JPH1171138A - Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film - Google Patents

Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film

Info

Publication number
JPH1171138A
JPH1171138A JP9242100A JP24210097A JPH1171138A JP H1171138 A JPH1171138 A JP H1171138A JP 9242100 A JP9242100 A JP 9242100A JP 24210097 A JP24210097 A JP 24210097A JP H1171138 A JPH1171138 A JP H1171138A
Authority
JP
Japan
Prior art keywords
photocatalyst
thin film
particles
fine particle
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9242100A
Other languages
Japanese (ja)
Inventor
Akira Fujishima
昭 藤嶋
Sachiko Matsushita
祥子 松下
Tetsuya Miwa
哲也 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP9242100A priority Critical patent/JPH1171138A/en
Publication of JPH1171138A publication Critical patent/JPH1171138A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming photocatalyst thin film, capable of controlling the surface shape of thin film and size of a photocatalyst exposed and fixed. SOLUTION: This method for forming photocatalyst thin film comprises applying fine particles having 1 nm to 500 μm particle diameter to die material surface to form fine particle layer, applying photocatalyst particles and/or a photocatalyst precursor onto space of the fine particle layer and fine particles, as necessary, converting the photocatalyst precursor to photocatalyst particles, arranging a substrate onto the surface to which the photocatalyst particles and/or photocatalyst precursor is applied, releasing the die material from the fine particle layer, dissolving a part of mold release surface of fine particle layer and exposing the photocatalyst which exists in space of the fine particle layer to the outside air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な光触媒薄膜
の形成方法及び光触媒薄膜形成用型に関する。
The present invention relates to a novel method for forming a photocatalytic thin film and a mold for forming a photocatalytic thin film.

【0002】[0002]

【従来の技術】酸化チタン等の半導体光触媒はその半導
体性質により、光の照射すると伝導電子と正孔を生成し
酸化還元機能を発揮する。それにより水分解、水浄化、
抗微生物、脱臭、有機物分解による防汚、NOxやSO
xや二酸化炭素等の有害物質の分解除去、フェノ−ルや
メタン等の有機物合成、金属メッキ等に応用可能である
ことが提案されている。光触媒の利用形態として最も典
型的なのは薄膜として物品や部材の表面に固定化させる
ものである。この方法としてスプレ−コ−ト法、スピン
コ−ト法、ディップコ−ト法、金型転写法(特開平8−
157743号)等種々の方法が提案されている。
2. Description of the Related Art Semiconductor photocatalysts such as titanium oxide generate conduction electrons and holes when irradiated with light due to their semiconducting properties and exhibit a redox function. Water splitting, water purification,
Antimicrobial, deodorant, antifouling by organic matter decomposition, NOx and SO
It is proposed to be applicable to decomposition and removal of harmful substances such as x and carbon dioxide, synthesis of organic substances such as phenol and methane, and metal plating. The most typical use of the photocatalyst is to immobilize a thin film on the surface of an article or member. As this method, a spray coat method, a spin coat method, a dip coat method, a mold transfer method (Japanese Patent Laid-Open No.
157743) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
提案では酸化還元機能を充分に発揮させる方法に関する
提案はあるが、酸化還元反応を途中で止めたり、特定の
酸化還元反応のみを選択的に行わせたり、酸化還元反応
を従来ない程高度に進行させる等の反応を制御するため
の提案はない。このような反応制御の1つの手法とし
て、表面微構造を制御する方法が考えられるが、従来の
薄膜形成法では耐摩耗性や耐蝕性等薄膜としてのテクス
チャ−を有する光触媒薄膜の形成可能性については言及
されていても、上記表面微構造制御にはほとんど触れら
れていない。
However, although there are proposals for a method for sufficiently exhibiting the oxidation-reduction function in the conventional proposals, the oxidation-reduction reaction is stopped halfway, or only a specific oxidation-reduction reaction is selectively performed. There is no proposal for controlling the reaction such as causing the oxidation-reduction reaction to proceed to a higher degree than ever before. As one method of such reaction control, a method of controlling the surface microstructure can be considered. However, in the conventional thin film forming method, the possibility of forming a photocatalytic thin film having a texture as a thin film such as abrasion resistance and corrosion resistance is considered. Almost no mention is made of the above-mentioned surface microstructure control.

【0004】[0004]

【課題を解決するための手段】そこで、本発明では表面
微構造制御方法の1つの提案として、粒径1nm〜1μ
mの微粒子を型材表面に適用して微粒子層を形成する工
程と、前記微粒子層の間隙及び微粒子上に光触媒粒子及
び/又は光触媒前駆体を適用する工程と、必要に応じて
前記光触媒前駆体を光触媒粒子に変換する工程と、前記
光触媒粒子及び/又は光触媒前駆体を適用した表面上に
基材を配置する工程と、前記型材を前記微粒子層から離
型させる工程と、前記微粒子層の離型面の一部を除去し
て前記微粒子層の間隙に存在する光触媒を外気に露出さ
せる工程とを含むことを特徴とする光触媒薄膜の形成方
法、及び型材表面に粒径1nm〜500μmの微粒子層
が形成され、前記微粒子層の間隙には光触媒粒子及び/
又は光触媒前駆体が存在しており、さらに前記微粒子層
の上には光触媒粒子及び/又は光触媒前駆体含有層が形
成されていることを特徴とする光触媒薄膜形成用型を提
供する。上記方法で光触媒薄膜を形成することにより、
光触媒薄膜表面は微粒子の粒子間に光触媒が固定された
構造の薄膜となるが、同時に出発原料の微粒子径を選択
することにより、光触媒が固定される微粒子の粒子間隙
の大きさ及びその分布を制御することが可能となる。ま
た微粒子粒径を1nm〜500μm、好ましくは1nm
〜400nmにすることにより微粒子粒径とほぼ同一の
サイズの微粒子の粒子間隙(凹面部)が生成し、そこに
光触媒が固定される。すなわち、基材表面に薄膜が形成
されており、前記薄膜は光触媒及び粒径1nm〜500
μm(好ましい態様では1nm〜400nm)の微粒子
からなり、かつ凹面形状の1nm〜500μm(好まし
い態様では1nm〜400nm)の微粒子間隙部を有
し、前記凹面部に光触媒が固定されていることを特徴と
する光触媒薄膜が形成される。するとこのような微小な
凹部曲面は大きな自由エネルギ−を有するため、その自
由エネルギ−を最小化させるために種々の物質が集中し
やすくなり特異な化学反応場として作用するようになる
ことが期待できる。
Therefore, in the present invention, as one proposal of a method for controlling a surface microstructure, a particle size of 1 nm to 1 μm is proposed.
forming fine particle layers by applying fine particles of m to the surface of the mold material; applying photocatalyst particles and / or a photocatalyst precursor to the gaps between the fine particle layers and on the fine particles; Converting into photocatalyst particles, arranging a substrate on the surface to which the photocatalyst particles and / or photocatalyst precursor is applied, releasing the mold from the fine particle layer, and releasing the fine particle layer Removing a part of the surface to expose the photocatalyst present in the gap between the fine particle layers to the outside air, and a fine particle layer having a particle diameter of 1 nm to 500 μm on the surface of the mold material. And the photocatalyst particles and / or
Alternatively, there is provided a mold for forming a photocatalyst thin film, wherein a photocatalyst precursor is present, and a photocatalyst particle and / or a photocatalyst precursor-containing layer is formed on the fine particle layer. By forming a photocatalytic thin film by the above method,
The surface of the photocatalytic thin film is a thin film with a structure in which the photocatalyst is fixed between the fine particles. At the same time, the size and distribution of the particle gaps of the fine particles to which the photocatalyst is fixed are controlled by selecting the fine particle diameter of the starting material It is possible to do. The particle size of the fine particles is 1 nm to 500 μm, preferably 1 nm.
By setting the particle size to 400 nm, a particle gap (concave portion) of fine particles having substantially the same size as the fine particle diameter is generated, and the photocatalyst is fixed there. That is, a thin film is formed on the substrate surface, and the thin film has a photocatalyst and a particle size of 1 nm to 500 nm.
μm (1 nm to 400 nm in a preferred embodiment) and a fine particle gap of 1 nm to 500 μm (1 nm to 400 nm in a preferred embodiment) having a concave surface, and a photocatalyst is fixed to the concave surface. Is formed. Then, since such a minute concave curved surface has a large free energy, it can be expected that various substances are easily concentrated in order to minimize the free energy, thereby acting as a unique chemical reaction field. .

【0005】[0005]

【発明の実施の形態】粒径1nm〜500μmの微粒子
としては、その材質は特に限定されないが、シリカ、ア
ルミナ、ジルコニア、チタニア、セリア、酸化錫、カル
シア、マグネシア、クロミア、フェライト、酸化亜鉛等
の無機酸化物粒子、ポリスチレン、アクリレ−ト、フッ
素系樹脂、シリコ−ン等の各種ポリマ−、脂質および界
面活性剤によるミセルおよび逆ミセル、金属、花粉等の
天然化合物、リン酸塩、ケイ酸塩等が利用可能である。
特に塗布液において溶媒中で単分散しやすいシリカやポ
リマ−ラテックスが好適に利用できる。またその形状も
特に限定されないが、球状、板状、針状、角状、星状、
無定型等が利用可能である。特に単分散しやすく、かつ
塗膜形成時に均質な凹面部を形成しやすいことから球状
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Fine particles having a particle size of 1 nm to 500 μm are not particularly limited in material, but may be silica, alumina, zirconia, titania, ceria, tin oxide, calcia, magnesia, chromia, ferrite, zinc oxide, etc. Inorganic oxide particles, polystyrene, acrylate, fluoropolymer, silicone and other polymers, micelles and reverse micelles with lipids and surfactants, natural compounds such as metals and pollen, phosphates and silicates Etc. are available.
In particular, silica or polymer latex which can be easily monodispersed in a solvent in a coating solution can be suitably used. The shape is not particularly limited, but is spherical, plate-like, needle-like, angular, star-like,
An amorphous type or the like can be used. In particular, a spherical shape is preferable because it is easily monodispersed and a uniform concave portion is easily formed at the time of forming a coating film.

【0006】型材の材質も特に限定されず、アルミナ、
ジルコニア、ムライト、炭化ケイ素等のセラミック、ガ
ラス、金属、プラスチック、電極材、磁性材、吸水材等
利用できる。
[0006] The material of the mold is not particularly limited either.
Ceramics such as zirconia, mullite, and silicon carbide, glass, metals, plastics, electrode materials, magnetic materials, and water absorbing materials can be used.

【0007】微粒子の型材表面への適用方法は、スプレ
−コ−ティング、スピンコ−ティング、フロ−コ−ティ
ング、ディップコ−ティング、ロ−ルコ−ティング、グ
ラビアコ−ティング、刷毛塗り、スポンジ塗り等の一般
的な塗装方法を利用できる。型材を大気酸化、陽極酸化
等の方法で酸化させて表面に酸化物微粒子を生成させて
もよい。型材に電極材を用い塗布液に浸して電解反応又
は電気泳動により微粒子を適用させてもよい。微粒子が
フェライト等の磁性体の場合には、型材に磁性材を用い
磁力で微粒子を適用させてもよい。また、型材に石膏等
の吸水材を用いて、スリップキャスト法により微粒子を
適用させてもよい。
[0007] The method of applying the fine particles to the surface of the molding material includes spray coating, spin coating, flow coating, dip coating, roll coating, gravure coating, brush coating, sponge coating, and the like. General coating methods can be used. The mold material may be oxidized by a method such as atmospheric oxidation or anodic oxidation to form oxide fine particles on the surface. Fine particles may be applied by electrolytic reaction or electrophoresis by immersing the electrode material in a coating solution using a mold material. When the fine particles are a magnetic material such as ferrite, the fine particles may be applied by magnetic force using a magnetic material as a mold material. Further, fine particles may be applied by a slip casting method using a water-absorbing material such as gypsum as a molding material.

【0008】光触媒としては、アナタ−ゼ型酸化チタ
ン、ルチル型酸化チタン、酸化亜鉛、チタン酸ストロン
チウム、酸化錫、三酸化タングステン、三酸化二ビスマ
ス、酸化第二鉄、ジルコニア等が利用できる。
As the photocatalyst, anatase type titanium oxide, rutile type titanium oxide, zinc oxide, strontium titanate, tin oxide, tungsten trioxide, bismuth trioxide, ferric oxide, zirconia and the like can be used.

【0009】光触媒を微粒子層の間隙及び微粒子上に固
定するには、光触媒粒子及び/又は光触媒前駆体を適用
する。
To fix the photocatalyst in the gaps between the fine particle layers and on the fine particles, photocatalyst particles and / or a photocatalyst precursor are applied.

【0010】光触媒粒子を適用するには、光触媒粒子が
分散したゾルを用いるのがよい。すなわち、光触媒粒子
が分散したゾルをスプレ−コ−ティング、スピンコ−テ
ィング、フロ−コ−ティング、ディップコ−ティング、
ロ−ルコ−ティング、グラビアコ−ティング、刷毛塗
り、スポンジ塗り等の一般的な塗装方法にて適用する。
光触媒が酸化亜鉛の場合には陽極酸化法にて光触媒粒子
を生成すると同時に適用することもできる。
To apply the photocatalyst particles, it is preferable to use a sol in which the photocatalyst particles are dispersed. That is, the sol in which the photocatalyst particles are dispersed is spray-coated, spin-coated, flow-coated, dip-coated,
It is applied by a general coating method such as roll coating, gravure coating, brush coating, and sponge coating.
When the photocatalyst is zinc oxide, it can be applied at the same time as generating the photocatalyst particles by the anodic oxidation method.

【0011】光触媒前駆体としては、例えば光触媒が結
晶性酸化チタンの場合には、無定型酸化チタン、チタン
キレ−ト、アルキルチタネ−ト、チタンアセテ−ト、チ
タンアセチルアセトナ−ト等の有機チタン、四塩化チタ
ン、硫酸チタン等の無機チタンが利用できる。光触媒前
駆体を適用する場合にもその方法としては上記ゾルの適
用と同様の手法が利用できる。光触媒前駆体が無定型酸
化チタンの場合には、酸化チタン、金属チタン等のタ−
ゲットを用い、電子ビ−ム蒸着、スパッタリング、PV
D、CVD、イオンビ−ム蒸着等により適用することも
できる。
As the photocatalyst precursor, for example, when the photocatalyst is crystalline titanium oxide, organic titanium such as amorphous titanium oxide, titanium chelate, alkyl titanate, titanium acetate and titanium acetylacetonate; Inorganic titanium such as titanium chloride and titanium sulfate can be used. When a photocatalyst precursor is applied, the same method as that of the above-described sol can be used. When the photocatalyst precursor is amorphous titanium oxide, titanium oxide, titanium metal, etc.
Get, electron beam evaporation, sputtering, PV
It can also be applied by D, CVD, ion beam evaporation or the like.

【0012】光触媒前駆体を光触媒粒子に変換する工程
は、例えば、光触媒が結晶性酸化チタンの場合には、最
終的に光触媒前駆体を結晶性酸化チタンに変換する工程
である。光触媒前駆体が無定型酸化チタンの場合には、
加熱等の方法により無定型酸化チタンをアナタ−ゼ型酸
化チタンやルチル型酸化チタンに結晶化させる工程であ
る。光触媒前駆体がチタンキレ−ト、アルキルチタネ−
ト、チタンアセテ−ト、チタンアセチルアセトナ−ト等
の有機チタン、四塩化チタン、硫酸チタン等の無機チタ
ンの場合には、加水分解、縮重合等により無定型酸化チ
タンを生成させ、その後、加熱等の方法により無定型酸
化チタンをアナタ−ゼ型酸化チタンやルチル型酸化チタ
ンに結晶化させる。
The step of converting the photocatalyst precursor into photocatalyst particles is, for example, a step of finally converting the photocatalyst precursor into crystalline titanium oxide when the photocatalyst is crystalline titanium oxide. When the photocatalyst precursor is amorphous titanium oxide,
This is a step of crystallizing the amorphous titanium oxide into an anatase type titanium oxide or a rutile type titanium oxide by a method such as heating. The photocatalyst precursor is titanium chelate or alkyl titanate.
In the case of organic titanium such as titanium, titanium acetate and titanium acetylacetonate, and inorganic titanium such as titanium tetrachloride and titanium sulfate, amorphous titanium oxide is generated by hydrolysis, polycondensation, etc., and then heated. The amorphous titanium oxide is crystallized into an anatase type titanium oxide or a rutile type titanium oxide by the method described above.

【0013】本発明を適用しうる基材は特に限定されな
いが、ガラス、セラミック、プラスチック、木材、金属
及びそれらの複合物、それらの積層物、それらの塗装物
等が利用できる。上記基材に適用することにより、光触
媒としての諸機能、すなわち水分解、抗微生物、脱臭、
有機物分解による防汚、NOxやSOxや二酸化炭素等
の有害物質の分解除去、水浄化、表面親水化、防曇維
持、水洗浄性向上、降雨によるセルフクリ−ニング、フ
ェノ−ルやメタン等の有機物合成、金属メッキ等の機能
が発揮可能となる。
Although the substrate to which the present invention can be applied is not particularly limited, glass, ceramic, plastic, wood, metal, a composite thereof, a laminate thereof, a coating thereof, and the like can be used. By applying to the above substrate, various functions as a photocatalyst, that is, water decomposition, antimicrobial, deodorization,
Antifouling by decomposition of organic substances, decomposition and removal of harmful substances such as NOx, SOx and carbon dioxide, water purification, surface hydrophilicity, maintenance of antifogging, improvement of water washability, self-cleaning by rainfall, organic substances such as phenol and methane Functions such as synthesis and metal plating can be exhibited.

【0014】型材を微粒子層から離型させる際に容易に
離型させるために、型材表面に離型剤を塗布しておいて
もよい。離型剤としては光耐蝕性の観点からシリコ−ン
系のものが好ましい。
In order to easily release the mold material from the fine particle layer, a mold release agent may be applied to the surface of the mold material. As the release agent, a silicone-based release agent is preferable from the viewpoint of light corrosion resistance.

【0015】微粒子層の離型面の一部を除去する工程と
しては、微粒子層の離型面の一部を化学的に除去する工
程、微粒子層の離型面の一部を物理的に除去する工程の
双方を含む。微粒子層の離型面の一部を化学的に除去す
る工程としては、溶解、気化、分解等の方法が考えられ
る。微粒子層の離型面の一部を物理的に除去する工程と
しては、スパッタリング、研削、研磨等の方法が考えら
れる。またメカノケミカル的工程で除去することも考え
られる。微粒子が粒径1nm〜1μmであることから、
このうち溶解、気化、分解等の化学的除去方法が好まし
い。
The steps of removing a part of the release surface of the fine particle layer include chemically removing a part of the release surface of the fine particle layer and physically removing a part of the release surface of the fine particle layer. Both steps. As a step of chemically removing a part of the release surface of the fine particle layer, methods such as dissolution, vaporization, and decomposition are considered. As a step of physically removing a part of the release surface of the fine particle layer, a method such as sputtering, grinding, or polishing can be considered. It is also conceivable to remove them by a mechanochemical process. Since the fine particles have a particle size of 1 nm to 1 μm,
Of these, chemical removal methods such as dissolution, vaporization, and decomposition are preferred.

【0016】本発明において作製される光触媒薄膜表面
の凹凸は0.4μm以下程度にするのが好ましい。そう
すれば、光触媒薄膜は干渉色や白濁を生じにくくなり、
透明性を確保しやすくなる。
The surface of the photocatalytic thin film produced in the present invention preferably has an irregularity of about 0.4 μm or less. Then, the photocatalytic thin film is less likely to cause interference color and cloudiness,
It becomes easier to ensure transparency.

【0017】また光触媒薄膜に銀、銅、白金、パラジウ
ム、ニッケル、鉄、コバルト、亜鉛及びそれらの化合物
の群から選ばれる1種以上の物質を、光還元等の方法で
固定させてもよい。そうすれば、光触媒の酸化還元作用
をより増強させることができる。また、上記化合物のう
ち銀、銅、亜鉛及びそれらの化合物の群から選ばれる1
種以上の物質を固定するようにすると、暗所における抗
菌性もある程度得ることが可能となるので好ましい。
Further, at least one substance selected from the group consisting of silver, copper, platinum, palladium, nickel, iron, cobalt, zinc and compounds thereof may be fixed to the photocatalytic thin film by a method such as photoreduction. Then, the redox effect of the photocatalyst can be further enhanced. Further, among the above compounds, one selected from the group consisting of silver, copper, zinc and their compounds
It is preferable to fix more than one kind of substance because it is possible to obtain antibacterial properties in a dark place to some extent.

【0018】[0018]

【実施例】粒径が0.1〜0.5μmの単分散のシリカ
粒子(日本触媒、Seahoster、KE−P)をガラス製の
型基材に固定してシリカ粒子膜を形成した。次いでエタ
ノ−ル中に分散した濃度0.05Mのチタニルアセチル
アセトネ−ト(東京化成)をこれらシリカ粒子膜上にス
プレ−パイロリシス法により吹き付け、400〜500
℃で焼成し、シリカ粒子膜中の間隙及びシリカ粒子膜上
にアナタ−セ型酸化チタンを固着させて#1A〜#1C
試料を得た。ここで#1A試料では型基材に固定するシ
リカ粒子径は0.5μm、焼成温度は450℃、#1B
では型基材に固定するシリカ粒子径は0.5μm、焼成
温度は430℃、#1Cでは型基材に固定するシリカ粒
子径は0.1μm、焼成温度は450℃の条件で作製し
た。いずれもシリカ粒子膜上のアナタ−セ型酸化チタン
の厚さは1〜2μmとした。次いでガラス基板上に#1
試料を上下逆にセットし、ガラス製の型基材を離型させ
た後、離型面を55%フッ化水素液中に浸し、乾燥させ
て#2A〜#2C試料を得た。#2A〜#2Cを作製す
るまでの工程図を図1に示す。
EXAMPLE A monodispersed silica particle (Nippon Shokubai, Seahoster, KE-P) having a particle size of 0.1 to 0.5 μm was fixed on a glass mold base to form a silica particle film. Next, 0.05M titanyl acetylacetonate (Tokyo Kasei) dispersed in ethanol was sprayed onto these silica particle membranes by spray pyrolysis to form a film having a thickness of 400 to 500.
C., and anatase-type titanium oxide is fixed on the gaps in the silica particle film and on the silica particle film, and # 1A to # 1C
A sample was obtained. Here, for the # 1A sample, the silica particle diameter fixed to the mold base is 0.5 μm, the firing temperature is 450 ° C., and the # 1B
In Example 1, the silica particle diameter fixed to the mold substrate was 0.5 μm and the firing temperature was 430 ° C., and in # 1C, the silica particle diameter fixed to the mold substrate was 0.1 μm and the firing temperature was 450 ° C. In each case, the thickness of the anatase-type titanium oxide on the silica particle film was 1-2 μm. Then # 1 on the glass substrate
After setting the sample upside down and releasing the mold base made of glass, the release surface was immersed in a 55% hydrogen fluoride solution and dried to obtain # 2A to # 2C samples. FIG. 1 shows a process chart until manufacturing of # 2A to # 2C.

【0019】#2A〜#2C試料表面を走査型電子顕微
鏡(JSM−5400、JEOL)で2次電子像を観察
した結果を図2(A)〜図2(C)に示す。図2(A)
〜図2(C)より、#2試料表面は、サブミクロンオ−
ダ−の孔径の揃った開気孔を有する表面構造を保持する
ことがわかる。また、図2(A)と図2(C)との比較
から開気孔の大きさは型基材に固定するシリカ粒子径に
より制御可能であることがわかる。さらに、図2(A)
と図2(B)との比較から開気孔の大きさは焼成温度に
よっても制御可能であることがわかる。
FIGS. 2A to 2C show the results of observation of secondary electron images of the sample surfaces # 2A to # 2C with a scanning electron microscope (JSM-5400, JEOL). FIG. 2 (A)
~ From FIG. 2 (C), the surface of the # 2 sample is submicron
It can be seen that the surface structure of the Dar having the open pores with uniform pore diameters is maintained. Further, a comparison between FIG. 2A and FIG. 2C shows that the size of the open pores can be controlled by the silica particle diameter fixed to the mold base material. Further, FIG.
2B shows that the size of the open pores can be controlled also by the firing temperature.

【0020】次に#2A試料表面を50mMの硝酸銀水
溶液に浸し、波長365nmの紫外線を30分間照射し
た。この酸化チタンを乾燥させ、走査型電子顕微鏡の2
次電子像及び反射電子像を観察した。結果を図3
(a)、図3(b)に示す。図3(a)より表面に銀が
光還元析出しても薄膜表面の微構造に変化が生じないこ
とがわかる。また図3(b)より表面に光還元析出した
銀(白い部分)は主として表面の開気孔部に析出してい
ることがわかる。このことから、特に表面の微細な開気
孔部に光触媒性酸化チタンが存在していることがわか
る。また、そこが主要な光還元反応の化学反応場として
機能していることが推定される。
Next, the surface of the # 2A sample was immersed in a 50 mM silver nitrate aqueous solution, and irradiated with ultraviolet rays having a wavelength of 365 nm for 30 minutes. The titanium oxide is dried, and then dried with a scanning electron microscope.
The secondary electron image and the reflected electron image were observed. Fig. 3 shows the results.
(A) and FIG. 3 (b). From FIG. 3A, it can be seen that even if silver is photoreduced and precipitated on the surface, the microstructure of the thin film surface does not change. Further, it can be seen from FIG. 3 (b) that the silver (white portion) deposited by photoreduction on the surface is mainly deposited on the open pores on the surface. This indicates that the photocatalytic titanium oxide is present particularly in the fine open pores on the surface. In addition, it is presumed that it functions as a chemical reaction field for the main photoreduction reaction.

【0021】尚、上記方法で得られた微細な開気孔部に
酸化チタンが存在している薄膜は、光触媒としての諸機
能、すなわち水分解、抗微生物、脱臭、有機物分解によ
る防汚、NOxやSOxや二酸化炭素等の有害物質の分
解除去、水浄化、表面親水化、防曇維持、水洗浄性向
上、降雨によるセルフクリ−ニング、フェノ−ルやメタ
ン等の有機物合成、金属メッキ等の機能が発揮可能であ
る他、分子選択性材料やエネルギ−変換材料にも利用可
能であると考えられる。
The thin film having titanium oxide in the fine open pores obtained by the above method has various functions as a photocatalyst, namely, water decomposition, antimicrobial, deodorization, antifouling by decomposition of organic substances, NOx and Functions such as decomposition and removal of harmful substances such as SOx and carbon dioxide, water purification, surface hydrophilicity, maintenance of anti-fog, improvement of water washability, self-cleaning by rainfall, synthesis of organic substances such as phenol and methane, metal plating, etc. It is thought that it can be used as a molecular-selective material and an energy-converting material in addition to being able to exert its effects.

【0022】[0022]

【発明の効果】本発明によれば、微粒子粒径とほぼ同一
のサイズの微粒子の粒子間隙が生成するので、粒子間隙
のサイズが制御可能となる。するとこの凹面からなる粒
子間隙部に露出固定される光触媒のサイズも制御可能と
なる。さらに、上記間隙部は微小な凹部曲面であり大き
な自由エネルギ−を有するため、その自由エネルギ−を
最小化させるために種々の物質が集中しやすくなり特異
な化学反応場として作用するようになることが期待でき
る。
According to the present invention, since the particle gap of the fine particles having substantially the same size as the particle diameter is generated, the size of the particle gap can be controlled. Then, the size of the photocatalyst that is exposed and fixed in the concave portion between the particles can also be controlled. Further, since the gap is a curved surface with a minute concave portion and a large free energy, various substances are easily concentrated in order to minimize the free energy, so that the gap acts as a unique chemical reaction field. Can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係る光触媒薄膜の形成方法
を示す工程図。
FIG. 1 is a process chart showing a method for forming a photocatalytic thin film according to an embodiment of the present invention.

【図2】 本発明の実施例の方法に基づき形成した光触
媒薄膜の表面観察結果を示す図。 (A)型基材に固定するシリカ粒子径は0.5μm、焼
成温度は450℃の条件で作製した物。 (B)型基材に固定するシリカ粒子径は0.5μm、焼
成温度は430℃の条件で作製した物。 (C)型基材に固定するシリカ粒子径は0.1μm、焼
成温度は450℃の条件で作製した物。
FIG. 2 is a diagram showing the results of surface observation of a photocatalytic thin film formed based on the method of the example of the present invention. (A) Silica particles fixed to a mold substrate having a diameter of 0.5 μm and a sintering temperature of 450 ° C. (B) A product prepared under the conditions that the silica particle diameter fixed to the mold substrate is 0.5 μm and the firing temperature is 430 ° C. (C) A silica particle fixed to the mold substrate having a diameter of 0.1 μm and a firing temperature of 450 ° C.

【図3】 本発明の実施例の方法に基づき形成した光触
媒薄膜へ銀を光還元析出させた物の表面観察結果を示す
図。 (a)2次電子像。(b)反射電子像。
FIG. 3 is a view showing the results of surface observation of a product obtained by photoreducing and depositing silver on a photocatalytic thin film formed based on the method of the example of the present invention. (A) Secondary electron image. (B) Backscattered electron image.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/02 B01J 35/02 J C03C 17/27 C03C 17/27 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/02 B01J 35/02 J C03C 17/27 C03C 17/27

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 粒径1nm〜500μmの微粒子を型材
表面に適用して微粒子層を形成する工程と、前記微粒子
層の間隙及び微粒子上に光触媒粒子及び/又は光触媒前
駆体を適用する工程と、必要に応じて前記光触媒前駆体
を光触媒粒子に変換する工程と、前記光触媒粒子及び/
又は光触媒前駆体を適用した表面上に基材を配置する工
程と、前記型材を前記微粒子層から離型させる工程と、
前記微粒子層の離型面の一部を除去して前記微粒子層の
間隙に存在する光触媒を外気に露出させる工程とを含む
ことを特徴とする光触媒薄膜の形成方法。
1. A step of applying fine particles having a particle size of 1 nm to 500 μm to the surface of a mold material to form a fine particle layer, and applying photocatalyst particles and / or a photocatalyst precursor to the gaps between the fine particle layers and the fine particles. Converting the photocatalyst precursor into photocatalyst particles if necessary;
Or a step of disposing a substrate on the surface to which the photocatalyst precursor is applied, and a step of releasing the mold from the fine particle layer,
Removing a part of the release surface of the fine particle layer to expose the photocatalyst existing in the gap between the fine particle layers to the outside air.
【請求項2】 前記微粒子は粒径1nm〜400nmで
あることを特徴とする請求項1に記載の光触媒薄膜の形
成方法。
2. The method according to claim 1, wherein the fine particles have a particle size of 1 nm to 400 nm.
【請求項3】 型材表面に粒径1nm〜500μmの微
粒子層が形成され、前記微粒子層の間隙には光触媒粒子
及び/又は光触媒前駆体が存在しており、さらに前記微
粒子層の上には光触媒粒子及び/又は光触媒前駆体含有
層が形成されていることを特徴とする光触媒薄膜形成用
型。
3. A fine particle layer having a particle size of 1 nm to 500 μm is formed on the surface of a mold, and photocatalyst particles and / or a photocatalyst precursor are present in gaps between the fine particle layers. A photocatalyst thin film forming die, wherein a layer containing particles and / or a photocatalyst precursor is formed.
【請求項4】 前記微粒子は粒径1nm〜400nmで
あることを特徴とする請求項3に記載の光触媒薄膜形成
用型。
4. The mold for forming a photocatalytic thin film according to claim 3, wherein the fine particles have a particle size of 1 nm to 400 nm.
【請求項5】 請求項1又は2の方法で形成された光触
媒薄膜。
5. A photocatalytic thin film formed by the method according to claim 1.
【請求項6】 基材表面に、薄膜が形成されており、前
記薄膜は光触媒及び粒径1nm〜500μmの微粒子か
らなり、かつ凹面形状の1nm〜500μmの微粒子間
隙部を有し、前記凹面部に光触媒が固定されていること
を特徴とする光触媒薄膜。
6. A thin film is formed on a surface of a substrate, said thin film comprising a photocatalyst and fine particles having a particle diameter of 1 nm to 500 μm, and having a concave fine particle gap of 1 nm to 500 μm. A photocatalyst thin film, wherein a photocatalyst is fixed on the thin film.
【請求項7】 基材表面に、薄膜が形成されており、前
記薄膜は光触媒及び粒径1nm〜400nmの微粒子か
らなり、かつ凹面形状の1nm〜400nmの微粒子間
隙部を有し、前記凹面部に光触媒が固定されていること
を特徴とする光触媒薄膜。
7. A thin film is formed on the surface of a substrate, said thin film comprising a photocatalyst and fine particles having a particle size of 1 nm to 400 nm, and having a concave fine particle gap of 1 nm to 400 nm. A photocatalyst thin film, wherein a photocatalyst is fixed on the thin film.
【請求項8】 前記光触媒薄膜にはさらに銀、銅、白
金、パラジウム、ニッケル、鉄、コバルト、亜鉛及びそ
れらの化合物の群から選ばれる1種以上の物質が光還元
固定されている特徴とする請求項5〜7に記載の光触媒
薄膜。
8. The photocatalytic thin film, wherein at least one substance selected from the group consisting of silver, copper, platinum, palladium, nickel, iron, cobalt, zinc and a compound thereof is fixed by photoreduction. The photocatalytic thin film according to claim 5.
【請求項9】 前記光触媒は酸化チタンであることを特
徴とする請求項5〜8に記載の光触媒薄膜。
9. The photocatalyst thin film according to claim 5, wherein the photocatalyst is titanium oxide.
JP9242100A 1997-08-22 1997-08-22 Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film Pending JPH1171138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242100A JPH1171138A (en) 1997-08-22 1997-08-22 Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242100A JPH1171138A (en) 1997-08-22 1997-08-22 Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film

Publications (1)

Publication Number Publication Date
JPH1171138A true JPH1171138A (en) 1999-03-16

Family

ID=17084312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242100A Pending JPH1171138A (en) 1997-08-22 1997-08-22 Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film

Country Status (1)

Country Link
JP (1) JPH1171138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018503A (en) * 2008-07-14 2010-01-28 Hokkaido Univ Tungsten oxide exhibiting high photocatalytic activity
JP2013092065A (en) * 2011-10-24 2013-05-16 Hitachi Zosen Corp Complex type thermal power system
JP2016155123A (en) * 2015-02-20 2016-09-01 国立大学法人 大分大学 Ammonia synthesis catalyst and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018503A (en) * 2008-07-14 2010-01-28 Hokkaido Univ Tungsten oxide exhibiting high photocatalytic activity
JP2013092065A (en) * 2011-10-24 2013-05-16 Hitachi Zosen Corp Complex type thermal power system
JP2016155123A (en) * 2015-02-20 2016-09-01 国立大学法人 大分大学 Ammonia synthesis catalyst and production method thereof

Similar Documents

Publication Publication Date Title
JP3863599B2 (en) Amorphous titanium peroxide coating method
JP5707480B2 (en) Automotive interior parts
Masuda et al. Selective deposition and micropatterning of titanium dioxide on self-assembled monolayers from a gas phase
JP2002080830A (en) Hydrophilic member and its production method
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
US20130078458A1 (en) Method for the low-temperature preparation of electrically conductive mesostructured coatings
JP2002234105A (en) Hydrophilic member and method for manufacturing the same
JPH1171138A (en) Formation of photocatalyst thin film, mold for forming photocatalyst thin film and photocatalytic thin film
JP4246943B2 (en) Method for producing article having photocatalyst-containing porous thin film
Fateh et al. Self-cleaning coatings on polymeric substrates
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JP3250394B2 (en) Member having photocatalytic action, composition for forming photocatalytic thin film, and method for producing member having photocatalytic action
JP2010101919A (en) Camera lens
JP2006336184A (en) Photocatalyst composite material
JP2001031483A (en) Production of ceramic building material having photocatalytic function
JP2001248024A (en) Hollow ceramic fiber product and method for producing the same
JP6695417B2 (en) Photocatalyst structure and manufacturing method thereof
JP3945255B2 (en) Photocatalyst composite and method for producing the same
KR100572438B1 (en) Coating method of automotive side mirror coated with photocatalyst oxide
JPH11290696A (en) Photocatalyst base material
JP2010101920A (en) Camera
TW406031B (en) Multi-functional material having photo-catalytic function and production method therefor
KR20020034713A (en) Hydrophilic glass coated with metal oxide and method for producing it
JPH0956788A (en) Cleaning method for bath room members
JP4541810B2 (en) Method for producing photocatalyst layer transfer body