JPH10158889A - Light alloy excellent in antibacterial property and its production - Google Patents

Light alloy excellent in antibacterial property and its production

Info

Publication number
JPH10158889A
JPH10158889A JP32566396A JP32566396A JPH10158889A JP H10158889 A JPH10158889 A JP H10158889A JP 32566396 A JP32566396 A JP 32566396A JP 32566396 A JP32566396 A JP 32566396A JP H10158889 A JPH10158889 A JP H10158889A
Authority
JP
Japan
Prior art keywords
light alloy
alloy
antibacterial
inorganic antibacterial
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32566396A
Other languages
Japanese (ja)
Other versions
JP3247308B2 (en
Inventor
Keijiro Shigeru
啓二郎 茂
Yasuyuki Kurino
恭行 栗野
Tsutomu Usami
勉 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP32566396A priority Critical patent/JP3247308B2/en
Publication of JPH10158889A publication Critical patent/JPH10158889A/en
Application granted granted Critical
Publication of JP3247308B2 publication Critical patent/JP3247308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light alloy excellent in antibacterial properties in which sufficient antibacterial properties are shown for a long time by a relatively small amt. of antibacterial components, there is no deterioration thereof even if sealing treatment is executed and there is no change in the color tone of the surface by diffusing inorganic antibacterial components into an anodic oxidation coating layer of a light alloy and dispersedly depositing them in a fine-grained shape. SOLUTION: Inorganic antibacterial components 3 are diffused into a layer of anodic oxidation coating 2 provided on the surface of a light alloy 1 such as an Al alloy, a Ti alloy or the like. As this inorganic antibacterial components, silver, copper, alloys and compounds thereof or the like are preferably used. In this way, a light alloy excellent in antibacterial properties is obtd. This light alloy can be obtd. by bringing the surface of a base material into contact with a dispersed soln. of an about 0.0001 to 10% degree of the fine grains of the inorganic antibacteriai components of about <=1μm, applying it by about 0.0001 to 1g/m<2> as the solid content, executing heating treatment at 100 to 600 deg.C to diffuse the fine grains therein and subjecting this surface layer to anodic oxidation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、長期間にわたって
抗菌効果が持続し、かつ、抗菌性物質の使用量が比較的
少なくても効果的に抗菌性を発揮する抗菌性に優れた軽
合金およびその製造方法に関する。(尚、本発明におい
て抗菌性とは防黴性、防藻性をも意味するものとす
る。)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light anti-microbial alloy having excellent antibacterial properties, which has an antibacterial effect for a long period of time and exhibits an effective antibacterial property even when a relatively small amount of an antibacterial substance is used. It relates to the manufacturing method. (Note that, in the present invention, the antibacterial property means the antifungal property and the antialgal property.)

【0002】[0002]

【従来の技術】近年、衛生・清潔指向の高まる中、腸管
出血性大腸菌O−157やMRSAといった細菌の流行
により、あらゆる材料に抗菌性を付与することが求めら
れており、アルミニウム合金またはチタニウム合金等の
軽合金も例外でない。これらの軽合金に抗菌性を付与す
る抗菌処理方法としては、これらの表面に各種抗菌剤を
含む塗料を塗布することが行われてきた。
2. Description of the Related Art In recent years, with the growing trend toward hygiene and cleanliness, due to the spread of bacteria such as enterohemorrhagic Escherichia coli O-157 and MRSA, it is required to impart antibacterial properties to all kinds of materials. And other light alloys are no exception. As an antibacterial treatment method for imparting antibacterial properties to these light alloys, a coating containing various antibacterial agents has been applied to these surfaces.

【0003】ここで用いられる抗菌剤としては、有機系
抗菌剤、銀や銅などの無機系抗菌性成分を含有する無機
系抗菌剤があげられるが、有機系抗菌剤は耐久性に劣
り、安全性にも問題があるので、無機系抗菌剤が好適に
使用されている。一方、塗料を用いない方法としては、
アルミニウム又はアルミニウム合金の陽極酸化皮膜の孔
中に銀等の金属を電析させる方法が知られている(特開
昭58-167798 )。
[0003] Antibacterial agents used herein include organic antibacterial agents and inorganic antibacterial agents containing inorganic antibacterial components such as silver and copper. However, organic antibacterial agents have poor durability and are safe. Inorganic antimicrobial agents are preferably used because of their poor properties. On the other hand, as a method that does not use paint,
A method of depositing a metal such as silver in pores of an anodic oxide film of aluminum or an aluminum alloy is known (JP-A-58-167798).

【0004】従来技術における抗菌剤を含有する塗料を
塗布する場合、抗菌性を有するのは表面の塗膜部分だけ
であり、合金自体が抗菌性を有するものではない。従っ
て、塗膜の剥離、チョーキング等の劣化により抗菌性が
短時間に消失するという問題点を有していた。
[0004] In the case of applying a paint containing an antibacterial agent in the prior art, only the coating film on the surface has antibacterial properties, and the alloy itself does not have antibacterial properties. Accordingly, there is a problem that the antibacterial property is lost in a short time due to deterioration of the coating film, such as peeling and chalking.

【0005】また、陽極酸化皮膜の微細孔内に銀等を電
析せしめる方法では、陽極酸化皮膜の微細孔深部から電
析するので、図3に示すような不都合があった。即ち、
電析量が少ない場合(図3(イ)参照)は、銀等が微細
孔の深部に電析しているのでなかなか抗菌性が発揮され
ず、また電析するために着色する、更にアルミニウム又
はアルミニウム合金の耐蝕・耐候性を向上させるために
封孔処理を施す(図3(ロ)参照)と実質的に微細孔が
塞がれるため抗菌性が消失してしまう。一方、電析量が
多い場合(図3(ハ)参照)には、抗菌性は発現するよ
うになるものの、着色が著しくなり、抗菌性物品の意匠
性が著しく低下するという問題点を有していた。
In the method of depositing silver or the like in the fine pores of the anodic oxide film, the electrodeposition is performed from the deep part of the fine pores of the anodic oxide film, which has a disadvantage as shown in FIG. That is,
In the case where the amount of electrodeposition is small (see FIG. 3 (a)), antibacterial properties are hardly exhibited since silver and the like are deposited in the deep part of the fine pores. When a sealing treatment is performed to improve the corrosion resistance and weather resistance of the aluminum alloy (see FIG. 3B), the micropores are substantially closed, and the antibacterial property is lost. On the other hand, when the amount of electrodeposition is large (see FIG. 3 (c)), although the antibacterial property is developed, there is a problem that the coloring is remarkable and the design property of the antibacterial article is remarkably reduced. I was

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の技術
における前記問題点を解消するためのものであり、その
ための課題は、合金表面に抗菌性を有し、長時間にわた
って抗菌効果が持続し、比較的少量の無機系抗菌性成分
量でも十分な抗菌性を発揮し、封孔処理を施しても抗菌
性の低下が少なく、しかも表面色調に変化がない抗菌性
に優れた軽合金およびその製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the prior art, and an object of the present invention is to have an antibacterial property on the surface of the alloy and maintain the antibacterial effect for a long time. Light alloys that exhibit sufficient antibacterial properties even with a relatively small amount of inorganic antibacterial ingredients, have a small decrease in antibacterial properties even when subjected to sealing treatment, and have excellent antibacterial properties without change in surface color. It is to provide a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明における請求項1
に係る抗菌性に優れた軽合金は、陽極酸化皮膜層中に無
機系抗菌性成分が拡散していることを特徴とするもので
ある。
Means for Solving the Problems Claim 1 of the present invention
The light alloy excellent in antibacterial property according to the above is characterized in that an inorganic antibacterial component is diffused in the anodic oxide film layer.

【0008】また、請求項2に係る抗菌性に優れた軽合
金は、陽極酸化皮膜層に無機系抗菌性成分が微粒子状で
吸着していることを特徴とする。
Further, the light alloy having excellent antibacterial properties according to claim 2 is characterized in that an inorganic antibacterial component is adsorbed on the anodized film layer in the form of fine particles.

【0009】また、請求項3に係る抗菌性に優れた軽合
金は、前記陽極酸化皮膜層を設ける母材としてアルミニ
ウム合金またはチタニウム合金を用いたことを特徴とす
る。
A light alloy having excellent antibacterial properties according to claim 3 is characterized in that an aluminum alloy or a titanium alloy is used as a base material on which the anodic oxide film layer is provided.

