JP3267884B2 - Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same - Google Patents

Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same

Info

Publication number
JP3267884B2
JP3267884B2 JP35659096A JP35659096A JP3267884B2 JP 3267884 B2 JP3267884 B2 JP 3267884B2 JP 35659096 A JP35659096 A JP 35659096A JP 35659096 A JP35659096 A JP 35659096A JP 3267884 B2 JP3267884 B2 JP 3267884B2
Authority
JP
Japan
Prior art keywords
semiconductor fine
film
fine particles
photocatalytic
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35659096A
Other languages
Japanese (ja)
Other versions
JPH10195694A (en
Inventor
昭 藤嶋
和仁 橋本
信之 中田
敏夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP35659096A priority Critical patent/JP3267884B2/en
Publication of JPH10195694A publication Critical patent/JPH10195694A/en
Application granted granted Critical
Publication of JP3267884B2 publication Critical patent/JP3267884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の照射下で抗菌
・防黴・防汚性を示す光触媒膜を形成したアルミニウム
又はアルミニウム合金(以下、アルミ合金と称する)材
料及びその製造方法に関し、さらに詳しくは、陽極酸化
皮膜を形成したアルミ合金基材上に、該基材への付き廻
り性、半導体微粒子の密着性に優れた光触媒膜を形成す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum or aluminum alloy (hereinafter referred to as aluminum alloy) material having a photocatalytic film exhibiting antibacterial, antifungal and antifouling properties under light irradiation, and a method for producing the same. More specifically, the present invention relates to a method for forming a photocatalytic film having excellent adhesion to a base material and adhesion of semiconductor fine particles on an aluminum alloy base material having an anodized film formed thereon.

【0002】[0002]

【従来の技術】近年、MRSA(メチシリン耐性黄色ブ
ドウ球菌)等の院内感染が問題視されるようになってき
ている。院内感染の多くは日和見感染症であり、ウィル
ス、細菌、原虫、黴等が抵抗力や免疫力が低下した人体
の中で急に活発化して発症する感染症である。例えばM
RSAの感染に関して言えば、その菌は主に患者や院内
従事者の体、スリッパ、医療器具等を介して病院内に広
がるようだが、空気中の塵埃に菌が付着して空気感染を
起こすこともある。そのため、院内感染を防ぐには室内
空気全体を殺菌、浄化処理する必要があり、従来、薬品
による消毒や空気清浄器に頼ってきた。しかしながら、
消毒においては、薬品を用いるため人体への影響が無視
できず、薬品の臭いも不快感を与えるといった問題があ
り、また、作業が容易でない等の理由から頻繁に行うわ
けにもいかなかった。一方、空気清浄器による院内の浄
化は比較的容易ではあるが、空気中の塵埃等を静電気に
より除去する原理であるため、細菌、黴、及びそれに付
随する臭気等は除去しにくいといった問題があった。ま
た、煙草のヤニがサッシ、パネル材等の建築部材表面に
付着し汚れた場合、美観を損ねるだけでなく、その部分
に細菌が付着し繁殖し易いという問題もあった。
2. Description of the Related Art In recent years, nosocomial infections such as MRSA (methicillin-resistant Staphylococcus aureus) have been regarded as a problem. Most hospital-acquired infections are opportunistic infections, in which viruses, bacteria, protozoa, molds, and the like are suddenly activated in a human body with reduced resistance and immunity, and develop. For example, M
Speaking of RSA infection, the germs seem to spread in the hospital mainly through the body of patients and hospital staff, slippers, medical equipment, etc., but the germs attach to dust in the air and cause airborne infection. There is also. Therefore, in order to prevent hospital-acquired infection, it is necessary to sterilize and purify the entire indoor air, and in the past, they have relied on chemical disinfection and air purifiers. However,
In disinfection, the use of chemicals has a problem that the effect on the human body cannot be neglected, and the odor of the chemicals also causes discomfort, and it cannot be performed frequently due to the difficulty of the work. On the other hand, cleaning of the hospital with an air purifier is relatively easy, but since it is based on the principle of removing dust and the like in the air by static electricity, there is a problem that it is difficult to remove bacteria, fungi, and odors associated therewith. Was. In addition, when tobacco tar adheres to the surface of a building member such as a sash or a panel material and becomes dirty, there is a problem that not only the aesthetic appearance is impaired but also bacteria adhere to the portion and easily propagate.

【0003】ところで、TiO2 に代表される光触媒作
用を有する半導体微粒子が、その光触媒作用により有機
物の分解を行い、その作用に基づき抗菌・防黴・防汚・
防臭作用を有することは従来から知られており、最近で
はそれらを利用して、細菌や黴が繁殖しにくい様々な材
料が研究、開発されている。例えば、特開平2−633
3号公報には酸化チタンの粒子表面に銅・亜鉛等の抗菌
性金属を担持させた抗菌性粉末について開示されてお
り、この粉末を樹脂、ゴム、ガラス等に配合することに
よって抗菌性組成物が得られ、また、公知の方法によ
り、電気機器、家具調度品、室内装飾材、食品等の包装
資材等の抗菌性処理のほか、環境衛生施設、機器類の抗
菌剤として上記粉末を利用できると教示している。
Incidentally, semiconductor fine particles having a photocatalytic action represented by TiO 2 decompose organic substances by the photocatalytic action, and based on the action, antibacterial, antifungal, antifouling,
It has been known that it has a deodorizing effect, and recently, various materials have been researched and developed utilizing these materials, in which bacteria and molds are difficult to propagate. For example, Japanese Patent Application Laid-Open No. 2-633
No. 3 discloses an antibacterial powder in which an antibacterial metal such as copper or zinc is supported on the surface of titanium oxide particles, and an antibacterial composition is prepared by blending this powder with resin, rubber, glass or the like. In addition, by a known method, in addition to antibacterial treatment of electrical equipment, furniture furniture, interior decoration materials, packaging materials such as food, etc., the above powder can be used as an antibacterial agent for environmental sanitation facilities and equipment. Is taught.

【0004】また、特開平6−65012号公報には、
銀、銅、亜鉛、白金等の金属を含有した酸化チタン膜を
コンクリート、ガラス、プラスチック、セラミックス、
金属等の材質からなる基板にコーティングすることによ
って、該基板において雑菌及び黴の繁殖を防止できる旨
が開示されている。さらに特開平4−307066号公
報には、パネルの裏面に光触媒を付設し、該パネルの裏
側に短波長ランプを配置し、このランプから光触媒へ紫
外線照射することによって、光触媒を活性化し、パネル
が設置された室内の脱臭を図るという室内空気のリフレ
ッシュ法が開示されている。
[0004] Japanese Patent Application Laid-Open No. 6-65012 discloses that
Titanium oxide films containing metals such as silver, copper, zinc, and platinum can be used for concrete, glass, plastic, ceramics,
It is disclosed that by coating a substrate made of a material such as a metal, the propagation of various bacteria and fungi on the substrate can be prevented. Further, JP-A-4-307066 discloses that a photocatalyst is attached to the back surface of a panel, a short-wavelength lamp is disposed on the back side of the panel, and the photocatalyst is activated by irradiating the photocatalyst with ultraviolet light from the lamp. There is disclosed a method of refreshing indoor air in which the installed room is deodorized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、複雑な
形状を有するアルミ合金製の建築部材(以下、アルミ建
材と称する)、例えば押し出し形材等に、光触媒作用を
有する半導体微粒子や、半導体微粒子を含有もしくは担
持した塗料(以下、光触媒と総称する)をコーティング
する場合には、その付き廻りの問題があり、凸部や隅角
部にまで光触媒を均一にコーティングすることは困難で
ある。さらに、通常行われている半導体微粒子を含む懸
濁液を基材表面に塗布する方法では、200℃を超える
温度で処理しなければ十分な密着性が得られない。ま
た、金属薄膜を形成した後、これを酸化させて所定の光
触媒を形成させる方法でも、200℃を超える温度下で
の処理が必要である。しかし、アルミ合金の場合には、
このような高い温度にさらすとその強度が著しく低下し
てしまうという問題がある。
However, building materials made of aluminum alloy having a complicated shape (hereinafter referred to as aluminum building materials), such as extruded members, contain semiconductor fine particles having photocatalytic action or semiconductor fine particles. Alternatively, in the case of coating a supported paint (hereinafter, collectively referred to as a photocatalyst), there is a problem of the surroundings, and it is difficult to uniformly coat the photocatalyst even on the convex portions and the corner portions. Furthermore, in the usual method of applying a suspension containing semiconductor fine particles to the surface of a substrate, sufficient adhesion cannot be obtained unless the treatment is performed at a temperature exceeding 200 ° C. Also, the method of forming a metal thin film and then oxidizing it to form a predetermined photocatalyst requires a treatment at a temperature exceeding 200 ° C. However, in the case of aluminum alloy,
When exposed to such a high temperature, there is a problem that the strength is significantly reduced.

【0006】一方、200℃以下の温度で硬化する光触
媒も一部実用化されている。このような光触媒膜は、シ
リケート等の低温硬化型の無機系高分子中に半導体微粒
子を分散させたものであるが、そのような場合でも、基
材と光触媒膜の熱膨張係数が異なるため、加熱・降温時
に生じる熱応力の影響で光触媒膜に亀裂が生じ、基材と
の密着性に劣るものとなり、衝撃を受けた場合に光触媒
膜が剥離してしまう。また、この光触媒を、それ自体が
耐食性や耐候性を有していないアルミ合金地金あるいは
陽極酸化皮膜を形成したアルミ合金上に成膜しても、こ
の光触媒膜には前述したように亀裂が生じているため、
アルミ合金あるいは陽極酸化皮膜形成アルミ合金を腐食
する成分が該基材に直接接触することを防止できないた
め、該光触媒膜は、耐食膜としては機能できない。さら
に、このような光触媒膜の光触媒活性は含有される半導
体微粒子の量に依存し、密着性等の特性を良好にするた
めにはその半導体微粒子含有量を多くできないため、光
触媒活性は低いものとなってしまい、必ずしも十分な抗
菌性あるいは防汚性が得られない場合がある。
On the other hand, photocatalysts that cure at a temperature of 200 ° C. or less have been partially put to practical use. Such a photocatalyst film is obtained by dispersing semiconductor fine particles in a low-temperature-curable inorganic polymer such as silicate, but even in such a case, the thermal expansion coefficients of the substrate and the photocatalyst film are different, Cracks occur in the photocatalytic film due to the effect of thermal stress generated at the time of heating and cooling, resulting in poor adhesion to the substrate, and the photocatalytic film peels off when subjected to an impact. Also, even if this photocatalyst is formed on an aluminum alloy ingot that does not itself have corrosion resistance or weather resistance or an aluminum alloy on which an anodic oxide film is formed, cracks are formed in the photocatalyst film as described above. Has occurred,
The photocatalytic film cannot function as a corrosion-resistant film because components that corrode the aluminum alloy or the aluminum alloy forming the anodic oxide film cannot be prevented from directly contacting the base material. Furthermore, the photocatalytic activity of such a photocatalytic film depends on the amount of semiconductor fine particles contained, and the content of the semiconductor fine particles cannot be increased in order to improve properties such as adhesion, so that the photocatalytic activity is low. In some cases, sufficient antibacterial properties or antifouling properties may not be obtained.

【0007】通常、アルミ建材は耐食性、耐候性をもた
せるため、陽極酸化皮膜上にアクリル系の塗膜が形成さ
れている。この塗膜上に光触媒膜を形成すると、その光
触媒作用によって塗膜自体が分解されてしまう。これを
防止するため、塗膜上に光触媒作用を阻害する層を形成
し、その上に光触媒膜を形成するという方法が考えられ
るが、成膜工程が2度手間になるばかりでなく、塗膜と
該阻害層あるいは阻害層と光触媒の密着性が問題とな
り、必ずしも好ましい方法ではなかった。
[0007] Usually, in order to impart corrosion resistance and weather resistance to aluminum building materials, an acrylic coating film is formed on the anodic oxide film. When a photocatalytic film is formed on the coating film, the coating film itself is decomposed by the photocatalytic action. In order to prevent this, a method of forming a layer that inhibits the photocatalytic action on the coating film and forming a photocatalytic film thereon is conceivable. And the adhesion between the inhibition layer or the inhibition layer and the photocatalyst became a problem, and this was not always a preferable method.

【0008】また、本発明者らは、光触媒膜の付き廻り
性に優れる湿式の成膜方法として電気泳動法を利用する
方法を開発し、既に出願しているが、その方法では、基
板との密着性に優れる光触媒膜が得られる条件が狭い。
また、通常の電気泳動法、すなわち、何らかの導電性基
板、例えば鉄やステンレス等の基板を用いて、この上に
電気泳動法によってTiO2 等の半導体微粒子を堆積さ
せても、その光触媒膜の強度あるいは基板との密着性は
低いものとなる。これは、半導体微粒子のみでは、粒子
間あるいは粒子と基板との間に生じる相互作用が小さい
ため、強度及び基材との密着性に乏しい光触媒膜となる
ためである。これを回避するには、電気泳動可能な塗料
中に半導体微粒子を含有させる必要がある。この塗料を
電気泳動させることによって適当な基板上に光触媒作用
を示す半導体微粒子を含有した塗膜が得られるが、通
常、この塗料自体が有機物であるため、半導体微粒子の
光触媒作用によって分解されてしまい、長期安定性に劣
り、また、光触媒膜の光触媒作用は、半導体微粒子の含
有量を多くできないため低いものとなってしまう。
Further, the present inventors have developed a method utilizing electrophoresis as a wet film forming method excellent in throwing power of a photocatalytic film, and have already filed an application. Conditions for obtaining a photocatalyst film with excellent adhesion are narrow.
Further, even if a semiconductor particle such as TiO 2 is deposited by electrophoresis on a normal electrophoresis method, that is, using a conductive substrate of some kind, for example, a substrate such as iron or stainless steel, the strength of the photocatalytic film can be improved. Alternatively, the adhesion to the substrate is low. This is because a photocatalytic film having poor strength and poor adhesion to a substrate is obtained because only semiconductor fine particles have a small interaction between particles or between particles and a substrate. In order to avoid this, it is necessary to include semiconductor fine particles in the electrophoretic paint. By electrophoresis of the paint, a coating film containing semiconductor fine particles exhibiting photocatalytic action can be obtained on an appropriate substrate. However, usually, the paint itself is an organic substance, and thus is decomposed by the photocatalytic action of the semiconductor fine particles. In addition, the long-term stability is inferior, and the photocatalytic action of the photocatalytic film is low because the content of the semiconductor fine particles cannot be increased.

【0009】従って、本発明の目的は、前記のような問
題を解決し、特別な装置を要することなく、優れた光触
媒作用を示すと共に、半導体微粒子の密着性に優れ、陽
極酸化皮膜を形成したアルミ合金基材の耐食性をも向上
させる光触媒膜を形成する方法を提供することにある。
本発明のより具体的な目的は、アルミ合金基材の強度を
低下させることなく、複雑な形状のアルミ合金基材であ
っても付き廻り性良く半導体微粒子が担持され、陽極酸
化皮膜を形成したアルミ合金自体の耐食性をも向上させ
る方法で該半導体微粒子の密着性を向上させた光触媒膜
が形成され、さらには、光触媒膜中の半導体微粒子の含
有量が多いことから、優れた抗菌・防黴・防汚性を示す
アルミ合金材料及びその製造方法を提供することにあ
る。
Accordingly, an object of the present invention is to solve the above-mentioned problems, to provide an excellent photocatalytic action without requiring a special device, to provide excellent adhesion of semiconductor fine particles, and to form an anodic oxide film. An object of the present invention is to provide a method for forming a photocatalytic film that also improves the corrosion resistance of an aluminum alloy substrate.
A more specific object of the present invention is to form an anodic oxide film without lowering the strength of the aluminum alloy substrate, with semiconductor particles being carried with good throwing power even in an aluminum alloy substrate having a complicated shape. A photocatalytic film with improved adhesion of the semiconductor fine particles is formed by a method that also improves the corrosion resistance of the aluminum alloy itself. Further, since the content of the semiconductor fine particles in the photocatalytic film is large, excellent antibacterial and antifungal properties are obtained. An object of the present invention is to provide an aluminum alloy material exhibiting antifouling properties and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、アルミ合金からなる基材表面に形
成した陽極酸化皮膜上に、光触媒作用を示す半導体微粒
の付着層と、該半導体微粒子の粒子間に含浸させた
機系高分子からなる光触媒膜が形成されてなることを
特徴とするアルミ合金材料が提供される。好適な態様に
おいては、上記光触媒膜の上に、さらに抗菌性金属及び
/又は抗菌性金属化合物が析着されてなることを特徴と
するアルミ合金材料が提供される。
According to the present invention, there is provided, according to the present invention, an adhesion layer of semiconductor fine particles having photocatalytic action on an anodic oxide film formed on a surface of a base material made of an aluminum alloy ; aluminum alloy material characterized by a photocatalyst film made of a non-<br/> machine polymer impregnated between particles of the semiconductor fine particles is formed is provided. In a preferred aspect, there is provided an aluminum alloy material characterized in that an antibacterial metal and / or an antibacterial metal compound is further deposited on the photocatalytic film.

【0011】さらに本発明によれば、前記のような抗菌
性アルミ合金材料の製造方法も提供される。その一つの
方法は、光触媒作用を有する半導体微粒子を分散した懸
濁液中に、陽極酸化皮膜を形成したアルミ合金からなる
基材を浸漬し、あるいは該半導体微粒子懸濁液を陽極酸
化皮膜を形成したアルミ合金基材上に塗布し、次いで乾
燥させることによって上記陽極酸化皮膜表面に光触媒作
用を有する半導体微粒子を担持させ、その後、無機系高
分子を含浸させることにより、例えば、該半導体微粒子
を担持した基材を無機系高分子を含有した塗料中に浸漬
し、所定の温度で乾燥・固化することにより、陽極酸化
皮膜上に上記半導体微粒子と無機系高分子が混在した光
触媒膜を形成することを特徴としている。
Further, according to the present invention, there is provided a method for producing the above antibacterial aluminum alloy material. One method is to immerse a substrate made of an aluminum alloy having an anodized film in a suspension in which semiconductor particles having a photocatalytic action are dispersed, or to form an anodized film on the semiconductor particle suspension. By coating on the aluminum alloy base material, and then drying, the surface of the anodic oxide film is supported with semiconductor fine particles having a photocatalytic action, and then impregnated with an inorganic polymer, for example, to support the semiconductor fine particles. By dipping the base material in a paint containing an inorganic polymer, and drying and solidifying at a predetermined temperature, a photocatalytic film in which the semiconductor fine particles and the inorganic polymer are mixed is formed on the anodic oxide film. It is characterized by.

【0012】また、別の方法としては、光触媒作用を有
する半導体微粒子を分散した懸濁液中に、陽極酸化皮膜
を形成したアルミ合金からなる基材を浸漬し、電気泳動
法によって該陽極酸化皮膜表面に光触媒作用を有する半
導体微粒子を担持させ、乾燥させた後、例えば、該半導
体微粒子を担持した基材を無機系高分子を含有した塗料
中に浸漬し、所定の温度で乾燥・固化することによって
無機系高分子を含浸させることにより、陽極酸化皮膜上
に上記半導体微粒子と無機系高分子が混在した光触媒膜
を形成することを特徴としている。
As another method, a base made of an aluminum alloy having an anodic oxide film formed thereon is immersed in a suspension in which semiconductor fine particles having a photocatalytic action are dispersed, and the anodic oxide film is formed by electrophoresis. After supporting semiconductor fine particles having a photocatalytic action on the surface and drying, for example, immersing a base material supporting the semiconductor fine particles in a coating material containing an inorganic polymer, and drying and solidifying at a predetermined temperature. By impregnating with an inorganic polymer, a photocatalytic film in which the semiconductor fine particles and the inorganic polymer are mixed is formed on the anodic oxide film.

【0013】このような方法により、複雑な形状のアル
ミ建材やアルミ建材部品に対しても、付き廻り性、半導
体微粒子の密着性に優れた光触媒膜が形成される。ま
た、該光触媒膜は、半導体微粒子が主成分であり、その
粒子間の空隙のみに無機系高分子が充填されていること
から、半導体微粒子含有量が高く、かつ、形成される光
触媒膜の表面に十分な量の半導体微粒子が露出している
ため、優れた光触媒作用を示す。好適な態様において
は、pHが使用する半導体微粒子の等電点以上であり、
かつアルミ合金基材を腐食しない値に調整された半導体
微粒子懸濁液を用いる。さらに別の好適な態様において
は、前記のような方法により形成された光触媒膜の上
に、さらに抗菌性金属及び/又は抗菌性金属化合物を析
着させる。
According to such a method, a photocatalytic film having excellent throwing power and excellent adhesion of semiconductor fine particles can be formed even on aluminum building materials and aluminum building material components having complicated shapes. Further, since the photocatalyst film is mainly composed of semiconductor fine particles and only the voids between the particles are filled with the inorganic polymer, the content of the semiconductor fine particles is high, and the surface of the formed photocatalytic film is formed. Since a sufficient amount of semiconductor fine particles are exposed, excellent photocatalysis is exhibited. In a preferred embodiment, the pH is equal to or higher than the isoelectric point of the semiconductor fine particles used,
In addition, a semiconductor fine particle suspension adjusted to a value that does not corrode the aluminum alloy base material is used. In still another preferred embodiment, an antibacterial metal and / or an antibacterial metal compound is further deposited on the photocatalytic film formed by the above method.

【0014】[0014]

【発明の実施の形態】本発明による光触媒膜の形成は、
アルミ合金からなる基材の表面に細孔を有する陽極酸化
皮膜を形成し、さらに該アルミ合金基材を、TiO2
の半導体微粒子を懸濁させた溶液中に浸漬し、又は該半
導体微粒子懸濁液を塗布し、あるいは半導体微粒子懸濁
液中で電気泳動法を実施することによって、該半導体微
粒子をアルミ合金基材の陽極酸化皮膜上に担持させ、そ
の後、無機系高分子を含有した塗料中に浸漬することに
よってなされる。この光触媒膜の形成方法は、湿式プロ
セスであるため、複雑な形状のアルミ建材であっても、
光触媒膜の付き廻り性に優れ、また、低温での処理であ
るため、加熱によるアルミ合金の強度劣化の問題も生じ
る恐れがない。
DETAILED DESCRIPTION OF THE INVENTION The formation of a photocatalytic film according to the present invention is as follows.
An anodized film having pores is formed on the surface of an aluminum alloy substrate, and the aluminum alloy substrate is immersed in a solution in which semiconductor particles such as TiO 2 are suspended, or the semiconductor particles are suspended. The semiconductor fine particles are supported on an anodic oxide film of an aluminum alloy substrate by applying a turbid liquid or by performing an electrophoresis method in a semiconductor fine particle suspension, and thereafter, a paint containing an inorganic polymer This is done by dipping in. Since the method for forming the photocatalytic film is a wet process, even for aluminum building materials having a complicated shape,
Since the photocatalytic film has excellent throwing power and is a treatment at a low temperature, there is no possibility that a problem of deterioration in strength of the aluminum alloy due to heating may occur.

【0015】前述したように、鉄やステンレス鋼等の基
材上に半導体微粒子を電気泳動法で堆積させても、該半
導体微粒子から成る光触媒膜の強度や密着性は低いもの
となる。また、半導体微粒子を分散させた懸濁液を上記
基材上に塗布し、あるいは該懸濁液中に上記基材を浸漬
し、乾燥させても、該半導体微粒子から成る光触媒膜の
強度や密着性は低いものとなる。しかし、本発明のよう
に、陽極酸化皮膜を形成したアルミ合金を基材として用
い、半導体微粒子を担持させたものを無機系高分子を含
有した塗料中に浸漬し、該半導体微粒子間の空隙を無機
系高分子で充填することにより、無機系高分子が半導体
微粒子間及びそれらとアルミ合金基材の陽極酸化皮膜と
の間の接着剤として働き、強度及び密着性に優れた光触
媒膜が得られる。
As described above, even when semiconductor particles are deposited on a substrate such as iron or stainless steel by electrophoresis, the strength and adhesion of the photocatalytic film composed of the semiconductor particles are low. Further, even if the suspension in which the semiconductor fine particles are dispersed is applied on the base material, or the base material is immersed in the suspension and dried, the strength and adhesion of the photocatalytic film composed of the semiconductor fine particles can be improved. Sex is low. However, as in the present invention, an aluminum alloy having an anodized film formed thereon is used as a base material, and a material carrying semiconductor fine particles is immersed in a coating material containing an inorganic polymer to form a gap between the semiconductor fine particles. By filling with an inorganic polymer, the inorganic polymer acts as an adhesive between the semiconductor fine particles and between them and the anodic oxide film of the aluminum alloy substrate, and a photocatalytic film having excellent strength and adhesion can be obtained. .

【0016】以下、本発明の好適な実施態様について詳
細に説明する。前記したように、本発明による光触媒膜
の形成においては、陽極酸化皮膜が形成されたアルミ合
金基材を用いる必要がある。通常の陽極酸化処理によっ
てアルミ合金上に形成される陽極酸化皮膜の細孔径は、
一般に10nm〜20nmである。また、アルミ合金を
例えば硫酸、リン酸、シュウ酸、マロン酸、マレイン酸
等の鉱酸又は有機酸の1種又は2種以上の混酸溶液中で
高電圧で陽極酸化し、該アルミ合金の表面に通常の細孔
径より大きい細孔を有する陽極酸化皮膜を形成させる方
法が知られており、一般にDC130V〜220Vの高
電圧で陽極酸化した場合、100nm以上の細孔径を有
する陽極酸化皮膜が得られる。
Hereinafter, preferred embodiments of the present invention will be described in detail. As described above, in forming the photocatalytic film according to the present invention, it is necessary to use an aluminum alloy substrate on which an anodized film is formed. The pore diameter of the anodic oxide film formed on the aluminum alloy by ordinary anodic oxidation treatment is
Generally, it is 10 nm to 20 nm. Further, the aluminum alloy is anodized at a high voltage in a mixed acid solution of one or more of a mineral acid or an organic acid such as sulfuric acid, phosphoric acid, oxalic acid, malonic acid, and maleic acid, and the surface of the aluminum alloy is subjected to anodic oxidation. A method of forming an anodic oxide film having pores larger than a normal pore diameter is known. Generally, when anodizing is performed at a high voltage of DC130V to 220V, an anodic oxide film having a pore diameter of 100 nm or more is obtained. .

【0017】ここで、細孔径が半導体微粒子の粒径より
も小さい場合、半導体微粒子は該陽極酸化皮膜上に担持
され、光触媒膜は陽極酸化皮膜上に形成される。また、
細孔径が半導体微粒子よりも大きい場合、半導体微粒子
は細孔内部及び陽極酸化皮膜上に担持され、細孔内部及
び陽極酸化皮膜上に光触媒膜が形成されることになる。
本発明では、陽極酸化皮膜上に形成された半導体微粒子
のみからなる光触媒膜に無機系高分子を含浸させる方法
であるため、陽極酸化皮膜の細孔径は特に限定されるも
のではない。
Here, when the pore diameter is smaller than the particle diameter of the semiconductor fine particles, the semiconductor fine particles are supported on the anodic oxide film, and the photocatalytic film is formed on the anodic oxide film. Also,
When the pore diameter is larger than that of the semiconductor fine particles, the semiconductor fine particles are supported inside the pores and on the anodic oxide film, and a photocatalytic film is formed inside the pores and on the anodic oxide film.
In the present invention, since the photocatalytic film composed of only semiconductor fine particles formed on the anodic oxide film is impregnated with the inorganic polymer, the pore diameter of the anodic oxide film is not particularly limited.

【0018】また、陽極酸化皮膜の耐食性を向上させる
方法として封孔処理が施されることがあるが、これに関
しても、本発明における光触媒膜の製造方法上、特に限
定されるものではない。しかし、アルミ合金の耐食性を
向上させるため、封孔処理を施した後、光触媒膜を形成
する方が好ましいことは言うまでもない。
A method of improving the corrosion resistance of the anodic oxide film may be performed with a sealing treatment. However, the sealing treatment is not particularly limited in the production method of the photocatalytic film in the present invention. However, it goes without saying that it is preferable to form a photocatalytic film after performing a sealing treatment in order to improve the corrosion resistance of the aluminum alloy.

【0019】前述したように、本発明の方法によって形
成される光触媒膜は、半導体微粒子の剥離といった問題
もなく、また、優れた耐食性及び耐候性を示す。このよ
うな、光触媒膜に用いる半導体微粒子は、光触媒作用を
有する半導体微粒子、例えば、TiO2 からなってい
る。この半導体微粒子に太陽光線や蛍光灯の光が照射さ
れると、TiO2 表面に正孔(h+ )や電子(e- )が
生じて光触媒作用を示し、水や各種の有機物の分解が行
われる。また、この正孔の作用により水が酸化されてO
Hラジカルを、また、電子の作用により、空気中の酸素
が還元され、O2 -ラジカルを生ずる。これらの活性酸素
は優れた殺菌作用を有し、その結果、黴等が生じにくく
なる。
As described above, the photocatalytic film formed by the method of the present invention has no problem such as peeling of semiconductor fine particles and exhibits excellent corrosion resistance and weather resistance. Such semiconductor fine particles used for the photocatalytic film are made of semiconductor fine particles having a photocatalytic action, for example, TiO 2 . When light of sunlight or fluorescent light is irradiated to the semiconductor fine particles, a hole on TiO 2 surface (h +) and electrons (e -) having a photocatalytic action occurs, the decomposition of water and various organic substances row Will be In addition, water is oxidized by the action of the holes and O
H radicals, also by the action of electrons, oxygen in the air is reduced, O 2 - generated radicals. These active oxygens have an excellent bactericidal action, and as a result, mold and the like hardly occur.

【0020】前記陽極酸化皮膜上に担持される半導体微
粒子としては、電子−正孔移動度が比較的大きく、前記
のような光触媒作用を有する半導体であればいずれも使
用可能であり、例えばTiO2 ,SrTiO3 ,Zn
O,CdS,SnO2 等が挙げられるが、これらの中で
も化学的な安定性、生体への安全性等の点から特にTi
2 が好ましい。使用する半導体微粒子の粒径は1nm
〜1000nm、好ましくは5nm〜300nmの粒径
に調整することが好ましい。粒径が1nmよりも小さく
なると量子サイズ効果によりバンドギャップが大きくな
り、低圧水銀灯等の短波長光を含む照明下でないと光触
媒作用を示さないといった問題がある。また、粒径があ
まりに小さ過ぎると取り扱いが困難であったり、分散性
が悪くなるという問題も生じてくる。取り扱い性の点か
らは5nm以上の粒径が好ましい。一方、粒径が100
0nmを超えると、懸濁液中で沈殿しやすくなったり、
速やかに泳動できなくなるという問題が生じる。
Examples of the semiconductor fine particles carried on the anodized film, the electron - hole mobility is relatively large, but any semiconductor having a photocatalytic action as described above may be used, for example, TiO 2 , SrTiO 3 , Zn
O, CdS, SnO 2 and the like. Among them, Ti is particularly preferred from the viewpoint of chemical stability, safety to living bodies, and the like.
O 2 is preferred. The particle size of the semiconductor fine particles used is 1 nm
It is preferable to adjust the particle size to 1000 nm, preferably 5 nm to 300 nm. When the particle size is smaller than 1 nm, the band gap becomes large due to the quantum size effect, and there is a problem that the photocatalytic action is not exhibited unless illumination is performed including short-wavelength light such as a low-pressure mercury lamp. Further, when the particle size is too small, there are problems that handling is difficult and dispersibility is deteriorated. A particle size of 5 nm or more is preferred from the viewpoint of handleability. On the other hand, when the particle size is 100
If the thickness exceeds 0 nm, precipitation in the suspension becomes easy,
There is a problem that the electrophoresis cannot be performed quickly.

【0021】半導体微粒子を含有した懸濁液を陽極酸化
皮膜を形成したアルミ合金基材上に浸漬あるいは塗布等
の方法によって半導体微粒子を担持させる場合、半導体
微粒子の懸濁液は、0.1〜50重量%、好ましくは5
〜20重量%の半導体微粒子を水中に分散させたものを
使用する。尚、半導体微粒子の凝集や沈殿を防ぐため、
後述するアミン化合物やカルボン酸塩等の解膠剤や分散
剤を添加し、水中に安定に半導体微粒子が分散するよう
にしておく必要がある。この方法では、基材上に担持さ
せる半導体微粒子の量は、懸濁液中に含まれる半導体微
粒子の量にのみ依存する。ここで、半導体微粒子の担持
量が少なかった場合、得られる光触媒膜の光触媒活性が
小さくなり、逆に担持量が多いと、乾燥時、あるいは、
無機系高分子含有塗料中に浸漬した時に光触媒膜が剥離
し易くなる。以上のことから、半導体微粒子を含有した
懸濁液は、5〜20重量%の半導体微粒子を水中に分散
させたものを使用することが好ましい。半導体微粒子懸
濁液中に基材を浸漬し、あるいは半導体微粒子懸濁液を
基材に塗布する場合、その方法は特に限定されず、通常
のディップコート、スプレーコート等の方法で実施する
ことができる。
When the suspension containing the semiconductor fine particles is carried on the aluminum alloy substrate on which the anodic oxide film is formed by dipping or coating, the suspension of the semiconductor fine particles is 0.1 to 10%. 50% by weight, preferably 5
A dispersion in which about 20% by weight of semiconductor fine particles are dispersed in water is used. In order to prevent aggregation and precipitation of the semiconductor particles,
It is necessary to add a peptizer or a dispersant such as an amine compound or a carboxylate described later so that the semiconductor fine particles can be stably dispersed in water. In this method, the amount of the semiconductor particles supported on the substrate depends only on the amount of the semiconductor particles contained in the suspension. Here, when the supporting amount of the semiconductor fine particles is small, the photocatalytic activity of the obtained photocatalyst film becomes small, and when the supporting amount is large, on drying, or
When immersed in an inorganic polymer-containing paint, the photocatalytic film is easily peeled off. From the above, it is preferable to use a suspension containing semiconductor fine particles in which 5 to 20% by weight of semiconductor fine particles are dispersed in water. When the substrate is immersed in the semiconductor fine particle suspension or when the semiconductor fine particle suspension is applied to the substrate, the method is not particularly limited, and may be performed by a method such as ordinary dip coating or spray coating. it can.

【0022】一方、電気泳動法で半導体微粒子を前記基
材上に担持させる場合、半導体微粒子を分散させた懸濁
液は、0.1〜50重量%、好ましくは0.5〜10重
量%の半導体微粒子を水中に分散させたものを使用す
る。尚、懸濁液中での半導体微粒子の凝集や沈殿を防ぐ
ため、ラウリン酸、ステアリン酸、オレイン酸等の有機
酸及び低級アミン類や苛性ソーダ等のソーダ塩及び界面
活性剤などからなる解膠剤や分散剤を添加し、水中に安
定に半導体微粒子が分散するようにしておく必要があ
る。上記解膠剤や分散剤としては、後述する懸濁液のp
H等の点から、上記の化合物の中でも低級アミン類を用
いることが好ましい。電気泳動法の場合、基材近辺で半
導体微粒子の濃度が増加し、また、粒子同士が凝集する
ため、前記の浸漬法や塗布法に比べて、懸濁液中の半導
体微粒子の含有量を小さくでき、懸濁液中の半導体微粒
子の安定性の点で優れている。さらに、電気泳動時、半
導体微粒子が凝集する作用が起こり、それ故、単に半導
体微粒子懸濁液に基板を浸漬した場合よりも半導体微粒
子の含有量が多い光触媒膜が形成される。
On the other hand, when the semiconductor fine particles are supported on the substrate by electrophoresis, the suspension in which the semiconductor fine particles are dispersed is 0.1 to 50% by weight, preferably 0.5 to 10% by weight. Use is made of semiconductor fine particles dispersed in water. In order to prevent aggregation and precipitation of the semiconductor fine particles in the suspension, a deflocculant comprising an organic acid such as lauric acid, stearic acid, and oleic acid, a lower amine, a soda salt such as caustic soda, a surfactant, and the like. And a dispersant must be added so that the semiconductor fine particles are stably dispersed in water. Examples of the peptizer and dispersant include p of suspension described below.
From the viewpoint of H and the like, it is preferable to use lower amines among the above compounds. In the case of the electrophoresis method, the concentration of the semiconductor fine particles increases in the vicinity of the base material, and since the particles aggregate, the content of the semiconductor fine particles in the suspension is reduced as compared with the immersion method or the coating method. It is excellent in the stability of the semiconductor fine particles in the suspension. Further, at the time of electrophoresis, an action of aggregating the semiconductor fine particles occurs, and therefore, a photocatalytic film having a higher content of the semiconductor fine particles is formed than when the substrate is simply immersed in the semiconductor fine particle suspension.

【0023】また、前記のように半導体微粒子の荷電状
態は、溶液のpHに依存するため、溶液のpHを調整す
る必要がある。pHの調整は、前記の解膠剤や分散剤の
種類及び添加量によって行うことができる。例えば、半
導体微粒子としてTiO2 を用いた場合、この等電点は
中性付近である。従って、pHをアルカリ性側にすれ
ば、該半導体微粒子は負電荷を帯び、陽極に電気泳動さ
れるようになる。しかし、pHが余りにも大きいと、光
触媒膜を成膜するアルミ合金基材が腐食されてしまう。
従って、懸濁液のpHは、8〜13、好ましくは10〜
12に調整する必要がある。
Further, as described above, the charge state of the semiconductor fine particles depends on the pH of the solution, and therefore it is necessary to adjust the pH of the solution. The pH can be adjusted by the type and amount of the deflocculant or dispersant. For example, when TiO 2 is used as the semiconductor fine particles, the isoelectric point is around neutral. Therefore, when the pH is set to the alkaline side, the semiconductor fine particles take on a negative charge and are electrophoresed on the anode. However, if the pH is too high, the aluminum alloy substrate on which the photocatalytic film is formed will be corroded.
Therefore, the pH of the suspension is between 8 and 13, preferably between 10 and 13.
It is necessary to adjust to 12.

【0024】電気泳動処理の際に陰極として用いる電極
材料としては、懸濁液に含まれる化合物及びpHに対し
て安定で、さらに陰極で起こる電気化学反応、例えば水
素の発生に対して安定であれば適用でき、ステンレス鋼
やカーボン等が使用可能である。
The electrode material used as the cathode in the electrophoresis treatment may be stable to the compounds and pH contained in the suspension, and may be stable to electrochemical reactions occurring at the cathode, for example, generation of hydrogen. And stainless steel, carbon and the like can be used.

【0025】電気泳動処理を行うにあたっては、図1に
示すような装置を用い、半導体微粒子懸濁液2が満たさ
れた容器1内に陽極酸化皮膜を形成したアルミ合金基材
3及び陰極4をセットし、該アルミ合金基材3を陽極と
して直流で電気泳動を行う。電気泳動法としては、直流
電圧を低電圧より高電圧へ一定の昇圧速度で所定時間走
査する直流電圧走査法、及び定電圧あるいは定電流で所
定時間電解する直流定電圧法あるいは定電流法等を採用
できる。いずれの場合も、印加する電圧は、陽極酸化皮
膜底部のバリヤー層と称する絶縁層の絶縁電圧以上であ
る必要がある。それは、バリヤー層の絶縁電圧以上の電
圧を印加しないと電流が流れず、半導体微粒子が陽極側
に泳動されないからである。また、逆に印加電圧が極端
に大きい場合、電気泳動中に陽極酸化皮膜自体が絶縁破
壊される恐れがある。以上のことから、電気泳動時に印
加する電圧は、陽極酸化皮膜バリヤー層の絶縁電圧に1
0V〜100V、好ましくは20V〜60V加えた電圧
が適している。
In performing the electrophoresis treatment, an aluminum alloy substrate 3 having an anodic oxide film formed thereon and a cathode 4 are placed in a container 1 filled with a semiconductor fine particle suspension 2 using an apparatus as shown in FIG. It is set and electrophoresis is performed with a direct current using the aluminum alloy substrate 3 as an anode. As the electrophoresis method, there are a DC voltage scanning method in which a DC voltage is scanned from a low voltage to a high voltage at a constant step-up speed for a predetermined time, and a DC constant voltage method or a constant current method in which electrolysis is performed at a constant voltage or a constant current for a predetermined time. Can be adopted. In either case, the applied voltage must be equal to or higher than the insulation voltage of the insulating layer called the barrier layer at the bottom of the anodic oxide film. This is because a current does not flow unless a voltage higher than the insulation voltage of the barrier layer is applied, and the semiconductor fine particles are not migrated to the anode side. Conversely, if the applied voltage is extremely high, the anodic oxide film itself may be broken down during electrophoresis. From the above, the voltage applied during electrophoresis is 1% less than the insulation voltage of the anodic oxide barrier layer.
A voltage of 0 V to 100 V, preferably 20 V to 60 V is suitable.

【0026】本発明においては、前記したように陽極酸
化皮膜を形成したアルミ合金基材上に浸漬法、塗布法、
あるいは電気泳動法によって半導体微粒子を担持させた
後に、乾燥することが必要である。前述の浸漬・塗布、
あるいは、電気泳動後の状態は、基材上に半導体微粒子
の懸濁液が載っていることと同等の状態であり、この基
材を乾燥することなく無機系高分子塗料中に浸漬する
と、半導体微粒子が塗料中に拡散していき、最終的に光
触媒膜に含有される半導体微粒子の量が少なくなり、光
触媒活性が小さくなってしまう。しかし、乾燥して溶媒
を取り除くと、塗料中に浸漬した程度では剥離しない程
度の密着性の光触媒膜が得られる。ここで、乾燥は、単
に溶媒を取り除くことが目的であるため、温度は特に限
定されない。しかし、200℃を超える温度では、アル
ミ合金基材の強度が低下すること、及び敢えて加熱する
必要性もないことから、室温程度の乾燥で十分である。
In the present invention, an immersion method, a coating method,
Alternatively, it is necessary to support the semiconductor fine particles by electrophoresis and then dry them. Dipping and coating as described above,
Alternatively, the state after the electrophoresis is equivalent to the state in which a suspension of semiconductor fine particles is placed on a substrate, and when the substrate is immersed in an inorganic polymer paint without drying, the semiconductor The fine particles diffuse into the paint, and finally the amount of the semiconductor fine particles contained in the photocatalyst film decreases, and the photocatalytic activity decreases. However, when the solvent is removed by drying, a photocatalytic film having an adhesive property that does not peel off when immersed in the paint is obtained. Here, since the purpose of drying is simply to remove the solvent, the temperature is not particularly limited. However, at a temperature exceeding 200 ° C., drying at about room temperature is sufficient since the strength of the aluminum alloy base material is reduced and there is no need to intentionally heat the aluminum alloy base material.

【0027】本発明に用いる無機系高分子としては、光
触媒作用に耐え得る材料である必要があり、この点か
ら、フッ素系、シリカ系高分子が適している。また、硬
化温度は、200℃を超えるとアルミ合金基材の強度低
下を引き起こし、また、200℃未満の温度であって
も、基板との熱膨張率差によって光触媒膜に亀裂が生じ
る場合がある。この点から、硬化温度は、200℃未
満、好ましくは室温〜100℃程度が適している。
The inorganic polymer used in the present invention must be a material that can withstand photocatalysis, and from this viewpoint, fluorine-based and silica-based polymers are suitable. Further, when the curing temperature exceeds 200 ° C., the strength of the aluminum alloy substrate is reduced, and even when the curing temperature is less than 200 ° C., cracks may occur in the photocatalytic film due to a difference in thermal expansion coefficient with the substrate. . From this point, the curing temperature is suitably lower than 200 ° C., preferably room temperature to about 100 ° C.

【0028】無機系高分子を分散させ塗料化する溶剤と
しては、使用する無機系高分子が安定に分散し、かつ、
硬化中に飛散(蒸散)し、光触媒膜中に残存しない溶剤
であれば特に限定されるものではない。塗料中に含有さ
せる無機系高分子の量については、本発明では、無機系
高分子はあくまで半導体微粒子間の空隙を充填すること
のみが目的であり、高含有量である必要はない。通常の
塗料程度の含有量のものを用いると、光触媒膜上に塗膜
が形成されてしまい、半導体微粒子が覆い隠され、光触
媒作用が発現しなくなるという問題もある。また、逆に
含有量が少ないと、一度の含浸処理で全ての半導体微粒
子間の空隙を充填できず、含浸処理を繰り返す必要が生
じ、作業性の点から好ましくない。以上の点から、無機
系高分子の含有量は、5重量%から20重量%の範囲が
好ましい。
As a solvent for dispersing the inorganic polymer to form a coating, the inorganic polymer used is stably dispersed, and
The solvent is not particularly limited as long as the solvent is scattered (evaporated) during curing and does not remain in the photocatalytic film. With respect to the amount of the inorganic polymer to be contained in the paint, the purpose of the present invention is only to fill the gap between the semiconductor fine particles, and the inorganic polymer does not need to have a high content. If the content is about the same as that of a usual paint, a coating film is formed on the photocatalytic film, and the semiconductor fine particles are covered and obscured. On the other hand, if the content is small, the voids between all the semiconductor fine particles cannot be filled by a single impregnation treatment, and the impregnation treatment must be repeated, which is not preferable from the viewpoint of workability. From the above points, the content of the inorganic polymer is preferably in the range of 5% by weight to 20% by weight.

【0029】前述したような浸漬法、塗布法あるいは電
気泳動法によって、図2に示すような半導体微粒子10
がアルミ合金基材11の陽極酸化皮膜12上に吸着され
る。これに無機系高分子を含浸させることによって、図
3に示すように、半導体微粒子間の空隙に無機系高分子
13が含浸された光触媒膜14が形成される。このよう
な光触媒膜であれば、半導体微粒子が欠落する恐れがな
く、また、陽極酸化皮膜上に光触媒膜が形成されている
ため、アルミ合金基材の耐食性も向上している。さら
に、この光触媒膜中に含有される半導体微粒子の量が多
いため、優れた光触媒作用を示す。以上のことから、本
発明によって得られる光触媒膜は、アルミ合金基材への
密着性、耐食性に優れるばかりでなく、高い光触媒作用
を示すことから、優れた抗菌・防黴・防汚性を発揮す
る。また、室温程度の温度下、湿式で光触媒膜を形成で
きることから、光触媒膜の付き廻りに優れると共に、ア
ルミ合金の強度低下を起こすこともなく、量産性に優れ
た光触媒膜の形成方法である。
The semiconductor fine particles 10 as shown in FIG. 2 are formed by the dipping method, the coating method or the electrophoresis method as described above.
Is adsorbed on the anodic oxide film 12 of the aluminum alloy substrate 11. By impregnating this with an inorganic polymer, as shown in FIG. 3, the photocatalyst film 14 in which the inorganic polymer 13 is impregnated in the gaps between the semiconductor fine particles is formed. With such a photocatalyst film, there is no possibility that semiconductor fine particles will be lost, and since the photocatalyst film is formed on the anodic oxide film, the corrosion resistance of the aluminum alloy substrate is also improved. Further, since the amount of the semiconductor fine particles contained in the photocatalyst film is large, an excellent photocatalytic action is exhibited. From the above, the photocatalyst film obtained by the present invention not only has excellent adhesion to the aluminum alloy substrate, excellent corrosion resistance, but also exhibits a high photocatalytic action, thus exhibiting excellent antibacterial, antifungal and antifouling properties. I do. Further, since the photocatalytic film can be formed by a wet method at a temperature of about room temperature, the photocatalytic film is a method for forming a photocatalytic film which is excellent in the coverage of the photocatalytic film, does not cause a reduction in the strength of the aluminum alloy, and is excellent in mass productivity.

【0030】また、光触媒作用は、光照射時のみ、その
作用を示すが、暗時においても抗菌・防黴性を発揮させ
たい場合には、この光触媒膜の上に、さらに銀や銅等の
抗菌性金属あるいは抗菌性金属化合物を析着させること
によって、暗時においても抗菌・防黴作用を示すように
なる。
The photocatalytic action is exhibited only during light irradiation, but when it is desired to exhibit antibacterial and antifungal properties even in darkness, silver, copper, etc. By depositing an antibacterial metal or an antibacterial metal compound, an antibacterial and antifungal effect is exhibited even in the dark.

【0031】抗菌性金属あるいは抗菌性金属化合物を析
出させる方法としては、硝酸銀や塩化銅などの銀や銅な
どの抗菌性金属を含む適当な化合物の溶液を調製し、こ
の溶液中に光触媒膜を形成したアルミ合金基材を浸す
か、あるいは、該溶液を光触媒膜にスプレー等で塗布し
た後、紫外線ランプやブラックライトなどで紫外線を照
射する方法を好適に用いることができる。この紫外線照
射により、光触媒膜の光触媒作用で生じた電子により抗
菌性金属イオンあるいは抗菌性金属化合物イオンが還元
され、該光触媒膜表面に抗菌性金属あるいは抗菌性金属
化合物が析出する。この場合、抗菌性金属あるいは抗菌
性金属化合物の析出量は、溶液中の抗菌性金属イオンあ
るいは抗菌性金属化合物イオンの量、塗布する場合はそ
の塗布量、溶液中に添加するアルコールやEDTA等の
還元剤の濃度、紫外線の強度及び照射時間によって制御
できる。
As a method for precipitating an antibacterial metal or an antibacterial metal compound, a solution of an appropriate compound containing an antibacterial metal such as silver or copper such as silver nitrate or copper chloride is prepared, and a photocatalytic film is formed in this solution. A method of immersing the formed aluminum alloy base material or applying the solution to a photocatalytic film by spraying or the like, and then irradiating ultraviolet rays with an ultraviolet lamp or a black light can be suitably used. By this ultraviolet irradiation, antibacterial metal ions or antibacterial metal compound ions are reduced by electrons generated by the photocatalytic action of the photocatalytic film, and the antibacterial metal or antibacterial metal compound is deposited on the surface of the photocatalytic film. In this case, the amount of antibacterial metal or antibacterial metal compound deposited is the amount of antibacterial metal ion or antibacterial metal compound ion in the solution, the amount of coating when applied, and the amount of alcohol or EDTA added to the solution. It can be controlled by the concentration of the reducing agent, the intensity of the ultraviolet light, and the irradiation time.

【0032】[0032]

【実施例】以下、実施例及び比較例を示して本発明の効
果について具体的に説明するが、本発明が下記実施例に
限定されるものでないことはもとよりである。
EXAMPLES Hereinafter, the effects of the present invention will be specifically described with reference to examples and comparative examples. However, it goes without saying that the present invention is not limited to the following examples.

【0033】30℃の硫酸10重量%の電解浴中でアル
ミ合金(A1050)を陽極として直流電圧14V、電
流密度1A/dm2 の条件で陽極酸化処理を行い、細孔
径約10nm、膜厚約10μmの陽極酸化皮膜を生成さ
せた。また、光触媒であるアナターゼ型TiO2 の微粉
末、平均粒径50nmを水に5重量%混入し、解膠剤と
してモノエタノールアミンを5重量%添加して均一に分
散させ、pHをカルボン酸を添加することによって11
に調整したTiO2 ゾルを作製した。また、エタノール
に、テトラエチルシリケートを硬化後のSiO2 重量換
算で10重量%となるように添加し、さらに少量の塩酸
を加え、シリケート溶液を作製した。
Anodizing treatment was performed in an electrolytic bath of sulfuric acid 10% by weight at 30 ° C. using an aluminum alloy (A1050) as an anode under the conditions of a DC voltage of 14 V and a current density of 1 A / dm 2 , and a pore diameter of about 10 nm and a film thickness of about 10 nm. An anodized film of 10 μm was formed. Also, 5% by weight of a fine powder of anatase type TiO 2 as a photocatalyst, 50 nm in average particle diameter, was mixed with 5% by weight of monoethanolamine as a deflocculant and uniformly dispersed, and the pH was adjusted with carboxylic acid. 11 by adding
The TiO 2 sol adjusted to have produced. Further, tetraethyl silicate was added to ethanol so as to be 10% by weight in terms of SiO 2 weight after curing, and a small amount of hydrochloric acid was further added to prepare a silicate solution.

【0034】実施例1 前述のTiO2 ゾル中に陽極酸化皮膜形成基板を浸漬
し、50cm/分の速度で引き上げ、室温で12時間乾
燥し、膜厚1μmの半導体微粒子のみからなる光触媒膜
を得た。その後、この光触媒膜を形成したアルミ合金基
板を前記シリケート溶液に浸漬し、10分間静置した
後、5cm/分の速度で引き上げ、80℃で2時間乾燥
させ、光触媒膜を作製した。
Example 1 A substrate on which an anodic oxide film was formed was immersed in the above-mentioned TiO 2 sol, pulled up at a speed of 50 cm / min, and dried at room temperature for 12 hours to obtain a photocatalytic film consisting of only semiconductor fine particles having a thickness of 1 μm. Was. Thereafter, the aluminum alloy substrate on which the photocatalyst film was formed was immersed in the silicate solution, allowed to stand for 10 minutes, pulled up at a speed of 5 cm / min, and dried at 80 ° C. for 2 hours to produce a photocatalyst film.

【0035】実施例2 前述のTiO2 ゾルに、陽極として陽極酸化皮膜成形基
板、陰極としては陽極の5倍の面積を有するステンレス
板を浸漬し、電圧74Vで2分間電気泳動処理を行い、
陽極酸化皮膜上にTiO2 粒子を吸着させ、室温で12
時間放置して乾燥させ、膜厚1μmの半導体微粒子のみ
からなる光触媒膜を得た。その後、この光触媒膜を形成
したアルミ合金基板を前記シリケート溶液に浸漬し、1
0分間静置した後、5cm/分の速度で引き上げ、80
℃で2時間乾燥させ、光触媒膜を作製した。
Example 2 An anodized film-formed substrate was immersed in the above-mentioned TiO 2 sol as an anode, and a stainless steel plate having an area 5 times as large as the anode was immersed in a sol and subjected to electrophoresis at a voltage of 74 V for 2 minutes.
Adsorb TiO 2 particles on the anodic oxide film,
It was left to dry for a period of time to obtain a photocatalyst film composed of only semiconductor fine particles having a thickness of 1 μm. Thereafter, the aluminum alloy substrate on which the photocatalytic film was formed was immersed in the silicate solution,
After leaving still for 0 minutes, it is pulled up at a speed of 5 cm / min,
It dried at 2 degreeC for 2 hours, and produced the photocatalyst film.

【0036】比較例1 前述のTiO2 ゾル中に陽極酸化皮膜形成基板を浸漬
し、50cm/分の速度で引き上げ、室温で12時間乾
燥し、膜厚1μmの半導体微粒子のみからなる光触媒膜
を得た。
Comparative Example 1 An anodic oxide film-formed substrate was immersed in the above-mentioned TiO 2 sol, pulled up at a rate of 50 cm / min, and dried at room temperature for 12 hours to obtain a photocatalytic film consisting of only semiconductor fine particles having a thickness of 1 μm. Was.

【0037】比較例2 前述のTiO2 ゾルに、陽極として陽極酸化皮膜形成基
板、陰極としては陽極の5倍の面積を有するステンレス
板を浸漬し、電圧74Vで2分間電気泳動処理を行い、
陽極酸化皮膜上にTiO2 粒子を吸着させ、室温で12
時間放置して乾燥させ、膜厚1μmの半導体微粒子のみ
からなる光触媒膜を得た。
Comparative Example 2 A substrate having an anodic oxide film formed thereon as an anode and a stainless steel plate having an area five times that of the anode as a cathode were immersed in the TiO 2 sol, and subjected to electrophoresis at a voltage of 74 V for 2 minutes.
Adsorb TiO 2 particles on the anodic oxide film,
It was left to dry for a period of time to obtain a photocatalyst film composed of only semiconductor fine particles having a thickness of 1 μm.

【0038】比較例3 30℃の硫酸10重量%の電解浴中でアルミ合金(A1
050)を陽極として直流電圧14V、電流密度1A/
dm2 の条件で陽極酸化処理を行い、細孔径約10n
m、膜厚約10μmの陽極酸化皮膜を生成させた。
COMPARATIVE EXAMPLE 3 Aluminum alloy (A1) in an electrolytic bath of sulfuric acid 10% by weight at 30 ° C.
050) as an anode, a DC voltage of 14 V and a current density of 1 A /
Anodizing is performed under the conditions of dm 2 , and the pore diameter is about 10 n.
An anodic oxide film having a thickness of about 10 μm was formed.

【0039】密着性評価:前記実施例1、2及び比較例
1〜3で作製した試験片上に、カッターナイフの刃を用
いて1mm間隔で縦横11本ずつの陽極酸化皮膜に達す
る線を引き、100個の碁盤目を作成し、JIS Z
1522に規定されるセロハン粘着テープを用い密着性
試験を実施した。
Evaluation of adhesion: On the test pieces prepared in the above Examples 1 and 2 and Comparative Examples 1 to 3, lines each reaching 11 anodized films vertically and horizontally were drawn at intervals of 1 mm using a blade of a cutter knife. Create 100 cross grids and use JIS Z
An adhesion test was carried out using a cellophane adhesive tape specified in 1522.

【0040】硬度評価:JIS H 8602の5.9
項に記載の鉛筆引っかき抵抗性試験によって実施した。
Hardness evaluation: 5.9 of JIS H8602
It carried out by the pencil scratch resistance test described in the section.

【0041】耐食性評価:JIS H 8681の3.
1項に記載のキャス試験、試験時間24時間によって実
施した。
Evaluation of corrosion resistance: JIS H 8681 3.
The test was carried out according to the Cass test described in item 1 and the test time was 24 hours.

【0042】以上の評価結果を表1に示す。尚、表1
中、密着性試験結果で全く剥離が認められなかった試験
片には○、剥離が認められた試験片には×を記してい
る。硬度は、相当する鉛筆硬度を示している。耐食性評
価結果は、JIS H 8602付図に規定されるレイ
ティングナンバーによって行い、レイティングナンバー
が9.5以上を○、それ未満のものには×を記した。
Table 1 shows the evaluation results. Table 1
In the results, the test pieces for which no peeling was observed in the results of the adhesion test are marked with ○, and the test pieces for which peeling was observed are marked with x. The hardness indicates the corresponding pencil hardness. The results of the corrosion resistance evaluation were based on the rating numbers specified in the attached drawings of JIS H8602.

【0043】[0043]

【表1】 表1から明らかなように、実施例1及び実施例2の試験
片のみが、全ての評価項目で優れた結果を示している。
比較例1及び比較例2の試験片は、基板上に形成された
光触媒膜がTiO2 粒子のみからなり、その粒子間に空
隙が存在するため、密着性、硬度、耐食性に劣ってい
る。
[Table 1] As is clear from Table 1, only the test pieces of Example 1 and Example 2 show excellent results in all evaluation items.
The test pieces of Comparative Examples 1 and 2 were inferior in adhesion, hardness, and corrosion resistance because the photocatalyst film formed on the substrate was composed of only TiO 2 particles and there were voids between the particles.

【0044】比較例4 前記シリケート溶液に、光触媒であるアナターゼ型Ti
2 の微粉末(平均粒径20nm)を固形分比で50重
量%混入し均一に分散させ、ガラス基板に塗布し、80
℃で2時間保持することによって膜厚1μmの光触媒膜
を形成した。
Comparative Example 4 An anatase type Ti as a photocatalyst was added to the silicate solution.
50% by weight of a fine powder of O 2 (average particle diameter: 20 nm) was mixed at a solid content ratio of 50% by weight, uniformly dispersed, and applied to a glass substrate.
The photocatalyst film having a film thickness of 1 μm was formed by holding at 2 ° C. for 2 hours.

【0045】光触媒活性評価:前記実施例1、実施例2
及び比較例3、比較例4で作製した各試料上に塗布量が
0.1mg/cm2 となるようにサラダ油を塗布し、基
板上での紫外線強度が1mW/cm2 となるようにブラ
ックライトで紫外線を照射しながら、その重量変化を測
定した。その結果を図4に示す。
Evaluation of photocatalytic activity: Examples 1 and 2
A salad oil was applied on each of the samples prepared in Comparative Examples 3 and 4 so that the applied amount was 0.1 mg / cm 2, and the black light was applied so that the ultraviolet intensity on the substrate was 1 mW / cm 2. And the change in weight was measured while irradiating with ultraviolet rays. FIG. 4 shows the results.

【0046】図4から、実施例1、実施例2及び比較例
4の試料では紫外線を照射することによって徐々にサラ
ダ油が分解されていることが確認できた。これは、Ti
2に紫外線が入射したことによって生じた正孔等の作
用でサラダ油が分解されたものであり、各試料において
光触媒活性が確認されている。また、本発明による光触
媒膜が、比較例4のような従来の無機系高分子に担持さ
せるタイプの光触媒膜よりも高い光触媒活性を示すこと
がわかる。また、実施例2の試料が実施例1の試料より
も光触媒活性が高いことが確認された。これは、電気泳
動法を用いた方が光触媒膜中に含有されるTiO2 粒子
が多いことに起因している。
From FIG. 4, it was confirmed that the salad oil was gradually decomposed by irradiating ultraviolet rays in the samples of Example 1, Example 2, and Comparative Example 4. This is Ti
The salad oil was decomposed by the action of holes or the like generated by the incidence of ultraviolet light on O 2 , and the photocatalytic activity was confirmed in each sample. In addition, it can be seen that the photocatalyst film according to the present invention has higher photocatalytic activity than the conventional photocatalytic film supported on an inorganic polymer as in Comparative Example 4. Further, it was confirmed that the sample of Example 2 had higher photocatalytic activity than the sample of Example 1. This is due to the fact that the TiO 2 particles contained in the photocatalytic film are larger when the electrophoresis method is used.

【0047】実施例3 実施例1で作製した光触媒膜を有する基板を0.05モ
ル/リットルの硝酸銀水溶液に浸漬し、100Wの紫外
線ランプで紫外線を照射し、該光触媒膜表面に4μg/
cm2 の銀を析出させた。
Example 3 A substrate having a photocatalyst film prepared in Example 1 was immersed in a 0.05 mol / l aqueous solution of silver nitrate, and irradiated with ultraviolet light from a 100 W ultraviolet lamp to apply 4 μg /
cm 2 of silver was deposited.

【0048】実施例4 実施例2で作製した光触媒膜を有する基板を0.05モ
ル/リットルの硝酸銀水溶液に浸漬し、100Wの紫外
線ランプで紫外線を照射し、該光触媒膜表面に4μg/
cm2 の銀を析出させた。
Example 4 The substrate having the photocatalyst film prepared in Example 2 was immersed in a 0.05 mol / l aqueous solution of silver nitrate, and irradiated with ultraviolet light from an ultraviolet lamp of 100 W to give 4 μg /
cm 2 of silver was deposited.

【0049】比較例5 ゼオライトに銀を担持させた抗菌剤をアクリル系塗料に
1重量%添加し、この塗料を用いて、比較例3で作製し
た陽極酸化皮膜形成基板上に10μmの抗菌塗装を施し
た。
Comparative Example 5 An antibacterial agent having silver supported on zeolite was added to an acrylic paint at 1% by weight, and a 10 µm antibacterial paint was applied on the anodic oxide film-formed substrate prepared in Comparative Example 3 using this paint. gave.

【0050】抗菌性試験:実施例1〜実施例4及び比較
例3〜比較例5で作製した各試料上に、2×104 個の
大腸菌を分散させた蒸留水150μlを滴下し、温度2
5℃、湿度70%の条件下で、基板上での紫外線強度が
1mW/cm2 となるようにブラックライトで紫外線を
照射しながら、あるいは、暗状態で所定時間反応させ
た。反応後の菌液を滅菌ガーゼで回収し、これを生理食
塩水10mlに分散させ、該生理食塩水から100μl
を採取し、寒天培地に接種、36℃で24時間培養した
後、生成したコロニー数から反応後の生存菌数を算出し
た。光照射時の結果を図5に、暗時の結果を図6に示
す。
Antibacterial test: 150 μl of distilled water in which 2 × 10 4 Escherichia coli were dispersed was dropped on each of the samples prepared in Examples 1 to 4 and Comparative Examples 3 to 5, and a temperature of 2
The reaction was carried out under a condition of 5 ° C. and a humidity of 70% while irradiating ultraviolet rays with a black light so that the ultraviolet intensity on the substrate was 1 mW / cm 2 , or in a dark state for a predetermined time. The bacterial solution after the reaction was collected with a sterile gauze, dispersed in 10 ml of physiological saline, and 100 μl
Was collected, inoculated on an agar medium, cultured at 36 ° C. for 24 hours, and the number of surviving bacteria after the reaction was calculated from the number of generated colonies. FIG. 5 shows the result at the time of light irradiation, and FIG. 6 shows the result at the time of darkness.

【0051】図5から、実施例1及び実施例2の試料に
は抗菌効果が確認され、その効果は、比較例5の抗菌塗
装よりも優れていることがわかる。同じ実施例1及び実
施例2の試料でも、図6の暗状態では、抗菌効果が認め
られないことから、この抗菌性は光触媒作用によるもの
である。また、実施例1、実施例2、比較例4の抗菌効
果の差異は光触媒活性の差異によるものである。図5中
では、実施例3及び実施例4の試料が最も優れた抗菌効
果を示している。また、これらの試料では、図6の暗状
態よりも、光照射下の方が優れた抗菌効果を示している
が、これは、試料の表面に析出している銀の効果と光触
媒作用の相乗作用によるものである。図6から、実施例
3及び実施例4の試料は、暗状態であっても比較例5の
試料よりも優れた抗菌効果を示している。これは、比較
例5のように塗料中に抗菌剤を練り込むよりも、実施例
3及び実施例4の方が試料表面に存在している銀の量が
多いためである。
FIG. 5 shows that the antibacterial effect was confirmed in the samples of Examples 1 and 2, and the effect was superior to the antibacterial coating of Comparative Example 5. Even in the same samples of Example 1 and Example 2, the antibacterial effect is not recognized in the dark state of FIG. 6, and thus the antibacterial property is due to the photocatalytic action. The difference in the antibacterial effect between Example 1, Example 2, and Comparative Example 4 is due to the difference in photocatalytic activity. In FIG. 5, the samples of Example 3 and Example 4 show the most excellent antibacterial effect. In addition, these samples show a better antibacterial effect under light irradiation than the dark state in FIG. 6, but this is due to the synergistic effect of the silver deposited on the surface of the sample and the photocatalytic action. It is due to the action. From FIG. 6, the samples of Example 3 and Example 4 show better antibacterial effects than the sample of Comparative Example 5 even in the dark state. This is because the amount of silver present on the sample surface is larger in Examples 3 and 4 than in the case where the antibacterial agent is kneaded into the paint as in Comparative Example 5.

【0052】[0052]

【発明の効果】以上のように、本発明では、アルミ合金
からなる基材の表面に陽極酸化皮膜を形成し、この基板
に光触媒作用を有する半導体微粒子を浸漬法、塗布法、
あるいは電気泳動法によって担持させ、乾燥させた後、
無機系高分子を含浸させることによって、陽極酸化皮膜
上に半導体微粒子と無機系高分子の混合物からなる光触
媒膜を形成させるものである。これは、湿式のプロセス
であるため、複雑な形状のアルミ合金基材にも付き廻り
性良く光触媒膜が形成でき、しかも低温で光触媒膜を形
成できることからアルミ合金基材の強度を低下させる恐
れもなく、量産性にも富んだ光触媒膜の形成方法であ
る。また、この光触媒膜は半導体微粒子の含有量が多
く、優れた光触媒活性を示す。しかも、この光触媒膜
は、無機系高分子が半導体微粒子間及びそれらとアルミ
合金基材の陽極酸化皮膜との間の接着剤として働くため
基材に対する密着性にも優れている。
As described above, according to the present invention, an anodic oxide film is formed on the surface of a base material made of an aluminum alloy, and semiconductor fine particles having a photocatalytic action are immersed, coated, and coated on the substrate.
Alternatively, after being supported by electrophoresis and dried,
By impregnating with an inorganic polymer, a photocatalytic film composed of a mixture of semiconductor fine particles and an inorganic polymer is formed on the anodic oxide film. Since this is a wet process, it is possible to form a photocatalyst film with good flexibility even on an aluminum alloy substrate having a complicated shape, and since the photocatalyst film can be formed at a low temperature, the strength of the aluminum alloy substrate may be reduced. This is a method for forming a photocatalytic film that is not only mass-produced but also rich. This photocatalytic film has a high content of semiconductor fine particles and exhibits excellent photocatalytic activity. In addition, the photocatalytic film has excellent adhesion to the substrate because the inorganic polymer functions as an adhesive between the semiconductor fine particles and between them and the anodic oxide film of the aluminum alloy substrate.

【0053】さらに、この光触媒膜上に抗菌性金属及び
/又は抗菌性金属化合物を析着させれば、光の照射がな
い状態でも優れた抗菌・防黴効果を示し、光照射下では
光触媒膜と抗菌性金属及び/又は抗菌性金属化合物の相
乗効果によってさらに優れた抗菌・防黴・防汚性を示
す。従って、本発明により提供される光触媒膜が形成さ
れたアルミ合金材料は、自己浄化性に優れた抗菌・防黴
・防汚性の材料であり、サッシ、パネル材等の建築材な
ど、種々の分野で有利に用いることができる。
Further, when an antibacterial metal and / or an antibacterial metal compound is deposited on the photocatalytic film, an excellent antibacterial and antifungal effect is exhibited even in the absence of light irradiation. It exhibits further excellent antibacterial, antifungal and antifouling properties due to a synergistic effect of the antibacterial metal and / or antibacterial metal compound. Therefore, the aluminum alloy material on which the photocatalytic film provided by the present invention is formed is an antibacterial, antifungal, and antifouling material having excellent self-cleaning properties, and various sashes, building materials such as panel materials, and the like. It can be used advantageously in the field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための電気泳動装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an electrophoresis apparatus for performing a method of the present invention.

【図2】本発明に従って陽極酸化皮膜上に半導体微粒子
を担持させたアルミ合金基材の概略拡大断面図である。
FIG. 2 is a schematic enlarged cross-sectional view of an aluminum alloy substrate having semiconductor fine particles supported on an anodic oxide film according to the present invention.

【図3】陽極酸化皮膜上に半導体微粒子を担持させた
後、無機系高分子を含浸させたアルミ合金基材の概略拡
大断面図である。
FIG. 3 is a schematic enlarged cross-sectional view of an aluminum alloy substrate impregnated with an inorganic polymer after supporting semiconductor fine particles on an anodic oxide film.

【図4】光触媒活性試験におけるサラダ油を塗布した試
料の紫外線照射に伴う重量変化を示すグラフである。
FIG. 4 is a graph showing a change in weight of a sample coated with salad oil in a photocatalytic activity test accompanying irradiation with ultraviolet light.

【図5】抗菌性試験における試料の紫外線照射時の大腸
菌の生存率の経時変化を示すグラフである。
FIG. 5 is a graph showing the change over time in the survival rate of E. coli when a sample is irradiated with ultraviolet light in an antibacterial test.

【図6】抗菌性試験における試料の暗時の大腸菌の生存
率の経時変化を示すグラフである。
FIG. 6 is a graph showing the change over time in the survival rate of Escherichia coli when a sample is dark in an antibacterial test.

【符号の説明】[Explanation of symbols]

1 容器 2 半導体微粒子懸濁液 3 陽極酸化皮膜形成アルミ合金基材(陽極) 4 陰極 10 半導体微粒子 11 アルミ合金基材 12 陽極酸化皮膜 13 無機系高分子 14 光触媒膜 Reference Signs List 1 container 2 suspension of semiconductor fine particles 3 aluminum alloy substrate on which anodic oxide film is formed (anode) 4 cathode 10 semiconductor particles 11 aluminum alloy substrate 12 anodic oxide film 13 inorganic polymer 14 photocatalytic film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 和仁 神奈川県横浜市栄区飯島町2073番地2 ニューシティ本郷台D棟213号 (72)発明者 中田 信之 富山県黒部市堀切1300 (72)発明者 新井 敏夫 富山県富山市藤木841 (56)参考文献 特開 平8−224289(JP,A) 特開 平8−296060(JP,A) 特開 平8−302498(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 11/18 A61N 2/16 B01J 35/02 E04F 13/12 E06B 1/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhito Hashimoto 2073-2, Iijimacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture New City Hongodai D-Bridge 213 (72) Inventor Nobuyuki Nakata 1300 Horikiri, Kurobe-shi, Toyama Prefecture (72) Inventor Arai Toshio 841 Fujiki, Toyama City, Toyama Prefecture (56) References JP-A-8-224289 (JP, A) JP-A-8-296060 (JP, A) JP-A-8-302498 (JP, A) (58) Field (Int.Cl. 7 , DB name) C25D 11/18 A61N 2/16 B01J 35/02 E04F 13/12 E06B 1/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム又はアルミニウム合金から
なる基材表面に形成した陽極酸化皮膜上に、光触媒作用
を示す半導体微粒子の付着層と、該半導体微粒子の粒子
間に含浸させた無機系高分子からなる光触媒膜が形成
されてなることを特徴とするアルミニウム又はアルミニ
ウム合金材料。
1. An adhesion layer of photocatalytic semiconductor fine particles on an anodic oxide film formed on a substrate surface made of aluminum or an aluminum alloy , and particles of the semiconductor fine particles.
Aluminum or aluminum alloy material, characterized in that the photocatalyst film made of an inorganic polymer impregnated is formed between.
【請求項2】 前記光触媒膜の上に、さらに抗菌性金属
及び/又は抗菌性金属化合物が析着されてなることを特
徴とする請求項1に記載のアルミニウム又はアルミニウ
ム合金材料。
2. The aluminum or aluminum alloy material according to claim 1, wherein an antibacterial metal and / or an antibacterial metal compound is further deposited on the photocatalytic film.
【請求項3】 前記無機系高分子がシリカ系又はフッ素
系高分子材料であることを特徴とする請求項1又は2に
記載のアルミニウム又はアルミニウム合金材料。
3. The aluminum or aluminum alloy material according to claim 1, wherein the inorganic polymer is a silica-based or fluorine-based polymer material.
【請求項4】 光触媒作用を有する半導体微粒子を分散
した懸濁液中に陽極酸化皮膜を形成したアルミニウム又
はアルミニウム合金からなる基材を浸漬し、あるいは該
半導体微粒子懸濁液を上記基材上に塗布し、次いで乾燥
させることによって上記陽極酸化皮膜表面に光触媒作用
を有する半導体微粒子を担持させ、その後、無機系高分
子を含浸させることにより、陽極酸化皮膜上に半導体微
粒子と無機系高分子の混合物からなる光触媒膜を形成す
ることを特徴とする抗菌性・防汚性アルミニウム又はア
ルミニウム合金材料の製造方法。
4. A substrate made of aluminum or an aluminum alloy having an anodized film formed thereon is immersed in a suspension in which semiconductor fine particles having a photocatalytic action are dispersed, or the semiconductor fine particle suspension is placed on the base material. A semiconductor fine particle having a photocatalytic action is supported on the surface of the anodic oxide film by coating and then drying, and then a mixture of the semiconductor fine particles and the inorganic polymer is formed on the anodic oxide film by impregnation with an inorganic polymer. A method for producing an antibacterial and antifouling aluminum or aluminum alloy material, comprising forming a photocatalyst film comprising:
【請求項5】 光触媒作用を有する半導体微粒子を分散
した懸濁液中に陽極酸化皮膜を形成したアルミニウム又
はアルミニウム合金からなる基材を浸漬し、電気泳動法
によって該陽極酸化皮膜表面に光触媒作用を有する半導
体微粒子を担持させ、乾燥させた後、無機系高分子を含
浸させることにより、陽極酸化皮膜上に半導体微粒子と
無機系高分子の混合物からなる光触媒膜を形成すること
を特徴とする抗菌性・防汚性アルミニウム又はアルミニ
ウム合金材料の製造方法。
5. A substrate made of aluminum or an aluminum alloy on which an anodic oxide film is formed is immersed in a suspension in which semiconductor fine particles having a photocatalytic effect are dispersed, and the surface of the anodic oxide film is subjected to photocatalytic action by electrophoresis. An antibacterial property characterized by forming a photocatalytic film composed of a mixture of semiconductor fine particles and an inorganic polymer on the anodic oxide film by supporting semiconductor particles having, drying and then impregnating the inorganic polymer. -A method for producing an antifouling aluminum or aluminum alloy material.
【請求項6】 前記光触媒膜の上に、さらに抗菌性金属
及び/又は抗菌性金属化合物を析着させることを特徴と
する請求項4又は5に記載の方法。
6. The method according to claim 4, wherein an antibacterial metal and / or an antibacterial metal compound is further deposited on the photocatalytic film.
【請求項7】 前記無機系高分子としてシリカ系又はフ
ッ素系高分子材料を用いることを特徴とする請求項4乃
至6のいずれか一項に記載の方法。
7. The method according to claim 4, wherein a silica-based or fluorine-based polymer material is used as the inorganic polymer.
JP35659096A 1996-12-27 1996-12-27 Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same Expired - Fee Related JP3267884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35659096A JP3267884B2 (en) 1996-12-27 1996-12-27 Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35659096A JP3267884B2 (en) 1996-12-27 1996-12-27 Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10195694A JPH10195694A (en) 1998-07-28
JP3267884B2 true JP3267884B2 (en) 2002-03-25

Family

ID=18449791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35659096A Expired - Fee Related JP3267884B2 (en) 1996-12-27 1996-12-27 Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3267884B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303296A (en) * 2000-04-25 2001-10-31 Chukin:Kk Metallic material having photocatalytic function and producing method thereof
JP4619197B2 (en) * 2005-05-25 2011-01-26 進次 三浦 Aluminum substrate with anodized film and method for producing the same
KR101536401B1 (en) * 2013-06-13 2015-07-13 주식회사 포스코 Method for electrophoretic deposition of nano-ceramics for the photo-generated non-sacrificial cathodic corrosion protection of metal substrates and the metal substrate thereof
JP6046665B2 (en) * 2014-06-10 2016-12-21 トヨタ自動車株式会社 Heat insulation film forming method and heat insulation film
CN114618505A (en) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 Supported oxide film and preparation method and application thereof

Also Published As

Publication number Publication date
JPH10195694A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
JP3109101B2 (en) Antimicrobial solid, method for producing the same, and method for using the same
US5670206A (en) Deodorizing lamp and method for production thereof
JP3559892B2 (en) Photocatalytic film and method for forming the same
WO1995015816A1 (en) Multi-functional material having photo-catalytic function and production method therefor
JP4619197B2 (en) Aluminum substrate with anodized film and method for producing the same
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
JP3210544B2 (en) Antibacterial and antifungal aluminum building materials and fittings using the same
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JP3523787B2 (en) Outdoor building materials with photocatalytic layers
JP3210546B2 (en) Antibacterial and antifungal building materials
JP3326071B2 (en) Aluminum or aluminum alloy material coated with photocatalytic film and method for producing the same
CN1326777C (en) Preparation method of titanium oxide and its application
JP2001303296A (en) Metallic material having photocatalytic function and producing method thereof
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP3645985B2 (en) Deodorizing and deodorizing material and method for producing the same
JPH09195647A (en) Antifouling screen net
JP2001129064A (en) Assembling type keeping housing having deodorizing function
JPH11188272A (en) Photocatalytic body and its production
JPH11158694A (en) Article with hydrophilic coating, and coating method
JPH07289913A (en) Photocatalyst and production thereof
JP2000202939A (en) Antibacterial laminate
JP2000084415A (en) Composite material having photocatalytic function and its production
JPH11166332A (en) Operating member for antibacterial construction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees