JP3645985B2 - Deodorizing and deodorizing material and method for producing the same - Google Patents

Deodorizing and deodorizing material and method for producing the same Download PDF

Info

Publication number
JP3645985B2
JP3645985B2 JP06897397A JP6897397A JP3645985B2 JP 3645985 B2 JP3645985 B2 JP 3645985B2 JP 06897397 A JP06897397 A JP 06897397A JP 6897397 A JP6897397 A JP 6897397A JP 3645985 B2 JP3645985 B2 JP 3645985B2
Authority
JP
Japan
Prior art keywords
photocatalyst
anodized film
film
pores
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06897397A
Other languages
Japanese (ja)
Other versions
JPH10249212A (en
Inventor
昭 藤嶋
和仁 橋本
信之 中田
敏夫 新井
Original Assignee
昭 藤嶋
和仁 橋本
Ykk Ap株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭 藤嶋, 和仁 橋本, Ykk Ap株式会社 filed Critical 昭 藤嶋
Priority to JP06897397A priority Critical patent/JP3645985B2/en
Publication of JPH10249212A publication Critical patent/JPH10249212A/en
Application granted granted Critical
Publication of JP3645985B2 publication Critical patent/JP3645985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、防臭・脱臭及びその製造方法に関し、さらに詳しくは、アルミニウム又はアルミニウム合金を支持基材とし、その表面に形成した陽極酸化皮膜の細孔中及び/又はその表面に、光触媒作用を有する半導体微粒子、あるいは半導体微粒子を含有もしくは担持した塗料粒子を充填・担持させた防臭・脱臭及びその製造方法に関する。
【0002】
【従来の技術】
TiO2に代表される光触媒作用を有する半導体微粒子がその光触媒作用により有機物を分解する性質を有することは知られており、この性質を利用して様々な抗菌・防黴・防汚・防臭・脱臭商品が考案されている。
特に、防臭・脱臭に関しては、人間の感性に直接訴えかけるものとして様々な商品が開発されており、例えば、TiO2光触媒を用いたフィルターや、光触媒を用いた空気清浄器が市販されている。
また、防臭・脱臭に用いる光触媒の担持方法として、特開平8−281121号には、シリカゾル水溶液にTiO2を分散させた分散溶液を用いて無機繊維紙にTiO2を担持させる方法が記載され、また特開平8−266602号には、TiO2と微細繊維よりなる凝集体水分散液と合成樹脂繊維の水分散液の混合液を湿式抄造法によりシート化し、合成繊維紙にTiO2を担持させる方法が記載されている。
さらに、金属系の支持体上に光触媒を担持させる方法としても、スパッタ法、ゾル−ゲル法等が考案されている。
【0003】
【発明が解決しようとする課題】
光触媒を防臭・脱臭に利用する場合、その吸着性の点から、前記した従来技術のように、一般に紙や布等の繊維質の支持体に光触媒を担持させる必要があると考えられている。しかし、これらの多くは有機物からなっており、光触媒作用によって繊維自体が徐々に分解されてしまうため、長期間使用における安定性に問題がある。
一方、光触媒作用に耐え得る金属材料等の支持体に光触媒を吸着・担持させた場合、その表面積が小さいため、必ずしも充分な防臭・脱臭効果は得られなかった。また、金属支持体と光触媒の充分な密着性が得られず、吸着・担持させた光触媒が剥離し易いという問題がある。さらに、スパッタ法等により金属支持体上に光触媒を担持させる場合、複雑な形状を有する支持体上に均一に光触媒膜をコーティングすることは困難である。
【0004】
従って、本発明の目的は、前記のような問題を解決し、光触媒作用に対して安定な金属支持体上に光触媒を充分な量で、かつ高い密着強度で担持させ、優れた防臭・脱臭効果を長期間にわたって安定的に発揮できる防臭・脱臭材を提供することにある。
さらに本発明の目的は、上記のような優れた特性を有する防臭・脱臭材を容易に、また比較的低コストで製造でき、しかも複雑な形状の支持体にも均一に光触媒を担持させることができる防臭・脱臭の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、アルミニウム又はアルミニウム合金からなる基材の表面に細孔を有する陽極酸化皮膜を形成し、さらに該陽極酸化皮膜の細孔中及び/又はその表面に光触媒作用を有する半導体微粒子あるいは半導体微粒子を含有もしくは担持した塗料粒子が充填・担持されてなる防臭・脱臭が提供される。
さらに本発明によれば、上記のような防臭・脱臭の製造に好適な方法も提供される。その一つの方法においては、光触媒作用を有する半導体微粒子を含む分散液又は塗料溶液中に、大気圧以下の圧力下、陽極酸化皮膜を形成したアルミニウム又はアルミニウム合金からなる基材を浸漬し、上記基材の陽極酸化皮膜の細孔中及び/又はその表面に半導体微粒子又は半導体微粒子を含有もしくは担持した塗料粒子を充填・担持させることを特徴としており、他の方法においては、光触媒作用を有する半導体微粒子を含む分散液又は塗料溶液中に、陽極酸化皮膜を形成したアルミニウム又はアルミニウム合金からなる基材を浸漬し、電気泳動法により上記基材の陽極酸化皮膜の細孔中及び/又はその表面に半導体微粒子又は半導体微粒子を含有もしくは担持した塗料粒子を充填・担持させることを特徴としている。
【0006】
【発明の実施の形態】
本発明の防臭・脱臭材は、アルミニウム又はアルミニウム合金からなる基材(以下、アルミ基板と略称する)上に多孔質の陽極酸化皮膜を形成し、この細孔中に真空含浸法あるいは電気泳動法によってTiO2等の光触媒作用を有する半導体微粒子又は半導体微粒子を含有もしくは担持した塗料粒子(以下、光触媒と総称する)を吸着・担持させることを特徴としている。
陽極酸化皮膜は、表面に直径約5〜100nmの細孔が無数に開いた絶縁性の多孔質膜であり、通常の金属表面に比べて表面積が極めて大きい。従って、この陽極酸化皮膜の細孔中あるいはさらに表面にTiO2等の光触媒を吸着・担持させることによって、単位面積当りに担持される光触媒の量がかなり多くなり、平坦な金属板上に光触媒膜を形成したものと比べて防臭・脱臭効果が極めて高くなる。また、陽極酸化皮膜及びアルミ基板共に光触媒作用に対して安定であるため、従来の合成繊維基材のように光触媒作用によって分解するというようなことはなく、優れた防臭・脱臭効果を長期間にわたって安定して発揮させることができる。
【0007】
また、光触媒は陽極酸化皮膜の細孔中に吸着・担持されているため、光触媒とアルミ基板の密着強度が高く、長期の耐久性にも優れている。それに加えて、陽極酸化皮膜の膜厚や孔径、担持させる光触媒の量を制御することによって、光触媒作用を任意に調整することが可能となる。
さらに、支持体基材として成形性に優れるアルミ基板を用いていると共に、陽極酸化、真空含浸、電気泳動の各処理がいずれも湿式で実施できるため、様々な形状の防臭・脱臭材を形成できる。すなわち、本発明に従って防臭・脱臭材を製造した後に種々の形状に成形加工することができ、また、予め複雑な形状に押出成形・加工されたアルミ基板を陽極酸化し、光触媒を吸着・担持させることもできる。
従って、本発明の防臭・脱臭材は、任意の形状、構造、模様の防臭・脱臭性置物、防臭・脱臭性ペン立て、防臭・脱臭性ケース等の全ゆる商品形態に適用できるだけでなく、パネル材、枠材にも適用でき、例えば防臭・脱臭性パネルなどの形態で使用できる。
【0008】
前記したように、本発明の防臭・脱臭材は、アルミ基板の陽極酸化皮膜の細孔中及び/又は表面に、光触媒作用を有する半導体微粒子、例えば、TiO2が存在している。この半導体微粒子に太陽光線や蛍光灯の光が照射されると、TiO2表面に正孔(h+)や電子(e-)が生じて光触媒作用を示し、水や各種の有機物の分解が行われる。すなわち、アセトアルデヒド、アンモニア、メルカプタン等の悪臭成分を分解することができ、それによって防臭・脱臭作用を示す。また、この正孔の作用により水が酸化されOHラジカルを、また、電子の作用により空気中の酸素が還元され、O2-イオンを生ずる。これらの活性酸素は優れた殺菌作用を有し、その結果、黴等が生じにくくなる。従って、本発明に係る防臭・脱臭材は、防臭・脱臭作用だけでなく、抗菌・防黴・防汚性も示し、抗菌・防黴・防汚性の防臭・脱臭商品の形態としても利用できる。
【0009】
さらに、TiO2等の半導体粒子の表面に金属イオンが存在する時は、光照射によって生じた電子の作用によって種々の金属イオンの還元が行われ、陽極酸化皮膜の細孔中に金属を析出させることが可能となる。すなわち、銀や銅などの抗菌性金属又は抗菌性金属を含む化合物を析出させれば、夜間、蛍光灯の明かりが消えても抗菌・防黴性が維持されることになる。また、ニッケルやスズ等、従来、電解着色によって析出させていた金属を析出させれば、電解浴や電源を使用することなしに着色が行える。さらに、溶液中でイオン化しこれが還元された状態で機能を発揮するような機能性材料であれば、同様に該機能性材料を陽極酸化皮膜の細孔中に析出させることが可能となり、様々な機能性アルミ製品の作製が行える。
【0010】
以下、本発明について詳しく説明すると、光触媒を充填させるアルミ基板の陽極酸化皮膜としては、通常の陽極酸化処理によって形成した陽極酸化皮膜の細孔径は一般に50nm以下であり、光触媒の充填が困難であるので、細孔径の大きな陽極酸化皮膜を有するアルミ基板を用いる必要がある。このような細孔径の大きな陽極酸化皮膜を形成する方法としては種々の方法が知られているが、まず、一つの方法においては、アルミ基板を例えば硫酸、リン酸、シュウ酸、マロン酸、マレイン酸等の鉱酸又は有機酸の1種又は2種以上の酸水溶液中、例えばリン酸5〜30%、シュウ酸3〜40%を含有する電解浴中で高電圧で陽極酸化し、該アルミ基板表面に通常の細孔径より大きい細孔を有する陽極酸化皮膜を形成させる。一般にDC150V〜220Vの高電圧で陽極酸化した場合、通常120nm以上の細孔径を有する陽極酸化皮膜が得られ、該細孔内に前記光触媒を充填できる。すなわち、陽極酸化処理の電圧が150V未満の場合、光触媒の充填に充分な大きさの細孔が得られにくいので好ましくなく、一方、220Vを超えると陽極酸化皮膜の強度等の物性に悪影響を及ぼすので好ましくない。
【0011】
また、他の方法としては、まずアルミ基板を前記鉱酸又は有機酸の1種又は2種以上の酸水溶液中で陽極酸化し、該アルミ基板の表面に多孔質陽極酸化皮膜を形成させる。電解条件としては、35V以上、好ましくは50〜160Vの高電圧電解によりセルサイズ及び細孔径の大きな陽極酸化皮膜を得る。次いで、リン酸、硫酸、シュウ酸、スルファミン酸の1種又は2種以上の酸水溶液、好ましくはリン酸3〜10%の水溶液に浸漬して皮膜細孔の拡大処理を行う。このような方法により、最終的には50nm以上、好ましくは100〜1000nm、孔の深さ3〜10μm程度の細孔に調整して、本発明の光触媒の充填に適する多孔質陽極酸化皮膜を得る。また、皮膜細孔の拡大処理の時間を短縮するために、リン酸3〜10%の水溶液中で、浸漬と交流系電解の処理を交互に短時間間隔で繰り返すことにより、該皮膜細孔の拡大処理を比較的短時間に行うことができる。
【0012】
前記陽極酸化皮膜の細孔中に充填される半導体としては、電子と正孔の移動度が比較的大きく、上記のような光触媒作用を有する半導体であればいずれも使用可能であり、例えばTiO2、SrTiO3、ZnO、CdS、SnO2等が挙げられるが、これらの中でも特にTiO2が好ましい。
半導体微粒子を含有又は担持した塗料粒子を使用する場合、その塗料にはフッ素系、シリケート系、アクリル系、ポリエステル系やポリウレタン系等があるが、半導体微粒子が均一に分散し、好ましくは建材の塗料としても適度な強度と密着性を有するものであれば特に限定されず、用途に応じて適宜選定することができる。また、前記塗料の中でもフッ素系、シリケート系等の無機系塗料が、その耐酸化力の点からより好ましい。
【0013】
使用する半導体微粒子、あるいは半導体微粒子を含有もしくは担持した塗料粒子の粒径は、1nm〜700nm、好ましくは5nm〜300nmの粒径に調整することが好ましい。半導体微粒子を塗料に含有もしくは担持させる場合、半導体微粒子を前記塗料粒子の粒径よりも小さくすることは明らかである。
粒径が1nmよりも小さくなると量子サイズ効果によりバンドギャップが大きくなり、高圧水銀灯等の短波長光を含む照明下でないと光触媒性能が得られないといった問題がある。また、粒径があまりに小さ過ぎると取り扱いが困難であったり、分散性が悪くなるという問題も生じてくる。取り扱い性の点からは5nm以上の粒径が好ましい。一方、粒径が700nmを超えると、アルミ基板の陽極酸化皮膜の細孔への充填が難しくなる。
【0014】
前記半導体微粒子のアルミ基板陽極酸化皮膜細孔中への充填方法としては、半導体微粒子の分散液中での電気泳動法等を好適に用いることができる。例えば、半導体微粒子の表面に極性を発現させて(例えば、界面活性剤を粒子表面に吸着させたり、溶液のpHを半導体微粒子の等電点よりも大きくするなどして)、半導体微粒子10〜30重量%を水溶液中に分散させて水分散体浴を作成し、この浴中で、陽極酸化皮膜を形成したアルミ基板を陽極として直流電解(電圧30〜200V)して陽極酸化皮膜の細孔中に半導体微粒子を充填する電気泳動法などが採用できる。電気泳動法としては、直流電圧を低電圧より高電圧へ一定の昇圧速度で所定時間走査する直流電圧走査法、及び定電圧で所定時間電解する直流定電圧法等を採用できる。
【0015】
半導体微粒子を含有もしくは担持した塗料粒子を用いる場合、該塗料粒子が電気泳動すれば前記の場合と同様の方法で陽極酸化皮膜の細孔中に光触媒を充填することができる。また、塗料中に陽極酸化皮膜を形成したアルミ基板を浸漬する方法でも可能である。更に、通常の大気圧下で塗料中に浸漬しても陽極酸化皮膜の細孔中に光触媒が充填できないような場合は、適当な真空容器中に陽極酸化皮膜を形成したアルミ基板を設置し、内部を真空排気した後、塗料を導入し、真空中で又は減圧下で陽極酸化皮膜を形成したアルミ基板を塗料に浸漬する方法等が採用できる。
【0016】
以上のような方法により、図1に示すように、陽極酸化皮膜1の細孔2中に光触媒3を充填したアルミ基板が得られる。図1のように陽極酸化皮膜の上端部まで光触媒を充填したものは、防臭・脱臭作用に加えて抗菌・防黴・防汚性を目的とした場合の態様である。すなわち、図2に示すように陽極酸化皮膜1の細孔2の下部にのみ光触媒3を充填したような場合では、菌やカビ、汚れ物質が陽極酸化皮膜の細孔中を光触媒表面まで拡散しなければ抗菌・防黴・防汚性が発現できないため、良好に前記特性を発現させるには陽極酸化皮膜の上端部まで光触媒を充填し、アルミ基板の表面で抗菌・防黴・防汚性が発現できるようにすることが望ましい。
また、さらには図3に示すように、光触媒3で陽極酸化皮膜1の凹凸をコーティングしたような態様も可能である。この場合、細孔2中に充填されていない光触媒が剥離し易いが、光触媒で被覆された面積は図1、図2よりも大きくなり、また、陽極酸化皮膜の細孔は気体分子であれば容易に出入りできることなどから、防臭・脱臭には最も適した態様である。また、抗菌・防黴・防汚性は図1と図2の中間程度である。
【0017】
さらに、光触媒を充填した後に該光触媒作用によって銀や銅などの抗菌性金属又は抗菌性金属を含む化合物を析出させることにより、前述したように暗時であっても抗菌・防黴効果が発現されるようにすることもできる。
抗菌性金属又は抗菌性金属を含む化合物を析出させる方法は、硝酸銀や硫酸銅などの銀や銅などの抗菌性金属を含む適当な化合物の溶液、あるいは、これにエタノールやEDTA等の適当な還元剤を添加した溶液を調製し、一つの方法としては、陽極酸化皮膜の細孔中に光触媒を充填したアルミ基板を該溶液中に浸し、紫外線ランプやブラックライト等で紫外線を照射すると、光触媒作用によって生じた電子により抗菌性金属イオン又は抗菌性金属化合物イオンが還元され、光触媒表面に抗菌性金属又は抗菌性金属を含む化合物が析出する。この場合、抗菌性金属又は抗菌性金属を含む化合物の析出量は、溶液中の抗菌性金属イオンの量、すなわち調製した溶液の濃度や還元剤の濃度、紫外線の照射時間によって制御される。また、別の方法としては、前記溶液を陽極酸化皮膜の細孔中に光触媒を充填したアルミ基板表面にスプレー法等で塗布した後、紫外線を照射する方法がある。この方法では、水溶液中の抗菌性金属イオンの量、すなわち調製した溶液の濃度や還元剤の濃度、塗布量によって抗菌性金属又は抗菌性金属を含む化合物の析出量が制御できる。また、いずれの方法においても、光触媒の表面を抗菌性金属又は抗菌性金属を含む化合物で完全に被覆してしまうと光触媒作用が発現できなくなるため、表面を被覆しない程度の析出量に制御する必要がある。
【0018】
抗菌性金属又は抗菌性金属を含む化合物を析出させる場合、図4に示すように陽極酸化皮膜1の細孔2内にその上端部まで光触媒3を充填した後に抗菌性金属又は抗菌性金属を含む化合物4をアルミ基板表面に析出させることも、図5に示すように光触媒3を陽極酸化皮膜1の細孔2内部にのみ充填しておき、陽極酸化皮膜の細孔中に抗菌性金属又は抗菌性金属を含む化合物4を析出させることもできる。また、図6に示すように光触媒3で陽極酸化皮膜1の凹凸をコーティングした後に、この光触媒表面に抗菌性金属又は抗菌性金属を含む化合物4を析出させることもできる。
図4の場合、抗菌・防黴効果は高いが、抗菌性金属又は抗菌性金属を含む化合物が表面に析出しているため、抗菌性金属又は抗菌性金属を含む化合物が剥離するなど効果の持続性に劣ることがある。図5のような場合は、抗菌・防黴効果は図4の場合よりも低下するが、抗菌性金属又は抗菌性金属を含む化合物が陽極酸化皮膜の細孔中に入っているため、剥離し難く、効果の持続性は図4の場合よりも向上する。図6の場合、抗菌性金属又は抗菌性金属を含む化合物が表面から陽極酸化皮膜細孔内にまで析出しているため、表面に析出した抗菌性金属又は抗菌性金属を含む化合物が剥離しても、細孔内の抗菌性金属又は抗菌性金属を含む化合物は剥離し難いため、効果の持続性は図5の場合と同等である。
どのような態様を採用するかは、抗菌・防黴効果とその寿命から適当な態様を選択すれば良い。
【0019】
また、従来一般に、電解着色によって陽極酸化皮膜の細孔中にニッケル、スズ、銅等の金属を析出させ、アルミ基板の着色が行われているが、本発明によれば、前述の抗菌性金属又は抗菌性金属を含む化合物に限らず、電解着色によって析出させていた金属も前述の抗菌性金属又は抗菌性金属を含む化合物の析出と同様の方法で陽極酸化皮膜の細孔中に析出させることができ、それによって種々の色に着色された製品を製造できる。また、この場合の析出金属量の制御、すなわち、色調の制御は、前述の抗菌性金属又は抗菌性金属を含む化合物の析出量制御と同様の方法で実施できる。
着色については、前述したように陽極酸化皮膜の細孔中に光触媒を充填したアルミ基板表面に、金属イオンを含有する溶液をスプレー法等の適当な方法で塗布した後、紫外線を照射する方法を採用する。例えば、図7に示すように、コンベア等の搬送装置5でアルミ基板6を搬送しながら、噴霧器7により金属イオンや適当な還元剤を含有する溶液をスプレーし、その後、紫外線照射装置8により紫外線を照射する製造工程とすれば、従来の電解浴を用いたバッチ式とは異なり、連続式の製造工程となり、生産性が向上するばかりか、電解着色で必要とされる巨大な電解浴や電源が全く不要になる。
【0020】
アルミ基板の着色に前記のような光触媒作用を利用する場合、陽極酸化皮膜1の細孔2中への光触媒3の充填は図2に示すような態様が好ましい。図2に示すような光触媒の充填状態であれば、着色用金属9は図8に示すように陽極酸化皮膜1の細孔2中に析出し、従来の電解着色によって析出させた金属と同等の密着力が確保できる。
また、着色にのみ光触媒作用を利用し、以後、光触媒作用による抗菌・防黴・防汚性が不要という場合は、その後さらに、図9に示すように、従来のアルミ基板の表面処理と同様に陽極酸化皮膜1の封孔(半封孔)処理を行い、耐食性や耐久性を向上させることができる。このような封孔処理を施しても、細孔内が大気と連通状態にあれば防臭・脱臭性を示す。
【0021】
また、図8に示すような充填状態でも、光触媒作用によって防臭・脱臭性や抗菌・防黴・防汚性を示すが、さらに光触媒作用を向上させる場合は、図10に示すように、着色用金属9の析出後に再度光触媒3を陽極酸化皮膜上端部まで充填する。特に光触媒に用いる半導体がTiO2であれば、このTiO2は殆ど透明であるため、下部に析出させた着色用金属の色調を変化させることがなく、また着色用金属によって様々な色調が選択できる上に、充分な防臭・脱臭性や抗菌・防黴・防汚性を示すことになる。また、有機系の塗料を陽極酸化皮膜の細孔中に析出した後、光触媒を形成する場合、その光触媒作用によって有機塗料自体が分解し退色現象を引き起こすが、金属による着色であれば光触媒作用に対して安定であり、長期に亘って色調を維持しつつ、良好な防臭・脱臭性や抗菌・防黴・防汚性を示すことができる。
【0022】
【実施例】
以下、実施例を示して本発明の効果についてさらに具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。
【0023】
実施例1
リン酸20%、シュウ酸5%を含有する30℃の電解浴中でアルミ基板を陽極として直流200Vを印加して陽極酸化処理を行い、孔径約250nm、孔の深さ約5μmの細孔を有する陽極酸化皮膜を生成させた。
次いで、光触媒であるTiO2の微粉末(平均粒径10nm)を10重量%混入し均一に分散させたシリケートをエタノールで10倍に希釈し、光触媒担持塗料を作製し、1気圧(試料1)又は0.2気圧(試料2)の圧力下で、前記陽極酸化皮膜を形成したアルミニウム基板を塗料に浸漬し、静かに引き上げた後、大気圧中、150℃で30分間保持し前記シリケートを反応させ、光触媒を担持したシリカ塗膜をコーティングした。
また、比較の為に陽極酸化皮膜を形成していないアルミ基板を用いて、同様に1気圧(比較例1)又は0.2気圧(比較例2)の条件で、前記試料と同様に光触媒を担持したシリカ塗膜をコーティングした。
【0024】
膜厚測定及び表面粗さ測定:
上記試料1〜2及び比較例1〜2の陽極酸化皮膜上の光触媒膜の膜厚及び表面粗さを触針接触式膜厚計で測定した。その結果を表1に示す。
【表1】

Figure 0003645985
【0025】
防汚性評価1:
上記試料1〜2及び比較例1〜2の表面に0.1mg/cm2になるようにサラダ油を均一に塗布し、100Wの紫外線ランプで紫外線を照射し、サラダ油が完全に分解されるまでの時間を測定した。その結果を表2に示す。
【表2】
Figure 0003645985
【0026】
密着性評価:
上記試料1〜2及び比較例1〜2の光触媒膜の密着性をスコッチテープ試験(JIS H 8602の5.8項に記載のセロハン粘着テープを用いた塗膜の付着性試験)を行い、また、JIS H 8504に規定する方法にしたがってスクラッチ試験を行った。その結果を表3に示す。
【表3】
Figure 0003645985
【0027】
防汚性評価2:
試料1〜2の基材表面の光触媒膜を#1200のサンドペーパーで完全に剥離させた後、前述の防汚性評価1と同様の方法でサラダ油が完全に分解されるまでの時間を測定した。その結果を表4に示す。
【表4】
Figure 0003645985
【0028】
表1からわかるように、試料1〜2と比較例1〜2の光触媒膜の膜厚は殆ど同じであったが、表面粗さは、試料2が試料1や比較例1〜2と比較して大きかった。
一方、表2において、試料1と比較例1〜2のサラダ油の分解に必要な時間は殆ど同じであったが、試料2の場合のみ所要時間が多少長くなっている。
これらの結果は、試料2の光触媒膜が、陽極酸化皮膜の細孔中に充填されただけでなく、陽極酸化皮膜の凹凸全体をコーティングしたことを示している(前記図3に示した態様)。この場合、光触媒膜は、陽極酸化皮膜の凹凸の状態を反映するため、試料1と比較して表面が粗くなる。また、大気圧下では陽極酸化皮膜の細孔中に光触媒が入り込めず、それ故、基材表面に平坦な光触媒膜が形成されたため、試料1では、陽極酸化皮膜を形成していない比較例1〜2と同等な表面粗さになったものである。
また、防汚性評価1において、試料2は光触媒の表面被覆率が小さく、また、サラダ油の粘性が高くて陽極酸化皮膜の細孔に入り込み難いために、サラダ油の分解に時間を要したことがわかる。
【0029】
表3に示すように、試料1〜2においては膜の剥離が認められなかった。これは、陽極酸化皮膜上に光触媒膜を形成する場合、そのコーティング圧力が大気圧下であっても減圧下であっても、陽極酸化皮膜のアンカー効果によって膜の密着性が向上したことを示している。比較例1〜2において膜の剥離が認められたことから、陽極酸化皮膜を形成していない基板を用いた場合、膜の密着性はコーティング圧力に依存しないことを示している。
また、表4からわかるように、試料1では全くサラダ油を分解できなかったが、試料2では、表2に示した結果よりも所要時間は長くなったが、サラダ油を分解しており、防汚性を発揮している。試料1は、表面にのみ光触媒膜が存在し、それが全て剥離してしまったために防汚性が失われたが、試料2では、たとえ表面の光触媒膜が剥離しても陽極酸化皮膜細孔内に充填された光触媒膜が存在するため、防汚性が失われないことを示しており、光触媒膜の耐久性及び光触媒作用の持続性は、試料2の方が試料1よりも格段に優れていることがわかる。
以上から、0.2気圧という必ずしも高真空ではない条件で半導体微粒子を含んだ塗料をコーティングすることにより、陽極酸化皮膜の細孔中に光触媒が入り込み、光触媒作用を発揮しながらも、該光触媒が陽極酸化皮膜の細孔中に充填されているため、その脱落もなく非常に強く密着していることが確認できた。
【0030】
ガス分解試験:
試料1〜2及び比較例1〜2及び何ら処理を施していないアルミ板について、有機ガス分解能を確認するため、0.5リットルの密閉容器中に各々4cm2の試料を入れ、更に各容器中に濃度100ppmになるようにアセトアルデヒドを注入した。その後、試料上に強度1mW/cm2の紫外線をブラックライトを使用して照射した。照射開始から60分後の各容器中のガス組成をガスクロマトグラフで測定し、反応後のアセトアルデヒド濃度を測定した。その結果を表5に示す。
【表5】
Figure 0003645985
【0031】
表5から、試料2が最もアセトアルデヒドの濃度が少なくなっており、その他の試料はほぼ同等の値となった。すなわち、試料2が最も多量のアセトアルデヒドを分解したことがわかる。また、単なるアルミ板の場合は、全くアセトアルデヒドが分解されなかったことがわかる。
表5に示されるようにアセトアルデヒド濃度に差異が生じた原因は、各試料に対する光触媒の担持状態に差異があるためである。すなわち、試料2のみが陽極酸化皮膜の細孔中にまで光触媒が充填されていることに対し、その他の試料は表面に平坦な光触媒膜が形成されているためである。試料2では、陽極酸化皮膜の細孔中に光触媒が充填されているため、表面積が増加するとともに単位面積当りに担持されている光触媒の量自体が増加したために、単なる平坦な光触媒膜に比べ気相での反応性が増加したものである。
【0032】
実施例2
上記実施例1での試料1〜2及び比較例1の試料を0.01モル/リットルの硝酸銀水溶液0.5リットルに浸漬し、100Wの紫外線ランプで紫外線を照射し、試料1〜2及び比較例1の試料上に0.1mg/cm2の銀を析出させた。
【0033】
密着性試験:
得られた試料1〜2及び比較例1の試料について、前記実施例1の場合と同様にスコッチテープ試験、スクラッチ試験を実施した。その結果を表6に示す。
【表6】
Figure 0003645985
【0034】
防黴性試験1:
試料1〜2及び比較例1の試料について、JIS Z 2911の5に記載の一般工業製品の防黴性試験に基づき、試料1〜2及び比較例1の表面に胞子懸濁液を塗布し、温度28℃、湿度95%中に28日間放置し、黴の発生状態を観察した。また、光の照射の有無による防黴性の差異を観察するため、各々の試料について20W蛍光灯で光を照射した場合と、光を全く照射しない場合について防黴性試験を実施した。その結果を表7に示す。表7中には、黴の試料表面の被覆率を示す。