【0010】更に、請求項4に係る抗菌性に優れた軽合
金の製造方法は、軽合金の表面に無機系抗菌性成分の微
粒子分散液を接触させた後、加熱処理することにより、
前記無機系抗菌性成分の微粒子を前記軽合金の表面層内
部に拡散せしめ、その後前記表面層を陽極酸化処理する
ことを特徴とするものである。
Further, the method for producing a light alloy having excellent antibacterial properties according to claim 4 is characterized in that a fine particle dispersion of an inorganic antibacterial component is brought into contact with the surface of the light alloy, followed by heat treatment.
Fine particles of the inorganic antibacterial component are diffused into the surface layer of the light alloy, and then the surface layer is anodized.

【0011】更に、請求項5に係る抗菌性に優れた軽合
金の製造方法は、前記加熱処理を温度 100〜600 ℃によ
り加熱することを特徴とする。
Further, a method of manufacturing a light alloy having excellent antibacterial properties according to claim 5 is characterized in that the heat treatment is performed at a temperature of 100 to 600 ° C.

【0012】更に、請求項6に係る抗菌性に優れた軽合
金の製造方法は、軽合金の表面に陽極酸化皮膜層を形成
し、該陽極酸化皮膜層に無機系抗菌性成分の微粒子分散
液を接触させることにより、前記無機系抗菌性成分の微
粒子を前記陽極酸化皮膜に微粒子状に吸着せしめること
を特徴とする。
Further, according to a sixth aspect of the present invention, there is provided a method for producing a light alloy having excellent antibacterial properties, comprising: forming an anodic oxide film layer on the surface of the light alloy; The fine particles of the inorganic antibacterial component are adsorbed on the anodized film in the form of fine particles by contact with the anodized film.

【0013】更に、請求項7に係る抗菌性に優れた軽合
金の製造方法は、引き続き封孔処理を施すことを特徴と
する。
Further, the method for producing a light alloy having excellent antibacterial properties according to claim 7 is characterized in that a sealing treatment is continuously performed.

【0014】更に、請求項8に係る抗菌性に優れた軽合
金の製造方法は、前記陽極酸化皮膜層を設ける母材とし
てアルミニウム合金またはチタニウム合金を用いること
を特徴とする。
Further, a method of manufacturing a light alloy excellent in antibacterial properties according to claim 8 is characterized in that an aluminum alloy or a titanium alloy is used as a base material on which the anodic oxide film layer is provided.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態に基づ
き、本発明を詳細に説明する。ただし、この実施の形態
は、本発明をより良く理解させるために具体的に説明す
るものであって、特に指定のない限り、本発明の内容を
限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments of the present invention. However, this embodiment is specifically described for better understanding of the present invention, and does not limit the content of the present invention unless otherwise specified.

【0016】〔抗菌性を付与した軽合金〕本発明の第1
の抗菌性に優れた軽合金は、陽極酸化皮膜層中に無機系
抗菌性成分が拡散し、この無機系抗菌性成分が微粒子状
で分散・担持されている。即ち、図1に示されるよう
に、軽合金1に設けた陽極酸化皮膜層2中には無機系抗
菌性成分3が多量に存在し、しかも微粒子状で分散・担
持され、一方、軽合金中央部には無機系抗菌性成分3が
ほとんど存在しておらず、更に、軽合金表面にバインダ
ー成分や無機系抗菌性成分3の融着膜が実質的に存在し
ていない。そして、抗菌性を発揮するのは、陽極酸化皮
膜表面に露出している無機系抗菌性成分によるものであ
る。
[Light alloy with antibacterial properties]
In the light alloy having excellent antibacterial properties, an inorganic antibacterial component is diffused in the anodic oxide film layer, and the inorganic antibacterial component is dispersed and supported in the form of fine particles. That is, as shown in FIG. 1, a large amount of the inorganic antibacterial component 3 is present in the anodic oxide film layer 2 provided on the light alloy 1 and is dispersed and supported in the form of fine particles. In the portion, the inorganic antibacterial component 3 is scarcely present, and further, the binder component and the fused film of the inorganic antibacterial component 3 are not substantially present on the surface of the light alloy. The antibacterial property is exhibited by the inorganic antibacterial component exposed on the surface of the anodic oxide film.

【0017】したがって、軽合金の表面が少々摩耗する
ような場合でも、新たな無機系抗菌性成分が露出するの
で抗菌性が短時間に消失することはなく、また、軽合金
の表面が別材料によりコーティングされるわけではない
から、表面色調を著しく変えることがほとんどなく、さ
らに、表面が陽極酸化処理されているから十分な耐蝕・
耐候性を有している。
Therefore, even when the surface of the light alloy is slightly worn, a new inorganic antibacterial component is exposed, so that the antibacterial property does not disappear in a short time. The surface color is not significantly changed because it is not coated with chromium, and since the surface is anodized, sufficient corrosion resistance and
Has weather resistance.

【0018】本発明の第2の抗菌性に優れた軽合金は、
陽極酸化皮膜層に無機系抗菌性成分が微粒子状で吸着さ
れてなる。即ち、図2に示されるように、軽合金1に設
けた陽極酸化皮膜層2には無機系抗菌性成分3が多量に
存在し、しかも微粒子状で吸着され(陽極酸化皮膜2に
は微細な孔が多数形成されているため、強い吸着性を有
し、無機系抗菌性成分3も容易に脱離しない)、一方、
軽合金中央部には無機系抗菌性成分3がほとんど存在し
ておらず、更に、軽合金表面にバインダー成分や無機系
抗菌性成分3の膜が実質的に形成されていない。
The second antimicrobial light alloy of the present invention is:
Inorganic antibacterial components are adsorbed on the anodized film layer in the form of fine particles. That is, as shown in FIG. 2, a large amount of the inorganic antibacterial component 3 is present in the anodic oxide film layer 2 provided on the light alloy 1 and is adsorbed in the form of fine particles. Since a large number of holes are formed, it has a strong adsorptivity and the inorganic antibacterial component 3 is not easily desorbed.)
The inorganic antibacterial component 3 hardly exists in the central portion of the light alloy, and further, a film of the binder component and the inorganic antibacterial component 3 is not substantially formed on the surface of the light alloy.

【0019】したがって、軽合金の表面が少々摩耗する
ような場合でも抗菌性が短時間に消失することはなく、
また、軽合金表面が別材料によりコーティングされるわ
けではないから、表面色調を著しく変えることがほとん
どなく、さらに、表面が陽極酸化処理されているから十
分な耐蝕・耐候性を有している。
Therefore, even when the surface of the light alloy is slightly worn, the antibacterial property does not disappear in a short time.
Further, since the surface of the light alloy is not coated with another material, the color tone of the surface is hardly remarkably changed. Further, since the surface is anodized, it has sufficient corrosion resistance and weather resistance.

【0020】このような第1及び第2の抗菌性に優れた
軽合金には、アルミニウム合金、マグネシウム合金、ま
たはチタニウム合金が含まれるが、特に、軽量・高強度
かつ入手し易く、安価で実用性に富む材料であるアルミ
ニウム合金またはチタニウム合金が好ましい。なお、本
発明においてアルミニウム合金とはアルミニウムを、マ
グネシウム合金とはマグネシウムを、チタニウム合金と
はチタニウムを含むものとする。
Such light alloys having excellent first and second antibacterial properties include aluminum alloys, magnesium alloys, and titanium alloys. In particular, they are lightweight, high-strength, easily available, inexpensive and practical. An aluminum alloy or a titanium alloy, which is a material having excellent properties, is preferable. In the present invention, an aluminum alloy includes aluminum, a magnesium alloy includes magnesium, and a titanium alloy includes titanium.

【0021】〔第1の製造方法〕本発明の第1の抗菌性
に優れた軽合金は以下の製造方法(以下、第1の製造方
法という)により製造される。まず、無機系抗菌性成分
を軽合金の表面層の内部に拡散させる。即ち、軽合金の
所望表面に無機系抗菌性成分の微粒子分散液を接触さ
せ、所望の温度にて加熱処理することにより、無機系抗
菌性成分の微粒子を軽合金の表面層内部に拡散させる。
[First Production Method] The first light alloy having excellent antibacterial properties of the present invention is produced by the following production method (hereinafter referred to as the first production method). First, the inorganic antibacterial component is diffused into the surface layer of the light alloy. That is, the fine particle dispersion of the inorganic antibacterial component is brought into contact with the desired surface of the light alloy and subjected to a heat treatment at a desired temperature to diffuse the fine particles of the inorganic antibacterial component into the surface layer of the light alloy.

【0022】なお、軽合金は、無機系抗菌性成分の微粒
子分散液に接触せしめる前に、抗菌性付与面を十分に洗
浄して汚れを取り除いておく。使用し得る無機系抗菌性
成分としては、耐熱性に富み、かつオリゴジナミ−効果
を有するものであって、前記所定温度下での加熱処理後
に残存する有機系または無機系のバインダー成分(例え
ば釉薬成分等)を含まないものを使用する。
Before the light alloy is brought into contact with the fine particle dispersion of the inorganic antibacterial component, the surface provided with antibacterial properties is sufficiently washed to remove dirt. As the inorganic antibacterial component that can be used, an organic or inorganic binder component (e.g., a glaze component) that is rich in heat resistance and has an oligodyne effect and remains after the heat treatment at the predetermined temperature. Etc.).

【0023】好適な無機系抗菌性成分(本明細書中にお
いて無機系抗菌性成分としては、抗菌性を有する金属単
体をも含む)としては、軽合金の表層部内部への拡散し
やすさ、安全性、表面性質(例えば色調)への影響がな
い等の点から、銀、銅、銀−銅合金、リン酸銀、塩化
銀、硫化銀、酸化銀、硫酸銀、クエン酸銀や乳酸銀等の
有機銀化合物、銀担持無機化合物、リン酸第一銅、リン
酸第二銅、塩化第一銅、塩化第二銅、硫化第一銅、硫化
第二銅、酸化第一銅、酸化第二銅、硫酸第一銅、硫酸第
二銅、クエン酸銅や乳酸銅等の有機銅化合物、銅担持無
機化合物のうちのいずれか1種または2種以上であるこ
とが好ましい。
Suitable inorganic antibacterial components (in the present specification, the inorganic antibacterial component includes a simple metal having antibacterial properties) include a light alloy which is easily diffused into the surface layer portion; Silver, copper, silver-copper alloy, silver phosphate, silver chloride, silver sulfide, silver oxide, silver sulfate, silver citrate, silver lactic acid, and silver lactate have no effect on safety and surface properties (for example, color tone). And other organic silver compounds, silver-carrying inorganic compounds, cuprous phosphate, cupric phosphate, cuprous chloride, cupric chloride, cuprous sulfide, cupric sulfide, cuprous oxide, cupric oxide It is preferable to use one or more of copper copper, copper sulfate, copper sulfate, organic copper compounds such as copper citrate and copper lactate, and copper-supported inorganic compounds.

【0024】無機系抗菌性成分の微粒子分散液は、界面
活性剤を併用して軽合金への濡れ性を良くするのが好適
である。無機系抗菌性成分の微粒子分散液を軽合金に接
触させる方法としては、浸漬、スプレー塗布、刷毛塗り
等があり、特に制約はない。無機系抗菌性成分の微粒子
分散液の濃度は 0.0001 〜 10 %が好適であり、これよ
り薄くすると十分な抗菌性が得られず、これより濃くす
ると軽合金表面に無機系抗菌性成分の膜が形成された
り、汚れが残る場合が多くなる。
It is preferable that the fine particle dispersion of the inorganic antibacterial component is used in combination with a surfactant to improve the wettability to the light alloy. Methods for bringing the fine particle dispersion of the inorganic antibacterial component into contact with the light alloy include immersion, spray coating, brush coating, and the like, and are not particularly limited. The concentration of the fine particle dispersion of the inorganic antibacterial component is preferably 0.0001 to 10%. If the concentration is smaller than this, sufficient antibacterial properties cannot be obtained. If the concentration is higher than this, the film of the inorganic antibacterial component is formed on the light alloy surface. In many cases, they are formed or stains remain.

【0025】無機系抗菌性成分の塗布量も特に制限はな
いが、例えば銀を含有する無機系抗菌性成分の場合、銀
固形分換算で 0.0001 〜1g/m2 程度が好適であり、
これより少ない場合には抗菌性が十分でなく、これより
多くても抗菌性の向上は望めないからである。また、無
機系抗菌性成分の微粒子の平均粒子径は1μm以下と
し、特に 0.1μm以下のコロイドとするのが好適であ
る。コロイド状の無機系抗菌性成分の微粒子を使用する
と、軽合金の表層部への拡散が容易に起こる。
The coating amount of the inorganic antibacterial component is not particularly limited. For example, in the case of a silver-containing inorganic antibacterial component, it is preferably about 0.0001 to 1 g / m 2 in terms of silver solid content.
If the amount is less than this, the antibacterial property is not sufficient, and if it is more than this, improvement in the antibacterial property cannot be expected. Further, the average particle diameter of the fine particles of the inorganic antibacterial component is preferably 1 μm or less, and particularly preferably a colloid of 0.1 μm or less. When the fine particles of the colloidal inorganic antibacterial component are used, the diffusion of the light alloy to the surface layer easily occurs.

【0026】加熱処理温度は、抗菌性材料の母材への拡
散状態により広い温度範囲が使用可能であるが、 100〜
600 ℃が実用的に好適である。これは、 100℃未満では
無機系抗菌性成分の拡散速度が遅く、 600℃を超えると
アルミニウム合金またはチタン合金の物性変化が大きく
なるためである。しかし、加熱により物性に変化が生じ
た場合には、適宜、圧延や曲げなどの加工を施しても支
障はない。
The heat treatment temperature can be used in a wide range depending on the diffusion state of the antibacterial material into the base material.
600 ° C. is practically preferred. This is because the diffusion rate of the inorganic antibacterial component is slow at a temperature lower than 100 ° C, and the physical property change of the aluminum alloy or the titanium alloy becomes large at a temperature higher than 600 ° C. However, when the physical properties change due to the heating, there is no problem even if processing such as rolling or bending is appropriately performed.

【0027】加熱時間は、使用する無機系抗菌性成分の
種類、および無機系抗菌性成分を拡散させる深さにより
定まるが、通常 24 時間以下で十分である。加熱処理時
の雰囲気は、特に制限されない。また、加熱処理時に、
特に加圧する必要もないが、加圧すれば加熱処理時間を
短縮することができ、更に、より深く拡散させることが
できる。
The heating time is determined by the type of the inorganic antibacterial component to be used and the depth of diffusion of the inorganic antibacterial component, but usually 24 hours or less is sufficient. The atmosphere during the heat treatment is not particularly limited. Also, during the heat treatment,
Although there is no particular need to apply pressure, the application of pressure can shorten the heat treatment time and can further deeply diffuse.

【0028】次に、陽極酸化処理を施す。陽極酸化処理
については、公知の方法を適用することができる。即
ち、アルミニウム合金の陽極酸化処理の場合は、例え
ば、硫酸、リン酸、クロム酸等の無機酸、またはシュウ
酸、スルホサリチル酸、マロン酸等の有機酸、若しくは
水酸化ナトリウム、リン酸三ナトリウム等のアルカリ性
水溶液中で、直流、交流、パルス、または交直重畳法に
より電解する方法を採用することができる。
Next, an anodic oxidation treatment is performed. For the anodic oxidation treatment, a known method can be applied. That is, in the case of anodizing treatment of an aluminum alloy, for example, an inorganic acid such as sulfuric acid, phosphoric acid, and chromic acid, or an organic acid such as oxalic acid, sulfosalicylic acid, and malonic acid; or sodium hydroxide, trisodium phosphate, and the like. In the alkaline aqueous solution of the above, a method of performing electrolysis by direct current, alternating current, pulse, or the AC / DC superposition method can be employed.

【0029】チタニウム合金の陽極酸化処理の場合は、
例えば、硫酸、リン酸、ホウ酸、酢酸、あるいはこれら
の塩の水溶液中で、直流、交流、パルス、または交直重
畳法により電解する方法を採用することができる。
In the case of anodizing treatment of a titanium alloy,
For example, it is possible to employ a method of performing electrolysis in an aqueous solution of sulfuric acid, phosphoric acid, boric acid, acetic acid, or a salt thereof by a direct current, an alternating current, a pulse, or an AC / DC superposition method.

【0030】また、マグネシウム合金の陽極酸化処理の
場合は、MIL−M−45202 A、MIL−M−3171A記
載の方法等を採用することができる。そして、このよう
な陽極酸化処理により形成された酸化皮膜は安定化され
ており、耐蝕性、耐候性等が軽合金に付与される。
In the case of the anodic oxidation treatment of a magnesium alloy, the method described in MIL-M-45202A and MIL-M-3171A can be adopted. The oxide film formed by such anodizing treatment is stabilized, and imparts corrosion resistance, weather resistance, and the like to the light alloy.

【0031】更に、アルミニウム合金の場合には、陽極
酸化処理に続けて、電解着色法や染色法により陽極酸化
皮膜を着色することもできる。即ち、封孔処理前の陽極
酸化皮膜は多孔質であり非常に大きな表面積を有するた
め、この孔に金属を電析させること、あるいは、この強
い吸着性を利用して染料を吸着させることにより着色す
るものである。
Further, in the case of an aluminum alloy, the anodic oxide film can be colored by an electrolytic coloring method or a dyeing method following the anodic oxidation treatment. In other words, since the anodized film before the sealing treatment is porous and has a very large surface area, it is colored by depositing a metal in these holes or by adsorbing a dye utilizing this strong adsorptivity. Is what you do.

【0032】次に、必要に応じて封孔処理を施す。封孔
処理についても、公知の方法を適用することができる。
即ち、チタン合金、マグネシウム合金の場合は通常行わ
ないが、アルミニウム合金の場合は、沸騰水、酢酸コバ
ルトやフッ化ニッケル等の金属塩の水溶液中に浸漬した
り、又は加圧水蒸気下に暴露することにより行なうこと
ができる。
Next, a sealing treatment is performed as required. Known methods can be applied to the sealing treatment.
That is, it is not usually performed in the case of titanium alloys and magnesium alloys, but in the case of aluminum alloys, it is immersed in an aqueous solution of boiling water, a metal salt such as cobalt acetate or nickel fluoride, or exposed to pressurized steam. Can be performed.

【0033】なお、このような特別な封孔処理を施さな
くとも、空気に含まれる水蒸気により自然に封孔を行わ
せることも可能である。そして、このような封孔処理に
より、軽合金の耐蝕・耐候性が更に向上するので好まし
く、無機系抗菌性成分が図3−2のように閉塞されるわ
けではないので、封孔処理により抗菌性が著しく低下す
ることはない。
It is to be noted that even without such a special sealing treatment, the sealing can be naturally performed by the water vapor contained in the air. Such a sealing treatment is preferable because the corrosion resistance and weather resistance of the light alloy are further improved, and the inorganic antibacterial component is not closed as shown in FIG. 3-2. The properties are not significantly reduced.

【0034】〔第2の製造方法〕本発明の第2の抗菌性
に優れた軽合金は以下の製造方法(以下、第2の製造方
法という)により製造される。まず、軽合金に陽極酸化
処理を施す。陽極酸化処理としては、第1の製造方法に
おける陽極酸化処理をそのまま採用することができる。
また、アルミニウム合金の場合には、第1の製造方法と
同様な方法により陽極酸化処理に続けて、電解着色法や
染色法により、陽極酸化皮膜を着色することも可能であ
る。
[Second Production Method] The light alloy of the present invention having excellent antibacterial properties is produced by the following production method (hereinafter, referred to as a second production method). First, the light alloy is anodized. As the anodic oxidation treatment, the anodic oxidation treatment in the first manufacturing method can be employed as it is.
In the case of an aluminum alloy, it is also possible to color the anodized film by an electrolytic coloring method or a dyeing method, following the anodizing treatment in the same manner as in the first manufacturing method.

【0035】そして、陽極酸化処理により形成された陽
極酸化皮膜層に無機系抗菌性成分の微粒子分散液を接触
させることにより、前記無機系抗菌性成分の微粒子を前
記陽極酸化皮膜表面に吸着せしめる。なお、陽極酸化処
理された軽合金は、無機系抗菌性成分の微粒子分散液に
接触せしめる前に、抗菌性付与面を十分に洗浄して汚れ
を取り除いておく。
Then, the fine particles of the inorganic antibacterial component are adsorbed on the surface of the anodic oxide film by bringing the fine particles of the inorganic antibacterial component into contact with the anodic oxide film layer formed by the anodic oxidation treatment. Before the anodized light alloy is brought into contact with the fine particle dispersion of the inorganic antibacterial component, the surface provided with antibacterial properties is sufficiently washed to remove dirt.

【0036】使用し得る無機系抗菌性成分としては、第
1の製造方法における無機系抗菌性成分を使用すること
ができる。無機系抗菌性成分の微粒子分散液は、界面活
性剤を併用して軽合金への濡れ性を良くするのが好適で
ある。無機系抗菌性成分の微粒子分散液を軽合金に接触
させる方法としては、浸漬、スプレー塗布、刷毛塗り等
があり、特に制約はない。
As the inorganic antibacterial component that can be used, the inorganic antibacterial component in the first production method can be used. It is preferable that the fine particle dispersion of the inorganic antibacterial component is used in combination with a surfactant to improve the wettability to the light alloy. Methods for bringing the fine particle dispersion of the inorganic antibacterial component into contact with the light alloy include immersion, spray coating, brush coating, and the like, and are not particularly limited.

【0037】無機系抗菌性成分の微粒子分散液の濃度は
0.0001 〜 10 %が好適であり、これより薄くすると十
分な抗菌性が得られず、これより濃くすると軽合金表面
に汚れが残る場合が多くなる。無機系抗菌性成分の吸着
量も特に制限はないが、例えば銀を含有する無機系抗菌
性成分の場合、銀固形分換算で 0.0001 〜1g/m2
度が好適であり、これより少ない場合には抗菌性が十分
でなく、これより多くても抗菌性の向上は望めないから
である。また、無機系抗菌性成分の微粒子の平均粒子径
は1μm以下とし、特に 0.1μm以下のコロイドとする
のが好適である。コロイド状の無機系抗菌性成分の微粒
子を使用すると、陽極酸化皮膜層への吸着が容易に起こ
る。
The concentration of the fine particle dispersion of the inorganic antibacterial component is
0.0001 to 10% is preferable. If the thickness is less than this, sufficient antibacterial properties cannot be obtained. If the concentration is more than this, dirt often remains on the light alloy surface. The amount of adsorption of the inorganic antibacterial component is not particularly limited. For example, in the case of a silver-containing inorganic antibacterial component, it is preferably about 0.0001 to 1 g / m 2 in terms of silver solid content, This is because the antibacterial properties are not sufficient, and improvement of antibacterial properties cannot be expected with more than this. Further, the average particle diameter of the fine particles of the inorganic antibacterial component is preferably 1 μm or less, and particularly preferably a colloid of 0.1 μm or less. When the colloidal fine particles of the inorganic antibacterial component are used, the adsorption to the anodic oxide film layer easily occurs.

【0038】次に、必要に応じて封孔処理を施す。封孔
処理についても、公知の方法を適用することができる。
即ち、チタン合金、マグネシウム合金の場合は通常行わ
ないが、アルミニウム合金の場合は、沸騰水、酢酸コバ
ルトやフッ化ニッケル等の金属塩の水溶液中に浸漬した
り、又は加圧水蒸気下に暴露することにより行なうこと
ができる。なお、上記のような特別な封孔処理を施さな
くとも、空気に含まれる水蒸気により自然に封孔を行わ
せることも可能である。そして、このような封孔処理に
よりアルミニウム合金の耐蝕性および耐候性が更に向上
するので好ましく、無機系抗菌性成分が従来技術の図3
(ロ)のように閉塞されるわけではないので、封孔処理
により抗菌性が著しく低下することはない。
Next, a sealing process is performed if necessary. Known methods can be applied to the sealing treatment.
In other words, titanium alloys and magnesium alloys are not usually used, but aluminum alloys are immersed in boiling water, an aqueous solution of a metal salt such as cobalt acetate or nickel fluoride, or exposed to pressurized steam. Can be performed. In addition, even if it does not perform the above-mentioned special sealing process, it is also possible to make it seal naturally with the water vapor contained in air. Such a sealing treatment is preferable because the corrosion resistance and the weather resistance of the aluminum alloy are further improved.
Since it is not closed as in (b), the antibacterial property is not remarkably reduced by the sealing treatment.

【0039】[0039]

【実施例】【Example】

〔試料の作製〕まず、本実施例にて使用する無機系抗菌
性成分の微粒子分散液を、以下に示す3通りの方法で調
製した。 (1) 0.2重量%の硝酸銀水溶液を蒸発皿にとり、液面
にバーナー炎をあて、銀の微粒子を得た。これを水に分
散して、 0.1重量%の銀微粒子を含む分散液を得た。銀
微粒子の平均粒子径は 0.01 μmであった。 (2) 乳酸銀 10 gに水を1リットル加え、ボールミル
にて 48 時間粉砕し、1重量%の乳酸銀の分散液を得
た。乳酸銀微粒子の平均粒子径は 0.1μmであった。 (3) 0.5重量%のコロイダルシリカ分散液 100cm3
に硝酸銀 0.05 g、ホルムアルデヒド 0.01 gを加え、
紫外線を 24 時間照射し、シリカ表面に銀が析出した微
粒子分散液を得た。微粒子の平均粒子径は 0.05 μmで
あった。
[Preparation of Sample] First, fine particle dispersions of the inorganic antibacterial component used in this example were prepared by the following three methods. (1) A silver nitrate aqueous solution of 0.2% by weight was placed in an evaporating dish, and a burner flame was applied to the liquid surface to obtain silver fine particles. This was dispersed in water to obtain a dispersion containing 0.1% by weight of silver fine particles. The average particle diameter of the silver fine particles was 0.01 μm. (2) One liter of water was added to 10 g of silver lactate, and the mixture was pulverized by a ball mill for 48 hours to obtain a 1% by weight dispersion of silver lactate. The average particle size of the silver lactate fine particles was 0.1 μm. (3) 0.5% by weight colloidal silica dispersion 100 cm 3
Was added 0.05 g of silver nitrate and 0.01 g of formaldehyde,
Ultraviolet irradiation was performed for 24 hours to obtain a fine particle dispersion in which silver was precipitated on the silica surface. The average particle size of the fine particles was 0.05 μm.

【0040】〔実施例1〜3〕溶剤で脱脂処理したアル
ミニウム合金 5052 の板材を、上記 (1)〜(3) の銀また
は銀含有物の微粒子分散液にそれぞれ浸漬、塗布し、乾
燥した。塗布量は銀換算で、それぞれ 0.005、 0.03 、
0.001g/m2 であった。次に、この板材を大気中 200
℃で8時間加熱して、銀または銀含有物をアルミニウム
合金板の表層部内へ拡散させた。更に、濃度 180g/リ
ットルの硫酸溶液中、 25 ℃で、この板材を陽極とし
て、 1.5A/dm2 の電流密度で 25 分間電解処理を行
い、厚さ 11 μmの陽極酸化皮膜を形成した。その後、
酢酸ニッケルを5g/リットルの濃度となるよう溶解し
た水溶液中に5分間浸漬することにより封孔処理を施し
た。この板材の表面色調にはいずれも変化が認められな
かった。
[Examples 1 to 3] The aluminum alloy 5052 plate material degreased with a solvent was immersed in the above-mentioned (1) to (3) silver or silver-containing particle dispersions, applied, and dried. The coating amount is 0.005, 0.03,
It was 0.001 g / m 2 . Next, the plate was placed in air for 200
By heating at 8 ° C. for 8 hours, silver or a silver-containing substance was diffused into the surface layer of the aluminum alloy plate. Further, in a sulfuric acid solution having a concentration of 180 g / liter, the plate was used as an anode at 25 ° C. at a current density of 1.5 A / dm 2 for 25 minutes to form an anodic oxide film having a thickness of 11 μm. afterwards,
Sealing treatment was performed by immersing for 5 minutes in an aqueous solution in which nickel acetate was dissolved to a concentration of 5 g / liter. No change was observed in any of the surface colors of this plate material.

【0041】〔比較例1〕実施例1〜3と同様に溶剤で
脱脂処理したアルミニウム合金 5052 の板材を、銀また
は銀含有物の微粒子分散液に浸漬、塗布することなく、
大気中 200℃で8時間加熱した。その後、実施例1〜3
に準じて、陽極酸化処理及び封孔処理を施した。
[Comparative Example 1] A plate material of aluminum alloy 5052, which had been degreased with a solvent in the same manner as in Examples 1 to 3, was not immersed in a fine particle dispersion of silver or a silver-containing material and applied.
Heated at 200 ° C for 8 hours in air. Then, Examples 1-3
Anodizing treatment and sealing treatment were performed according to

【0042】〔実施例4〜6〕酸洗した工業用純チタン
の板材を、上記 (1)〜(3) の銀または銀含有物の微粒子
分散液にそれぞれ浸漬、塗布し、乾燥した。塗布量は銀
換算でそれぞれ 0.005、 0.03 、 0.001g/m2 であっ
た。次に、この板材を大気中 450℃で1時間加熱して、
銀または銀含有物を板材の表層部内へ拡散させた。更
に、燐酸−硫酸混合液(燐酸濃度; 25 g/リットル、
硫酸濃度; 35 g/リットル)中、 25 ℃で、この板材
を陽極として、 15 V/分の昇圧温度で 250Vまで昇圧
し、その後 30 分間定電圧電解して、厚み6μmの陽極
酸化皮膜を形成した。その後、特別な封孔処理は行わ
ず、大気中に放置した。この板材の表面色調にはいずれ
も変化が認められなかった。
Examples 4 to 6 Pickled industrial pure titanium plates were immersed in the above-mentioned (1) to (3) silver or silver-containing particle dispersions, applied, and dried. The coating amounts were 0.005, 0.03, and 0.001 g / m 2 in terms of silver, respectively. Next, this plate is heated at 450 ° C for 1 hour in the atmosphere,
Silver or a silver-containing material was diffused into the surface layer of the plate material. Further, a mixture of phosphoric acid and sulfuric acid (phosphoric acid concentration: 25 g / liter,
(Sulfuric acid concentration: 35 g / liter) At 25 ° C, this plate is used as an anode, and the voltage is raised to 250 V at a temperature of 15 V / min, and then a constant voltage electrolysis is performed for 30 minutes to form a 6 μm thick anodic oxide film. did. Thereafter, no special sealing treatment was performed, and the device was left in the air. No change was observed in any of the surface colors of this plate material.

【0043】〔比較例2〕実施例4〜6と同様に酸洗し
たチタン製の板材を、銀または銀含有物の微粒子分散液
に浸漬、塗布することなく、大気中 450℃で1時間加熱
した。その後、実施例4〜6に準じて、陽極酸化処理を
施した。その後、特別な封孔処理は行わず、大気中に放
置した。
[Comparative Example 2] A plate made of titanium, which had been pickled in the same manner as in Examples 4 to 6, was heated at 450 ° C for 1 hour in the air without being immersed and coated in a fine particle dispersion of silver or a silver-containing material. did. Thereafter, according to Examples 4 to 6, an anodic oxidation treatment was performed. Thereafter, no special sealing treatment was performed, and the device was left in the air.

【0044】〔実施例7〜9〕溶剤で脱脂処理したアル
ミニウム合金 5052 の板材を、濃度 180g/リットルの
硫酸中、 25 ℃で、この板材を陽極として、 1.5A/d
2 の電流密度で 25分間電解処理を行い、厚さ 11 μ
mの陽極酸化皮膜を形成した。次に、 10 ℃に冷却した
上記 (1)〜(3) の銀または銀含有物の微粒子分散液に5
分間浸漬、塗布した後、乾燥した。吸着量は銀換算でそ
れぞれ 0.005、0.03、0.001g/m2 であった。続い
て、 95 ℃のイオン交換水に5分間浸漬することにより
封孔処理を施した。この板材の表面色調にはいずれも変
化が認められなかった。
Examples 7 to 9 A plate of aluminum alloy 5052 degreased with a solvent was placed in sulfuric acid having a concentration of 180 g / liter at 25 ° C., and the plate was used as an anode at 1.5 A / d.
It performed 25 minutes electrolysis at a current density of m 2, a thickness of 11 mu
m of the anodic oxide film was formed. Next, the silver or silver-containing fine particle dispersion of (1) to (3) was cooled to 10 ° C.
After being immersed and applied for a minute, it was dried. The adsorption amount was 0.005, 0.03, and 0.001 g / m 2 in terms of silver, respectively. Subsequently, sealing treatment was performed by immersion in ion exchanged water at 95 ° C. for 5 minutes. No change was observed in any of the surface colors of this plate material.

【0045】〔比較例3〕実施例7〜9と同様に溶剤で
脱脂処理したアルミニウム合金 5052 の板材を、実施例
7〜9に準じて、陽極酸化処理及び封孔処理を施した
(銀または銀含有物の微粒子分散液への浸漬、塗布な
し)。
[Comparative Example 3] An aluminum alloy 5052 plate material degreased with a solvent in the same manner as in Examples 7 to 9 was subjected to anodizing treatment and sealing treatment according to Examples 7 to 9 (silver or silver). No immersion or application of silver-containing material in fine particle dispersion).

【0046】〔比較例4〕実施例7〜9と同様に溶剤で
脱脂処理したアルミニウム合金 5052 の板材を、実施例
7〜9に準じて、陽極酸化処理を施した。次いで、 15
g/リットル硫酸、 1.5g/リットル硝酸銀浴で交流 1
8 Vの条件下で銀の電析量が 0.03 g/m2 となるよう
電析し、その後、実施例7〜9に準じて封孔処理した。
この板材の表面色調に変化が認められた。
COMPARATIVE EXAMPLE 4 A plate material of aluminum alloy 5052 which had been degreased with a solvent in the same manner as in Examples 7 to 9 was anodized in accordance with Examples 7 to 9. Then 15
g / l sulfuric acid, 1.5g / l silver nitrate bath 1
Electrodeposition was carried out under the conditions of 8 V so that the amount of silver deposited was 0.03 g / m 2, and then the pores were sealed according to Examples 7 to 9.
A change was observed in the surface color tone of this plate material.

【0047】〔実施例10〜12〕酸洗した工業用純チ
タンの板材を陽極として、燐酸−硫酸混合液(燐酸濃
度;25 g/リットル、硫酸濃度; 35 g/リットル)
中、 15 V/分の昇圧速度で250Vまで昇圧し、その後
30 分間定電圧電解処理して、厚み6μmの陽極酸化皮
膜を形成した。その後、 10 ℃に冷却した上記 (1)〜
(3) の銀または銀含有物の微粒子分散液に5分間浸漬、
塗布した後、乾燥した。吸着量は銀換算で、それぞれ
0.005、 0.03 、0.001 g/m2 であった。その後、特
別な封孔処理は行わず、大気中に放置した。この板材の
表面色調にはいずれも変化が認められなかった。
[Examples 10 to 12] A mixed solution of phosphoric acid and sulfuric acid (phosphoric acid concentration: 25 g / l, sulfuric acid concentration: 35 g / l) was prepared by using a pickled industrial pure titanium plate as an anode.
Medium, increase the voltage to 250V at a rate of 15V / min, then
A constant voltage electrolytic treatment was performed for 30 minutes to form an anodic oxide film having a thickness of 6 μm. After that, it was cooled to 10 ° C.
(3) dipping in silver or a silver-containing substance fine particle dispersion for 5 minutes,
After application, it was dried. The amount of adsorption is silver equivalent,
They were 0.005, 0.03 and 0.001 g / m 2 . Thereafter, no special sealing treatment was performed, and the device was left in the air. No change was observed in any of the surface colors of this plate material.

【0048】〔比較例5〕実施例10〜12と同様に酸
洗した工業用純チタンの板材を陽極として、実施例10
〜12に準じて陽極酸化処理を施し、銀または銀含有物
の微粒子分散液への浸漬、塗布、特別な封孔処理は行わ
ず、大気中に放置した。
[Comparative Example 5] An industrial pure titanium plate material pickled in the same manner as in Examples 10 to 12 was used as an anode to produce Example 10.
Anodizing treatment was performed according to the method described in No. 12 above, and immersion, application, and special sealing treatment of silver or a silver-containing substance in a fine particle dispersion were not performed, and the mixture was left in the air.

【0049】「抗菌性試験」上記の実施例1〜12、比
較例1〜5で作製した試料の抗菌性を、銀等無機抗菌剤
研究会制定のフィルム密着法に準拠して実施し、評価し
た。その結果を表に示す。なお、フィルム密着法の試験
方法の概要は以下のとおりである。「 25 cm2 の平板
状試験体に、 1/500 希釈した普通ブイヨンを含み、菌
濃度約105 cfu/mlに調整した大腸菌、黄色ブド
ウ球菌の菌液 0.5mlを接種し、更にその菌液の上に試
験体と同一形状のポリエチレン製フィルムを乗せる。そ
して、これを 35 ℃、 24 時間培養した後、生存菌数を
寒天平板法で測定する。」
"Antibacterial test" The antibacterial properties of the samples prepared in Examples 1 to 12 and Comparative Examples 1 to 5 were evaluated in accordance with the film adhesion method established by the Research Committee on Inorganic Antibacterial Agents for Silver and Other Materials. did. The results are shown in the table. The outline of the test method of the film adhesion method is as follows. A 25 cm 2 plate specimen was inoculated with 0.5 ml of a bacterial solution containing E. coli and Staphylococcus aureus containing a normal broth diluted to 1/500 and adjusted to a bacterial concentration of about 10 5 cfu / ml. A polyethylene film of the same shape as the specimen is placed on the sample. After culturing this at 35 ° C for 24 hours, the number of viable bacteria is measured by the agar plate method. "

【0050】[0050]

【表1】 [Table 1]

【0051】表に示される抗菌性試験結果より、実施例
1〜12の抗菌処理が施された軽合金では、生菌数が1
00以下(検出限界以下を表す)に減少したのに対し、
比較例1、2、3、5の抗菌処理が施されていない軽合
金、及び比較例4の従来法の電析法により抗菌処理が施
されたアルミニウム合金では、全て多数の菌の生存が認
められた。これにより、本発明に係る軽合金は、優れた
抗菌効果を有することが確認された。
According to the antibacterial test results shown in the table, the viable cell count was 1 for the light alloys subjected to the antibacterial treatment of Examples 1 to 12.
While it decreased to below 00 (representing below the detection limit),
In the light alloys of Comparative Examples 1, 2, 3, and 5 which were not subjected to the antibacterial treatment, and the aluminum alloy which was subjected to the antibacterial treatment by the conventional electrodeposition method of Comparative Example 4, survival of many bacteria was observed. Was done. Accordingly, it was confirmed that the light alloy according to the present invention had an excellent antibacterial effect.

【0052】また、本発明に係る軽合金は、比較例4の
従来法の電析法により抗菌処理が施されたアルミニウム
合金と比べて、銀担持量が同量もしくは少量であるにも
かかわらず、抗菌性に優れている。その理由としては、
本発明に係る軽合金にあっては、銀が微粒子状に分散・
担持されるか(実施例1〜6)、または微粒子状で分散
・吸着されてなる(実施例7〜12)から、抗菌作用を
発揮する銀の表面積が非常に大きく、活性に富むのに対
し、比較例4の従来法の電析法により抗菌処理が施され
たアルミニウム合金にあっては、微細孔深部に電析し、
また電着されてなるから、抗菌作用を発揮する銀の表面
積が小さく活性に富まないためと思われる。
In addition, the light alloy according to the present invention has the same or smaller amount of silver carried than the aluminum alloy which has been subjected to the antibacterial treatment by the conventional electrodeposition method of Comparative Example 4 even though the amount of silver carried is the same or a small amount. Excellent in antibacterial properties. The reason is that
In the light alloy according to the present invention, silver is dispersed in fine particles.
The surface area of silver exhibiting an antibacterial action is very large and rich in activity because it is carried (Examples 1 to 6) or dispersed and adsorbed in fine particles (Examples 7 to 12). In the aluminum alloy having been subjected to the antibacterial treatment by the conventional electrodeposition method of Comparative Example 4,
It is also presumed that silver which exerts an antibacterial action has a small surface area and is not rich in activity because it is electrodeposited.

【0053】[0053]

【発明の効果】以上のように本発明では、請求項1に係
る軽合金では、陽極酸化皮膜層中に無機系抗菌性成分が
拡散し、微粒子状で分散・担持されているから、表面積
が非常に大きく活性に富むので、比較的少量の無機系抗
菌性成分量でも十分な抗菌性を発揮し、封孔処理を施し
ても抗菌性の低下が少なく、しかも表面が少々摩耗する
ような場合でも新たな無機系抗菌成分が露出するので長
期間にわたって抗菌効果が持続し、更に、表面が別材料
によりコーディングされているわけではないから表面色
調に変化がないという優れた効果を生じる。
As described above, according to the present invention, in the light alloy according to the first aspect, the inorganic antibacterial component diffuses in the anodic oxide film layer and is dispersed and supported in the form of fine particles. Extremely large and highly active, exhibiting sufficient antibacterial properties even with a relatively small amount of inorganic antibacterial components, with little decrease in antibacterial properties even after sealing treatment, and when the surface is slightly worn However, since the new inorganic antibacterial component is exposed, the antibacterial effect is maintained for a long period of time, and furthermore, an excellent effect that the surface tone is not changed since the surface is not coded by another material is produced.

【0054】また、請求項2に係る軽合金にあっては、
陽極酸化皮膜層に無機系抗菌性成分が微粒子状で吸着さ
れているから、表面積が非常に大きく活性に富むので、
比較的少量の無機系抗菌性成分量でも十分な抗菌性を発
揮し、封孔処理を施しても抗菌性の低下が少なく、しか
も表面が少々摩耗するような場合でも新たな無機系抗菌
成分が露出するので長期間にわたって抗菌効果が持続
し、更に、表面が別材料によりコーティングされている
わけではないから表面色調に変化がないという優れた効
果を生じる。
In the light alloy according to the second aspect,
Since the inorganic antibacterial component is adsorbed on the anodized film layer in the form of fine particles, the surface area is very large and rich in activity.
Even with a relatively small amount of inorganic antibacterial component, it exhibits sufficient antibacterial properties, and even if sealing treatment is applied, there is little decrease in antibacterial properties, and even if the surface is slightly worn, a new inorganic antibacterial component can be used. Because of the exposure, the antibacterial effect is maintained for a long period of time. Further, since the surface is not coated with another material, an excellent effect that the surface tone does not change is produced.

【0055】また、請求項3に係る軽合金では、陽極酸
化皮膜層を設ける母材をアルミニウム合金またはチタン
合金としたことによって、軽量で高強度であり、しかも
材料の入手がし易く、安価で実用性に富む、抗菌効果に
優れた製品を供給することができる。
In the light alloy according to the third aspect, the base material on which the anodic oxide film layer is provided is made of an aluminum alloy or a titanium alloy, so that the material is lightweight, has high strength, is easily available, and is inexpensive. It is possible to supply highly practical and excellent antibacterial products.

【0056】また、請求項4に係る軽合金の製造方法で
は、軽合金の表面に無機系抗菌性成分の微粒子分散液を
接触させた後、加熱処理することにより前記無機系抗菌
性成分の微粒子を前記軽合金の表面層内部に拡散せし
め、その後、前記表面層を陽極酸化処理することとした
ため、軽合金のような緻密質な金属にも簡便な方法によ
り無機系抗菌性成分を深部まで拡散させることができ、
しかも無機系抗菌性成分は微粒子状に分散・担持される
から表面積が非常に大きく活性に富むので、無機系抗菌
性成分の使用量を減少させ、しかも比較的少量の無機系
抗菌性成分量でも十分な抗菌性を発揮する軽合金を容易
に製造することができる。
Further, in the method for producing a light alloy according to claim 4, the fine particles of the inorganic antibacterial component are brought into contact with a surface of the light alloy by contacting with a fine particle dispersion of the inorganic antibacterial component, and then heating. Was diffused into the surface layer of the light alloy, and thereafter, the surface layer was subjected to anodizing treatment, so that the inorganic antibacterial component was diffused to a deep metal by a simple method even for a dense metal such as a light alloy. Can be
Moreover, since the inorganic antibacterial component is dispersed and supported in the form of fine particles, the surface area is very large and rich in activity, so the amount of the inorganic antibacterial component used is reduced, and even with a relatively small amount of the inorganic antibacterial component. A light alloy exhibiting sufficient antibacterial properties can be easily manufactured.

【0057】更に、請求項5に係る軽合金の製造方法で
は、加熱処理温度を 100〜600 ℃としたことによって、
無機系抗菌性成分の拡散速度が比較的に速く、軽合金の
物性変化が少ないうちに目的とする表層部へ拡散させる
ことができる。
Further, in the method for producing a light alloy according to the fifth aspect, the heat treatment temperature is set at 100 to 600 ° C.
The diffusion rate of the inorganic antibacterial component is relatively high, and the light alloy can be diffused to the target surface layer while the physical properties of the light alloy are not changed much.

【0058】また、請求項6に係る軽合金の製造方法に
あっては、軽合金の表面に陽極酸化皮膜層を形成し、該
陽極酸化皮膜層に無機系抗菌性成分の微粒子分散液を接
触させることにより、前記無機系抗菌性成分の微粒子を
前記陽極酸化皮膜に微粒子状に吸着せしめることとした
ため、簡便な方法により無機系抗菌性成分を陽極酸化皮
膜に微粒子状で吸着させることができ、しかも無機系抗
菌性成分は表面積が非常に大きく活性に富むので、無機
系抗菌性成分の使用量を減少させ、しかも比較的少量の
無機系抗菌性成分でも十分な抗菌性を発揮する軽合金を
容易に製造することができる。
In the method for producing a light alloy according to claim 6, an anodic oxide film layer is formed on the surface of the light alloy, and a fine particle dispersion of an inorganic antibacterial component is brought into contact with the anodic oxide film layer. By doing so, since the fine particles of the inorganic antibacterial component are to be adsorbed to the anodized film in the form of fine particles, the inorganic antibacterial component can be adsorbed to the anodized film in a fine particle form by a simple method, In addition, since the inorganic antibacterial component has a very large surface area and is highly active, the amount of inorganic antibacterial component used is reduced, and a light alloy that exhibits sufficient antibacterial properties even with a relatively small amount of inorganic antibacterial component is used. It can be easily manufactured.

【0059】更に、請求項7に係る軽合金の製造方法で
は、更に封孔処理を施すこととしたため、軽合金の表面
を安定化させ、より一層の耐蝕・耐候性を付与すること
ができる。
Furthermore, in the method for manufacturing a light alloy according to the seventh aspect, since the sealing treatment is further performed, the surface of the light alloy can be stabilized, and more corrosion and weather resistance can be imparted.

【0060】更に、請求項8に係る軽合金の製造方法で
は、陽極酸化皮膜層を設ける母材をアルミニウム合金ま
たはチタン合金としたので、軽量で高強度であり、しか
も材料の入手がし易く、安価で実用性に富む、抗菌性に
優れた製品を製造することができる。
Further, in the method for manufacturing a light alloy according to the eighth aspect, the base material on which the anodic oxide film layer is formed is an aluminum alloy or a titanium alloy, so that the material is lightweight, has high strength, and is easily available. Inexpensive and practical products with excellent antibacterial properties can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の抗菌性に優れた軽合金における
無機系抗菌性成分の分布状態を模式的に示した断面図で
ある。
FIG. 1 is a cross-sectional view schematically showing a distribution state of an inorganic antibacterial component in a first light alloy having excellent antibacterial properties of the present invention.

【図2】本発明の第2の抗菌性に優れた軽合金における
無機系抗菌性成分の分布状態を模式的に示した断面図で
ある。
FIG. 2 is a cross-sectional view schematically illustrating a distribution state of an inorganic antibacterial component in a second light alloy having excellent antibacterial properties of the present invention.

【図3】従来の電析法により得られたアルミニウム合金
中における無機系抗菌性成分の電析状態を模式的に示し
た断面図であり、(イ)は電析量が少ない場合、(ロ)
は電析後に封孔処理した場合、(ハ)は電析量が多い場
合である。
FIG. 3 is a cross-sectional view schematically showing an electrodeposition state of an inorganic antibacterial component in an aluminum alloy obtained by a conventional electrodeposition method. FIG. )
Indicates the case where the sealing treatment is performed after the electrodeposition, and (c) indicates the case where the amount of the electrodeposition is large.

【符号の説明】[Explanation of symbols]

1 軽合金 2 陽極酸化皮膜 3 無機系抗菌性成分 1 Light alloy 2 Anodized film 3 Inorganic antibacterial component

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇佐見 勉 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tsutomu Usami 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】陽極酸化皮膜層中に無機系抗菌性成分が拡
散していることを特徴とする抗菌性に優れた軽合金。
1. A light alloy excellent in antibacterial properties, characterized in that an inorganic antibacterial component is diffused in an anodic oxide film layer.
【請求項2】陽極酸化皮膜層に無機系抗菌性成分が微粒
子状で吸着していることを特徴とする抗菌性に優れた軽
合金。
2. A light alloy having excellent antibacterial properties, wherein an inorganic antibacterial component is adsorbed on the anodic oxide film layer in the form of fine particles.
【請求項3】前記陽極酸化皮膜層を設ける母材としてア
ルミニウム合金またはチタニウム合金を用いたことを特
徴とする請求項1または2記載の抗菌性に優れた軽合
金。
3. The light alloy according to claim 1, wherein an aluminum alloy or a titanium alloy is used as a base material on which the anodic oxide film layer is provided.
【請求項4】軽合金の表面に無機系抗菌性成分の微粒子
分散液を接触させた後、加熱処理することにより、前記
無機系抗菌性成分の微粒子を前記軽合金の表面層内部に
拡散せしめ、その後前記表面層を陽極酸化処理すること
を特徴とする抗菌性に優れた軽合金の製造方法。
4. A method in which a fine particle dispersion of an inorganic antibacterial component is brought into contact with the surface of a light alloy, and then heat treatment is performed to diffuse the fine particles of the inorganic antibacterial component into the surface layer of the light alloy. And then anodizing the surface layer to produce a light alloy having excellent antibacterial properties.
【請求項5】前記加熱処理を温度 100〜600 ℃により加
熱することを特徴とする請求項4に記載の抗菌性に優れ
た軽合金の製造方法。
5. The method according to claim 4, wherein the heat treatment is performed at a temperature of 100 to 600 ° C.
【請求項6】軽合金の表面に陽極酸化皮膜層を形成し、
該陽極酸化皮膜層に無機系抗菌性成分の微粒子分散液を
接触させることにより、前記無機系抗菌性成分の微粒子
を前記陽極酸化皮膜に微粒子状に吸着せしめることを特
徴とする抗菌性に優れた軽合金の製造方法。
6. An anodic oxide film layer is formed on a surface of a light alloy,
By contacting a fine particle dispersion of the inorganic antibacterial component with the anodic oxide film layer, the fine particles of the inorganic antibacterial component are adsorbed to the anodic oxide film in the form of fine particles. Light alloy manufacturing method.
【請求項7】引き続き封孔処理を施すことを特徴とする
請求項4乃至6に記載の抗菌性に優れた軽合金の製造方
法。
7. The method for producing a light alloy having excellent antibacterial properties according to claim 4, wherein a sealing treatment is continuously performed.
【請求項8】前記陽極酸化皮膜層を設ける母材としてア
ルミニウム合金またはチタニウム合金を用いることを特
徴とする請求項4ないし7のいずれかに記載の抗菌性に
優れた軽合金の製造方法。
8. The method according to claim 4, wherein an aluminum alloy or a titanium alloy is used as a base material on which the anodic oxide film layer is provided.
JP32566396A 1996-12-05 1996-12-05 Light alloy excellent in antibacterial property and method for producing the same Expired - Fee Related JP3247308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32566396A JP3247308B2 (en) 1996-12-05 1996-12-05 Light alloy excellent in antibacterial property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32566396A JP3247308B2 (en) 1996-12-05 1996-12-05 Light alloy excellent in antibacterial property and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10158889A true JPH10158889A (en) 1998-06-16
JP3247308B2 JP3247308B2 (en) 2002-01-15

Family

ID=18179336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32566396A Expired - Fee Related JP3247308B2 (en) 1996-12-05 1996-12-05 Light alloy excellent in antibacterial property and method for producing the same

Country Status (1)

Country Link
JP (1) JP3247308B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695522B2 (en) 2002-04-16 2010-04-13 Accentus Plc Metal implants
CN103526259A (en) * 2013-10-08 2014-01-22 广州中国科学院先进技术研究所 Titanium alloy operation apparatus surface treatment technology
US8858775B2 (en) 2007-10-03 2014-10-14 Accentus Medical Limited Method of manufacturing metal with biocidal properties
US9011665B2 (en) 2004-03-13 2015-04-21 Accentus Medical Limited Metal implants
CN105714352A (en) * 2014-12-05 2016-06-29 可成科技股份有限公司 Antibacterial composite surface and processing method for forming antibacterial composite surface
WO2018134970A1 (en) * 2017-01-20 2018-07-26 株式会社G.H.A Method for coloring treatment of aluminium or aluminum alloy
CN110195249A (en) * 2019-06-06 2019-09-03 苏州晶俊新材料科技有限公司 A kind of anodic oxidation preparation method of antibacterial, colored aluminum or aluminum alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703950A (en) * 2012-06-27 2012-10-03 湖南迈迪科新材有限公司 Electrochemical preparation method for medical external use aluminum alloy multifunctional coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695522B2 (en) 2002-04-16 2010-04-13 Accentus Plc Metal implants
US8945363B2 (en) 2002-04-16 2015-02-03 Accentus Medical Limited Method of making metal implants
US9393349B2 (en) 2002-04-16 2016-07-19 Accentus Medical Limited Metal implants
US9011665B2 (en) 2004-03-13 2015-04-21 Accentus Medical Limited Metal implants
US8858775B2 (en) 2007-10-03 2014-10-14 Accentus Medical Limited Method of manufacturing metal with biocidal properties
CN103526259A (en) * 2013-10-08 2014-01-22 广州中国科学院先进技术研究所 Titanium alloy operation apparatus surface treatment technology
CN105714352A (en) * 2014-12-05 2016-06-29 可成科技股份有限公司 Antibacterial composite surface and processing method for forming antibacterial composite surface
WO2018134970A1 (en) * 2017-01-20 2018-07-26 株式会社G.H.A Method for coloring treatment of aluminium or aluminum alloy
JPWO2018134970A1 (en) * 2017-01-20 2019-11-07 株式会社G.H.A Method of coloring aluminum or aluminum alloy
CN110195249A (en) * 2019-06-06 2019-09-03 苏州晶俊新材料科技有限公司 A kind of anodic oxidation preparation method of antibacterial, colored aluminum or aluminum alloy

Also Published As

Publication number Publication date
JP3247308B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
CN104005072B (en) Method for sealing aluminum-alloy surface anode oxide film hole by adopting titanium dioxide gel
US8900716B2 (en) Antimicrobial anodized aluminum and related method
US2008733A (en) Treatment of coatings
JP3247308B2 (en) Light alloy excellent in antibacterial property and method for producing the same
CN113430616A (en) Preparation method of black ceramic film on titanium alloy surface
KR100950442B1 (en) Method for antibious surface treatment of aluminum matter using high frequency pluse
JP2932437B1 (en) An oxide film structure of a metal material substrate impregnated with iodine or an iodine compound, a method for forming the same, and an applied article having the film structure.
CN113136612A (en) Anodic oxidation antibacterial metal piece and preparation method thereof
KR102196294B1 (en) Antibacterial aluminum anodizing coloring treatment method
CN111910230B (en) Antibacterial black chromium surface coating and preparation method thereof
JPH11181596A (en) Antibacterial anodic oxidation treated aluminum
US2987417A (en) Pigmenting aluminum oxide coating
US3418219A (en) Coloring anodized aluminum
JPH11229186A (en) Antibacterial corrosion-resistant light alloy and its production
US2290364A (en) Surface treatment of aluminum or aluminum alloys
CN113774452B (en) Anodic oxidation process for preparing antibacterial colored aluminum alloy
US20210054469A1 (en) Surface hardening method using post heat treatment of aluminum alloy oxide layer
CN113463158B (en) Surface antibacterial anodic oxidation process of aluminum alloy
JPH11209895A (en) Metallic product excellent in antibacterial property and its production
JPH11302570A (en) Production of antimicrobial coating film
JPH11256394A (en) Production of colored product of anodized aluminum or aluminum alloy, and colored product produced by that
JP5613088B2 (en) Functional aluminum material and surface treatment method thereof
JP2000084415A (en) Composite material having photocatalytic function and its production
JP2967116B2 (en) Antibacterial plating layer
CN113089051A (en) Titanium alloy with ceramic membrane with active adsorption and antibacterial performance and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees