JPH10249212A - Photocatalyst supporter having odor-preventing/ deodorizing property and its production - Google Patents

Photocatalyst supporter having odor-preventing/ deodorizing property and its production

Info

Publication number
JPH10249212A
JPH10249212A JP9068973A JP6897397A JPH10249212A JP H10249212 A JPH10249212 A JP H10249212A JP 9068973 A JP9068973 A JP 9068973A JP 6897397 A JP6897397 A JP 6897397A JP H10249212 A JPH10249212 A JP H10249212A
Authority
JP
Japan
Prior art keywords
photocatalyst
oxide film
anodic oxide
pores
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9068973A
Other languages
Japanese (ja)
Other versions
JP3645985B2 (en
Inventor
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Nobuyuki Nakada
信之 中田
Toshio Arai
敏夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP06897397A priority Critical patent/JP3645985B2/en
Publication of JPH10249212A publication Critical patent/JPH10249212A/en
Application granted granted Critical
Publication of JP3645985B2 publication Critical patent/JP3645985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst by which excellent odor-preventing/ deodorizing effect is stably exhibited for a long term by carrying the photocatalyst at plenty amount with high adhesion strength on a metallic supporter stable for photocatalytic action and to provide a producing method thereof. SOLUTION: Base material consisting of aluminum alloy formed with an anodic oxide film 1 is immersed into dispersion liquid or a paint solution containing semiconductor particles having photocatalytic action and a cataphoresis method is applied thereto. Or, the base material is immersed into the above-mentioned solution at pressure not higher than the atmospheric pressure. The photocatalyst supporter having odor-preventing/deodorizing property is produced. In the photocatalyst supporter, the semiconductor particles or paint grains 3 containing the semiconductor particles or being carried with them are filled into pores 2 of the anodic oxide film 1 of the base material and carried on the surface thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防臭・脱臭性を有
する光触媒保持体及びその製造方法に関し、さらに詳し
くは、アルミニウム又はアルミニウム合金を支持基材と
し、その表面に形成した陽極酸化皮膜の細孔中及び/又
はその表面に、光触媒作用を有する半導体微粒子、ある
いは半導体微粒子を含有もしくは担持した塗料粒子を充
填・担持させた防臭・脱臭性を有する光触媒保持体及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst support having deodorizing and deodorizing properties and a method for producing the same, and more particularly, to a method for producing an anodized film formed on a surface of aluminum or an aluminum alloy as a supporting base material. The present invention relates to a photocatalyst holder having deodorizing and deodorizing properties in which semiconductor fine particles having photocatalytic activity or paint particles containing or supporting semiconductor fine particles are filled and supported in pores and / or on the surface thereof, and a method for producing the same.

【0002】[0002]

【従来の技術】TiO2 に代表される光触媒作用を有す
る半導体微粒子がその光触媒作用により有機物を分解す
る性質を有することは知られており、この性質を利用し
て様々な抗菌・防黴・防汚・防臭・脱臭商品が考案され
ている。特に、防臭・脱臭に関しては、人間の感性に直
接訴えかけるものとして様々な商品が開発されており、
例えば、TiO2 光触媒を用いたフィルターや、光触媒
を用いた空気清浄器が市販されている。また、防臭・脱
臭に用いる光触媒の担持方法として、特開平8−281
121号には、シリカゾル水溶液にTiO2 を分散させ
た分散溶液を用いて無機繊維紙にTiO2 を担持させる
方法が記載され、また特開平8−266602号には、
TiO2 と微細繊維よりなる凝集体水分散液と合成樹脂
繊維の水分散液の混合液を湿式抄造法によりシート化
し、合成繊維紙にTiO2 を担持させる方法が記載され
ている。さらに、金属系の支持体上に光触媒を担持させ
る方法としても、スパッタ法、ゾル−ゲル法等が考案さ
れている。
2. Description of the Related Art It is known that semiconductor fine particles having a photocatalytic action represented by TiO 2 have a property of decomposing organic substances by the photocatalytic action. Stain, deodorant and deodorant products have been devised. In particular, regarding deodorization and deodorization, various products have been developed to directly appeal to human sensitivity.
For example, a filter using a TiO 2 photocatalyst and an air purifier using a photocatalyst are commercially available. As a method for supporting a photocatalyst used for deodorization and deodorization, Japanese Patent Application Laid-Open No. 8-281 is disclosed.
No. 121 describes a method in which TiO 2 is supported on inorganic fiber paper using a dispersion solution in which TiO 2 is dispersed in an aqueous silica sol solution, and JP-A-8-266602 discloses a method.
A method is described in which a mixture of an aqueous dispersion of aggregates composed of TiO 2 and fine fibers and an aqueous dispersion of synthetic resin fibers is formed into a sheet by a wet papermaking method, and TiO 2 is supported on synthetic fiber paper. Further, as a method of supporting a photocatalyst on a metal-based support, a sputtering method, a sol-gel method, and the like have been devised.

【0003】[0003]

【発明が解決しようとする課題】光触媒を防臭・脱臭に
利用する場合、その吸着性の点から、前記した従来技術
のように、一般に紙や布等の繊維質の支持体に光触媒を
担持させる必要があると考えられている。しかし、これ
らの多くは有機物からなっており、光触媒作用によって
繊維自体が徐々に分解されてしまうため、長期間使用に
おける安定性に問題がある。一方、光触媒作用に耐え得
る金属材料等の支持体に光触媒を吸着・担持させた場
合、その表面積が小さいため、必ずしも充分な防臭・脱
臭効果は得られなかった。また、金属支持体と光触媒の
充分な密着性が得られず、吸着・担持させた光触媒が剥
離し易いという問題がある。さらに、スパッタ法等によ
り金属支持体上に光触媒を担持させる場合、複雑な形状
を有する支持体上に均一に光触媒膜をコーティングする
ことは困難である。
When a photocatalyst is used for deodorization and deodorization, the photocatalyst is generally supported on a fibrous support such as paper or cloth, as in the above-mentioned prior art, in view of its adsorptivity. It is considered necessary. However, most of them are made of organic substances, and the fibers themselves are gradually decomposed by the photocatalytic action, so that there is a problem in stability in long-term use. On the other hand, when a photocatalyst is adsorbed and supported on a support made of a metal material or the like that can withstand a photocatalytic action, a sufficient deodorizing / deodorizing effect cannot always be obtained because the surface area is small. In addition, there is a problem that sufficient adhesion between the metal support and the photocatalyst cannot be obtained, and the adsorbed and supported photocatalyst is easily separated. Furthermore, when a photocatalyst is supported on a metal support by a sputtering method or the like, it is difficult to uniformly coat the photocatalyst film on a support having a complicated shape.

【0004】従って、本発明の目的は、前記のような問
題を解決し、光触媒作用に対して安定な金属支持体上に
光触媒を充分な量で、かつ高い密着強度で担持させ、優
れた防臭・脱臭効果を長期間にわたって安定的に発揮で
きる光触媒保持体を提供することにある。さらに本発明
の目的は、上記のような優れた特性を有する光触媒保持
体を容易に、また比較的低コストで製造でき、しかも複
雑な形状の支持体にも均一に光触媒を担持させることが
できる防臭・脱臭性光触媒保持体の製造方法を提供する
ことにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems, to carry a photocatalyst in a sufficient amount and with a high adhesion strength on a metal support which is stable against photocatalysis, and to obtain excellent odor control. -To provide a photocatalyst holder capable of stably exhibiting a deodorizing effect over a long period of time. Further, an object of the present invention is to make it possible to easily produce a photocatalyst holder having the above-described excellent characteristics at a relatively low cost, and to uniformly support the photocatalyst on a support having a complicated shape. An object of the present invention is to provide a method for producing a deodorizing / deodorizing photocatalyst holder.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、アルミニウム又はアルミニウム合
金からなる基材の表面に細孔を有する陽極酸化皮膜を形
成し、さらに該陽極酸化皮膜の細孔中及び/又はその表
面に光触媒作用を有する半導体微粒子あるいは半導体微
粒子を含有もしくは担持した塗料粒子が充填・担持され
てなる防臭・脱臭性を有する光触媒保持体が提供され
る。さらに本発明によれば、上記のような防臭・脱臭性
を有する光触媒保持体の製造に好適な方法も提供され
る。その一つの方法においては、光触媒作用を有する半
導体微粒子を含む分散液又は塗料溶液中に、大気圧以下
の圧力下、陽極酸化皮膜を形成したアルミニウム又はア
ルミニウム合金からなる基材を浸漬し、上記基材の陽極
酸化皮膜の細孔中及び/又はその表面に半導体微粒子又
は半導体微粒子を含有もしくは担持した塗料粒子を充填
・担持させることを特徴としており、他の方法において
は、光触媒作用を有する半導体微粒子を含む分散液又は
塗料溶液中に、陽極酸化皮膜を形成したアルミニウム又
はアルミニウム合金からなる基材を浸漬し、電気泳動法
により上記基材の陽極酸化皮膜の細孔中及び/又はその
表面に半導体微粒子又は半導体微粒子を含有もしくは担
持した塗料粒子を充填・担持させることを特徴としてい
る。
According to the present invention, an anodic oxide film having pores is formed on a surface of a substrate made of aluminum or an aluminum alloy, and the anodic oxide film is further provided. The present invention provides a deodorizing and deodorizing photocatalyst holder in which semiconductor fine particles having photocatalytic activity or paint particles containing or supporting semiconductor fine particles are filled and supported in the pores and / or on the surface thereof. Further, according to the present invention, there is also provided a method suitable for producing a photocatalyst holder having the above-mentioned deodorizing and deodorizing properties. In one of the methods, a substrate made of aluminum or an aluminum alloy on which an anodic oxide film is formed is immersed in a dispersion or a coating solution containing semiconductor fine particles having a photocatalytic action under a pressure of less than atmospheric pressure. Characterized in that semiconductor fine particles or paint particles containing or supporting semiconductor fine particles are filled and supported in the pores of and / or on the surface of the anodic oxide film of the material. In another method, semiconductor fine particles having a photocatalytic action are used. A substrate made of aluminum or an aluminum alloy on which an anodic oxide film is formed is immersed in a dispersion liquid or a coating solution containing, and a semiconductor is formed in the pores of the anodic oxide film of the substrate and / or by electrophoresis. It is characterized in that paint particles containing or carrying fine particles or semiconductor fine particles are filled and carried.

【0006】[0006]

【発明の実施の形態】本発明は、アルミニウム又はアル
ミニウム合金からなる基材(以下、アルミ基板と略称す
る)上に多孔質の陽極酸化皮膜を形成し、この細孔中に
真空含浸法あるいは電気泳動法によってTiO2 等の光
触媒作用を有する半導体微粒子又は半導体微粒子を含有
もしくは担持した塗料粒子(以下、光触媒と総称する)
を吸着・担持させることを特徴としている。陽極酸化皮
膜は、表面に直径約5〜100nmの細孔が無数に開い
た絶縁性の多孔質膜であり、通常の金属表面に比べて表
面積が極めて大きい。従って、この陽極酸化皮膜の細孔
中あるいはさらに表面にTiO2 等の光触媒を吸着・担
持させることによって、単位面積当りに担持される光触
媒の量がかなり多くなり、平坦な金属板上に光触媒膜を
形成したものと比べて防臭・脱臭効果が極めて高くな
る。また、陽極酸化皮膜及びアルミ基板共に光触媒作用
に対して安定であるため、従来の合成繊維基材のように
光触媒作用によって分解するというようなことはなく、
優れた防臭・脱臭効果を長期間にわたって安定して発揮
させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a porous anodic oxide film is formed on a substrate made of aluminum or an aluminum alloy (hereinafter abbreviated as an aluminum substrate), and a vacuum impregnation method or an electric Semiconductor particles having photocatalytic action such as TiO 2 by electrophoresis or paint particles containing or carrying semiconductor particles (hereinafter collectively referred to as photocatalysts)
Is adsorbed and carried. The anodic oxide film is an insulating porous film in which pores having a diameter of about 5 to 100 nm are innumerably opened on the surface, and has an extremely large surface area as compared with a normal metal surface. Therefore, by adsorbing and supporting a photocatalyst such as TiO 2 in the pores of the anodic oxide film or on the surface thereof, the amount of the photocatalyst supported per unit area is considerably increased, and the photocatalyst film is formed on a flat metal plate. The deodorizing and deodorizing effects are extremely high as compared with those formed with. In addition, since both the anodized film and the aluminum substrate are stable against photocatalysis, they do not decompose by photocatalysis as in conventional synthetic fiber substrates,
Excellent deodorizing and deodorizing effects can be stably exhibited over a long period of time.

【0007】また、光触媒は陽極酸化皮膜の細孔中に吸
着・担持されているため、光触媒とアルミ基板の密着強
度が高く、長期の耐久性にも優れている。それに加え
て、陽極酸化皮膜の膜厚や孔径、担持させる光触媒の量
を制御することによって、光触媒作用を任意に調整する
ことが可能となる。さらに、支持体基材として成形性に
優れるアルミ基板を用いていると共に、陽極酸化、真空
含浸、電気泳動の各処理がいずれも湿式で実施できるた
め、様々な形状の光触媒保持体を形成できる。すなわ
ち、本発明に従って光触媒保持体を製造した後に種々の
形状に成形加工することができ、また、予め複雑な形状
に押出成形・加工されたアルミ基板を陽極酸化し、光触
媒を吸着・担持させることもできる。従って、本発明の
光触媒保持体は、任意の形状、構造、模様の防臭・脱臭
性置物、防臭・脱臭性ペン立て、防臭・脱臭性ケース等
の全ゆる商品形態に適用できるだけでなく、パネル材、
枠材、框材等のアルミ建材にも適用でき、例えば防臭・
脱臭性パネル、防臭・脱臭性建具ユニットなどの形態で
使用できる。
Further, since the photocatalyst is adsorbed and carried in the pores of the anodic oxide film, the photocatalyst and the aluminum substrate have high adhesion strength and are excellent in long-term durability. In addition, by controlling the thickness and pore size of the anodic oxide film and the amount of the photocatalyst to be supported, the photocatalysis can be arbitrarily adjusted. Further, since an aluminum substrate having excellent moldability is used as the support base material, and the respective processes of anodic oxidation, vacuum impregnation, and electrophoresis can be performed in a wet manner, photocatalyst holders of various shapes can be formed. That is, after manufacturing the photocatalyst holder according to the present invention, it can be formed into various shapes, and anodized aluminum substrates that have been extruded and processed into a complicated shape in advance to adsorb and support the photocatalyst. Can also. Therefore, the photocatalyst holder of the present invention can be applied to all types of products such as deodorant / deodorant figurines, deodorant / deodorant pen stands, and deodorant / deodorant cases of any shape, structure, and pattern, as well as panel materials. ,
It can be applied to aluminum building materials such as frame materials and frame materials.
It can be used in the form of a deodorizing panel, a deodorant / deodorizing fitting unit, and the like.

【0008】前記したように、本発明の光触媒保持体
は、アルミ基板の陽極酸化皮膜の細孔中及び/又は表面
に、光触媒作用を有する半導体微粒子、例えば、TiO
2 が存在している。この半導体微粒子に太陽光線や蛍光
灯の光が照射されると、TiO 2 表面に正孔(h+ )や
電子(e- )が生じて光触媒作用を示し、水や各種の有
機物の分解が行われる。すなわち、アセトアルデヒド、
アンモニア、メルカプタン等の悪臭成分を分解すること
ができ、それによって防臭・脱臭作用を示す。また、こ
の正孔の作用により水が酸化されOHラジカルを、ま
た、電子の作用により空気中の酸素が還元され、O2-
オンを生ずる。これらの活性酸素は優れた殺菌作用を有
し、その結果、黴等が生じにくくなる。従って、本発明
に係る光触媒保持体は、防臭・脱臭作用だけでなく、抗
菌・防黴・防汚性も示し、抗菌・防黴・防汚性の防臭・
脱臭商品の形態としても利用できる。
As mentioned above, the photocatalyst holder of the present invention
Is in the pores and / or surface of the anodic oxide film on the aluminum substrate
Semiconductor fine particles having a photocatalytic action, for example, TiO.
Two Exists. Sunlight or fluorescent light
When the light of the lamp is irradiated, TiO Two Holes (h+ ) And
Electronic (e- ) Is generated and shows photocatalytic action.
The equipment is disassembled. That is, acetaldehyde,
Decomposes offensive odor components such as ammonia and mercaptan
It has a deodorizing and deodorizing effect. Also,
Water is oxidized by the action of the holes to generate OH radicals,
In addition, oxygen in the air is reduced by the action of electrons, and O2-I
On occurs. These active oxygens have excellent bactericidal action.
As a result, mold and the like hardly occur. Therefore, the present invention
The photocatalyst holder according to
It also shows fungus, fungus and antifouling properties, and has antibacterial, antifungal and antifouling properties.
It can also be used as a form of deodorized products.

【0009】さらに、TiO2 等の半導体粒子の表面に
金属イオンが存在する時は、光照射によって生じた電子
の作用によって種々の金属イオンの還元が行われ、陽極
酸化皮膜の細孔中に金属を析出させることが可能とな
る。すなわち、銀や銅などの抗菌性金属又は抗菌性金属
を含む化合物を析出させれば、夜間、蛍光灯の明かりが
消えても抗菌・防黴性が維持されることになる。また、
ニッケルやスズ等、従来、電解着色によって析出させて
いた金属を析出させれば、電解浴や電源を使用すること
なしに着色が行える。さらに、溶液中でイオン化しこれ
が還元された状態で機能を発揮するような機能性材料で
あれば、同様に該機能性材料を陽極酸化皮膜の細孔中に
析出させることが可能となり、様々な機能性アルミ製品
の作製が行える。
Further, when metal ions are present on the surface of semiconductor particles such as TiO 2 , various metal ions are reduced by the action of electrons generated by light irradiation, and metal ions are contained in pores of the anodic oxide film. Can be precipitated. That is, if an antibacterial metal such as silver or copper or a compound containing an antibacterial metal is deposited, antibacterial and antifungal properties can be maintained even at night when the light of a fluorescent lamp is extinguished. Also,
If a metal such as nickel and tin, which has been conventionally deposited by electrolytic coloring, is deposited, coloring can be performed without using an electrolytic bath or a power supply. Furthermore, if it is a functional material that is ionized in a solution and exerts its function in a reduced state, it becomes possible to deposit the functional material in the pores of the anodic oxide film in the same manner. Functional aluminum products can be manufactured.

【0010】以下、本発明について詳しく説明すると、
光触媒を充填させるアルミ基板の陽極酸化皮膜として
は、通常の陽極酸化処理によって形成した陽極酸化皮膜
の細孔径は一般に50nm以下であり、光触媒の充填が
困難であるので、細孔径の大きな陽極酸化皮膜を有する
アルミ基板を用いる必要がある。このような細孔径の大
きな陽極酸化皮膜を形成する方法としては種々の方法が
知られているが、まず、一つの方法においては、アルミ
基板を例えば硫酸、リン酸、シュウ酸、マロン酸、マレ
イン酸等の鉱酸又は有機酸の1種又は2種以上の酸水溶
液中、例えばリン酸5〜30%、シュウ酸3〜40%を
含有する電解浴中で高電圧で陽極酸化し、該アルミ基板
表面に通常の細孔径より大きい細孔を有する陽極酸化皮
膜を形成させる。一般にDC150V〜220Vの高電
圧で陽極酸化した場合、通常120nm以上の細孔径を
有する陽極酸化皮膜が得られ、該細孔内に前記光触媒を
充填できる。すなわち、陽極酸化処理の電圧が150V
未満の場合、光触媒の充填に充分な大きさの細孔が得ら
れにくいので好ましくなく、一方、220Vを超えると
陽極酸化皮膜の強度等の物性に悪影響を及ぼすので好ま
しくない。
Hereinafter, the present invention will be described in detail.
As the anodic oxide film of the aluminum substrate to be filled with the photocatalyst, the pore diameter of the anodic oxide film formed by ordinary anodic oxidation treatment is generally 50 nm or less, and it is difficult to fill the photocatalyst. It is necessary to use an aluminum substrate having Various methods are known as a method for forming such an anodized film having a large pore diameter. First, in one method, an aluminum substrate is, for example, sulfuric acid, phosphoric acid, oxalic acid, malonic acid, maleic acid, or the like. Anodizing at a high voltage in an aqueous solution of one or more acids such as mineral acids or organic acids such as an acid, for example, in an electrolytic bath containing 5 to 30% of phosphoric acid and 3 to 40% of oxalic acid; An anodic oxide film having pores larger than a normal pore diameter is formed on the substrate surface. In general, when anodizing is performed at a high voltage of 150 to 220 V DC, an anodic oxide film having a pore diameter of usually 120 nm or more is obtained, and the pores can be filled with the photocatalyst. That is, the voltage of the anodic oxidation treatment is 150 V
If it is less than 220 V, it is not preferable because it is difficult to obtain pores large enough for filling the photocatalyst. On the other hand, if it exceeds 220 V, it adversely affects the physical properties such as the strength of the anodic oxide film.

【0011】また、他の方法としては、まずアルミ基板
を前記鉱酸又は有機酸の1種又は2種以上の酸水溶液中
で陽極酸化し、該アルミ基板の表面に多孔質陽極酸化皮
膜を形成させる。電解条件としては、35V以上、好ま
しくは50〜160Vの高電圧電解によりセルサイズ及
び細孔径の大きな陽極酸化皮膜を得る。次いで、リン
酸、硫酸、シュウ酸、スルファミン酸の1種又は2種以
上の酸水溶液、好ましくはリン酸3〜10%の水溶液に
浸漬して皮膜細孔の拡大処理を行う。このような方法に
より、最終的には50nm以上、好ましくは100〜1
000nm、孔の深さ3〜10μm程度の細孔に調整し
て、本発明の光触媒の充填に適する多孔質陽極酸化皮膜
を得る。また、皮膜細孔の拡大処理の時間を短縮するた
めに、リン酸3〜10%の水溶液中で、浸漬と交流系電
解の処理を交互に短時間間隔で繰り返すことにより、該
皮膜細孔の拡大処理を比較的短時間に行うことができ
る。
In another method, an aluminum substrate is first anodized in an aqueous solution of one or more of the above-mentioned mineral acids or organic acids to form a porous anodized film on the surface of the aluminum substrate. Let it. As the electrolysis conditions, an anodic oxide film having a large cell size and a large pore diameter is obtained by high voltage electrolysis of 35 V or more, preferably 50 to 160 V. Then, the film is immersed in an aqueous solution of one or more of phosphoric acid, sulfuric acid, oxalic acid, and sulfamic acid, preferably an aqueous solution of 3 to 10% of phosphoric acid, to perform a process of expanding the pores of the film. By such a method, finally, 50 nm or more, preferably 100 to 1 nm
The porous anodic oxide film suitable for filling the photocatalyst of the present invention is obtained by adjusting the pore size to 000 nm and the pore depth to about 3 to 10 μm. In order to shorten the time required for the process of expanding the pores of the coating, the immersion and the alternating current electrolysis are alternately repeated at short intervals in an aqueous solution containing 3 to 10% of phosphoric acid. The enlargement process can be performed in a relatively short time.

【0012】前記陽極酸化皮膜の細孔中に充填される半
導体としては、電子と正孔の移動度が比較的大きく、上
記のような光触媒作用を有する半導体であればいずれも
使用可能であり、例えばTiO2 、SrTiO3 、Zn
O、CdS、SnO2 等が挙げられるが、これらの中で
も特にTiO2 が好ましい。半導体微粒子を含有又は担
持した塗料粒子を使用する場合、その塗料にはフッ素
系、シリケート系、アクリル系、ポリエステル系やポリ
ウレタン系等があるが、半導体微粒子が均一に分散し、
好ましくは建材の塗料としても適度な強度と密着性を有
するものであれば特に限定されず、用途に応じて適宜選
定することができる。また、前記塗料の中でもフッ素
系、シリケート系等の無機系塗料が、その耐酸化力の点
からより好ましい。
As the semiconductor to be filled in the pores of the anodic oxide film, any semiconductor can be used as long as it has a relatively high mobility of electrons and holes and has a photocatalytic action as described above. For example, TiO 2 , SrTiO 3 , Zn
O, CdS, SnO 2 and the like can be mentioned, and among them, TiO 2 is particularly preferable. When using paint particles containing or carrying semiconductor fine particles, the paint is fluorine-based, silicate-based, acrylic-based, polyester-based or polyurethane-based, etc., semiconductor fine particles are uniformly dispersed,
Preferably, the coating material for the building material is not particularly limited as long as it has appropriate strength and adhesion, and can be appropriately selected depending on the application. In addition, among the above-mentioned paints, inorganic paints such as fluorine-based paints and silicate-based paints are more preferable in view of their oxidation resistance.

【0013】使用する半導体微粒子、あるいは半導体微
粒子を含有もしくは担持した塗料粒子の粒径は、1nm
〜700nm、好ましくは5nm〜300nmの粒径に
調整することが好ましい。半導体微粒子を塗料に含有も
しくは担持させる場合、半導体微粒子を前記塗料粒子の
粒径よりも小さくすることは明らかである。粒径が1n
mよりも小さくなると量子サイズ効果によりバンドギャ
ップが大きくなり、高圧水銀灯等の短波長光を含む照明
下でないと光触媒性能が得られないといった問題があ
る。また、粒径があまりに小さ過ぎると取り扱いが困難
であったり、分散性が悪くなるという問題も生じてく
る。取り扱い性の点からは5nm以上の粒径が好まし
い。一方、粒径が700nmを超えると、アルミ基板の
陽極酸化皮膜の細孔への充填が難しくなる。
The particle size of the semiconductor fine particles used or the coating particles containing or carrying the semiconductor fine particles is 1 nm.
It is preferable to adjust the particle diameter to 700 nm, preferably 5 nm to 300 nm. When the semiconductor fine particles are contained or supported in the paint, it is apparent that the semiconductor fine particles are made smaller than the particle diameter of the paint particles. Particle size is 1n
When it is smaller than m, the band gap becomes large due to the quantum size effect, and there is a problem that the photocatalytic performance cannot be obtained unless it is under illumination including short-wavelength light such as a high-pressure mercury lamp. Further, when the particle size is too small, there are problems that handling is difficult and dispersibility is deteriorated. A particle size of 5 nm or more is preferred from the viewpoint of handleability. On the other hand, when the particle size exceeds 700 nm, it becomes difficult to fill the pores of the anodic oxide film on the aluminum substrate.

【0014】前記半導体微粒子のアルミ基板陽極酸化皮
膜細孔中への充填方法としては、半導体微粒子の分散液
中での電気泳動法等を好適に用いることができる。例え
ば、半導体微粒子の表面に極性を発現させて(例えば、
界面活性剤を粒子表面に吸着させたり、溶液のpHを半
導体微粒子の等電点よりも大きくするなどして)、半導
体微粒子10〜30重量%を水溶液中に分散させて水分
散体浴を作成し、この浴中で、陽極酸化皮膜を形成した
アルミ基板を陽極として直流電解(電圧30〜200
V)して陽極酸化皮膜の細孔中に半導体微粒子を充填す
る電気泳動法などが採用できる。電気泳動法としては、
直流電圧を低電圧より高電圧へ一定の昇圧速度で所定時
間走査する直流電圧走査法、及び定電圧で所定時間電解
する直流定電圧法等を採用できる。
As a method of filling the fine particles of the semiconductor into the pores of the anodic oxide film on the aluminum substrate, an electrophoresis method in a dispersion of the fine particles of the semiconductor can be suitably used. For example, a polarity is developed on the surface of the semiconductor fine particles (for example,
A surfactant is adsorbed on the particle surface, the pH of the solution is made higher than the isoelectric point of the semiconductor fine particles, and 10 to 30% by weight of the semiconductor fine particles are dispersed in an aqueous solution to prepare an aqueous dispersion bath. In this bath, direct current electrolysis (voltage 30 to 200) was performed using the aluminum substrate on which the anodized film was formed as an anode.
V) Then, an electrophoresis method of filling semiconductor fine particles into the pores of the anodic oxide film can be employed. As an electrophoresis method,
A DC voltage scanning method in which a DC voltage is scanned from a low voltage to a high voltage at a constant boosting rate for a predetermined time, a DC constant voltage method in which electrolysis is performed at a constant voltage for a predetermined time, and the like can be adopted.

【0015】半導体微粒子を含有もしくは担持した塗料
粒子を用いる場合、該塗料粒子が電気泳動すれば前記の
場合と同様の方法で陽極酸化皮膜の細孔中に光触媒を充
填することができる。また、塗料中に陽極酸化皮膜を形
成したアルミ基板を浸漬する方法でも可能である。更
に、通常の大気圧下で塗料中に浸漬しても陽極酸化皮膜
の細孔中に光触媒が充填できないような場合は、適当な
真空容器中に陽極酸化皮膜を形成したアルミ基板を設置
し、内部を真空排気した後、塗料を導入し、真空中で又
は減圧下で陽極酸化皮膜を形成したアルミ基板を塗料に
浸漬する方法等が採用できる。
When paint particles containing or carrying semiconductor fine particles are used, if the paint particles undergo electrophoresis, the photocatalyst can be filled in the pores of the anodic oxide film in the same manner as described above. Further, a method of immersing an aluminum substrate having an anodized film formed therein in a coating material is also possible. Furthermore, if the photocatalyst cannot be filled in the pores of the anodic oxide film even when immersed in a paint under normal atmospheric pressure, an aluminum substrate with the anodic oxide film formed is placed in an appropriate vacuum vessel, After evacuation of the inside, a method of introducing a paint, and dipping the aluminum substrate on which the anodic oxide film is formed in the paint in vacuum or under reduced pressure can be adopted.

【0016】以上のような方法により、図1に示すよう
に、陽極酸化皮膜1の細孔2中に光触媒3を充填したア
ルミ基板が得られる。図1のように陽極酸化皮膜の上端
部まで光触媒を充填したものは、防臭・脱臭作用に加え
て抗菌・防黴・防汚性を目的とした場合の態様である。
すなわち、図2に示すように陽極酸化皮膜1の細孔2の
下部にのみ光触媒3を充填したような場合では、菌やカ
ビ、汚れ物質が陽極酸化皮膜の細孔中を光触媒表面まで
拡散しなければ抗菌・防黴・防汚性が発現できないた
め、良好に前記特性を発現させるには陽極酸化皮膜の上
端部まで光触媒を充填し、アルミ基板の表面で抗菌・防
黴・防汚性が発現できるようにすることが望ましい。ま
た、さらには図3に示すように、光触媒3で陽極酸化皮
膜1の凹凸をコーティングしたような態様も可能であ
る。この場合、細孔2中に充填されていない光触媒が剥
離し易いが、光触媒で被覆された面積は図1、図2より
も大きくなり、また、陽極酸化皮膜の細孔は気体分子で
あれば容易に出入りできることなどから、防臭・脱臭に
は最も適した態様である。また、抗菌・防黴・防汚性は
図1と図2の中間程度である。
By the above method, as shown in FIG. 1, an aluminum substrate having the photocatalyst 3 filled in the pores 2 of the anodic oxide film 1 is obtained. As shown in FIG. 1, the photocatalyst is filled up to the upper end of the anodic oxide film, which is an embodiment for the purpose of antibacterial, antifungal and antifouling properties in addition to deodorizing and deodorizing effects.
That is, as shown in FIG. 2, in a case where the photocatalyst 3 is filled only in the lower part of the pores 2 of the anodic oxide film 1, bacteria, mold, and dirt are diffused through the pores of the anodic oxide film to the photocatalyst surface. Otherwise, antibacterial, antifungal, and antifouling properties cannot be exhibited, so in order to express the above properties favorably, a photocatalyst is filled up to the upper end of the anodic oxide film, and the antibacterial, antifungal, and antifouling properties are improved on the surface of the aluminum substrate. It is desirable to be able to express. Further, as shown in FIG. 3, an embodiment in which the unevenness of the anodic oxide film 1 is coated with the photocatalyst 3 is also possible. In this case, the photocatalyst that is not filled in the pores 2 is easy to peel off, but the area covered with the photocatalyst is larger than that in FIGS. 1 and 2, and the pores of the anodic oxide film are gas molecules. This is the most suitable mode for deodorization and deodorization because it allows easy access. The antibacterial, antifungal and antifouling properties are intermediate between those shown in FIGS.

【0017】さらに、光触媒を充填した後に該光触媒作
用によって銀や銅などの抗菌性金属又は抗菌性金属を含
む化合物を析出させることにより、前述したように暗時
であっても抗菌・防黴効果が発現されるようにすること
もできる。抗菌性金属又は抗菌性金属を含む化合物を析
出させる方法は、硝酸銀や硫酸銅などの銀や銅などの抗
菌性金属を含む適当な化合物の溶液、あるいは、これに
エタノールやEDTA等の適当な還元剤を添加した溶液
を調製し、一つの方法としては、陽極酸化皮膜の細孔中
に光触媒を充填したアルミ基板を該溶液中に浸し、紫外
線ランプやブラックライト等で紫外線を照射すると、光
触媒作用によって生じた電子により抗菌性金属イオン又
は抗菌性金属化合物イオンが還元され、光触媒表面に抗
菌性金属又は抗菌性金属を含む化合物が析出する。この
場合、抗菌性金属又は抗菌性金属を含む化合物の析出量
は、溶液中の抗菌性金属イオンの量、すなわち調製した
溶液の濃度や還元剤の濃度、紫外線の照射時間によって
制御される。また、別の方法としては、前記溶液を陽極
酸化皮膜の細孔中に光触媒を充填したアルミ基板表面に
スプレー法等で塗布した後、紫外線を照射する方法があ
る。この方法では、水溶液中の抗菌性金属イオンの量、
すなわち調製した溶液の濃度や還元剤の濃度、塗布量に
よって抗菌性金属又は抗菌性金属を含む化合物の析出量
が制御できる。また、いずれの方法においても、光触媒
の表面を抗菌性金属又は抗菌性金属を含む化合物で完全
に被覆してしまうと光触媒作用が発現できなくなるた
め、表面を被覆しない程度の析出量に制御する必要があ
る。
[0017] Furthermore, after the photocatalyst is filled, an antibacterial metal such as silver or copper or a compound containing an antibacterial metal is precipitated by the photocatalytic action, so that the antibacterial and antifungal effect is obtained even in the dark as described above. Can be expressed. The method of precipitating the antibacterial metal or the compound containing the antibacterial metal is a solution of an appropriate compound containing an antibacterial metal such as silver or copper such as silver nitrate or copper sulfate, or an appropriate reduction such as ethanol or EDTA. A solution to which an agent has been added is prepared. One method is to immerse an aluminum substrate filled with a photocatalyst in the pores of the anodic oxide film in the solution and irradiate the solution with ultraviolet rays using an ultraviolet lamp, a black light, or the like. The antimicrobial metal ion or antimicrobial metal compound ion is reduced by the electrons generated by this, and the antimicrobial metal or a compound containing the antimicrobial metal is deposited on the photocatalyst surface. In this case, the amount of the antibacterial metal or the compound containing the antibacterial metal deposited is controlled by the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution, the concentration of the reducing agent, and the irradiation time of ultraviolet rays. As another method, there is a method in which the solution is applied by spraying or the like to the surface of an aluminum substrate filled with a photocatalyst in pores of an anodized film, and then irradiated with ultraviolet rays. In this method, the amount of antibacterial metal ions in the aqueous solution,
In other words, the amount of the antibacterial metal or the compound containing the antibacterial metal can be controlled by the concentration of the prepared solution, the concentration of the reducing agent, and the amount of application. Also, in any method, if the surface of the photocatalyst is completely covered with the antibacterial metal or the compound containing the antibacterial metal, the photocatalytic action cannot be exhibited, so that it is necessary to control the deposition amount to such an extent that the surface is not covered. There is.

【0018】抗菌性金属又は抗菌性金属を含む化合物を
析出させる場合、図4に示すように陽極酸化皮膜1の細
孔2内にその上端部まで光触媒3を充填した後に抗菌性
金属又は抗菌性金属を含む化合物4をアルミ基板表面に
析出させることも、図5に示すように光触媒3を陽極酸
化皮膜1の細孔2内部にのみ充填しておき、陽極酸化皮
膜の細孔中に抗菌性金属又は抗菌性金属を含む化合物4
を析出させることもできる。また、図6に示すように光
触媒3で陽極酸化皮膜1の凹凸をコーティングした後
に、この光触媒表面に抗菌性金属又は抗菌性金属を含む
化合物4を析出させることもできる。図4の場合、抗菌
・防黴効果は高いが、抗菌性金属又は抗菌性金属を含む
化合物が表面に析出しているため、抗菌性金属又は抗菌
性金属を含む化合物が剥離するなど効果の持続性に劣る
ことがある。図5のような場合は、抗菌・防黴効果は図
4の場合よりも低下するが、抗菌性金属又は抗菌性金属
を含む化合物が陽極酸化皮膜の細孔中に入っているた
め、剥離し難く、効果の持続性は図4の場合よりも向上
する。図6の場合、抗菌性金属又は抗菌性金属を含む化
合物が表面から陽極酸化皮膜細孔内にまで析出している
ため、表面に析出した抗菌性金属又は抗菌性金属を含む
化合物が剥離しても、細孔内の抗菌性金属又は抗菌性金
属を含む化合物は剥離し難いため、効果の持続性は図5
の場合と同等である。どのような態様を採用するかは、
抗菌・防黴効果とその寿命から適当な態様を選択すれば
良い。
In the case of depositing an antibacterial metal or a compound containing an antibacterial metal, as shown in FIG. The compound 4 containing a metal can be deposited on the surface of the aluminum substrate. Alternatively, as shown in FIG. 5, the photocatalyst 3 is filled only in the pores 2 of the anodic oxide film 1 and the antibacterial property is contained in the pores of the anodic oxide film. Compound 4 containing metal or antibacterial metal
Can also be precipitated. Further, as shown in FIG. 6, after coating the unevenness of the anodic oxide film 1 with the photocatalyst 3, the antibacterial metal or the compound 4 containing the antibacterial metal can be deposited on the photocatalyst surface. In the case of FIG. 4, the antibacterial and antifungal effects are high, but since the antibacterial metal or the compound containing the antibacterial metal is deposited on the surface, the effect of the antibacterial metal or the compound containing the antibacterial metal is sustained, such as exfoliation. May be inferior in sex. In the case of FIG. 5, the antibacterial and antifungal effect is lower than that of FIG. 4, but the antibacterial metal or the compound containing the antibacterial metal is in the pores of the anodic oxide film. It is difficult, and the durability of the effect is improved as compared with the case of FIG. In the case of FIG. 6, since the antibacterial metal or the compound containing the antibacterial metal is precipitated from the surface into the pores of the anodic oxide film, the antibacterial metal or the compound containing the antibacterial metal deposited on the surface is peeled off. However, since the antibacterial metal or the compound containing the antibacterial metal in the pores is difficult to peel off, the persistence of the effect is shown in FIG.
Is equivalent to Which aspect is adopted depends on
An appropriate mode may be selected from the antibacterial and antifungal effects and the life thereof.

【0019】また、従来一般に、電解着色によって陽極
酸化皮膜の細孔中にニッケル、スズ、銅等の金属を析出
させ、アルミ基板の着色が行われているが、本発明によ
れば、前述の抗菌性金属又は抗菌性金属を含む化合物に
限らず、電解着色によって析出させていた金属も前述の
抗菌性金属又は抗菌性金属を含む化合物の析出と同様の
方法で陽極酸化皮膜の細孔中に析出させることができ、
それによって種々の色に着色された製品を製造できる。
また、この場合の析出金属量の制御、すなわち、色調の
制御は、前述の抗菌性金属又は抗菌性金属を含む化合物
の析出量制御と同様の方法で実施できる。着色について
は、前述したように陽極酸化皮膜の細孔中に光触媒を充
填したアルミ基板表面に、金属イオンを含有する溶液を
スプレー法等の適当な方法で塗布した後、紫外線を照射
する方法を採用する。例えば、図7に示すように、コン
ベア等の搬送装置5でアルミ基板6を搬送しながら、噴
霧器7により金属イオンや適当な還元剤を含有する溶液
をスプレーし、その後、紫外線照射装置8により紫外線
を照射する製造工程とすれば、従来の電解浴を用いたバ
ッチ式とは異なり、連続式の製造工程となり、生産性が
向上するばかりか、電解着色で必要とされる巨大な電解
浴や電源が全く不要になる。
Further, conventionally, a metal such as nickel, tin, or copper is deposited in the pores of the anodic oxide film by electrolytic coloring to color the aluminum substrate. Not only the antibacterial metal or the compound containing the antibacterial metal, but also the metal that has been deposited by electrolytic coloring is in the pores of the anodic oxide film in the same manner as the deposition of the aforementioned antibacterial metal or the compound containing the antibacterial metal. Can be deposited,
Thereby, products colored in various colors can be manufactured.
In this case, the control of the amount of the deposited metal, that is, the control of the color tone, can be carried out in the same manner as the above-mentioned method of controlling the deposited amount of the antibacterial metal or the compound containing the antibacterial metal. As for coloring, a method of applying a solution containing metal ions by a suitable method such as a spray method on the surface of an aluminum substrate filled with a photocatalyst in the pores of the anodic oxide film as described above, and then irradiating with ultraviolet rays. adopt. For example, as shown in FIG. 7, a solution containing metal ions and a suitable reducing agent is sprayed by a sprayer 7 while an aluminum substrate 6 is transported by a transport device 5 such as a conveyor, and then an ultraviolet ray is irradiated by an ultraviolet irradiation device 8. Is a continuous production process, unlike the conventional batch type using an electrolytic bath, which not only improves productivity, but also increases the huge electrolytic bath and power supply required for electrolytic coloring. Is completely unnecessary.

【0020】アルミ基板の着色に前記のような光触媒作
用を利用する場合、陽極酸化皮膜1の細孔2中への光触
媒3の充填は図2に示すような態様が好ましい。図2に
示すような光触媒の充填状態であれば、着色用金属9は
図8に示すように陽極酸化皮膜1の細孔2中に析出し、
従来の電解着色によって析出させた金属と同等の密着力
が確保できる。また、着色にのみ光触媒作用を利用し、
以後、光触媒作用による抗菌・防黴・防汚性が不要とい
う場合は、その後さらに、図9に示すように、従来のア
ルミ基板の表面処理と同様に陽極酸化皮膜1の封孔(半
封孔)処理を行い、耐食性や耐久性を向上させることが
できる。このような封孔処理を施しても、細孔内が大気
と連通状態にあれば防臭・脱臭性を示す。
When the above-described photocatalytic action is used for coloring the aluminum substrate, the filling of the photocatalyst 3 into the pores 2 of the anodic oxide film 1 is preferably performed as shown in FIG. If the photocatalyst is in a filled state as shown in FIG. 2, the coloring metal 9 precipitates in the pores 2 of the anodic oxide film 1 as shown in FIG.
The same adhesive strength as metal deposited by conventional electrolytic coloring can be secured. Also, using photocatalysis only for coloring,
Thereafter, when the antibacterial, antifungal, and antifouling properties due to the photocatalytic action are unnecessary, the sealing (semi-sealing) of the anodic oxide film 1 is further performed as shown in FIG. ) Treatment to improve corrosion resistance and durability. Even if such a sealing treatment is performed, it exhibits deodorizing and deodorizing properties if the inside of the pores is in communication with the atmosphere.

【0021】また、図8に示すような充填状態でも、光
触媒作用によって防臭・脱臭性や抗菌・防黴・防汚性を
示すが、さらに光触媒作用を向上させる場合は、図10
に示すように、着色用金属9の析出後に再度光触媒3を
陽極酸化皮膜上端部まで充填する。特に光触媒に用いる
半導体がTiO2 であれば、このTiO2 は殆ど透明で
あるため、下部に析出させた着色用金属の色調を変化さ
せることがなく、また着色用金属によって様々な色調が
選択できる上に、充分な防臭・脱臭性や抗菌・防黴・防
汚性を示すことになる。また、有機系の塗料を陽極酸化
皮膜の細孔中に析出した後、光触媒を形成する場合、そ
の光触媒作用によって有機塗料自体が分解し退色現象を
引き起こすが、金属による着色であれば光触媒作用に対
して安定であり、長期に亘って色調を維持しつつ、良好
な防臭・脱臭性や抗菌・防黴・防汚性を示すことができ
る。
In the filled state as shown in FIG. 8, deodorizing and deodorizing properties and antibacterial, antifungal and antifouling properties are exhibited by the photocatalytic action.
As shown in (2), after depositing the coloring metal 9, the photocatalyst 3 is filled again to the upper end of the anodic oxide film. In particular, if the semiconductor used for the photocatalyst is TiO 2 , since the TiO 2 is almost transparent, the color tone of the coloring metal deposited at the lower portion does not change, and various colors can be selected depending on the coloring metal. On top of that, it shows sufficient deodorant and deodorant properties, and antibacterial, antifungal and antifouling properties. In addition, when an organic paint is deposited in the pores of the anodic oxide film and then a photocatalyst is formed, the organic paint itself is decomposed due to the photocatalysis and causes a fading phenomenon. It is stable, and can exhibit good deodorant / deodorant properties, antibacterial / antifungal / antifouling properties while maintaining the color tone over a long period of time.

【0022】[0022]

【実施例】以下、実施例を示して本発明の効果について
さらに具体的に説明するが、本発明が下記実施例に限定
されるものでないことはもとよりである。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples, but it is needless to say that the present invention is not limited to the following examples.

【0023】実施例1 リン酸20%、シュウ酸5%を含有する30℃の電解浴
中でアルミ基板を陽極として直流200Vを印加して陽
極酸化処理を行い、孔径約250nm、孔の深さ約5μ
mの細孔を有する陽極酸化皮膜を生成させた。次いで、
光触媒であるTiO2 の微粉末(平均粒径10nm)を
10重量%混入し均一に分散させたシリケートをエタノ
ールで10倍に希釈し、光触媒担持塗料を作製し、1気
圧(試料1)又は0.2気圧(試料2)の圧力下で、前
記陽極酸化皮膜を形成したアルミニウム基板を塗料に浸
漬し、静かに引き上げた後、大気圧中、150℃で30
分間保持し前記シリケートを反応させ、光触媒を担持し
たシリカ塗膜をコーティングした。また、比較の為に陽
極酸化皮膜を形成していないアルミ基板を用いて、同様
に1気圧(比較例1)又は0.2気圧(比較例2)の条
件で、前記試料と同様に光触媒を担持したシリカ塗膜を
コーティングした。
Example 1 Anodization was performed by applying a direct current of 200 V to an aluminum substrate as an anode in an electrolytic bath containing 20% of phosphoric acid and 5% of oxalic acid at 30 ° C., and the hole diameter was about 250 nm and the depth of the holes was about 250 nm. About 5μ
An anodic oxide film having m pores was produced. Then
A silicate in which 10% by weight of a fine powder of TiO 2 (average particle size: 10 nm) as a photocatalyst was mixed and dispersed uniformly was diluted 10 times with ethanol to prepare a photocatalyst-carrying coating material, and 1 atm (sample 1) or 0 atm. The aluminum substrate on which the anodized film was formed was immersed in a paint under a pressure of 0.2 atm (sample 2), and was gently lifted.
The silicate was allowed to react for a period of one minute and coated with a silica coating supporting the photocatalyst. For comparison, a photocatalyst was prepared in the same manner as the sample under the condition of 1 atm (Comparative Example 1) or 0.2 atm (Comparative Example 2) using an aluminum substrate on which no anodized film was formed. The supported silica coating was coated.

【0024】膜厚測定及び表面粗さ測定:上記試料1〜
2及び比較例1〜2の陽極酸化皮膜上の光触媒膜の膜厚
及び表面粗さを触針接触式膜厚計で測定した。その結果
を表1に示す。
Film thickness measurement and surface roughness measurement: Samples 1 to
The film thickness and surface roughness of the photocatalytic film on the anodic oxide films of Comparative Example 1 and Comparative Examples 1 and 2 were measured with a stylus contact type film thickness meter. Table 1 shows the results.

【表1】 [Table 1]

【0025】防汚性評価1:上記試料1〜2及び比較例
1〜2の表面に0.1mg/cm2 になるようにサラダ
油を均一に塗布し、100Wの紫外線ランプで紫外線を
照射し、サラダ油が完全に分解されるまでの時間を測定
した。その結果を表2に示す。
Evaluation of antifouling property 1: Salad oil was uniformly applied to the surfaces of Samples 1 and 2 and Comparative Examples 1 and 2 so as to have a concentration of 0.1 mg / cm 2 , and irradiated with ultraviolet rays using a 100 W ultraviolet lamp. The time until the salad oil was completely decomposed was measured. Table 2 shows the results.

【表2】 [Table 2]

【0026】密着性評価:上記試料1〜2及び比較例1
〜2の光触媒膜の密着性をスコッチテープ試験(JIS
H 8602の5.8項に記載のセロハン粘着テープ
を用いた塗膜の付着性試験)を行い、また、JIS H
8504に規定する方法にしたがってスクラッチ試験
を行った。その結果を表3に示す。
Evaluation of adhesion: Samples 1 and 2 and Comparative Example 1
-2 Scotch tape test (JIS)
H8602, the adhesion test of the coating film using the cellophane adhesive tape described in 5.8) and JIS H
A scratch test was performed according to the method specified in 8504. Table 3 shows the results.

【表3】 [Table 3]

【0027】防汚性評価2:試料1〜2の基材表面の光
触媒膜を#1200のサンドペーパーで完全に剥離させ
た後、前述の防汚性評価1と同様の方法でサラダ油が完
全に分解されるまでの時間を測定した。その結果を表4
に示す。
Antifouling evaluation 2: After the photocatalyst films on the substrate surfaces of samples 1 and 2 were completely peeled off using # 1200 sandpaper, salad oil was completely removed in the same manner as in the above antifouling evaluation 1. The time until decomposition was measured. Table 4 shows the results.
Shown in

【表4】 [Table 4]

【0028】表1からわかるように、試料1〜2と比較
例1〜2の光触媒膜の膜厚は殆ど同じであったが、表面
粗さは、試料2が試料1や比較例1〜2と比較して大き
かった。一方、表2において、試料1と比較例1〜2の
サラダ油の分解に必要な時間は殆ど同じであったが、試
料2の場合のみ所要時間が多少長くなっている。これら
の結果は、試料2の光触媒膜が、陽極酸化皮膜の細孔中
に充填されただけでなく、陽極酸化皮膜の凹凸全体をコ
ーティングしたことを示している(前記図3に示した態
様)。この場合、光触媒膜は、陽極酸化皮膜の凹凸の状
態を反映するため、試料1と比較して表面が粗くなる。
また、大気圧下では陽極酸化皮膜の細孔中に光触媒が入
り込めず、それ故、基材表面に平坦な光触媒膜が形成さ
れたため、試料1では、陽極酸化皮膜を形成していない
比較例1〜2と同等な表面粗さになったものである。ま
た、防汚性評価1において、試料2は光触媒の表面被覆
率が小さく、また、サラダ油の粘性が高くて陽極酸化皮
膜の細孔に入り込み難いために、サラダ油の分解に時間
を要したことがわかる。
As can be seen from Table 1, the thicknesses of the photocatalyst films of Samples 1 and 2 and Comparative Examples 1 and 2 were almost the same, but the surface roughness was the same for Sample 1 and Comparative Examples 1 and 2. It was big compared to. On the other hand, in Table 2, the time required for decomposing the salad oil of Sample 1 and Comparative Examples 1 and 2 was almost the same, but the time required for Sample 2 was slightly longer. These results indicate that the photocatalyst film of Sample 2 was not only filled in the pores of the anodic oxide film, but also coated the entire unevenness of the anodic oxide film (the embodiment shown in FIG. 3). . In this case, the surface of the photocatalyst film becomes rougher than that of the sample 1 in order to reflect the unevenness of the anodic oxide film.
Further, at atmospheric pressure, the photocatalyst could not enter the pores of the anodic oxide film, and therefore, a flat photocatalytic film was formed on the substrate surface. The surface roughness was equivalent to that of Nos. 1 and 2. Further, in the antifouling evaluation 1, in Sample 2, the surface coverage of the photocatalyst was small, and the viscosity of the salad oil was high and it was difficult to enter the pores of the anodic oxide film. Recognize.

【0029】表3に示すように、試料1〜2においては
膜の剥離が認められなかった。これは、陽極酸化皮膜上
に光触媒膜を形成する場合、そのコーティング圧力が大
気圧下であっても減圧下であっても、陽極酸化皮膜のア
ンカー効果によって膜の密着性が向上したことを示して
いる。比較例1〜2において膜の剥離が認められたこと
から、陽極酸化皮膜を形成していない基板を用いた場
合、膜の密着性はコーティング圧力に依存しないことを
示している。また、表4からわかるように、試料1では
全くサラダ油を分解できなかったが、試料2では、表2
に示した結果よりも所要時間は長くなったが、サラダ油
を分解しており、防汚性を発揮している。試料1は、表
面にのみ光触媒膜が存在し、それが全て剥離してしまっ
たために防汚性が失われたが、試料2では、たとえ表面
の光触媒膜が剥離しても陽極酸化皮膜細孔内に充填され
た光触媒膜が存在するため、防汚性が失われないことを
示しており、光触媒膜の耐久性及び光触媒作用の持続性
は、試料2の方が試料1よりも格段に優れていることが
わかる。以上から、0.2気圧という必ずしも高真空で
はない条件で半導体微粒子を含んだ塗料をコーティング
することにより、陽極酸化皮膜の細孔中に光触媒が入り
込み、光触媒作用を発揮しながらも、該光触媒が陽極酸
化皮膜の細孔中に充填されているため、その脱落もなく
非常に強く密着していることが確認できた。
As shown in Table 3, no peeling of the film was observed in Samples 1 and 2. This indicates that when a photocatalytic film was formed on the anodized film, the adhesion of the film was improved by the anchor effect of the anodized film regardless of whether the coating pressure was under atmospheric pressure or under reduced pressure. ing. The peeling of the film was observed in Comparative Examples 1 and 2, indicating that the adhesion of the film did not depend on the coating pressure when a substrate having no anodized film was used. Further, as can be seen from Table 4, the sample 1 could not decompose the salad oil at all, but the sample 2 did not decompose the salad oil.
Although the required time was longer than the results shown in (1), the salad oil was decomposed and exhibited antifouling properties. In sample 1, the photocatalytic film was present only on the surface, and the entire surface was peeled off, so that the antifouling property was lost. The presence of the photocatalyst film filled therein indicates that the antifouling property is not lost, and the durability of the photocatalytic film and the durability of the photocatalytic action are much better in sample 2 than in sample 1. You can see that it is. From the above, the photocatalyst enters into the pores of the anodic oxide film by coating with a paint containing semiconductor fine particles under the condition of not necessarily a high vacuum of 0.2 atm. Since the pores of the anodic oxide film were filled, it was confirmed that the anodic oxide film did not fall off and adhered very strongly.

【0030】ガス分解試験:試料1〜2及び比較例1〜
2及び何ら処理を施していないアルミ板について、有機
ガス分解能を確認するため、0.5リットルの密閉容器
中に各々4cm2 の試料を入れ、更に各容器中に濃度1
00ppmになるようにアセトアルデヒドを注入した。
その後、試料上に強度1mW/cm2 の紫外線をブラッ
クライトを使用して照射した。照射開始から60分後の
各容器中のガス組成をガスクロマトグラフで測定し、反
応後のアセトアルデヒド濃度を測定した。その結果を表
5に示す。
Gas decomposition test: Samples 1-2 and Comparative Examples 1
In order to confirm the organic gas decomposability of the aluminum plate 2 and the untreated aluminum plate, a sample of 4 cm 2 was placed in a 0.5-liter closed container, and a concentration of 1 was added to each container.
Acetaldehyde was injected so as to be 00 ppm.
Thereafter, the sample was irradiated with ultraviolet light having an intensity of 1 mW / cm 2 using a black light. The gas composition in each container 60 minutes after the start of irradiation was measured by gas chromatography, and the concentration of acetaldehyde after the reaction was measured. Table 5 shows the results.

【表5】 [Table 5]

【0031】表5から、試料2が最もアセトアルデヒド
の濃度が少なくなっており、その他の試料はほぼ同等の
値となった。すなわち、試料2が最も多量のアセトアル
デヒドを分解したことがわかる。また、単なるアルミ板
の場合は、全くアセトアルデヒドが分解されなかったこ
とがわかる。表5に示されるようにアセトアルデヒド濃
度に差異が生じた原因は、各試料に対する光触媒の担持
状態に差異があるためである。すなわち、試料2のみが
陽極酸化皮膜の細孔中にまで光触媒が充填されているこ
とに対し、その他の試料は表面に平坦な光触媒膜が形成
されているためである。試料2では、陽極酸化皮膜の細
孔中に光触媒が充填されているため、表面積が増加する
とともに単位面積当りに担持されている光触媒の量自体
が増加したために、単なる平坦な光触媒膜に比べ気相で
の反応性が増加したものである。
From Table 5, it was found that Sample 2 had the lowest concentration of acetaldehyde, and the other samples had almost the same values. That is, it is understood that Sample 2 decomposed the largest amount of acetaldehyde. In addition, in the case of a simple aluminum plate, it can be seen that acetaldehyde was not decomposed at all. As shown in Table 5, the reason for the difference in the acetaldehyde concentration was due to the difference in the loading state of the photocatalyst on each sample. That is, only the sample 2 is filled with the photocatalyst into the pores of the anodic oxide film, whereas the other samples have a flat photocatalytic film formed on the surface. In sample 2, since the photocatalyst was filled in the pores of the anodic oxide film, the surface area was increased and the amount of the photocatalyst carried per unit area was increased. The reactivity in the phase is increased.

【0032】実施例2 上記実施例1での試料1〜2及び比較例1の試料を0.
01モル/リットルの硝酸銀水溶液0.5リットルに浸
漬し、100Wの紫外線ランプで紫外線を照射し、試料
1〜2及び比較例1の試料上に0.1mg/cm2 の銀
を析出させた。
Example 2 Samples 1 and 2 of Example 1 and the sample of Comparative Example 1 were used in
The sample was immersed in 0.5 liter of a 01 mol / liter silver nitrate aqueous solution, and irradiated with ultraviolet rays from a 100 W ultraviolet lamp to deposit 0.1 mg / cm 2 of silver on the samples of Samples 1 and 2 and Comparative Example 1.

【0033】密着性試験:得られた試料1〜2及び比較
例1の試料について、前記実施例1の場合と同様にスコ
ッチテープ試験、スクラッチ試験を実施した。その結果
を表6に示す。
Adhesion test: Scotch tape test and scratch test were performed on the obtained samples 1 and 2 and the sample of Comparative Example 1 in the same manner as in Example 1 above. Table 6 shows the results.

【表6】 [Table 6]

【0034】防黴性試験1:試料1〜2及び比較例1の
試料について、JIS Z 2911の5に記載の一般
工業製品の防黴性試験に基づき、試料1〜2及び比較例
1の表面に胞子懸濁液を塗布し、温度28℃、湿度95
%中に28日間放置し、黴の発生状態を観察した。ま
た、光の照射の有無による防黴性の差異を観察するた
め、各々の試料について20W蛍光灯で光を照射した場
合と、光を全く照射しない場合について防黴性試験を実
施した。その結果を表7に示す。表7中には、黴の試料
表面の被覆率を示す。
Antifungal test 1: Samples 1 and 2 and Comparative Example 1 were tested on the surface of Samples 1 and 2 and Comparative Example 1 based on the antifungal test of general industrial products described in JIS Z 2911-5. To a spore suspension at a temperature of 28 ° C and a humidity of 95
% For 28 days, and the state of mold generation was observed. Further, in order to observe the difference in the antifungal property depending on the presence or absence of light irradiation, a fungicide test was performed for each sample when irradiating light with a 20 W fluorescent lamp and when no light was irradiated. Table 7 shows the results. Table 7 shows the mold coverage of the mold surface.

【表7】 [Table 7]

【0035】防黴性試験2:試料1〜2の光触媒膜を#
1200のサンドペーパーで完全に剥離させた後、前述
の防黴性試験1と同様の方法で防黴性試験を実施した。
その結果を表8に示す。表8中には、黴の試料表面の被
覆率を示す。
Antifungal test 2: The photocatalyst films of Samples 1 and 2 were
After completely exfoliating with 1200 sandpaper, a fungicide test was carried out in the same manner as the fungicide test 1 described above.
Table 8 shows the results. Table 8 shows the mold coverage of the mold surface.

【表8】 [Table 8]

【0036】銀を析出させた試料は薄茶色になってお
り、光触媒作用によって種々の金属によるアルミ基板の
着色が行えることを示している。また、表6及び実施例
1の場合の表3からわかるように、銀の密着性は、その
銀が付着している光触媒膜とアルミ基板の密着力の影響
を受けており、比較例1〜2においては光触媒と基板の
間で剥離しており、たとえ銀と光触媒の密着力が強くて
も基板から光触媒ごと剥離しては実際に使用することは
できない。試料1〜2の場合は、光触媒膜の剥離が認め
られず、また、銀の剥離も認められなかった。これら
は、表3に示されるように、光触媒膜の密着性が陽極酸
化皮膜のアンカー効果で向上したこと及び光触媒膜と銀
の密着性が充分であることを示している。
The sample on which silver was deposited was light brown, indicating that the aluminum substrate could be colored with various metals by photocatalysis. Moreover, as can be seen from Table 6 and Table 3 in the case of Example 1, the adhesion of silver was affected by the adhesion between the photocatalyst film to which the silver was adhered and the aluminum substrate. In No. 2, the photocatalyst and the substrate are separated, and even if the adhesion between the silver and the photocatalyst is strong, the photocatalyst cannot be actually used after being separated from the substrate together with the photocatalyst. In the case of Samples 1 and 2, peeling of the photocatalyst film was not observed, and peeling of silver was not observed. These indicate that, as shown in Table 3, the adhesion of the photocatalyst film was improved by the anchor effect of the anodic oxide film, and that the adhesion between the photocatalyst film and silver was sufficient.

【0037】また、表7から明らかなように、試料2の
光照射無しの場合のみ、他の試料と比較して若干黴の発
育面積が広かった。これは、他の試料では、試料の表面
のみに銀が析出していることに対し、試料2では陽極酸
化皮膜の細孔中に銀が入り込み、表面被覆率が減少して
いるために防黴効果が低下したものである。しかし、こ
の程度の防黴性の差異が実使用時に問題になることは有
り得ない。また、光照射を行った場合では、銀の抗菌・
防黴効果と光触媒の抗菌・防黴効果の両方が発揮される
ため、全く黴の発育は認められなかった。また、基材表
面をサンドペーパーで研磨し、表面に付着している光触
媒膜を完全に剥離させると、試料1ではアルミ基板自体
の色調に戻ったが、試料2では陽極酸化皮膜表面を露出
させても薄茶色のままであった。また、表8に示される
ように、試料2の防黴効果は維持されており、陽極酸化
皮膜細孔中に光触媒及び銀が充填されていることによ
り、試料2の防黴性効果の耐久性、持久性が試料1より
も格段に優れていることがわかる。これらの結果から、
陽極酸化皮膜の細孔中に光触媒を充填し、さらに該光触
媒の光触媒作用を利用して前記細孔中に銀を析出させた
試料は、銀の剥離・脱落等の問題が無く、また、暗時、
光照射時において充分な防黴効果を示すことが確認でき
た。
As is clear from Table 7, only when the sample 2 was not irradiated with light, the growth area of the mold was slightly larger than that of the other samples. This is because, in the other samples, silver was precipitated only on the surface of the sample, whereas in sample 2, silver penetrated into the pores of the anodic oxide film and the surface coverage was reduced, so that the mold coverage was reduced. The effect was reduced. However, it is unlikely that such a difference in antifungal property causes a problem in actual use. In addition, when light irradiation is performed, silver antibacterial
Since both the antifungal effect and the antibacterial and antifungal effects of the photocatalyst were exhibited, no mold growth was observed at all. When the surface of the base material was polished with sandpaper and the photocatalyst film adhering to the surface was completely peeled off, the color tone of the aluminum substrate itself was returned in Sample 1, but in Sample 2, the surface of the anodic oxide film was exposed. It remained light brown. Further, as shown in Table 8, the antifungal effect of Sample 2 was maintained, and the photocatalyst and silver were filled in the pores of the anodic oxide film, so that the durability of Antifungal effect of Sample 2 was maintained. It can be seen that the endurance is much better than Sample 1. From these results,
A sample in which a photocatalyst was filled in the pores of the anodized film and silver was deposited in the pores by using the photocatalytic action of the photocatalyst was free from problems such as peeling and falling off of silver. Time,
It was confirmed that a sufficient antifungal effect was exhibited during light irradiation.

【0038】[0038]

【発明の効果】以上のように、本発明の防臭・脱臭性の
光触媒保持体は、アルミ基板の表面に陽極酸化皮膜を形
成し、さらにこの表面積の大きな多孔質の陽極酸化皮膜
の細孔中に光触媒作用を有する半導体微粒子あるいは半
導体微粒子を含有もしくは担持した塗料粒子を充填した
ものであるため、単位面積当りに担持される光触媒の量
がかなり多くなり、平坦な金属板上に光触媒膜を形成し
たものと比べて優れた防臭・脱臭性や抗菌・防黴・防汚
性を示す。また、陽極酸化皮膜及びアルミ基板共に光触
媒作用に対して安定であるため、従来の合成繊維基材の
ように光触媒作用によって分解するというようなことは
なく、優れた防臭・脱臭効果を長期間にわたって安定し
て発揮させることができる。また、光触媒は陽極酸化皮
膜の細孔中に吸着・担持されているため、光触媒膜とア
ルミ基板の密着強度が高く、長期の耐久性にも優れてい
る。それに加えて、陽極酸化皮膜の膜厚や孔径、担持さ
せる光触媒の量を制御することによって、光触媒作用を
任意に調整することが可能となる。さらに、支持体基材
として成形性に優れるアルミ基板を用いていると共に、
陽極酸化、真空含浸、電気泳動の各処理がいずれも湿式
で実施できるため、様々な形状の光触媒保持体を形成で
きる。従って、本発明の光触媒保持体は、任意の形状、
構造、模様の防臭・脱臭性商品や防臭・脱臭・抗菌・防
黴・防汚性のパネル、建具ユニットなどの建材としても
有利に用いることができる。また、アルミ基板の電解着
色に用いられている種々の金属を陽極酸化皮膜細孔中に
析出できることから、電解着色法よりも生産性に優れた
方法で防臭・脱臭性アルミ建材の着色が行える。さら
に、抗菌性金属又は抗菌性金属を含む化合物や着色用金
属以外にも種々の機能性物質を光触媒作用を利用して陽
極酸化皮膜細孔中に析出させることが可能であり、防臭
・脱臭性に優れた種々の機能性アルミ製品が提供でき
る。
As described above, the deodorizing and deodorizing photocatalyst support of the present invention forms an anodic oxide film on the surface of an aluminum substrate, and furthermore, forms the anodic oxide film on the surface of the porous anodic oxide film having a large surface area. Is filled with semiconductor particles having photocatalytic activity or paint particles containing or carrying semiconductor particles, so the amount of photocatalyst carried per unit area is considerably large, and a photocatalytic film is formed on a flat metal plate Shows superior deodorant and deodorant properties, antibacterial, antifungal, and antifouling properties as compared to those that have been treated. In addition, since both the anodized film and the aluminum substrate are stable against photocatalysis, they do not decompose by photocatalysis as in the case of conventional synthetic fiber base materials, and provide excellent deodorizing and deodorizing effects over a long period of time. It can be exhibited stably. Further, since the photocatalyst is adsorbed and carried in the pores of the anodic oxide film, the adhesion strength between the photocatalyst film and the aluminum substrate is high and the long-term durability is excellent. In addition, by controlling the thickness and pore size of the anodic oxide film and the amount of the photocatalyst to be supported, the photocatalysis can be arbitrarily adjusted. Furthermore, while using an aluminum substrate excellent in moldability as a support base material,
Since the anodization, vacuum impregnation, and electrophoresis can all be performed in a wet manner, photocatalyst holders of various shapes can be formed. Therefore, the photocatalyst holder of the present invention has an arbitrary shape,
It can be advantageously used as a deodorizing / deodorizing product having a structure or pattern, or as a deodorizing / deodorizing / antibacterial / antifungal / antifouling panel, a building material such as a fitting unit. Further, since various metals used for electrolytic coloring of the aluminum substrate can be deposited in the pores of the anodic oxide film, the deodorizing and deodorizing aluminum building material can be colored by a method having higher productivity than the electrolytic coloring method. Furthermore, it is possible to deposit various functional substances besides the antibacterial metal or the compound containing the antibacterial metal or the coloring metal in the fine pores of the anodic oxide film by utilizing the photocatalytic action. We can provide various functional aluminum products with excellent performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従ってアルミ基板の陽極酸化皮膜の細
孔中に光触媒を完全に充填した光触媒保持体の部分概略
断面図である。
FIG. 1 is a partial schematic cross-sectional view of a photocatalyst holder in which pores of an anodized film of an aluminum substrate are completely filled with a photocatalyst according to the present invention.

【図2】本発明に従ってアルミ基板の陽極酸化皮膜の細
孔中に光触媒を部分的に充填した光触媒保持体の部分概
略断面図である。
FIG. 2 is a partial schematic cross-sectional view of a photocatalyst holder in which pores of an anodic oxide film on an aluminum substrate are partially filled with a photocatalyst according to the present invention.

【図3】本発明に従ってアルミ基板の陽極酸化皮膜の凹
凸全体を光触媒でコーティングした光触媒保持体の部分
概略断面図である。
FIG. 3 is a partial schematic cross-sectional view of a photocatalyst holder in which the entire unevenness of the anodic oxide film on the aluminum substrate is coated with a photocatalyst according to the present invention.

【図4】図1に示す状態の光触媒保持体に抗菌性金属又
は抗菌性金属を含む化合物を析出させた状態を示す部分
概略断面図である。
FIG. 4 is a partial schematic cross-sectional view showing a state where an antibacterial metal or a compound containing an antibacterial metal is deposited on the photocatalyst holder in the state shown in FIG.

【図5】図2に示す状態の光触媒保持体に抗菌性金属又
は抗菌性金属を含む化合物を析出させた状態を示す部分
概略断面図である。
FIG. 5 is a partial schematic cross-sectional view showing a state where an antibacterial metal or a compound containing an antibacterial metal is deposited on the photocatalyst holder in the state shown in FIG. 2;

【図6】図3に示す状態の光触媒保持体に抗菌性金属又
は抗菌性金属を含む化合物を析出させた状態を示す部分
概略断面図である。
FIG. 6 is a partial schematic cross-sectional view showing a state where an antibacterial metal or a compound containing an antibacterial metal is deposited on the photocatalyst holder in the state shown in FIG.

【図7】光触媒作用により金属を析出させる製造工程例
を示す概略説明図である。
FIG. 7 is a schematic explanatory view showing an example of a manufacturing process for depositing a metal by photocatalysis.

【図8】図2に示す状態の光触媒保持体に着色用金属を
析出させた状態を示す部分概略断面図である。
FIG. 8 is a partial schematic cross-sectional view showing a state where a coloring metal is deposited on the photocatalyst holder in the state shown in FIG. 2;

【図9】図8に示す光触媒保持体に封孔処理した状態を
示す部分概略断面図である。
9 is a partial schematic cross-sectional view showing a state where the photocatalyst holding body shown in FIG. 8 has been subjected to sealing processing.

【図10】図8に示す光触媒保持体の陽極酸化皮膜の細
孔中にさらに光触媒を充填した状態を示す部分概略断面
図である。
FIG. 10 is a partial schematic cross-sectional view showing a state in which pores of an anodic oxide film of the photocatalyst holder shown in FIG. 8 are further filled with a photocatalyst.

【符号の説明】[Explanation of symbols]

1 陽極酸化皮膜 2 細孔 3 光触媒 4 抗菌性金属又は抗菌性金属を含む化合物 5 搬送装置 6 アルミ基板 7 噴霧器 8 紫外線照射装置 9 着色用金属 DESCRIPTION OF SYMBOLS 1 Anodized film 2 Micropore 3 Photocatalyst 4 Antibacterial metal or compound containing antibacterial metal 5 Transport device 6 Aluminum substrate 7 Sprayer 8 Ultraviolet irradiation device 9 Metal for coloring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 和仁 神奈川県横浜市栄区飯島町2073番地2 ニ ューシティ本郷台D棟213号 (72)発明者 中田 信之 富山県黒部市堀切1300 (72)発明者 新井 敏夫 富山県富山市藤木841 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhito Hashimoto 2073-2, Iijimacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture New City Hongodai D Bldg. 213 (72) Inventor Nobuyuki Nakata 1300 Horikiri, Kurobe-shi, Toyama Prefecture (72) Inventor Arai Toshio 841 Fujiki, Toyama City, Toyama Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム又はアルミニウム合金から
なる基材の表面に陽極酸化皮膜を形成し、さらに該陽極
酸化皮膜の細孔中及び/又はその表面に光触媒作用を有
する半導体微粒子又は半導体微粒子を含有もしくは担持
した塗料粒子が充填・担持されてなる防臭・脱臭性を有
する光触媒保持体。
An anodic oxide film is formed on the surface of a substrate made of aluminum or an aluminum alloy, and further contains semiconductor fine particles or semiconductor fine particles having a photocatalytic action in the pores of the anodic oxide film and / or on the surface thereof. A photocatalyst holder having deodorizing and deodorizing properties, in which the carried paint particles are filled and carried.
【請求項2】 光触媒作用を有する半導体微粒子を含む
分散液又は塗料溶液中に、大気圧以下の圧力下、陽極酸
化皮膜を形成したアルミニウム又はアルミニウム合金か
らなる基材を浸漬し、上記基材の陽極酸化皮膜の細孔中
及び/又はその表面に半導体微粒子又は半導体微粒子を
含有もしくは担持した塗料粒子を充填・担持させること
を特徴とする防臭・脱臭性を有する光触媒保持体の製造
方法。
2. A substrate made of aluminum or an aluminum alloy on which an anodic oxide film is formed is immersed in a dispersion or a coating solution containing semiconductor fine particles having a photocatalytic action under a pressure lower than the atmospheric pressure. A method for producing a photocatalyst holder having deodorization and deodorization properties, wherein semiconductor fine particles or paint particles containing or supporting semiconductor fine particles are filled and supported in and / or on the pores of an anodized film.
【請求項3】 光触媒作用を有する半導体微粒子を含む
分散液又は塗料溶液中に、陽極酸化皮膜を形成したアル
ミニウム又はアルミニウム合金からなる基材を浸漬し、
電気泳動法により上記基材の陽極酸化皮膜の細孔中及び
/又はその表面に半導体微粒子又は半導体微粒子を含有
もしくは担持した塗料粒子を充填・担持させることを特
徴とする防臭・脱臭性を有する光触媒保持体の製造方
法。
3. A substrate made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion or a coating solution containing semiconductor fine particles having a photocatalytic action,
A deodorizing / deodorizing photocatalyst characterized by filling and supporting semiconductor fine particles or paint particles containing or supporting semiconductor fine particles in and / or on the surface of the anodic oxide film of the base material by electrophoresis. A method for manufacturing a holder.
JP06897397A 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same Expired - Fee Related JP3645985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06897397A JP3645985B2 (en) 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06897397A JP3645985B2 (en) 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10249212A true JPH10249212A (en) 1998-09-22
JP3645985B2 JP3645985B2 (en) 2005-05-11

Family

ID=13389133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06897397A Expired - Fee Related JP3645985B2 (en) 1997-03-07 1997-03-07 Deodorizing and deodorizing material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3645985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501811A (en) * 2005-07-14 2009-01-22 スリーエム イノベイティブ プロパティズ カンパニー Nanostructured article and method of manufacturing the same
KR100907467B1 (en) 2006-12-21 2009-07-13 고려대학교 산학협력단 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501811A (en) * 2005-07-14 2009-01-22 スリーエム イノベイティブ プロパティズ カンパニー Nanostructured article and method of manufacturing the same
KR100907467B1 (en) 2006-12-21 2009-07-13 고려대학교 산학협력단 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method

Also Published As

Publication number Publication date
JP3645985B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
Akhavan et al. Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities
US5670206A (en) Deodorizing lamp and method for production thereof
Cotolan et al. Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate
JP4619197B2 (en) Aluminum substrate with anodized film and method for producing the same
US5780380A (en) Photocatalyst composition and process for its production, and photocatalyst composition-attached substrate
Ito et al. Preparation of highly photocatalytic nanocomposite films consisting of TiO2 particles and Zn electrodeposited on steel
JPH0866635A (en) Photocatalytic thin film and its formation
WO2017192057A4 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
JP3645985B2 (en) Deodorizing and deodorizing material and method for producing the same
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JP3316048B2 (en) Building material and manufacturing method thereof
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
Onoda et al. Applications of anodized TiO2 films for environmental purifications
CN102677124A (en) Preparation method of photocatalytic film with energy storage function
CN1326777C (en) Preparation method of titanium oxide and its application
JP3210546B2 (en) Antibacterial and antifungal building materials
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
Sayahi et al. Cost-effective fabrication of perdurable electrodeposited TiO 2 nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue
JPH10158889A (en) Light alloy excellent in antibacterial property and its production
JP3678227B2 (en) Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material
KR20230019128A (en) Bioactive composition for apoptosis
JPH11158694A (en) Article with hydrophilic coating, and coating method
JP3326071B2 (en) Aluminum or aluminum alloy material coated with photocatalytic film and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees