触媒層の吸着
性の高いサイトに充分に上記金属種が付着しないので塵
芥成分中のアルカリ金属、カルシウム等が付着して光触
媒活性を失う原因となり、時間が長すぎると上記金属種
が付着しすぎて光触媒層に充分に光が到達しにくくなり
光触媒活性が低下するためである。試料の光源からの距
離は1cm〜30cmが好ましい。距離が短すぎると試
料面全体にほぼ均一な照度で光が照射されず上記金属種
の付着にばらつきが生じやすくなり、距離が長すぎると
照射される光の照度が距離の二乗に反比例して小さくな
るので、金属種を強固に付着することが困難になる。
As a method for fixing the above metal, a photoreduction method, a heat treatment method, a sputtering method, a CVD method or the like can be used, but a large-scale facility is not required and the method is relatively simple and robust. The photoreduction method is desirable because it can be fixed. The process using photoreduction is performed using Ag, Cu, Zn, Fe, Co, N.
This is performed by applying an aqueous solution containing at least one metal ion of i, Pd, and Pt and irradiating it with light containing ultraviolet rays.
The aqueous solution containing at least one metal ion selected from Ag, Cu, Zn, Fe, Co, Ni, Pd, and Pt includes copper acetate, silver nitrate, copper carbonate, copper sulfate, cuprous chloride, cupric chloride. , Chloroplatinic acid, palladium chloride, nickel chloride, zinc nitrate, cobalt chloride, ferrous chloride, ferric chloride and the like. The method of applying the metal salt aqueous solution may be basically any method, but the spray coating method or the dip coating method is convenient. Comparing the two, the amount of solution used can be small,
The spray coating method is more preferable because it can be applied uniformly, the film thickness can be easily controlled, and it can be applied when it is not desired to attach it to the back surface. The light source for irradiating the light including the ultraviolet light may be any light source capable of irradiating the light including the ultraviolet light, specifically, an ultraviolet lamp, a BL
Any of a B lamp, a xenon lamp, a mercury lamp and a fluorescent lamp may be used. In the method of irradiating light including ultraviolet rays, it is preferable to arrange the sample so that the light is irradiated perpendicularly to the irradiation surface. This is because the irradiation efficiency is the best. The irradiation time is preferably about 10 seconds to 10 minutes. If the irradiation time is too short, the above metal species will not sufficiently adhere to the highly adsorptive site of the photocatalyst layer, causing alkali metal in the dust component, calcium, etc. to adhere and cause loss of photocatalytic activity, and if the time is too long, This is because the metal species are excessively attached and it is difficult for light to reach the photocatalyst layer sufficiently, and the photocatalytic activity is reduced. The distance from the light source of the sample is preferably 1 cm to 30 cm. If the distance is too short, light will not be radiated to the entire sample surface with a substantially uniform illuminance, and the adhesion of the above metal species tends to vary.If the distance is too long, the illuminance of the emitted light will be inversely proportional to the square of the distance. Since it becomes smaller, it becomes difficult to firmly attach the metal species.

【0024】[0024]

【作用】本発明では、基材表面に光触媒機能を有する層
が形成し、その層の表面に生成した間隙にその間隙より
も小さな粒子が充填されているようにすることにより、
薄膜の表面に生成した間隙にその間隙よりも小さな粒子
が充填されているので、表面に存在する間隙の大きさが
小さくなり、かつ表面平滑性が良好になるので、汚れ成
分を構成する高分子、塵芥、菌類等が付着しにくくな
る。
In the present invention, a layer having a photocatalytic function is formed on the surface of the substrate, and the gaps formed on the surface of the layer are filled with particles smaller than the gaps.
Since the gaps formed on the surface of the thin film are filled with particles smaller than the gaps, the size of the gaps existing on the surface becomes small and the surface smoothness becomes good. , Dust, fungi, etc. are less likely to adhere.

【0025】[0025]

【実施例】【Example】

(実施例1)結晶径0.01μmのTiO2ゾルのアン
モニア解膠型懸濁液を15cm角のタイル基板にスプレ
ー・コーティング法により塗布し、これを750℃で焼
成してアナターゼ型TiO2薄膜を形成した。この段階
のTiO2薄膜の気孔率は45%、TiO2粒子の結晶
径は0.02μmであった。次にその上に結晶径の異な
るSnO2ゾルをそれぞれスプレー・コーティング法に
より塗布し、110℃で乾燥して試料を得た。得られた
試料について防臭性、耐摩耗性、汚れのつきにくさにつ
いて評価した。防臭性の評価はR30(L)を測定する
ことにより評価した。R30(L)とは光照射後の除去
率のことで、具体的には11Lのガラス容器内に試料の
アナターゼ型TiO2薄膜を形成した面を光源(BLB
蛍光灯4W)から8cmの距離に配置し、メチルメルカ
プタンガスを初期濃度3ppmとなるように容器内に注
入し、30分間光照射したときの濃度変化を測定するこ
とで得られる。
(Example 1) An ammonia-deflocculating type suspension of a TiO2 sol having a crystal diameter of 0.01 µm was applied to a 15 cm square tile substrate by a spray coating method, and this was baked at 750 ° C to form an anatase type TiO2 thin film. did. The porosity of the TiO 2 thin film at this stage was 45%, and the crystal diameter of the TiO 2 particles was 0.02 μm. Then, SnO2 sols having different crystal diameters were applied thereon by a spray coating method and dried at 110 ° C. to obtain a sample. The obtained sample was evaluated for deodorizing property, abrasion resistance, and stain resistance. The deodorant property was evaluated by measuring R30 (L). R30 (L) is the removal rate after light irradiation, and specifically, the surface on which the anatase-type TiO2 thin film of the sample is formed in a 11 L glass container is the light source (BLB).
It can be obtained by arranging at a distance of 8 cm from a fluorescent lamp (4 W), injecting methyl mercaptan gas into the container so that the initial concentration is 3 ppm, and measuring the change in concentration when irradiated with light for 30 minutes.

【0026】耐摩耗性はプラスチック消しゴムを用いた
摺動摩耗を行い、外観の変化を比較し、評価した。評価
指標を下記に示す。 ◎:40回往復に対して変化なし ○:10回以上40回未満の摺動で傷が入り、TiO2
層が剥離 △:5回以上10回未満の摺動で傷が入り、TiO2層
が剥離 ×:5回未満の摺動で傷が入り、TiO2層が剥離 汚れのつきにくさの評価は、基材表面に黒色の太いマジ
ックインクで線を引き、乾燥後エタノールでインクを拭
き取った後の汚れ具合で評価した。評価指標を示す。 ◎:完全に跡が消える。 ○:かすかに跡が残る。 △:灰青色の跡が残る。 ×:黒色の跡が残る。 結果を図に示す。
The wear resistance was evaluated by performing sliding wear using a plastic eraser and comparing changes in appearance. The evaluation index is shown below. ◎: No change after 40 reciprocations ○: TiO2 was scratched by sliding 10 times or more and less than 40 times
Peeling of the layer Δ: Scratches occurred by sliding 5 times or more and less than 10 times, TiO2 layer was peeled ×: Scratching occurred by sliding less than 5 times, TiO2 layer was peeled. A line was drawn on the surface of the material with a thick black magic ink, and after drying, the ink was wiped off with ethanol, and the degree of contamination was evaluated. The evaluation index is shown. ◎: The mark disappears completely. ○: A slight trace remains. Δ: A gray-blue trace remains. X: A black mark remains. The results are shown in the figure.

【0027】図2はSnO2の添加量に対する汚れのつ
きにくさを示す。ここでSnO2の添加量はTiO2と
SnO2の量の重量和に対するSnO2重量の割合で表
している。30%以上のSnO2添加では汚れは飛躍的
につきにくくなっている。この理由は下記3点であると
解する。第一にSnO2を30%以上添加したことによ
り気孔率が20%未満と減少したためである(図3)。
第二にSnO2の添加により気孔径の大きな気孔が減少
したためである。図4はSnO2添加量に対する開気孔
の最大幅を示しているが、SnO2の添加量が30%以
上では0.04μmとかなり小さくなっている。第三に
SnO2の添加により表面粗度が向上したことも影響し
ていると解する。図5はSnO2の添加量に対する防臭
特性および耐摩耗性を示す。防臭性に関してはSnO2
ゾルの結晶径を0.0035μmから0.01μmまで
変化させてもほとんど変化なく、良好な結果を示した。
またSnO2の量に対しては50%以下ではR30が8
0%以上と良好な結果を示した。図2のSnO2の添加
量と気孔率との関係と比較すると、SnO2の添加量4
0%以上50%以下では気孔率10%未満だが、防臭性
が良好となっている。この傾向は先に出願したの間隙を
埋める粒子を添加しない場合の気孔率と防臭性との関係
(図6)とは異なった結果となっている。その理由は次
のように考えられる。すなわちこの場合気孔率は10%
未満に減少するが、図4よりなお0.02μm程度の気
孔が残留しており、また間隙を埋める粒子の結晶径も
0.0035μmとガスの大きさ(数A)と比較して大
きいので、粒成長なしの本条件ではガスの通路が閉鎖さ
れるような現象は生じないからである。
FIG. 2 shows the stain resistance with respect to the added amount of SnO 2. Here, the added amount of SnO2 is represented by the ratio of the weight of SnO2 to the total weight of the amounts of TiO2 and SnO2. When SnO2 is added in an amount of 30% or more, the stains are hard to reach dramatically. It is understood that the reason is the following three points. First, the porosity was reduced to less than 20% by adding SnO2 in an amount of 30% or more (FIG. 3).
Secondly, the addition of SnO2 reduced the pores with large pore diameter. FIG. 4 shows the maximum width of open pores with respect to the added amount of SnO2, but when the added amount of SnO2 is 30% or more, it is as small as 0.04 μm. Thirdly, it is understood that the improvement of the surface roughness due to the addition of SnO2 also has an influence. FIG. 5 shows the deodorizing property and abrasion resistance with respect to the added amount of SnO2. SnO2 for deodorant
Even if the crystal diameter of the sol was changed from 0.0035 μm to 0.01 μm, there was almost no change and good results were shown.
When the amount of SnO2 is less than 50%, R30 is 8
A good result of 0% or more was shown. As compared with the relationship between the amount of added SnO2 and the porosity in FIG.
When the content is 0% or more and 50% or less, the porosity is less than 10%, but the deodorizing property is good. This tendency is different from the previously-applied relationship between the porosity and the deodorant property (FIG. 6) in the case where the particles for filling the gap are not added. The reason is considered as follows. That is, in this case, the porosity is 10%.
However, the pores of about 0.02 μm still remain as shown in FIG. 4, and the crystal diameter of the particles filling the gap is 0.0035 μm, which is larger than the size of the gas (several A). This is because, under this condition without grain growth, the phenomenon that the gas passage is closed does not occur.

【0028】耐摩耗性に関してはSnO2の添加量30
%以上のときの効果がSnO2ゾルの結晶径によって異
なった。すなわち0.008μm以下の粒子を添加した
場合は◎または○へと向上するが、0.01μmでは添
加効果は認められなかった。以上本実験より以下のこと
がわかった。 (1)基材にTiO2膜を形成し、その薄膜の表面に生
成した間隙に、その間隙より小さな粒子(SnO2ゾ
ル)を添加すると、汚れがつきにくくなる。 (2)SnO2の添加量がTiO2とSnO2の総重量
に対して30重量%以上であれば、汚れがつきにくく、
耐摩耗性も向上する。 (3)SnO2の添加量がTiO2とSnO2の総重量
に対して50重量%以下であれば、防臭性は良好なまま
維持できる。 (4)気孔率を20%未満、開気孔の最大幅を0.04
μm以下にすれば汚れがつきにくくなる。
Regarding the wear resistance, the addition amount of SnO2 is 30
%, The effect varied depending on the crystal size of SnO2 sol. That is, when particles of 0.008 μm or less were added, the result was improved to ⊚ or ◯, but at 0.01 μm, the effect of addition was not recognized. From the above experiment, the following was found. (1) When a TiO2 film is formed on a substrate and particles (SnO2 sol) smaller than the gap are added to the gap formed on the surface of the thin film, stains are less likely to adhere. (2) If the added amount of SnO2 is 30% by weight or more based on the total weight of TiO2 and SnO2, stains are less likely to attach,
Abrasion resistance is also improved. (3) When the added amount of SnO2 is 50% by weight or less with respect to the total weight of TiO2 and SnO2, the deodorant property can be kept good. (4) Porosity less than 20%, maximum open pore width 0.04
If the thickness is less than μm, stains are less likely to attach.

【0029】(実施例2)小便器のサナの光の当らない
側面部分にアナターゼ型TiO2膜を形成したものを設
置し、2週間実地試験を行い、通常のアナターゼ型Ti
O2膜を形成しないものと比較した。その結果、両者と
もに菌類と尿石に起因する黄色い染みが付着した。しか
しながら通常の便器のサナではこする程度では染みが落
ちないのに対し、側面部分にアナターゼ型TiO2膜を
形成したものではこすると染みの黄色がほとんど目立た
なくなった。サナ側面部には光が照射されていないこと
からこの結果はアナターゼ型TiO2膜の光触媒効果で
はなく、むしろ染みが強固に付着しにくい結晶質のアナ
ターゼ型TiO2膜を表面に形成したためと解される。
(Example 2) An anatase type TiO2 film was formed on the side portion of the urinals which was not exposed to light, and a field test was conducted for 2 weeks.
It was compared with the case where no O2 film was formed. As a result, yellow stains due to fungi and urinary stones adhered to both. However, while the stains of ordinary toilet bowls did not come off by rubbing, the yellow of the stains became almost inconspicuous when rubbed with anatase-type TiO2 film formed on the side surface. Since the side surface of the sana is not irradiated with light, this result is not due to the photocatalytic effect of the anatase-type TiO2 film, but rather to the fact that the crystalline anatase-type TiO2 film on which the stain is hard to adhere is formed on the surface. .

【0030】(実施例3)15cm角の陶器質タイルの
表面にSiO2−Al2O3−Na/K20フリットを
塗布し、次いでその表面に結晶径0.01μmのTiO
2ゾルのアンモニア解膠型懸濁液をスプレー・コーティ
ング法により塗布し、750℃で2時間焼成して、Ti
O2薄膜の膜厚で0.2μm、0.4μm、0.8μm
の3種類を作製した。この段階のTiO2薄膜の気孔率
は45%、TiO2粒子の結晶径は0.02μmであっ
た。冷却した上記試料にさらにチタネートテトラエトキ
シドと36%塩酸とエタノールとの10:1:400
(重量比)混合液を乾燥空気をキャリヤーとしてフロー
・コーティング法で塗布し乾燥した。塗布量はTiO2
で40〜50μg/cm2とした。その後500℃で1
0分間焼成した。このTiアルコキシド塗布工程を1〜
5回繰り返した。得られた試料について防臭性、抗菌
性、耐摩耗性、汚れのつきにくさについて評価した。
(Example 3) SiO2-Al2O3-Na / K20 frit was applied to the surface of a 15 cm square ceramic tile, and then TiO 2 having a crystal diameter of 0.01 μm was applied to the surface.
2 sol of ammonia peptization suspension was applied by spray coating method and baked at 750 ° C. for 2 hours.
O2 thin film thickness 0.2μm, 0.4μm, 0.8μm
3 types were prepared. The porosity of the TiO 2 thin film at this stage was 45%, and the crystal diameter of the TiO 2 particles was 0.02 μm. The cooled sample was further mixed with titanate tetraethoxide, 36% hydrochloric acid and ethanol at 10: 1: 400.
(Weight ratio) The mixed liquid was applied by a flow coating method using dry air as a carrier and dried. Coating amount is TiO2
Was set to 40 to 50 μg / cm 2. Then 1 at 500 ° C
Bake for 0 minutes. This Ti alkoxide coating step
Repeated 5 times. The obtained samples were evaluated for deodorant property, antibacterial property, abrasion resistance, and stain resistance.

【0031】抗菌性については、大腸菌(Escher
ichia coli W3110株)を用いて試験し
た。予め70%エタノールで殺菌した多機能材の最表面
に菌液0.15ml(1〜50000CFU)を滴下
し、ガラス板(100×100)に載せて基材最表面に
密着させ、試料とした。白色灯(3500ルクス)を3
0分間照射後、照射した試料の菌液を滅菌ガーゼで拭い
て生理食塩水10mlに回収し、菌の生存率を求め、評
価の指標とした。評価指標を下記に示す。 +++:大腸菌の生存率10%未満 ++ :大腸菌の生存率10%以上30%未満 + :大腸菌の生存率30%以上70%未満 − :大腸菌の生存率70%以上 上記いずれの条件においても、防臭性はR30(L)で
80%以上、抗菌性は+++であった。
Regarding antibacterial activity, Escherichia coli ( Escher
ichia coli W3110 strain). 0.15 ml (1 to 50000 CFU) of the bacterial solution was dropped on the outermost surface of the multifunctional material that had been sterilized with 70% ethanol in advance, and the bacterial solution was placed on a glass plate (100 × 100) and brought into close contact with the outermost surface of the substrate to obtain a sample. 3 white lights (3500 lux)
After irradiation for 0 minutes, the bacterial solution of the irradiated sample was wiped with sterile gauze and collected in 10 ml of physiological saline, and the survival rate of the bacteria was determined and used as an index for evaluation. The evaluation index is shown below. ++: Escherichia coli survival rate less than 10% ++: Escherichia coli survival rate 10% or more and less than 30% +: Escherichia coli survival rate 30% or more and less than 70% −: Escherichia coli survival rate 70% or more Deodorant under any of the above conditions The sex was 80% or more with R30 (L), and the antibacterial property was +++.

【0032】汚れのつきにくさ(図7)および耐摩耗性
(図8)についてはTiアルコキシド塗布回数とTiO
2膜厚に依存した。Tiアルコキシド塗布回数を多くす
れば汚れのつきにくさおよび耐摩耗性は向上した。また
TiO2膜厚が薄いほど少ないTiアルコキシド塗布回
数で汚れのつきにくさおよび耐摩耗性は向上した。以上
のことの理由の1つとしてTiアルコキシド塗布による
TiO2層表面の気孔率の減少が考えられる。図9にT
iO2層表面の気孔率とTiアルコキシド塗布回数およ
びTiO2膜厚との関係を示す。TiO2層表面の気孔
率は、Tiアルコキシド塗布回数を多くするほど減少
し、かつまたTiO2膜厚が薄いほど同じTiアルコキ
シド塗布回数では減少しており、この関係はTiアルコ
キシド塗布回数およびTiO2膜厚と汚れのつきにくさ
および耐摩耗性との関係とよく対応している。特に汚れ
のつきにくさにおいては、実施例1の場合と同様に気孔
率20%未満ではいずれも◎となった。
As for the stain resistance (FIG. 7) and abrasion resistance (FIG. 8), the number of times the Ti alkoxide was applied and TiO
2 Depends on film thickness. Increasing the number of times the Ti alkoxide was applied improved the stain resistance and abrasion resistance. Further, the thinner the TiO2 film thickness, the less the number of times the Ti alkoxide was applied, and the more the stain resistance and the abrasion resistance were improved. It is considered that one of the reasons for the above is that the porosity of the surface of the TiO2 layer is reduced by applying the Ti alkoxide. T in FIG.
The relationship between the porosity of the iO2 layer surface, the number of times the Ti alkoxide is applied, and the TiO2 film thickness is shown. The porosity of the TiO2 layer surface decreases as the Ti alkoxide coating number increases, and decreases as the TiO2 film thickness decreases with the same Ti alkoxide coating number. This relationship is related to the Ti alkoxide coating number and the TiO2 film thickness. It corresponds well to the relationship between dirt resistance and abrasion resistance. In particular, as to the stain resistance, as in the case of Example 1, when the porosity was less than 20%, all became ⊚.

【0033】(実施例4)15cm角の陶器質タイルの
表面にSiO2−Al2O3−Na/K20フリットを
塗布し、次いでその表面に結晶径0.01μmのTiO
2ゾルのアンモニア解膠型懸濁液をスプレー・コーティ
ング法により塗布し、750℃で2時間焼成した。この
段階のTiO2薄膜の膜厚0.4μm、気孔率は45
%、TiO2粒子の結晶径は0.02μmであった。冷
却した上記試料にさらにチタネートテトラエトキシドと
36%塩酸とエタノールとの10:1:400(重量
比)混合液を乾燥空気をキャリヤーとしてフロー・コー
ティング法で塗布し乾燥した。塗布量はTiO2で40
〜50μg/cm2とした。その後500℃で10分間
焼成した。このTiアルコキシド塗布工程を3回繰り返
した。その後さらに試料上に1重量%の硝酸銀水溶液を
塗布し、光還元(光源は20ワットBLBランプ、光源
から試料までの距離10cm、照射時間30秒)して試
料を得た。ここで試料表面に担持された銀の量は0.7
μg/cm2、銀の粒径は平均40nm程度であった。
得られた試料について抗菌性および長期使用後の抗菌性
について測定した。
Example 4 SiO2-Al2O3-Na / K20 frit was applied to the surface of a 15 cm square ceramic tile, and then TiO 2 having a crystal diameter of 0.01 μm was applied to the surface.
2 sol of ammonia peptization suspension was applied by a spray coating method and baked at 750 ° C. for 2 hours. At this stage, the TiO2 thin film has a film thickness of 0.4 μm and a porosity of 45.
%, And the crystal diameter of the TiO2 particles was 0.02 μm. A 10: 1: 400 (weight ratio) mixture of titanate tetraethoxide, 36% hydrochloric acid and ethanol was applied to the cooled sample by a flow coating method using dry air as a carrier, and dried. The coating amount is TiO2 40
˜50 μg / cm 2. Then, it was baked at 500 ° C. for 10 minutes. This Ti alkoxide coating step was repeated 3 times. Thereafter, a 1 wt% silver nitrate aqueous solution was further applied onto the sample, and photoreduction (a light source was a 20 watt BLB lamp, a distance from the light source to the sample was 10 cm, and an irradiation time was 30 seconds) to obtain a sample. Here, the amount of silver supported on the sample surface is 0.7.
The average particle size was about 40 nm.
The obtained sample was measured for antibacterial property and antibacterial property after long-term use.

【0034】長期使用後の抗菌性については、以下のよ
うに試験した。まず得られた試料の表面をエタノール等
でよく洗浄し、50℃で乾燥させた。次に滅菌したビー
カーに公衆浴場で採取した浴槽水を入れ、その中に試料
を浸漬させ1か月放置した。その後試料を取り出しエタ
ノール等で洗浄後、多機能材の最表面を70%エタノー
ルで滅菌した。次いで大腸菌(Escherichia
coli W3110株)の菌液0.15ml(1〜
50000CFU)をガラス板(100×100)に載
せて基材最表面に密着させ、試料とした。白色灯(35
00ルクス)を30分間照射後、照射した試料の菌液を
滅菌ガーゼで拭いて生理食塩水10mlに回収し、菌の
生存率を求め、評価の指標とした。評価指標は実施例3
の抗菌性試験と同様である。
The antibacterial property after long-term use was tested as follows. First, the surface of the obtained sample was thoroughly washed with ethanol or the like, and dried at 50 ° C. Next, bath water collected in a public bath was placed in a sterilized beaker, and the sample was immersed in the bath water and left for 1 month. Then, the sample was taken out and washed with ethanol or the like, and the outermost surface of the multifunctional material was sterilized with 70% ethanol. Then Escherichia
E. coli W3110 strain 0.15 ml (1-
50,000 CFU) was placed on a glass plate (100 × 100) and brought into close contact with the outermost surface of the base material to prepare a sample. White light (35
(00 lux) for 30 minutes, the bacterium solution of the radiated sample was wiped with sterile gauze and recovered in 10 ml of physiological saline, and the survival rate of the bacterium was determined and used as an index for evaluation. Example 3 is an evaluation index
It is similar to the antibacterial test of.

【0035】比較のため実施例3で用いた試料について
も試験した。その結果、初期の抗菌性については本実施
例で作製した試料も、実施例3で作製した試料もともに
+++となったが、1か月後の抗菌性には両者の間に差
を生じた。すなわち実施例3で作製した試料では抗菌性
は+に悪化したが、本実施例で作製した試料では+++
と初期と変わらない値を示した。これはTiO2層表面
の吸着性の高いサイトを銀が占有することにより、使用
中に吸着性の高いサイトに塵芥等が付着するのを妨げる
ためと解される。
The sample used in Example 3 was also tested for comparison. As a result, regarding the initial antibacterial properties, both the sample prepared in this example and the sample prepared in Example 3 were +++, but there was a difference between them in the antibacterial properties one month later. . That is, the antibacterial property deteriorated to + in the sample prepared in Example 3, but +++ in the sample prepared in this example.
And showed the same value as the initial value. It is understood that this is because silver occupies the highly adsorptive site on the surface of the TiO2 layer, which prevents dust and the like from adhering to the highly adsorptive site during use.

【0036】[0036]

【発明の効果】基材表面に光触媒機能を有する層を形成
し、その層の表而に生成した間隙にその間隙よりも小さ
な粒子を充填したので、従来の光触媒薄膜よりも表面に
存在する間隙の量および大きさが小さくなり、かつ表面
平滑性が良好になるので、防臭性、抗菌性を維持しつつ
膜強度を向上し、かつ汚れ成分を構成する高分子、塵
芥、菌類等が付着しにくくすることができる。
EFFECTS OF THE INVENTION Since a layer having a photocatalytic function is formed on the surface of a base material, and particles that are smaller than the gaps are filled in the physically generated gaps of the layer, the gaps existing on the surface more than the conventional photocatalytic thin film. Since the amount and size of the product are small and the surface smoothness is good, the film strength is improved while maintaining the deodorant property and the antibacterial property, and the macromolecules, dust, fungi, etc. that constitute the dirt component adhere. Can be hardened.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(c)は本発明の実施例の構成を説明
する図である。
1 (a) to 1 (c) are views for explaining the configuration of an embodiment of the present invention.

【図2】間隙に充填する粒子の添加量と汚れのつきにく
さの関係を表すグラフ
FIG. 2 is a graph showing the relationship between the amount of particles to be filled in the gap and the stain resistance.

【図3】間隙に充填する粒子の添加量と光触媒機能を有
する層表面の開気孔率の関係を表すグラフ
FIG. 3 is a graph showing the relationship between the amount of particles filling the gap and the open porosity of the surface of the layer having a photocatalytic function.

【図4】間隙に充填する粒子の添加量と光触媒機能を有
する層表面の最大気孔幅の関係を表すグラフ
FIG. 4 is a graph showing the relationship between the added amount of particles filling the gap and the maximum pore width on the surface of the layer having a photocatalytic function.

【図5】間隙に充填する粒子の添加量と防臭性及び耐摩
耗性の関係を表すグラフ
FIG. 5 is a graph showing the relationship between the amount of particles filled in the gap and the deodorant property and wear resistance.

【図6】間隙に粒子を充填しない光触媒機能を有する層
の気孔率と防臭性及び耐摩耗性の関係を表すグラフ
FIG. 6 is a graph showing the relationship between the porosity of a layer having a photocatalytic function in which voids are not filled with particles and odor resistance and abrasion resistance.

【図7】間隙に充填する粒子のコーティング回数と汚れ
のつきにくさの関係を表すグラフ
FIG. 7 is a graph showing the relationship between the number of times particles are coated in the gap and the degree of stain resistance.

【図8】間隙に充填する粒子のコーティング回数と耐摩
耗性の関係を表すグラフ
FIG. 8 is a graph showing the relationship between the number of coatings of particles filling gaps and wear resistance.

【図9】間隙に充填する粒子のコーティング回数と光触
媒機能を有する層表面の開気孔率の関係を表すグラフ
FIG. 9 is a graph showing the relationship between the number of coatings of particles filling gaps and the open porosity of the surface of a layer having a photocatalytic function.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/44 M 23/50 M 23/72 M 23/74 M (72)発明者 則本 圭一郎 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 23/44 M 23/50 M 23/72 M 23/74 M (72) Inventor Keiichiro Norimoto 2-1, 1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Equipment Co., Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に光触媒機能を有する層が形成
され、その層の表面に生成した間隙にその間隙よりも小
さな粒子が充填されていることを特徴とする光触媒機能
を有する多機能材。
1. A multifunctional material having a photocatalytic function, characterized in that a layer having a photocatalytic function is formed on the surface of a base material, and the voids formed on the surface of the layer are filled with particles smaller than the voids. .
【請求項2】 基材表面に光触媒機能を有する層が形成
され、その層の表面に生成した間隙にその間隙よりも小
さな粒子が充填され、その層の表面の気孔率が20%未
満であることを特徴とする光触媒機能を有する多機能
材。
2. A layer having a photocatalytic function is formed on the surface of a base material, and the voids formed on the surface of the layer are filled with particles smaller than the voids, and the porosity of the surface of the layer is less than 20%. A multifunctional material having a photocatalytic function, which is characterized in that
【請求項3】 前記光触媒機能を有する層の開気孔の最
大幅が0.04μm以下であることを特徴とする第2項
記載の光触媒機能を有する多機能材。
3. The multifunctional material having a photocatalytic function according to claim 2, wherein the maximum width of the open pores of the layer having a photocatalytic function is 0.04 μm or less.
【請求項4】 前記光触媒機能を有する層の表面に生成
した間隙に0.01μm未満、好ましくは0.008μ
m以下の小さな粒子が充填されていることを特徴とする
第1項及び第2項に記載の光触媒機能を有する多機能
材。
4. The gap formed on the surface of the layer having a photocatalytic function is less than 0.01 μm, preferably 0.008 μm.
The multi-functional material having a photocatalytic function according to the first and second aspects, characterized in that it is filled with small particles of m or less.
【請求項5】 基材表面に光触媒機能を有する層が形成
され、その層の表面に生成した間隙にその間隙よりも小
さな粒子が充填され、さらにその上にCu、Ag、Z
n、Fe、Co、Ni、Pd、Ptのうちの少なくとも
1種の金属が固定されていることを特徴とする光触媒機
能を有する多機能材。
5. A layer having a photocatalytic function is formed on the surface of a base material, and voids formed on the surface of the layer are filled with particles smaller than the voids, and further Cu, Ag, Z
A multifunctional material having a photocatalytic function, wherein at least one metal selected from n, Fe, Co, Ni, Pd, and Pt is fixed.
【請求項6】 前記光触媒機能を有する層は、グレーズ
層を介して基材表面に形成されていることを特徴とする
第1項乃至5項記載の光触媒機能を有する多機能材。
6. The multifunctional material having a photocatalytic function according to claim 1, wherein the layer having a photocatalytic function is formed on the surface of the base material via a glaze layer.
【請求項7】 前記光触媒機能を有する層が主として結
晶質の光触媒粒子からなることを特徴とする請求項1乃
至5項に記載の光触媒機能を有する多機能材。
7. The multifunctional material having a photocatalytic function according to claim 1, wherein the layer having a photocatalytic function is mainly composed of crystalline photocatalytic particles.
【請求項8】 基材表面に光触媒機能を有する層を形成
する工程と金属アルコキシド又は有機金属塩をさらにそ
の表面に塗布し、乾燥熱処理する工程を含むことを特徴
とする光触媒機能を有する多機能材の製造方法。
8. A multi-function having a photocatalytic function, comprising: a step of forming a layer having a photocatalytic function on the surface of a base material; and a step of further applying a metal alkoxide or an organic metal salt to the surface and subjecting to dry heat treatment. Method of manufacturing wood.
【請求項9】 基材表面に光触媒機能を有する層を形成
する工程と金属アルコキシド又は有機金属塩をさらにそ
の表面に塗布し、乾燥熱処理する工程と、Ag、Cu、
Zn、Fe、Co、Ni、Pd、Ptのうちの少なくと
も1種の金属イオンを含む水溶液を塗布し光還元する工
程とからなることを特徴とする光触媒機能を有する多機
能材の製造方法。
9. A step of forming a layer having a photocatalytic function on the surface of a base material, a step of further applying a metal alkoxide or an organic metal salt to the surface and heat-drying, Ag, Cu,
A method for producing a multifunctional material having a photocatalytic function, which comprises a step of applying an aqueous solution containing at least one metal ion of Zn, Fe, Co, Ni, Pd, and Pt and performing photoreduction.
【請求項10】 前記光触媒機能を有する層の膜厚を
0.4μm未満としたことを特徴とする第8項記載の光
触媒機能を有する多機能材の製造方法。
10. The method for producing a multifunctional material having a photocatalytic function according to claim 8, wherein the film thickness of the layer having a photocatalytic function is less than 0.4 μm.
【請求項11】 基材表面にグレーズ層を形成する工
程、グレ、ズ層の上に光触媒機能を有する層を形成する
工程、前記層の最表面が露出されかつ下層の一部が前記
グレーズ層に埋設されるような温度で熱処理する工程、
金属アルコキシド又は有機金属塩をさらにその表面に塗
布し、乾燥熱処理する工程を含むことを特徴とする光触
媒機能を有する多機能材の製造方法。
11. A step of forming a glaze layer on the surface of a base material, a step of forming a layer having a photocatalytic function on the glaze layer, a top surface of the layer is exposed, and a part of the lower layer is the glaze layer. A step of heat treatment at a temperature such that it is embedded in
A method for producing a multifunctional material having a photocatalytic function, which further comprises a step of applying a metal alkoxide or an organic metal salt to the surface of the metal alkoxide or the organic metal salt and subjecting it to a dry heat treatment.
【請求項12】 基材表面にグレーズ層を形成する工
程、グレーズ層の上に光触媒機能を有する層を形成する
工程、前記層の最表面が露出されかつ下層の一部が前記
グレーズ層に埋設されるような温度で熱処理する工程、
金属アルコキシド又は有機金属塩をさらにその表面に塗
布し、乾燥熱処理する工程、Ag、Cu、Zn、Fe、
Co、Ni、Pd、Ptのうちの少なくとも1種の金属
イオンを含む水溶液を塗布し光還元する工程からなるこ
とを特徴とする光触媒機能を有する多機能材の製造方
法。
12. A step of forming a glaze layer on the surface of a base material, a step of forming a layer having a photocatalytic function on the glaze layer, the outermost surface of the layer is exposed, and a part of the lower layer is embedded in the glaze layer. Heat treatment at a temperature as described above,
A step of further applying a metal alkoxide or an organic metal salt on the surface thereof, followed by drying and heat treatment, Ag, Cu, Zn, Fe,
A method for producing a multifunctional material having a photocatalytic function, comprising the steps of applying an aqueous solution containing at least one metal ion of Co, Ni, Pd, and Pt and performing photoreduction.
【請求項13】 前記光触媒機能を有する層上にTiア
ルコキシドを表面に塗布し、乾燥熱処理する工程におい
て、1回当りのTiアルコキシド塗布量は、TiO2に
換算して10μg/cm2以上100μg/cm2以下
であることを特徴とする請求項8、9、11及び12に
記載の光触媒機能を有する多機能材の製造方法。
13. The coating amount of Ti alkoxide per time in the step of coating Ti alkoxide on the surface having the photocatalytic function on the surface and performing heat treatment for drying is 10 μg / cm 2 or more and 100 μg / cm 2 or less in terms of TiO 2. The method for producing a multifunctional material having a photocatalytic function according to claim 8, 9, 11, or 12.
【請求項14】 前記光触媒機能を有する層上にTiア
ルコキシドを表面に塗布し、乾燥熱処理する工程におい
て、熱処理温度は400℃以上800℃以下であること
を特徴とする請求項8、9、11及び12に記載の光触
媒機能を有する多機能材の製造方法。
14. The heat treatment temperature is 400 ° C. or higher and 800 ° C. or lower in the step of coating Ti alkoxide on the surface of the layer having a photocatalytic function and performing a heat treatment for drying. 13. A method for producing a multifunctional material having a photocatalytic function according to 12 above.
【請求項15】 前記光触媒機能を有する層上にTiア
ルコキシドを表面に塗布し、乾燥熱処理する工程におい
て、塗布液中のTiアルコキシドに対する塩酸量は1重
量%以上10重量%以下であることを特徴とする請求項
8、9、11及び12に記載された光触媒機能を有する
多機能材の製造方法。
15. The amount of hydrochloric acid with respect to the Ti alkoxide in the coating liquid is 1% by weight or more and 10% by weight or less in the step of coating the surface of the layer having a photocatalytic function with a Ti alkoxide and performing a dry heat treatment. The method for producing a multifunctional material having a photocatalytic function according to claim 8, 9, 11, or 12.
【請求項16】 基材表面に光触媒機能を有する粒子か
らなる気孔率10%以上の光触媒機能を有する膜を形成
する工程およびその膜の表面に生成した間隙にその間隙
よりも小さな粒子を充填する工程を含むことを特徴とす
る光触媒機能を有する多機能材の製造方法。
16. A step of forming a film having a photocatalytic function having a porosity of 10% or more, which is made of particles having a photocatalytic function, on the surface of a base material, and filling the voids formed on the surface of the film with particles smaller than the voids. A method for producing a multifunctional material having a photocatalytic function, comprising the steps of:
【請求項17】 基材表面に光触媒機能を有する粒子か
らなる気孔率10%以上の光触媒機能を有する膜を形成
する工程、その膜の表面に生成した間隙にその間隙より
も小さな粒子を充填する工程、さらにその上にCu、A
g、Zn、Fe、Co、Ni、Pd、Ptのうちの少な
くとも1種の金属を固定する工程からなることを特徴と
する光触媒機能を有する多機能材の製造方法。
17. A step of forming a film having a photocatalytic function having a porosity of 10% or more, which is made of particles having a photocatalytic function, on the surface of a base material, and filling the voids formed on the surface of the film with particles smaller than the voids. Process, and then Cu, A
A method for producing a multifunctional material having a photocatalytic function, which comprises a step of fixing at least one metal selected from g, Zn, Fe, Co, Ni, Pd, and Pt.
JP29776094A 1993-10-12 1994-10-24 Multifunctional material having photocatalytic function and method for producing the same Expired - Lifetime JP3246235B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP29776094A JP3246235B2 (en) 1994-10-24 1994-10-24 Multifunctional material having photocatalytic function and method for producing the same
CN02122422.6A CN1289195C (en) 1993-12-10 1994-12-09 Multifunctional material with optical catalytic function and its mfg. method
KR1019950703331A KR100357482B1 (en) 1993-12-10 1994-12-09 Multi-functional material with photo-catalytic functions and method of manufacturing same
PCT/JP1994/002077 WO1995015816A1 (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
AT95902937T ATE235314T1 (en) 1993-12-10 1994-12-09 MULTIFUNCTIONAL MATERIAL WITH PHOTOCATALYTIC FUNCTION AND METHOD FOR PRODUCING SAME
US08/501,110 US5853866A (en) 1993-12-10 1994-12-09 Multi-functional material with photocalytic functions and method of manufacturing same
CN94191730A CN1102445C (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
EP95902937A EP0684075B1 (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
ES95902937T ES2191043T3 (en) 1993-12-10 1994-12-09 MULTIFUNCTIONAL MATERIAL EQUIPPED WITH PHOTOCATALITIC FUNCTION AND METHOD TO PRODUCE IT.
CA 2155822 CA2155822C (en) 1993-12-10 1994-12-09 Multi-functional material with photocatalytic functions and method of manufacturing same
DE69432348T DE69432348T8 (en) 1993-12-10 1994-12-09 MULTIFUNCTIONAL MATERIAL WITH PHOTOCATALYTIC FUNCTION AND METHOD FOR THE PRODUCTION THEREOF
AU11998/95A AU1199895A (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
US09/167,326 US6210779B1 (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,325 US6294246B1 (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,323 US6268050B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,327 US6294247B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,324 US6027797A (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
HK98113672A HK1017810A1 (en) 1993-12-10 1998-12-16 Multi-functional material having photo-catalytic function and production method therefor
KR1019990055031A KR100358851B1 (en) 1993-12-10 1999-12-04 Multi-functional material having photo-catalytic function and produing method of thereof
KR1019990055034A KR100361564B1 (en) 1993-12-10 1999-12-04 Multi-functional material having photo-catalytic function and producing method therefor
KR1019990055032A KR100361563B1 (en) 1993-12-10 1999-12-04 Multi-functional material having photo-catalytic function and producing method therefor
HK06105716A HK1085719A1 (en) 1993-12-10 2006-05-17 Multi-functional tile having photocatalytic function and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29776094A JP3246235B2 (en) 1994-10-24 1994-10-24 Multifunctional material having photocatalytic function and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08117606A true JPH08117606A (en) 1996-05-14
JP3246235B2 JP3246235B2 (en) 2002-01-15

Family

ID=17850823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29776094A Expired - Lifetime JP3246235B2 (en) 1993-10-12 1994-10-24 Multifunctional material having photocatalytic function and method for producing the same

Country Status (1)

Country Link
JP (1) JP3246235B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029424A1 (en) * 1997-12-10 1999-06-17 Toto Ltd. Photocatalyst composition, substance containing photocatalyst, and material functioning as photocatalyst and process for producing the same
JPH11192436A (en) * 1996-12-10 1999-07-21 Toto Ltd Photocatalyst compound, photocatalyst-containing material, material having photocatalytic function and production thereof
JPH11216276A (en) * 1998-02-02 1999-08-10 Matsushita Electric Ind Co Ltd Manufacture of edge tool
JP2006200358A (en) * 2006-02-18 2006-08-03 Inax Corp Toilet room
KR100613139B1 (en) * 2006-01-24 2006-08-17 (주)알엔씨 Waste rubber chip coated with photocatalyst thermo-reflective coating
JP2009011664A (en) * 2007-07-06 2009-01-22 Kon Corporation:Kk Cleaner
JP2017523913A (en) * 2014-08-06 2017-08-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional film and method for producing the same
JP2017526523A (en) * 2014-08-06 2017-09-14 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional film and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192436A (en) * 1996-12-10 1999-07-21 Toto Ltd Photocatalyst compound, photocatalyst-containing material, material having photocatalytic function and production thereof
WO1999029424A1 (en) * 1997-12-10 1999-06-17 Toto Ltd. Photocatalyst composition, substance containing photocatalyst, and material functioning as photocatalyst and process for producing the same
JPH11216276A (en) * 1998-02-02 1999-08-10 Matsushita Electric Ind Co Ltd Manufacture of edge tool
KR100613139B1 (en) * 2006-01-24 2006-08-17 (주)알엔씨 Waste rubber chip coated with photocatalyst thermo-reflective coating
JP2006200358A (en) * 2006-02-18 2006-08-03 Inax Corp Toilet room
JP2009011664A (en) * 2007-07-06 2009-01-22 Kon Corporation:Kk Cleaner
JP2017523913A (en) * 2014-08-06 2017-08-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional film and method for producing the same
JP2017526523A (en) * 2014-08-06 2017-09-14 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional film and method for producing the same
US10220372B2 (en) 2014-08-06 2019-03-05 Lg Hausys, Ltd. Photocatalyst functional film and method for producing the same
US10232350B2 (en) 2014-08-06 2019-03-19 Lg Hausys, Ltd. Photocatalyst functional film and method for producing the same

Also Published As

Publication number Publication date
JP3246235B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
KR100361563B1 (en) Multi-functional material having photo-catalytic function and producing method therefor
JP2918787B2 (en) Photocatalyst and method for producing the same
JP3309591B2 (en) Multifunctional material with photocatalytic function
JP3559892B2 (en) Photocatalytic film and method for forming the same
EP0684075A1 (en) Multi-functional material having photo-catalytic function and production method therefor
JP2006021994A (en) Method of manufacturing multifunctional material having photocatalytic function
JPH0866635A (en) Photocatalytic thin film and its formation
JPH07155598A (en) Photocatalyst coating film and its formation
JPH08117606A (en) Multifunctional material having photocatalytic function and its production
JP3523787B2 (en) Outdoor building materials with photocatalytic layers
JP3027739B2 (en) Photocatalyst and method for producing the same
JPH09225303A (en) Photocatalyst composition, its manufacture, and substrate with photocatalyst composition
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
KR100631104B1 (en) Hydrophilic glass coated with metal oxide and method for producing it
JPH11188272A (en) Photocatalytic body and its production
JP3695552B2 (en) Washbasin bowl and method for cleaning the same
TW406031B (en) Multi-functional material having photo-catalytic function and production method therefor
JP3225761B2 (en) Multifunctional material with photocatalytic function
JP3534072B2 (en) Bathroom components
JPH11188271A (en) Photocatalytic body and its production
JPH1171138A (en) Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film
JPH10277403A (en) Multifunctional material having photocatalytic function
JPH08224481A (en) Member having photocatalytic action

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

EXPY Cancellation because of completion of term