【表7】
Figure 0003645985
【0035】
防黴性試験2:
試料1〜2の光触媒膜を#1200のサンドペーパーで完全に剥離させた後、前述の防黴性試験1と同様の方法で防黴性試験を実施した。その結果を表8に示す。表8中には、黴の試料表面の被覆率を示す。
【表8】
Figure 0003645985
【0036】
銀を析出させた試料は薄茶色になっており、光触媒作用によって種々の金属によるアルミ基板の着色が行えることを示している。
また、表6及び実施例1の場合の表3からわかるように、銀の密着性は、その銀が付着している光触媒膜とアルミ基板の密着力の影響を受けており、比較例1〜2においては光触媒と基板の間で剥離しており、たとえ銀と光触媒の密着力が強くても基板から光触媒ごと剥離しては実際に使用することはできない。試料1〜2の場合は、光触媒膜の剥離が認められず、また、銀の剥離も認められなかった。これらは、表3に示されるように、光触媒膜の密着性が陽極酸化皮膜のアンカー効果で向上したこと及び光触媒膜と銀の密着性が充分であることを示している。
【0037】
また、表7から明らかなように、試料2の光照射無しの場合のみ、他の試料と比較して若干黴の発育面積が広かった。これは、他の試料では、試料の表面のみに銀が析出していることに対し、試料2では陽極酸化皮膜の細孔中に銀が入り込み、表面被覆率が減少しているために防黴効果が低下したものである。しかし、この程度の防黴性の差異が実使用時に問題になることは有り得ない。また、光照射を行った場合では、銀の抗菌・防黴効果と光触媒の抗菌・防黴効果の両方が発揮されるため、全く黴の発育は認められなかった。
また、基材表面をサンドペーパーで研磨し、表面に付着している光触媒膜を完全に剥離させると、試料1ではアルミ基板自体の色調に戻ったが、試料2では陽極酸化皮膜表面を露出させても薄茶色のままであった。また、表8に示されるように、試料2の防黴効果は維持されており、陽極酸化皮膜細孔中に光触媒及び銀が充填されていることにより、試料2の防黴性効果の耐久性、持久性が試料1よりも格段に優れていることがわかる。
これらの結果から、陽極酸化皮膜の細孔中に光触媒を充填し、さらに該光触媒の光触媒作用を利用して前記細孔中に銀を析出させた試料は、銀の剥離・脱落等の問題が無く、また、暗時、光照射時において充分な防黴効果を示すことが確認できた。
【0038】
【発明の効果】
以上のように、本発明の防臭・脱臭は、アルミ基板の表面に陽極酸化皮膜を形成し、さらにこの表面積の大きな多孔質の陽極酸化皮膜の細孔中に光触媒作用を有する半導体微粒子あるいは半導体微粒子を含有もしくは担持した塗料粒子を充填したものであるため、単位面積当りに担持される光触媒の量がかなり多くなり、平坦な金属板上に光触媒膜を形成したものと比べて優れた防臭・脱臭性や抗菌・防黴・防汚性を示す。また、陽極酸化皮膜及びアルミ基板共に光触媒作用に対して安定であるため、従来の合成繊維基材のように光触媒作用によって分解するというようなことはなく、優れた防臭・脱臭効果を長期間にわたって安定して発揮させることができる。
また、光触媒は陽極酸化皮膜の細孔中に吸着・担持されているため、光触媒膜とアルミ基板の密着強度が高く、長期の耐久性にも優れている。それに加えて、陽極酸化皮膜の膜厚や孔径、担持させる光触媒の量を制御することによって、光触媒作用を任意に調整することが可能となる。
さらに、支持体基材として成形性に優れるアルミ基板を用いていると共に、陽極酸化、真空含浸、電気泳動の各処理がいずれも湿式で実施できるため、様々な形状の防臭・脱臭材を形成できる。
従って、本発明の防臭・脱臭材は、任意の形状、構造、模様の防臭・脱臭性商品や防臭・脱臭・抗菌・防黴・防汚性のパネルなどとしても有利に用いることができる。また、アルミ基板の電解着色に用いられている種々の金属を陽極酸化皮膜細孔中に析出できることから、電解着色法よりも生産性に優れた方法で防臭・脱臭の着色が行える。さらに、抗菌性金属又は抗菌性金属を含む化合物や着色用金属以外にも種々の機能性物質を光触媒作用を利用して陽極酸化皮膜細孔中に析出させることが可能であり、防臭・脱臭性に優れた種々の機能性アルミ製品が提供できる。
【図面の簡単な説明】
【図1】 本発明に従ってアルミ基板の陽極酸化皮膜の細孔中に光触媒を完全に充填した防臭・脱臭材の部分概略断面図である。
【図2】 本発明に従ってアルミ基板の陽極酸化皮膜の細孔中に光触媒を部分的に充填した防臭・脱臭材の部分概略断面図である。
【図3】 本発明に従ってアルミ基板の陽極酸化皮膜の凹凸全体を光触媒でコーティングした防臭・脱臭材の部分概略断面図である。
【図4】 図1に示す状態の防臭・脱臭材に抗菌性金属又は抗菌性金属を含む化合物を析出させた状態を示す部分概略断面図である。
【図5】 図2に示す状態の防臭・脱臭材に抗菌性金属又は抗菌性金属を含む化合物を析出させた状態を示す部分概略断面図である。
【図6】 図3に示す状態の防臭・脱臭材に抗菌性金属又は抗菌性金属を含む化合物を析出させた状態を示す部分概略断面図である。
【図7】 光触媒作用により金属を析出させる製造工程例を示す概略説明図である。
【図8】 図2に示す状態の防臭・脱臭材に着色用金属を析出させた状態を示す部分概略断面図である。
【図9】 図8に示す防臭・脱臭材に封孔処理した状態を示す部分概略断面図である。
【図10】 図8に示す防臭・脱臭材の陽極酸化皮膜の細孔中にさらに光触媒を充填した状態を示す部分概略断面図である。
【符号の説明】
1 陽極酸化皮膜
2 細孔
3 光触媒
4 抗菌性金属又は抗菌性金属を含む化合物
5 搬送装置
6 アルミ基板
7 噴霧器
8 紫外線照射装置
9 着色用金属[0001]
BACKGROUND OF THE INVENTION
The present invention is deodorizing and deodorizing Material In more detail, the semiconductor fine particles or semiconductor fine particles having photocatalytic action are formed in and / or on the surface of the anodized film formed on the surface of aluminum or an aluminum alloy as a supporting substrate. Deodorant / deodorant filled or loaded with contained or supported paint particles Material And a manufacturing method thereof.
[0002]
[Prior art]
TiO 2 It is known that the semiconductor fine particles having photocatalytic activity represented by the above have the property of decomposing organic substances by the photocatalytic activity, and various antibacterial / antifungal / antifouling / deodorizing / deodorizing products can be obtained using this property. It has been devised.
In particular, with regard to deodorization and deodorization, various products have been developed that directly appeal to human sensitivity, for example, TiO 2 A filter using a photocatalyst and an air purifier using a photocatalyst are commercially available.
In addition, as a method for supporting a photocatalyst used for deodorization and deodorization, JP-A-8-281121 discloses a sol aqueous solution containing TiO 2. 2 TiO 2 on inorganic fiber paper using a dispersion solution in which 2 JP-A-8-266602 describes a method of supporting TiO2. 2 A mixture of an aqueous dispersion of agglomerates and fine fibers and an aqueous dispersion of synthetic resin fibers is formed into a sheet by a wet papermaking method, and TiO2 is added to the synthetic fiber paper. 2 Is described.
Furthermore, as a method for supporting a photocatalyst on a metal-based support, a sputtering method, a sol-gel method or the like has been devised.
[0003]
[Problems to be solved by the invention]
When the photocatalyst is used for deodorization and deodorization, it is considered that it is generally necessary to support the photocatalyst on a fibrous support such as paper or cloth from the viewpoint of its adsorptivity. However, many of these are made of organic substances, and the fibers themselves are gradually decomposed by the photocatalytic action, so that there is a problem in stability during long-term use.
On the other hand, when the photocatalyst is adsorbed / supported on a support such as a metal material that can withstand the photocatalytic action, a sufficient deodorizing / deodorizing effect cannot always be obtained due to its small surface area. In addition, there is a problem that sufficient adhesion between the metal support and the photocatalyst cannot be obtained, and the adsorbed and supported photocatalyst is easily peeled off. Furthermore, when a photocatalyst is supported on a metal support by sputtering or the like, it is difficult to uniformly coat a photocatalyst film on a support having a complicated shape.
[0004]
Therefore, the object of the present invention is to solve the above-mentioned problems, and to carry a photocatalyst in a sufficient amount and with high adhesion strength on a metal support that is stable against photocatalysis, and has an excellent deodorizing / deodorizing effect. Can be demonstrated stably over a long period of time Deodorant / deodorant Is to provide.
Furthermore, the object of the present invention is to have excellent characteristics as described above. Deodorant / deodorant Can be manufactured easily and at a relatively low cost, and the photocatalyst can be uniformly supported on a support having a complicated shape. Material It is in providing the manufacturing method of.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, an anodized film having pores is formed on the surface of a substrate made of aluminum or an aluminum alloy, and further in and / or the surface of the pores of the anodized film. Deodorizing and deodorizing by filling and supporting semiconductor particles having photocatalytic activity or coating particles containing or supporting semiconductor particles Material Is provided.
Furthermore, according to the present invention, the above-mentioned deodorization / deodorization Material A suitable method for the production of is also provided. In one method, a base material made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion or coating solution containing semiconductor fine particles having a photocatalytic action under a pressure of atmospheric pressure or lower, and In another method, semiconductor fine particles having a photocatalytic action are characterized in that semiconductor fine particles or paint particles containing or loaded with semiconductor fine particles are filled in and / or on the surface of the pores of the anodized film of the material. A substrate made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion liquid or paint solution containing a semiconductor, and a semiconductor is formed in the pores and / or on the surface of the anodized film of the substrate by electrophoresis. It is characterized by filling and carrying paint particles containing or carrying fine particles or semiconductor fine particles.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention Deodorant and deodorant Forms a porous anodic oxide film on a base material (hereinafter abbreviated as an aluminum substrate) made of aluminum or an aluminum alloy, and TiO 2 is formed in the pores by vacuum impregnation or electrophoresis. 2 It is characterized by adsorbing and supporting semiconductor fine particles having a photocatalytic action such as, or coating particles containing or supporting semiconductor fine particles (hereinafter collectively referred to as photocatalyst).
An anodized film is an insulating porous film having innumerable pores having a diameter of about 5 to 100 nm on the surface, and has an extremely large surface area compared to a normal metal surface. Therefore, TiO in the pores or further on the surface of the anodized film. 2 By adsorbing and supporting the photocatalyst, etc., the amount of the photocatalyst supported per unit area is considerably increased, and the deodorizing / deodorizing effect becomes extremely high as compared with a photocatalyst film formed on a flat metal plate. In addition, since both the anodized film and the aluminum substrate are stable against photocatalysis, they are not decomposed by photocatalysis as in the case of conventional synthetic fiber base materials, and have excellent deodorizing and deodorizing effects over a long period of time. It can be exhibited stably.
[0007]
Further, since the photocatalyst is adsorbed and supported in the pores of the anodized film, the adhesion strength between the photocatalyst and the aluminum substrate is high, and the long-term durability is also excellent. In addition, the photocatalytic action can be arbitrarily adjusted by controlling the film thickness and pore diameter of the anodized film and the amount of the photocatalyst to be supported.
In addition, an aluminum substrate with excellent formability is used as a support base material, and each process of anodization, vacuum impregnation, and electrophoresis can be performed in a wet manner. Deodorant / deodorant Can be formed. That is, according to the present invention Deodorant / deodorant After being manufactured, it can be molded into various shapes, and an aluminum substrate that has been extruded and processed into a complicated shape in advance can be anodized to adsorb and support the photocatalyst.
Therefore, the present invention Deodorant / deodorant Can be applied to all forms of products such as deodorant / deodorant figurines of any shape, structure, pattern, deodorant / deodorant pen stand, deodorant / deodorant case, panel materials, frame materials etc For example, deodorant and deodorant panel Le Can be used in any form.
[0008]
As mentioned above, the present invention Deodorant / deodorant Is a semiconductor fine particle having photocatalytic action, for example, TiO, in the pores and / or on the surface of the anodized film of the aluminum substrate 2 Is present. When the semiconductor particles are irradiated with sunlight or fluorescent light, TiO 2 Holes on the surface (h + ) And electrons (e - ) Is generated and exhibits photocatalytic action, and water and various organic substances are decomposed. That is, malodorous components such as acetaldehyde, ammonia, and mercaptan can be decomposed, thereby exhibiting deodorizing / deodorizing action. In addition, water is oxidized by the action of the holes to reduce OH radicals, and oxygen in the air is reduced by the action of electrons. 2- Ions are generated. These active oxygens have an excellent bactericidal action, and as a result, wrinkles and the like are less likely to occur. Therefore, according to the present invention Deodorant / deodorant Exhibits antibacterial, antibacterial and antifouling properties as well as deodorizing and deodorizing effects, and can be used as a form of antibacterial, antibacterial and antifouling deodorizing and deodorizing products.
[0009]
In addition, TiO 2 When metal ions are present on the surface of semiconductor particles such as, various metal ions are reduced by the action of electrons generated by light irradiation, and it is possible to deposit metal in the pores of the anodized film. Become. That is, if an antibacterial metal such as silver or copper or a compound containing an antibacterial metal is deposited, the antibacterial and antifungal properties can be maintained even at night when the fluorescent light is turned off. In addition, if a metal such as nickel or tin that has been conventionally deposited by electrolytic coloring is deposited, coloring can be performed without using an electrolytic bath or a power source. Furthermore, if it is a functional material that ionizes in a solution and performs its function in a reduced state, the functional material can be similarly deposited in the pores of the anodized film. Functional aluminum products can be manufactured.
[0010]
Hereinafter, the present invention will be described in detail. As an anodized film of an aluminum substrate to be filled with a photocatalyst, the pore diameter of an anodized film formed by ordinary anodizing treatment is generally 50 nm or less, and it is difficult to fill the photocatalyst. Therefore, it is necessary to use an aluminum substrate having an anodized film having a large pore diameter. Various methods are known as a method for forming such an anodized film having a large pore diameter. First, in one method, an aluminum substrate is treated with, for example, sulfuric acid, phosphoric acid, oxalic acid, malonic acid, maleic acid. The aluminum is anodized at high voltage in an electrolytic bath containing 5 to 30% phosphoric acid or 3 to 40% oxalic acid in one or two or more acid aqueous solutions of mineral acids such as acids or organic acids, and the aluminum An anodized film having pores larger than the normal pore diameter is formed on the substrate surface. In general, when anodized at a high voltage of DC 150 V to 220 V, an anodized film having a pore diameter of 120 nm or more is usually obtained, and the photocatalyst can be filled in the pores. That is, when the voltage of the anodizing treatment is less than 150V, it is not preferable because it is difficult to obtain pores large enough to fill the photocatalyst. On the other hand, when the voltage exceeds 220V, the physical properties such as the strength of the anodized film are adversely affected. Therefore, it is not preferable.
[0011]
As another method, first, an aluminum substrate is anodized in one or more acid aqueous solutions of the mineral acid or organic acid to form a porous anodic oxide film on the surface of the aluminum substrate. As electrolysis conditions, an anodic oxide film having a large cell size and pore diameter is obtained by high voltage electrolysis of 35 V or more, preferably 50 to 160 V. Subsequently, the coating pores are enlarged by immersing in one or more acid aqueous solutions of phosphoric acid, sulfuric acid, oxalic acid, and sulfamic acid, preferably 3-10% phosphoric acid aqueous solution. By such a method, the porous anodic oxide film suitable for filling the photocatalyst of the present invention is finally obtained by adjusting the pores to 50 nm or more, preferably 100 to 1000 nm, and the pore depth of about 3 to 10 μm. . Moreover, in order to shorten the time for the expansion treatment of the film pores, the treatment of the pores of the film pores is carried out by alternately repeating immersion and alternating current electrolysis in a 3 to 10% phosphoric acid aqueous solution at short intervals. The enlargement process can be performed in a relatively short time.
[0012]
As the semiconductor filled in the pores of the anodized film, any semiconductor can be used as long as it has a relatively large mobility of electrons and holes and has the photocatalytic action as described above. 2 , SrTiO Three ZnO, CdS, SnO 2 Among them, among these, TiO 2 Is preferred.
When paint particles containing or carrying semiconductor fine particles are used, the paint includes fluorine-based, silicate-based, acrylic-based, polyester-based, polyurethane-based, etc., but the semiconductor fine particles are uniformly dispersed, preferably a paint for building materials However, it is not particularly limited as long as it has appropriate strength and adhesiveness, and can be appropriately selected according to the application. Among the coating materials, inorganic coating materials such as fluorine-based and silicate-based materials are more preferable from the viewpoint of oxidation resistance.
[0013]
The particle size of the semiconductor particles used or the coating particles containing or carrying the semiconductor particles is preferably adjusted to a particle size of 1 nm to 700 nm, preferably 5 nm to 300 nm. When semiconductor fine particles are contained or supported in the paint, it is clear that the semiconductor fine particles are made smaller than the particle diameter of the paint particles.
When the particle size is smaller than 1 nm, the band gap is increased due to the quantum size effect, and there is a problem that the photocatalytic performance cannot be obtained unless under illumination including short wavelength light such as a high-pressure mercury lamp. Further, when the particle size is too small, there are problems that handling is difficult and dispersibility is deteriorated. From the viewpoint of handleability, a particle size of 5 nm or more is preferable. On the other hand, if the particle diameter exceeds 700 nm, it becomes difficult to fill the pores of the anodized film on the aluminum substrate.
[0014]
As a method of filling the semiconductor fine particles into the pores of the anodic oxide film on the aluminum substrate, an electrophoresis method in a dispersion of semiconductor fine particles can be suitably used. For example, the semiconductor fine particles 10 to 30 are made to exhibit polarity on the surface of the semiconductor fine particles (for example, by adsorbing a surfactant on the particle surface or making the pH of the solution higher than the isoelectric point of the semiconductor fine particles). A water dispersion bath is prepared by dispersing weight% in an aqueous solution, and in this bath, direct current electrolysis (voltage 30 to 200 V) is performed in the pores of the anodized film by using the aluminum substrate on which the anodized film is formed as an anode. For example, an electrophoresis method in which semiconductor fine particles are filled can be employed. As the electrophoresis method, a DC voltage scanning method in which a DC voltage is scanned from a low voltage to a high voltage at a constant boosting speed for a predetermined time, a DC constant voltage method in which electrolysis is performed at a constant voltage for a predetermined time, and the like can be employed.
[0015]
When coating particles containing or carrying semiconductor fine particles are used, if the coating particles are electrophoresed, the photocatalyst can be filled into the pores of the anodized film in the same manner as described above. It is also possible to immerse an aluminum substrate on which an anodized film is formed in the paint. Furthermore, if the photocatalyst cannot be filled in the pores of the anodized film even when immersed in the paint under normal atmospheric pressure, an aluminum substrate with the anodized film formed in a suitable vacuum vessel is installed, After evacuating the interior, a method of introducing a paint and immersing an aluminum substrate on which an anodized film is formed in a vacuum or under reduced pressure can be employed.
[0016]
By the method as described above, an aluminum substrate in which the photocatalyst 3 is filled in the pores 2 of the anodized film 1 is obtained as shown in FIG. As shown in FIG. 1, the photocatalyst filled up to the upper end of the anodized film is an embodiment for the purpose of antibacterial / antifungal / antifouling properties in addition to deodorizing / deodorizing action. That is, when the photocatalyst 3 is filled only in the lower part of the pores 2 of the anodized film 1 as shown in FIG. 2, fungi, mold, and dirt diffuse into the pores of the anodized film to the surface of the photocatalyst. Without antibacterial, antibacterial and antifouling properties, the above-mentioned properties can be expressed well by filling a photocatalyst up to the upper end of the anodized film and providing antibacterial, antifungal and antifouling properties on the surface of the aluminum substrate. It is desirable to be able to express.
Furthermore, as shown in FIG. 3, a mode in which the unevenness of the anodic oxide film 1 is coated with the photocatalyst 3 is also possible. In this case, the photocatalyst not filled in the pores 2 is easy to peel off, but the area covered with the photocatalyst is larger than those in FIGS. 1 and 2, and the pores of the anodized film are gas molecules. It is the most suitable mode for deodorization and deodorization because it can easily enter and exit. Further, the antibacterial / antifungal / antifouling properties are intermediate between those shown in FIGS.
[0017]
Furthermore, by filling the photocatalyst and then depositing an antibacterial metal such as silver or copper or a compound containing an antibacterial metal by the photocatalytic action, the antibacterial / antifungal effect is exhibited even in the dark as described above. You can also make it.
The method for precipitating the antibacterial metal or the compound containing the antibacterial metal is a solution of an appropriate compound containing an antibacterial metal such as silver nitrate or copper such as silver nitrate or copper sulfate, or an appropriate reduction such as ethanol or EDTA. One solution is to immerse an aluminum substrate filled with a photocatalyst in the pores of the anodized film in the solution and irradiate it with ultraviolet rays using a UV lamp or black light. Antibacterial metal ions or antibacterial metal compound ions are reduced by the electrons generated by the above, and a compound containing the antibacterial metal or the antibacterial metal is deposited on the photocatalyst surface. In this case, the precipitation amount of the antibacterial metal or the compound containing the antibacterial metal is controlled by the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution, the concentration of the reducing agent, and the irradiation time of ultraviolet rays. As another method, there is a method in which the solution is applied to the surface of an aluminum substrate filled with a photocatalyst in the pores of the anodized film by a spray method or the like and then irradiated with ultraviolet rays. In this method, the precipitation amount of the antibacterial metal or the compound containing the antibacterial metal can be controlled by the amount of the antibacterial metal ion in the aqueous solution, that is, the concentration of the prepared solution, the concentration of the reducing agent, and the coating amount. In any of the methods, if the surface of the photocatalyst is completely covered with an antibacterial metal or a compound containing an antibacterial metal, the photocatalytic action cannot be expressed, so it is necessary to control the amount of precipitation so as not to cover the surface. There is.
[0018]
When the antibacterial metal or the compound containing the antibacterial metal is deposited, the antibacterial metal or the antibacterial metal is included after the photocatalyst 3 is filled in the pores 2 of the anodic oxide coating 1 as shown in FIG. As shown in FIG. 5, the compound 4 is deposited on the surface of the aluminum substrate, and the photocatalyst 3 is filled only in the pores 2 of the anodized film 1, and the antibacterial metal or antibacterial is filled in the pores of the anodized film. The compound 4 containing a conductive metal can also be deposited. Moreover, as shown in FIG. 6, after coating the unevenness | corrugation of the anodic oxide film 1 with the photocatalyst 3, the antibacterial metal or the compound 4 containing an antibacterial metal can also be deposited on this photocatalyst surface.
In the case of FIG. 4, the antibacterial / antifungal effect is high, but since the antibacterial metal or the compound containing the antibacterial metal is deposited on the surface, the antibacterial metal or the compound containing the antibacterial metal continues to peel off. May be inferior. In the case of FIG. 5, the antibacterial / antifungal effect is lower than in the case of FIG. 4, but the antibacterial metal or the compound containing the antibacterial metal is contained in the pores of the anodic oxide film, so that it peels off. It is difficult, and the sustainability of the effect is improved as compared with the case of FIG. In the case of FIG. 6, since the antibacterial metal or the compound containing the antibacterial metal is deposited from the surface to the pores of the anodized film, the antibacterial metal deposited on the surface or the compound containing the antibacterial metal is peeled off. However, since the antibacterial metal in the pores or the compound containing the antibacterial metal is difficult to peel, the durability of the effect is the same as that in FIG.
What mode should be adopted may be selected from an appropriate mode based on the antibacterial / antifungal effect and its life.
[0019]
Further, in general, an aluminum substrate is colored by depositing a metal such as nickel, tin, copper or the like in the pores of the anodized film by electrolytic coloring, and according to the present invention, the antibacterial metal described above is used. Alternatively, not only compounds containing antibacterial metals, but also metals deposited by electrolytic coloring should be deposited in the pores of the anodized film in the same manner as the above-described precipitation of antibacterial metals or compounds containing antibacterial metals. Thereby producing products colored in various colors. In this case, the control of the amount of deposited metal, that is, the control of the color tone can be carried out in the same manner as the control of the amount of deposited metal of the antibacterial metal or the compound containing the antibacterial metal.
For coloring, as described above, after applying a solution containing metal ions to the aluminum substrate surface filled with the photocatalyst in the pores of the anodized film by an appropriate method such as a spray method, the method of irradiating with ultraviolet rays. adopt. For example, as shown in FIG. 7, a solution containing metal ions or a suitable reducing agent is sprayed by a sprayer 7 while an aluminum substrate 6 is being transported by a transport device 5 such as a conveyor, and then ultraviolet rays are irradiated by an ultraviolet irradiation device 8. Unlike the conventional batch method using an electrolytic bath, the manufacturing process is a continuous manufacturing process that improves productivity, as well as the huge electrolytic bath and power source required for electrolytic coloring. Is completely unnecessary.
[0020]
When the photocatalytic action as described above is used for coloring the aluminum substrate, the filling of the photocatalyst 3 into the pores 2 of the anodized film 1 is preferably as shown in FIG. If the photocatalyst is filled as shown in FIG. 2, the coloring metal 9 is deposited in the pores 2 of the anodized film 1 as shown in FIG. 8, and is equivalent to the metal deposited by conventional electrolytic coloring. Adhesion can be secured.
In addition, when the photocatalytic action is used only for coloring and thereafter antibacterial / antifungal / antifouling properties by the photocatalytic action are unnecessary, as shown in FIG. The sealing (semi-sealing) treatment of the anodic oxide film 1 can be performed to improve the corrosion resistance and durability. Even if such sealing treatment is performed, if the inside of the pore is in communication with the atmosphere, it exhibits deodorization / deodorization properties.
[0021]
In addition, even in the filling state as shown in FIG. 8, the photocatalytic action shows deodorizing / deodorizing properties and antibacterial / antifungal / antifouling properties, but when further improving the photocatalytic action, as shown in FIG. After the metal 9 is deposited, the photocatalyst 3 is filled again to the upper end of the anodized film. In particular, the semiconductor used for the photocatalyst is TiO 2 If this TiO 2 Is almost transparent, so there is no change in the color tone of the coloring metal deposited on the lower part, and various color tones can be selected depending on the coloring metal. It will show antifouling properties. In addition, when a photocatalyst is formed after depositing an organic paint in the pores of the anodized film, the organic paint itself decomposes due to the photocatalytic action and causes a fading phenomenon. On the other hand, it is stable and can exhibit good deodorizing / deodorizing properties and antibacterial / antifungal / antifouling properties while maintaining its color tone over a long period of time.
[0022]
【Example】
Hereinafter, although an example is shown and an effect of the present invention is explained still more concretely, it cannot be overemphasized that the present invention is not limited to the following example.
[0023]
Example 1
Anodizing treatment was performed by applying DC 200V with an aluminum substrate as an anode in an electrolytic bath containing 20% phosphoric acid and 5% oxalic acid to form pores having a pore diameter of about 250 nm and a pore depth of about 5 μm. An anodic oxide film was produced.
Next, TiO which is a photocatalyst 2 Silicate mixed with 10% by weight of fine powder (average particle size 10 nm) and uniformly dispersed with ethanol is diluted 10 times with ethanol to prepare a photocatalyst-carrying paint, and 1 atmosphere (sample 1) or 0.2 atmosphere (sample) Under the pressure of 2), the aluminum substrate on which the anodized film is formed is dipped in the paint, gently pulled up, then held at 150 ° C. in atmospheric pressure for 30 minutes to react the silicate, and the silica carrying the photocatalyst The coating was coated.
For comparison, a photocatalyst was used in the same manner as in the above sample using an aluminum substrate on which an anodized film was not formed, under the same conditions of 1 atmosphere (Comparative Example 1) or 0.2 atmosphere (Comparative Example 2) The supported silica coating was coated.
[0024]
Film thickness measurement and surface roughness measurement:
The film thickness and surface roughness of the photocatalyst film on the anodized film of Samples 1 and 2 and Comparative Examples 1 and 2 were measured with a stylus contact type film thickness meter. The results are shown in Table 1.
[Table 1]
Figure 0003645985
[0025]
Antifouling evaluation 1:
0.1 mg / cm on the surface of Samples 1-2 and Comparative Examples 1-2 2 Then, the salad oil was uniformly applied, irradiated with ultraviolet rays with a 100 W ultraviolet lamp, and the time until the salad oil was completely decomposed was measured. The results are shown in Table 2.
[Table 2]
Figure 0003645985
[0026]
Adhesion evaluation:
The adhesion of the photocatalyst films of Samples 1 and 2 and Comparative Examples 1 and 2 was subjected to a Scotch tape test (the adhesion test of the coating film using the cellophane adhesive tape described in 5.8 of JIS H 8602), and The scratch test was conducted according to the method specified in JIS H 8504. The results are shown in Table 3.
[Table 3]
Figure 0003645985
[0027]
Antifouling evaluation 2:
After completely peeling off the photocatalyst film on the substrate surface of Samples 1 and 2 with # 1200 sandpaper, the time until the salad oil was completely decomposed was measured in the same manner as in the antifouling evaluation 1 described above. . The results are shown in Table 4.
[Table 4]
Figure 0003645985
[0028]
As can be seen from Table 1, the film thicknesses of the photocatalytic films of Samples 1 and 2 and Comparative Examples 1 and 2 were almost the same, but the surface roughness of Sample 2 was compared with Sample 1 and Comparative Examples 1 and 2. It was big.
On the other hand, in Table 2, the time required for the decomposition of the salad oil of Sample 1 and Comparative Examples 1 and 2 was almost the same, but only in the case of Sample 2, the required time was somewhat longer.
These results indicate that the photocatalytic film of Sample 2 was not only filled in the pores of the anodized film but also coated on the entire surface of the anodized film (the embodiment shown in FIG. 3). . In this case, the surface of the photocatalyst film is rougher than that of the sample 1 because it reflects the unevenness of the anodized film. Further, since the photocatalyst could not enter into the pores of the anodized film under atmospheric pressure, and a flat photocatalyst film was formed on the surface of the base material, Sample 1 was a comparative example in which no anodized film was formed. The surface roughness is equivalent to 1-2.
Moreover, in the antifouling evaluation 1, sample 2 had a small surface coverage of the photocatalyst, and the salad oil was high in viscosity and difficult to enter the pores of the anodic oxide film. Understand.
[0029]
As shown in Table 3, film peeling was not observed in Samples 1 and 2. This indicates that when the photocatalytic film is formed on the anodized film, the adhesion of the film is improved by the anchor effect of the anodized film regardless of whether the coating pressure is atmospheric pressure or reduced pressure. ing. Since peeling of the film was observed in Comparative Examples 1 and 2, it was shown that the adhesion of the film does not depend on the coating pressure when the substrate on which the anodized film is not formed is used.
Further, as can be seen from Table 4, the salad oil could not be decomposed at all in the sample 1, but the time required for the sample 2 was longer than the result shown in Table 2, but the salad oil was decomposed and the antifouling was achieved. We are exhibiting sex. Sample 1 had a photocatalyst film only on the surface, and all of the photocatalyst film was peeled off, so that the antifouling property was lost. In sample 2, even if the photocatalyst film on the surface peeled off, the pores of the anodic oxide film This indicates that the antifouling property is not lost because the photocatalyst film filled therein is present, and the durability of the photocatalyst film and the persistence of the photocatalytic action are much superior to those of the sample 1. You can see that
From the above, by coating a coating containing semiconductor fine particles under a condition of 0.2 atm which is not necessarily a high vacuum, the photocatalyst enters the pores of the anodized film and exhibits a photocatalytic action. Since the pores of the anodic oxide film were filled, it was confirmed that the anodized film was in very close contact without dropping off.
[0030]
Gas decomposition test:
Samples 1 and 2 and Comparative Examples 1 and 2 and an untreated aluminum plate were each 4 cm in a 0.5 liter sealed container in order to confirm the organic gas resolution. 2 Acetaldehyde was injected into each container so that the concentration was 100 ppm. After that, the strength of 1 mW / cm on the sample 2 Were irradiated using a black light. The gas composition in each container 60 minutes after the start of irradiation was measured with a gas chromatograph, and the acetaldehyde concentration after the reaction was measured. The results are shown in Table 5.
[Table 5]
Figure 0003645985
[0031]
From Table 5, Sample 2 had the lowest acetaldehyde concentration, and the other samples had almost the same value. That is, it can be seen that Sample 2 decomposed the most acetaldehyde. Moreover, in the case of a mere aluminum plate, it turns out that acetaldehyde was not decomposed | disassembled at all.
As shown in Table 5, the reason for the difference in the acetaldehyde concentration is that there is a difference in the photocatalyst loading state for each sample. That is, only the sample 2 is filled with the photocatalyst into the pores of the anodized film, whereas the other samples have a flat photocatalytic film formed on the surface. In Sample 2, since the photocatalyst is filled in the pores of the anodized film, the surface area is increased and the amount of the photocatalyst supported per unit area is increased. The reactivity in the phase is increased.
[0032]
Example 2
Samples 1 and 2 in Example 1 and the sample in Comparative Example 1 were immersed in 0.5 liter of 0.01 mol / liter silver nitrate aqueous solution and irradiated with ultraviolet rays with a 100 W ultraviolet lamp. 0.1 mg / cm on the sample of Example 1 2 Of silver was precipitated.
[0033]
Adhesion test:
About the obtained samples 1-2 and the sample of the comparative example 1, the scotch tape test and the scratch test were implemented similarly to the case of the said Example 1. FIG. The results are shown in Table 6.
[Table 6]
Figure 0003645985
[0034]
Antifungal test 1:
Based on the antifungal test of the general industrial product described in 5 of JIS Z 2911, the spore suspension was applied to the surfaces of Samples 1-2 and Comparative Example 1 for Samples 1-2 and Comparative Example 1. It was allowed to stand for 28 days in a temperature of 28 ° C. and a humidity of 95%, and the state of wrinkle generation was observed. In addition, in order to observe the difference in anti-mold properties depending on the presence or absence of light irradiation, anti-mold tests were performed for each sample when irradiated with light with a 20 W fluorescent lamp and when no light was irradiated. The results are shown in Table 7. Table 7 shows the coverage of the surface of the sputum sample.
[Table 7]
Figure 0003645985
[0035]
Antifungal test 2:
After the photocatalyst films of Samples 1 and 2 were completely peeled off with # 1200 sandpaper, an antifungal test was carried out in the same manner as in the aforementioned antifungal test 1. The results are shown in Table 8. Table 8 shows the coverage of the surface of the sputum sample.
[Table 8]
Figure 0003645985
[0036]
The sample on which silver is deposited is light brown, indicating that the aluminum substrate can be colored with various metals by photocatalytic action.
Further, as can be seen from Table 6 and Table 3 in the case of Example 1, the adhesion of silver is affected by the adhesion between the photocatalyst film to which the silver is adhered and the aluminum substrate. No. 2 is peeled off between the photocatalyst and the substrate. Even if the adhesion between silver and the photocatalyst is strong, the photocatalyst is peeled off from the substrate and cannot be actually used. In the case of Samples 1 and 2, peeling of the photocatalytic film was not observed, and silver peeling was not recognized. As shown in Table 3, these show that the adhesion of the photocatalyst film is improved by the anchor effect of the anodized film and that the adhesion between the photocatalyst film and silver is sufficient.
[0037]
Further, as apparent from Table 7, only in the case where the sample 2 was not irradiated with light, the growth area of wrinkles was slightly larger than the other samples. This is because, in other samples, silver is deposited only on the surface of the sample, whereas in sample 2, silver enters the pores of the anodized film and the surface coverage is reduced. The effect is reduced. However, it is unlikely that such a difference in anti-rust properties will be a problem during actual use. In addition, when the light was irradiated, both the antibacterial / antifungal effect of silver and the antibacterial / antifungal effect of the photocatalyst were exhibited, so no growth of wrinkles was observed.
Also, when the substrate surface was polished with sandpaper and the photocatalyst film adhering to the surface was completely peeled off, the sample 1 returned to the color of the aluminum substrate itself, but the sample 2 exposed the anodized film surface. It remained light brown. Further, as shown in Table 8, the antifungal effect of the sample 2 is maintained, and the durability of the antifungal effect of the sample 2 is obtained by filling the pores of the anodized film with the photocatalyst and silver. It can be seen that the durability is far superior to that of Sample 1.
From these results, the sample in which the photocatalyst is filled in the pores of the anodic oxide film and silver is precipitated in the pores using the photocatalytic action of the photocatalyst has problems such as peeling and dropping of silver. In addition, it was confirmed that a sufficient antifungal effect was exhibited in the dark and light irradiation.
[0038]
【The invention's effect】
As described above, the deodorization / deodorization of the present invention Material Is formed by forming an anodic oxide film on the surface of an aluminum substrate and filling the fine particles of a porous anodic oxide film having a large surface area with fine particles of semiconductor having photocatalytic action or coating particles containing or carrying semiconductor fine particles Therefore, the amount of photocatalyst carried per unit area is considerably increased, and it has superior deodorizing / deodorizing properties and antibacterial / antifungal / antifouling properties compared to a photocatalytic film formed on a flat metal plate. Show. In addition, since both the anodized film and the aluminum substrate are stable against photocatalysis, they are not decomposed by photocatalysis as in the case of conventional synthetic fiber base materials, and have excellent deodorizing and deodorizing effects over a long period of time. It can be exhibited stably.
Further, since the photocatalyst is adsorbed and supported in the pores of the anodic oxide film, the adhesion strength between the photocatalyst film and the aluminum substrate is high, and the long-term durability is also excellent. In addition, the photocatalytic action can be arbitrarily adjusted by controlling the film thickness and pore diameter of the anodized film and the amount of the photocatalyst to be supported.
In addition, an aluminum substrate with excellent formability is used as a support base material, and each process of anodization, vacuum impregnation, and electrophoresis can be performed in a wet manner. Deodorant / deodorant Can be formed.
Therefore, the present invention Deodorant / deodorant Is a deodorant / deodorant product of any shape, structure and pattern, and a panel of deodorant / deodorant / antibacterial / antifungal / antifouling properties Such Can also be used advantageously. In addition, various metals used for electrolytic coloring of aluminum substrates can be deposited in the pores of the anodic oxide film. Material Can be colored. In addition to antibacterial metals or compounds containing antibacterial metals and coloring metals, it is possible to deposit various functional substances in the pores of the anodized film using photocatalytic action. Various functional aluminum products with excellent performance can be provided.
[Brief description of the drawings]
FIG. 1 shows the photocatalyst completely filled in the pores of the anodized film of an aluminum substrate according to the present invention. Deodorant / deodorant FIG.
FIG. 2 partially fills the photocatalyst into the pores of the anodized film of the aluminum substrate according to the present invention. Deodorant / deodorant FIG.
FIG. 3 shows that the entire surface of the anodized film on the aluminum substrate is coated with a photocatalyst according to the present invention. Deodorant / deodorant FIG.
FIG. 4 shows the state shown in FIG. Deodorant / deodorant It is a partial schematic sectional drawing which shows the state which precipitated the antibacterial metal or the compound containing an antibacterial metal.
FIG. 5 shows the state shown in FIG. Deodorant / deodorant It is a partial schematic sectional drawing which shows the state which precipitated the antibacterial metal or the compound containing an antibacterial metal.
FIG. 6 shows the state shown in FIG. Deodorant / deodorant It is a partial schematic sectional drawing which shows the state which precipitated the antibacterial metal or the compound containing an antibacterial metal.
FIG. 7 is a schematic explanatory view showing an example of a manufacturing process for depositing a metal by photocatalysis.
FIG. 8 shows the state shown in FIG. Deodorant / deodorant It is a partial schematic sectional drawing which shows the state which deposited the metal for coloring.
FIG. 9 shows in FIG. Deodorant / deodorant It is a partial schematic sectional drawing which shows the state which carried out the sealing process.
FIG. 10 is shown in FIG. Deodorant / deodorant It is a partial schematic sectional drawing which shows the state which filled the photocatalyst further in the pore of this anodic oxide film.
[Explanation of symbols]
1 Anodized film
2 pores
3 Photocatalyst
4 Antibacterial metals or compounds containing antibacterial metals
5 Transport device
6 Aluminum substrate
7 Nebulizer
8 UV irradiation equipment
9 Coloring metal

Claims (3)

アルミニウム又はアルミニウム合金からなる基材の表面に陽極酸化皮膜を形成し、さらに該陽極酸化皮膜の細孔中及び/又はその表面に光触媒作用を有する半導体微粒子又は半導体微粒子を含有もしくは担持した塗料粒子が充填・担持されてなる防臭・脱臭An anodized film is formed on the surface of a base material made of aluminum or an aluminum alloy, and further, fine particles of the anodized film and / or semiconductor particles having a photocatalytic action on the surface thereof, or paint particles containing or supporting the semiconductor fine particles Deodorizing / deodorizing material filled and supported. 光触媒作用を有する半導体微粒子を含む分散液又は塗料溶液中に、大気圧以下の圧力下、陽極酸化皮膜を形成したアルミニウム又はアルミニウム合金からなる基材を浸漬し、上記基材の陽極酸化皮膜の細孔中及び/又はその表面に半導体微粒子又は半導体微粒子を含有もしくは担持した塗料粒子を充填・担持させることを特徴とする防臭・脱臭の製造方法。A substrate made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion liquid or coating solution containing semiconductor fine particles having a photocatalytic action under a pressure of atmospheric pressure or less, and the fine film of the anodized film of the above-mentioned substrate is obtained. A method for producing a deodorizing / deodorizing material , comprising filling and supporting semiconductor particles or coating particles containing or supporting semiconductor particles in and / or on the surface thereof. 光触媒作用を有する半導体微粒子を含む分散液又は塗料溶液中に、陽極酸化皮膜を形成したアルミニウム又はアルミニウム合金からなる基材を浸漬し、電気泳動法により上記基材の陽極酸化皮膜の細孔中及び/又はその表面に半導体微粒子又は半導体微粒子を含有もしくは担持した塗料粒子を充填・担持させることを特徴とする防臭・脱臭の製造方法。A base material made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion or paint solution containing semiconductor fine particles having a photocatalytic action, and in the pores of the anodized film on the base material by electrophoresis. A method for producing a deodorizing / deodorizing material , comprising filling / supporting semiconductor particles or coating particles containing or supporting semiconductor particles on the surface thereof.
JP06897397A 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same Expired - Fee Related JP3645985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06897397A JP3645985B2 (en) 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06897397A JP3645985B2 (en) 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10249212A JPH10249212A (en) 1998-09-22
JP3645985B2 true JP3645985B2 (en) 2005-05-11

Family

ID=13389133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06897397A Expired - Fee Related JP3645985B2 (en) 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3645985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906057B2 (en) * 2005-07-14 2011-03-15 3M Innovative Properties Company Nanostructured article and method of making the same
KR100907467B1 (en) 2006-12-21 2009-07-13 고려대학교 산학협력단 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method

Also Published As

Publication number Publication date
JPH10249212A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
US5670206A (en) Deodorizing lamp and method for production thereof
Poznyak et al. Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes
US20020042343A1 (en) Coating composition for forming titanium oxide film, process for forming titanium oxide film and photocatalyst
Ito et al. Preparation of highly photocatalytic nanocomposite films consisting of TiO2 particles and Zn electrodeposited on steel
JP4619197B2 (en) Aluminum substrate with anodized film and method for producing the same
EP0853142B1 (en) Metal material having photocatalytic activity and method of manufacturing the same
US5668076A (en) Photocatalyst and method for preparing the same
CN103787586A (en) Self-cleaning hydrophilic composite material and preparation method thereof
JP3645985B2 (en) Deodorizing and deodorizing material and method for producing the same
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
CN102677124B (en) Preparation method of photocatalytic film with energy storage function
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
Kuroiwa et al. Oxidation of multicarbon compounds to CO 2 by photocatalysts with energy storage abilities
JP3316048B2 (en) Building material and manufacturing method thereof
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
Sayahi et al. Cost-effective fabrication of perdurable electrodeposited TiO 2 nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue
Ikeda et al. Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes
JP2001303296A (en) Metallic material having photocatalytic function and producing method thereof
Mokhtarifar et al. Smart protection of surfaces during day-night by a novel composite self-cleaning coating with catalytic memory
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
Ishikawa et al. Electrodeposition of TiO2 photocatalyst into porous alumite prepared in phosphoric acid
CN100341610C (en) Improved method for preparing palladium supported membrane by photocatalytic sedimentation
JP3210546B2 (en) Antibacterial and antifungal building materials
US20120100985A1 (en) Process for the preparation of a photocatalyst

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees