JP3794067B2 - Method for producing photocatalyst composition - Google Patents

Method for producing photocatalyst composition Download PDF

Info

Publication number
JP3794067B2
JP3794067B2 JP24232596A JP24232596A JP3794067B2 JP 3794067 B2 JP3794067 B2 JP 3794067B2 JP 24232596 A JP24232596 A JP 24232596A JP 24232596 A JP24232596 A JP 24232596A JP 3794067 B2 JP3794067 B2 JP 3794067B2
Authority
JP
Japan
Prior art keywords
photocatalyst
photocatalyst composition
producing
organoalkoxysilane
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24232596A
Other languages
Japanese (ja)
Other versions
JPH1085599A (en
Inventor
栄治 遠藤
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24232596A priority Critical patent/JP3794067B2/en
Publication of JPH1085599A publication Critical patent/JPH1085599A/en
Application granted granted Critical
Publication of JP3794067B2 publication Critical patent/JP3794067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガラス、タイル等の各種基板材料に汚れ分解性、防曇性、脱臭性、防黴性、抗菌性を付与し、太陽光等の光エネルギーの有効利用が可能な光触媒組成物およびその製造方法に関する。
【0002】
【従来の技術】
環境問題の顕著化に伴い、室内空間における防臭性とともに、室内、および室外のガラス、タイル等の建築材料の防汚性、防黴性が求められている。これに対する従来技術としては、TiO2 に代表される半導体光触媒を、スプレーコート法、ディップコート法、スピンコート法、スパッタリング法、バインダによる固着等により基板表面に形成し、汚れ分解、脱臭、防黴機能を付与することが提案されていた(特開平6−278241)。
【0003】
しかし、従来技術で形成した光触媒層は、触媒活性が不充分であったり、光触媒の強度が低く使用中に傷が付いたり割れたりして実用的な観点からは満足できるものではなかった。
【0004】
【発明が解決しようとする課題】
本発明は、触媒活性が充分で、かつ、高強度の光触媒組成物の製造方法を提供する。
【0005】
【課題を解決するための手段】
本発明は、塩基性触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルを、半導体光触媒ゾルに分散させた後、熱処理することを特徴とする光触媒組成物の製造方法を提供する。
【0006】
本発明の光触媒組成物のバンドギャップの値E1 は半導体光触媒単独のバンドギャップの値E2 に比し0.05eV以上であること、すなわちE1 −E2 ≧0.05(eV)であること、が好ましい。バンドギャップがこの程度に高くなると、酸化還元力が大きくなり有機物の分解速度が増加される。
【0007】
前記半導体光触媒は、化学的安定性および光触媒活性の観点から、TiO2 、Bi23 、In23 、WO3 、ZnO、SrTiO3 、Fe23 およびSnO2 からなる群から選ばれる1種以上であることが好ましい。
【0008】
前記オルガノアルコキシシランは、加水分解が容易で、安定なシリカゾルが得られるテトラアルコキシシランであることが好ましい。
【0009】
前記塩基性触媒としては、熱分解され半導体光触媒に悪影響を及ぼさないという理由から、アンモニア、アミンおよび水酸化テトラアルキルアンモニウムからなる群から選ばれる1種以上であることが好ましい。塩基性触媒として、アルカリ金属またはアルカリ土類金属の水酸化物を用いた場合は、金属イオンが半導体光触媒に悪影響を及ぼす可能性がある。
【0010】
前記シリカの分散割合は、半導体光触媒とシリカとの総和に対して10〜80重量%であることが好ましい。シリカの分散割合が10重量%より少ないと光触媒活性が半導体光触媒単独のそれと変わらなくなり、また強度が不充分となる。一方、80重量%より多いと半導体光触媒自体の絶対量が低下するために光触媒活性が低下する傾向にある。特に、好ましくは15〜70重量%である。
【0011】
本発明の光触媒組成物は、塩基性触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルを、半導体光触媒ゾルに分散させた後、熱処理することにより得られる。
【0012】
また、本発明の光触媒組成物は、塩基性触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルを、半導体光触媒の前駆体である金属錯塩溶液に分散させた後、熱処理することにより得られる。
【0013】
本発明の光触媒組成物の形態は、被膜状、バルク状、微粉末、超微粒子など種々の形態を採りうる。
【0014】
被膜状の本発明の光触媒組成物を得る方法としては、基体上に、塩基性触媒でオルガノアルコキシシランを加水分解して形成したシリカゾルを半導体光触媒ゾルに分散させた溶液(以下、単にゾル混合溶液という)を塗布し、適当な条件で熱処理する方法が挙げられる
【0015】
また、基体上に、塩基性触媒でオルガノアルコキシシランを加水分解して形成したシリカゾルを半導体光触媒の前駆体である金属錯塩溶液に分散させた溶液(以下、単にゾル分散錯塩溶液という)を塗布し、適当な条件で熱処理する方法が挙げられる
【0016】
前記の塗布方法としては、スプレーコート法、フレキソ印刷法、ディップコート法、スクリーンプリント法、スピンコート法などが挙げられる。
前記熱処理の条件は、温度は400〜700℃、時間は5分〜2時間の範囲が好ましく、温度プロファイルは適当に選定できる。
【0017】
被膜状の本発明の光触媒組成物を得る別の方法としては、適当な温度に加熱した基体上に、ゾル混合溶液またはゾル分散錯塩溶液をスプレーコート法により塗布するなどが挙げられる。この場合、基体の加熱温度は100〜800℃の範囲が好ましい。
【0018】
本発明に用いる基体としては、特に限定されず、ガラス、セラミックス、金属、その他の無機質材料などが挙げられる。
基体の表面は、表面処理が施されていてもよく、例えば、ガラスの表面処理層表面(たとえば、ゾルゲル膜、スパッタ膜、CVD膜、蒸着膜等が設けられた表面)などの基材そのものとは異なる材質の表面であってもよい。
また、基体の形状は特に限定されず、平面の他、全面または部分的に曲率を有するものなど、目的に応じ任意の形状で用いられる。
【0019】
【作用】
本発明の光触媒組成物は、バンドギャップの値が大きく、かつ強度が大幅に向上するため、従来最も活性が高いと考えられているP−25(日本エアロジル社製微粉末TiO2 )を上回る防汚性、防曇性、防黴性、防臭性、抗菌性を持ち、強度の高い光触媒組成物が得られる。
【0020】
本発明において、半導体光触媒中へのアルカリ触媒でオルガノアルコキシシランを加水分解して形成したシリカゾルより得られるシリカの分散が光触媒活性を向上させる機構は、以下のように考えられる。
【0021】
ゾル混合溶液またはゾル分散錯塩溶液を基体上に塗布し、熱処理すると、熱処理中、酸化物半導体の結晶成長が適度に抑制され、その結果、アルカリ触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルより得られるシリカが分散されていない場合に比し、半導体光触媒の結晶子が小さくなる。
【0022】
この現象は、半導体粒子の微細化により縮退が一部とれてバンド構造が変化し、バンドギャップの値が大きくなること、すなわち、価電子帯の位置が低下することを意味し、電気化学的には価電子帯の酸化還元電位が貴になって酸化力が増大し、反応論的には半導体の光触媒活性が向上することを意味する。このことは、本発明の光触媒組成物の紫外光の吸収が、半導体光触媒単独よりも短波長側にシフトすることから検証できる。
【0023】
一方、酸性触媒でオルガノアルコキシシランを加水分解して形成したシリカゾルを分散させた光触媒組成物においては前記のような現象はみられず、紫外光の吸収特性は半導体光触媒単独とほぼ同様である。
【0024】
本発明の光触媒組成物では光触媒活性が向上するが、酸性触媒でオルガノアルコキシシランを加水分解して形成したシリカゾルより得られるシリカを用いた系では光触媒活性が向上せずむしろ低下する。その原因は明確ではないが、シリカゾルの形状や化学的反応性が大きく異なるものと考えられる。
【0025】
本発明の光触媒組成物が防曇性を有する理由としては、次のように説明できる。すなわち、本発明の光触媒組成物に光照射されると価電子帯に正孔が生成する。この正孔は前述のように強い酸化力を有するために、空気中の水分を酸化して光触媒表面にOHラジカルを多数生成する。このため表面の濡れ性が向上し、防曇性が発現する。また表面に付着する汚れは、前述の酸化力の非常に強いOHラジカルにより分解除去され、濡れ性が長期に持続することとなる。
【0026】
本発明の光触媒組成物が高強度である理由としては、シリカゾルがバインダとなって酸化物半導体の微結晶との強固な密着力が生ずるためと考えられる。
【0027】
【実施例】
以下に実施例(例1、例4、例5、例6、例7)および比較例(例2、例3)を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
【0028】
(例1)
イソプロピルアルコール溶媒中でテトラエトキシシランをアンモニア1重量%水溶液で加水分解して調製したシリカゾルを、酸化チタンゾルのイソプロピルアルコール溶液(6重量%)に、重量比でTiO2 /SiO2 =80/20になるよう分散した溶液を調製した。次にこの溶液を石英ガラス上にスピンコート法で塗布し、その後550℃で1時間熱処理して被膜状の光触媒組成物が形成された石英ガラス(試料)を得た。
【0029】
この試料の紫外光の透過率を測定した結果、370nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒組成物のバンドギャップは約3.35eVであることが判明した。
【0030】
この光触媒組成物の光触媒活性を評価するため、タバコの悪臭の主成分であるアセトアルデヒドの光分解反応速度を評価した。
【0031】
実験は、まず、5cm角の上記試料を3dm3 の石英製角型反応管に入れ、アセトアルデヒド蒸気を反応管に導入した。次に、試料面での紫外線(365nm)の照射強度が1.8mW/cm2 となるように外部から試料にブラックライトを照射し、アセトアルデヒドの減少量をガスクロマトグラフで測定して、アセトアルデヒド分解の反応速度を求めた。アセトアルデヒドの減少量の経時変化から光分解反応は零次と考えられ、アセトアルデヒド分解反応速度は44μg/h・cm2 という値を得た。
【0032】
つぎに光触媒組成物の被膜強度をテーバー摩耗試験で評価した。荷重は500gとし、1000回行ったが摩耗はほとんどみられなかった。
【0033】
(例2)
例1に示した酸化チタンゾルのイソプロピルアルコール溶液(6重量%)のみを用い、例1と同様に試料を作成し、紫外光の透過率、光触媒活性および被膜強度を評価した。
【0034】
紫外光の透過率を測定した結果、393nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒のバンドギャップは約3.16eVであることが判明した。アセトアルデヒド分解反応速度は10μg/h・cm2 あった。例1と同様にテーバー摩耗試験で被膜強度を評価した結果、1000回後では被膜の摩耗が激しく基板が完全に露出していた。
【0035】
(例3)
例1で用いたシリカゾルのかわりに、イソプロピルアルコール溶媒中でテトラエトキシシランを硝酸1重量%水溶液で加水分解して調製したシリカゾルを重量比でTiO2 /SiO2 =80/20で用いた以外は例1と同様に試料を作成し、紫外光の透過率、光触媒活性および被膜強度を評価した。
【0036】
紫外光の透過率を測定した結果、390nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒のバンドギャップは約3.16eVであることが判明した。アセトアルデヒド分解反応速度は5μg/h・cm2 あった。テーバー摩耗試験で被膜強度を評価した結果、1000回後では被膜の摩耗はほとんどみられなかった。
【0037】
(例4)
例1で用いたシリカゾルのかわりに、イソプロピルアルコール溶媒中でテトラメトキシシランをトリエタノールアミン0. 5重量%水溶液で加水分解して調製したシリカゾルを、重量比でTiO2 /SiO2 =75/25で用いた以外は例1と同様に試料を作成し、紫外光の透過率、光触媒活性および被膜強度を評価した。
【0038】
紫外光の透過率を測定した結果、375nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒のバンドギャップは約3.32eVであることが判明した。アセトアルデヒド分解反応速度は38μg/h・cm2 あった。テーバー摩耗試験で被膜強度を評価した結果、1000回後では被膜の摩耗はほとんどみられなかった。
【0039】
(例5)
酸化チタンの前駆体としてチタントリエタノールアミネート[(HOCH2 CH23 N]2 Tiのエチルアルコール溶液(5重量%)を用い、エチルアルコール溶媒中でテトラエトキシシランを水酸化テトラエチルアンモニウム1重量%水溶液で加水分解して調製したシリカゾルを、重量比でTiO2 /SiO2 =70/30になるよう分散した溶液を調製した。次にこの溶液を用い、例1と同様に試料を作成し、紫外光の透過率、光触媒活性および被膜強度を評価した。
【0040】
紫外光の透過率を測定した結果、375nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒のバンドギャップは約3.32eVであることが判明した。アセトアルデヒド分解反応速度は35μg/h・cm2 であった。テーバー摩耗試験で被膜強度を評価した結果、1000回後では被膜の摩耗はほとんどみられなかった。
【0041】
(例6)
例1で調製した溶液を用いて、あらかじめ500℃に加熱しておいた石英ガラス上にスプレーコートして光触媒組成物を形成した。その後、例1と同様に紫外光の透過率、光触媒活性および被膜強度を評価した。
【0042】
紫外光の透過率を測定した結果、372nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒のバンドギャップは約3.33eVであることが判明した。アセトアルデヒド分解反応速度は42μg/h・cm2 あった。テーバー摩耗試験で被膜強度を評価した結果、1000回後では被膜の摩耗はほとんどみられなかった。
【0043】
(例7)
例5で調製した溶液を用いて、あらかじめ550℃に加熱しておいた石英ガラス上にスプレーコートして光触媒組成物を形成した。その後、例1と同様に紫外光の透過率、光触媒活性および被膜強度を評価した。
【0044】
紫外光の透過率を測定した結果、375nmから短波長にかけて急激な吸収がみられ、これよりこの光触媒のバンドギャップは約3.32eVであることが判明した。アセトアルデヒド分解反応速度は36μg/h・cm2 あった。テーバー摩耗試験で被膜強度を評価した結果、1000回後では被膜の摩耗はほとんどみられなかった。
【0045】
【発明の効果】
本発明の光触媒組成物は、触媒活性が充分で、かつ、優れた強度を有する。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a photocatalyst composition capable of effectively utilizing light energy such as sunlight and the like by imparting stain decomposability, antifogging property, deodorizing property, antifungal property, and antibacterial property to various substrate materials such as glass and tile. It relates to a manufacturing method.
[0002]
[Prior art]
As environmental problems become more prominent, anti-fouling properties and anti-fouling properties of indoor and outdoor building materials such as glass and tiles are required in addition to deodorizing properties in indoor spaces. As a prior art for this, a semiconductor photocatalyst represented by TiO 2 is formed on the substrate surface by spray coating method, dip coating method, spin coating method, sputtering method, fixing with a binder, etc., so as to decompose, deodorize and prevent fouling. It has been proposed to provide a function (Japanese Patent Laid-Open No. Hei 6-278241).
[0003]
However, the photocatalyst layer formed by the prior art is not satisfactory from a practical viewpoint because the catalyst activity is insufficient, the strength of the photocatalyst is low, and the photocatalyst layer is scratched or cracked during use.
[0004]
[Problems to be solved by the invention]
The present invention provides a method for producing a photocatalyst composition having sufficient catalytic activity and high strength.
[0005]
[Means for Solving the Problems]
The present invention provides a method for producing a photocatalyst composition , characterized in that a silica sol formed by hydrolyzing an organoalkoxysilane in the presence of a basic catalyst is dispersed in a semiconductor photocatalyst sol and then heat-treated .
[0006]
The band gap value E 1 of the photocatalyst composition of the present invention is 0.05 eV or more compared to the band gap value E 2 of the semiconductor photocatalyst alone, that is, E 1 −E 2 ≧ 0.05 (eV). It is preferable. When the band gap becomes so high, the redox power increases and the decomposition rate of organic substances increases.
[0007]
The semiconductor photocatalyst is selected from the group consisting of TiO 2 , Bi 2 O 3 , In 2 O 3 , WO 3 , ZnO, SrTiO 3 , Fe 2 O 3 and SnO 2 from the viewpoint of chemical stability and photocatalytic activity. One or more are preferable.
[0008]
The organoalkoxysilane is preferably a tetraalkoxysilane that can be easily hydrolyzed to obtain a stable silica sol.
[0009]
The basic catalyst is preferably one or more selected from the group consisting of ammonia, amine and tetraalkylammonium hydroxide because it is thermally decomposed and does not adversely affect the semiconductor photocatalyst. When an alkali metal or alkaline earth metal hydroxide is used as the basic catalyst, the metal ions may adversely affect the semiconductor photocatalyst.
[0010]
The dispersion ratio of the silica is preferably 10 to 80% by weight with respect to the total of the semiconductor photocatalyst and silica. When the dispersion ratio of silica is less than 10% by weight, the photocatalytic activity is not different from that of the semiconductor photocatalyst alone, and the strength is insufficient. On the other hand, when the amount is more than 80% by weight, the absolute amount of the semiconductor photocatalyst itself is lowered, so that the photocatalytic activity tends to be lowered. In particular, it is preferably 15 to 70% by weight.
[0011]
The photocatalyst composition of the present invention can be obtained by dispersing a silica sol formed by hydrolyzing an organoalkoxysilane in the presence of a basic catalyst in a semiconductor photocatalyst sol, followed by heat treatment.
[0012]
Further, the photocatalyst composition of the present invention is obtained by dispersing a silica sol formed by hydrolyzing an organoalkoxysilane in the presence of a basic catalyst in a metal complex salt solution that is a precursor of a semiconductor photocatalyst, and then performing a heat treatment. It is done.
[0013]
The form of the photocatalyst composition of the present invention can take various forms such as a film form, a bulk form, a fine powder, and an ultrafine particle.
[0014]
As a method for obtaining a film-like photocatalyst composition of the present invention, a solution in which a silica sol formed by hydrolyzing an organoalkoxysilane with a basic catalyst is dispersed on a semiconductor photocatalyst sol (hereinafter simply referred to as a sol mixed solution) is used. the) that it was applied, and a method of heat treatment under appropriate conditions.
[0015]
Also, a solution in which a silica sol formed by hydrolyzing an organoalkoxysilane with a basic catalyst is dispersed in a metal complex salt solution that is a precursor of a semiconductor photocatalyst (hereinafter simply referred to as a sol-dispersed complex salt solution) is applied to the substrate. The method of heat-processing on suitable conditions is mentioned .
[0016]
Examples of the coating method include spray coating, flexographic printing, dip coating, screen printing, and spin coating.
The heat treatment conditions are preferably a temperature of 400 to 700 ° C. and a time of 5 minutes to 2 hours, and the temperature profile can be appropriately selected.
[0017]
As another method for obtaining a film-like photocatalytic composition of the present invention, a sol mixed solution or a sol-dispersed complex salt solution is applied to a substrate heated to an appropriate temperature by a spray coating method. In this case, the heating temperature of the substrate is preferably in the range of 100 to 800 ° C.
[0018]
The substrate used in the present invention is not particularly limited, and examples thereof include glass, ceramics, metal, and other inorganic materials.
The surface of the substrate may be subjected to a surface treatment, for example, a substrate itself such as a glass surface treatment layer surface (for example, a surface provided with a sol-gel film, a sputtered film, a CVD film, a vapor deposition film, etc.) May be surfaces of different materials.
Further, the shape of the substrate is not particularly limited, and the substrate can be used in any shape depending on the purpose, such as a flat surface, a surface having a partial curvature or the like.
[0019]
[Action]
Since the photocatalyst composition of the present invention has a large band gap value and greatly improved strength, it is more resistant than P-25 (fine powder TiO 2 manufactured by Nippon Aerosil Co., Ltd.), which has been considered to have the highest activity. A photocatalyst composition having high soil strength, antifogging properties, antifungal properties, deodorizing properties and antibacterial properties can be obtained.
[0020]
In the present invention, the mechanism by which the dispersion of silica obtained from a silica sol formed by hydrolyzing an organoalkoxysilane with an alkali catalyst in a semiconductor photocatalyst improves the photocatalytic activity is considered as follows.
[0021]
When a sol mixed solution or sol-dispersed complex salt solution is applied onto a substrate and heat-treated, the crystal growth of the oxide semiconductor is moderately suppressed during the heat-treatment, resulting in hydrolysis of organoalkoxysilane in the presence of an alkali catalyst. The crystallites of the semiconductor photocatalyst are smaller than when silica obtained from the silica sol is not dispersed.
[0022]
This phenomenon means that the degeneration is partially removed by the miniaturization of semiconductor particles, the band structure is changed, and the band gap value is increased, that is, the position of the valence band is lowered electrochemically. Means that the oxidation-reduction potential in the valence band becomes noble and the oxidizing power increases, and the photocatalytic activity of the semiconductor is improved in terms of reaction. This can be verified from the fact that the absorption of ultraviolet light in the photocatalyst composition of the present invention shifts to a shorter wavelength side than the semiconductor photocatalyst alone.
[0023]
On the other hand, in the photocatalyst composition in which silica sol formed by hydrolyzing organoalkoxysilane with an acidic catalyst is dispersed, the above phenomenon is not observed, and the ultraviolet light absorption characteristics are almost the same as those of the semiconductor photocatalyst alone.
[0024]
In the photocatalyst composition of the present invention, the photocatalytic activity is improved, but in a system using silica obtained from a silica sol formed by hydrolyzing organoalkoxysilane with an acidic catalyst, the photocatalytic activity is not improved but rather lowered. Although the cause is not clear, it is considered that the shape and chemical reactivity of silica sol are greatly different.
[0025]
The reason why the photocatalyst composition of the present invention has antifogging properties can be explained as follows. That is, when the photocatalyst composition of the present invention is irradiated with light, holes are generated in the valence band. Since these holes have a strong oxidizing power as described above, they oxidize moisture in the air and generate many OH radicals on the surface of the photocatalyst. For this reason, the wettability of a surface improves and antifogging property is expressed. Moreover, the dirt adhering to the surface is decomposed and removed by the above-mentioned OH radical having a very strong oxidizing power, and the wettability will be maintained for a long time.
[0026]
The reason why the photocatalyst composition of the present invention is high in strength is considered to be that silica sol serves as a binder to produce a strong adhesion with the oxide semiconductor microcrystals.
[0027]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples (Example 1, Example 4, Example 5, Example 6, Example 7) and Comparative Examples (Example 2, Example 3), but the present invention is not limited thereto. .
[0028]
(Example 1)
Silica sol prepared by hydrolyzing tetraethoxysilane with 1% by weight aqueous ammonia in isopropyl alcohol solvent to isopropyl alcohol solution (6% by weight) of titanium oxide sol by weight ratio of TiO 2 / SiO 2 = 80/20 A dispersed solution was prepared. Next, this solution was applied onto quartz glass by a spin coating method, and then heat treated at 550 ° C. for 1 hour to obtain quartz glass (sample) on which a film-like photocatalytic composition was formed.
[0029]
As a result of measuring the ultraviolet light transmittance of this sample, rapid absorption was observed from 370 nm to a short wavelength, and it was found that the band gap of this photocatalyst composition was about 3.35 eV.
[0030]
In order to evaluate the photocatalytic activity of this photocatalytic composition, the photodegradation reaction rate of acetaldehyde, which is the main component of tobacco malodor, was evaluated.
[0031]
In the experiment, first, a 5 cm square sample was placed in a 3 dm 3 quartz square reaction tube, and acetaldehyde vapor was introduced into the reaction tube. Next, the sample was irradiated with black light from the outside so that the irradiation intensity of ultraviolet rays (365 nm) on the sample surface was 1.8 mW / cm 2, and the amount of acetaldehyde decreased was measured with a gas chromatograph. The reaction rate was determined. The photodegradation reaction was considered to be zero-order from the time-dependent change in the decrease in acetaldehyde, and the acetaldehyde decomposition reaction rate was 44 μg / h · cm 2 .
[0032]
Next, the coating strength of the photocatalyst composition was evaluated by a Taber abrasion test. Although the load was 500 g and the test was performed 1000 times, almost no wear was observed.
[0033]
(Example 2)
Using only the isopropyl alcohol solution (6% by weight) of the titanium oxide sol shown in Example 1, samples were prepared in the same manner as in Example 1, and the ultraviolet light transmittance, photocatalytic activity, and coating strength were evaluated.
[0034]
As a result of measuring the transmittance of ultraviolet light, abrupt absorption was observed from 393 nm to a short wavelength, and it was found that the band gap of this photocatalyst was about 3.16 eV. The acetaldehyde decomposition reaction rate was 10 μg / h · cm 2 . As a result of evaluating the film strength by the Taber abrasion test in the same manner as in Example 1, the film was severely worn after 1000 times, and the substrate was completely exposed.
[0035]
(Example 3)
Instead of the silica sol used in Example 1, a silica sol prepared by hydrolyzing tetraethoxysilane with a 1% by weight aqueous solution of nitric acid in an isopropyl alcohol solvent was used at a weight ratio of TiO 2 / SiO 2 = 80/20. Samples were prepared in the same manner as in Example 1, and ultraviolet light transmittance, photocatalytic activity, and coating strength were evaluated.
[0036]
As a result of measuring the transmittance of ultraviolet light, rapid absorption was observed from 390 nm to a short wavelength, and it was found that the band gap of this photocatalyst was about 3.16 eV. The acetaldehyde decomposition reaction rate was 5 μg / h · cm 2 . As a result of evaluating the film strength by the Taber abrasion test, the film was hardly worn after 1000 times.
[0037]
(Example 4)
Instead of the silica sol used in Example 1, a silica sol prepared by hydrolyzing tetramethoxysilane with a 0.5% by weight aqueous solution of triethanolamine in an isopropyl alcohol solvent was used in a weight ratio of TiO 2 / SiO 2 = 75/25. Samples were prepared in the same manner as in Example 1 except that they were used in Example 1, and ultraviolet light transmittance, photocatalytic activity, and coating strength were evaluated.
[0038]
As a result of measuring the transmittance of ultraviolet light, abrupt absorption was observed from 375 nm to a short wavelength, and it was found that the band gap of this photocatalyst was about 3.32 eV. The acetaldehyde decomposition reaction rate was 38 μg / h · cm 2 . As a result of evaluating the film strength by the Taber abrasion test, the film was hardly worn after 1000 times.
[0039]
(Example 5)
Using titanium triethanolamate [(HOCH 2 CH 2 ) 3 N] 2 Ti in an ethyl alcohol solution (5% by weight) as a precursor of titanium oxide, tetraethylammonium hydroxide is added in an amount of 1% by weight in an ethyl alcohol solvent. A solution was prepared by dispersing silica sol prepared by hydrolysis with a% aqueous solution so that TiO 2 / SiO 2 = 70/30 by weight ratio. Next, using this solution, a sample was prepared in the same manner as in Example 1, and ultraviolet light transmittance, photocatalytic activity, and coating strength were evaluated.
[0040]
As a result of measuring the transmittance of ultraviolet light, abrupt absorption was observed from 375 nm to a short wavelength, and it was found that the band gap of this photocatalyst was about 3.32 eV. The acetaldehyde decomposition reaction rate was 35 μg / h · cm 2 . As a result of evaluating the film strength by the Taber abrasion test, the film was hardly worn after 1000 times.
[0041]
(Example 6)
Using the solution prepared in Example 1, the photocatalyst composition was formed by spray coating on quartz glass that had been heated to 500 ° C. in advance. Thereafter, the transmittance of ultraviolet light, photocatalytic activity, and coating strength were evaluated in the same manner as in Example 1.
[0042]
As a result of measuring the transmittance of ultraviolet light, abrupt absorption was observed from 372 nm to a short wavelength, and it was found that the band gap of this photocatalyst was about 3.33 eV. The acetaldehyde decomposition reaction rate was 42 μg / h · cm 2 . As a result of evaluating the film strength by the Taber abrasion test, the film was hardly worn after 1000 times.
[0043]
(Example 7)
Using the solution prepared in Example 5, it was spray-coated on quartz glass that had been heated to 550 ° C. in advance to form a photocatalytic composition. Thereafter, the transmittance of ultraviolet light, photocatalytic activity, and coating strength were evaluated in the same manner as in Example 1.
[0044]
As a result of measuring the transmittance of ultraviolet light, abrupt absorption was observed from 375 nm to a short wavelength, and it was found that the band gap of this photocatalyst was about 3.32 eV. The acetaldehyde decomposition reaction rate was 36 μg / h · cm 2 . As a result of evaluating the film strength by the Taber abrasion test, the film was hardly worn after 1000 times.
[0045]
【The invention's effect】
The photocatalyst composition of the present invention has sufficient catalytic activity and excellent strength.

Claims (7)

塩基性触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルを、半導体光触媒ゾルに分散させた後、熱処理することを特徴とする光触媒組成物の製造方法。  A method for producing a photocatalyst composition, comprising: dispersing a silica sol formed by hydrolyzing an organoalkoxysilane in the presence of a basic catalyst; 塩基性触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルを、半導体光触媒の前駆体である金属錯塩溶液に分散させた後、熱処理することを特徴とする光触媒組成物の製造方法。  A method for producing a photocatalyst composition, comprising: dispersing a silica sol formed by hydrolyzing an organoalkoxysilane in the presence of a basic catalyst in a metal complex solution that is a precursor of a semiconductor photocatalyst; 光触媒組成物のバンドギャップの値が半導体光触媒単独のバンドギャップの値に比し0.05eV以上大きい請求項1または2に記載の光触媒組成物の製造方法The method for producing a photocatalyst composition according to claim 1 or 2 , wherein the band gap value of the photocatalyst composition is 0.05 eV or more larger than the band gap value of the semiconductor photocatalyst alone. 半導体光触媒が、TiOである請求項1〜3のいずれか1項に記載の光触媒組成物の製造方法 The method of manufacturing a semiconductor photocatalyst, the photocatalyst composition according to any one of claims 1 to 3 is a TiO 2. オルガノアルコキシシランがテトラアルコキシシランである請求項1〜のいずれか1項に記載の光触媒組成物の製造方法The method for producing a photocatalyst composition according to any one of claims 1 to 4 , wherein the organoalkoxysilane is tetraalkoxysilane. 塩基性触媒が、アンモニア、アミンおよび水酸化テトラアルキルアンモニウムからなる群から選ばれる1種以上である請求項1〜のいずれか1項に記載の光触媒組成物の製造方法 Method for producing a basic catalyst, ammonia, amines and the photocatalytic composition as claimed in any one of claims 1 to 5 1 or more elements in a selected from the group consisting of tetraalkyl ammonium hydroxide. 塩基性触媒存在下でオルガノアルコキシシランを加水分解して形成したシリカゾルより得られるシリカの分散割合が、半導体光触媒とシリカとの総和に対して10〜80重量%である請求項1〜のいずれか1項に記載の光触媒組成物の製造方法Dispersion ratio of the silica in the presence of a basic catalyst obtained from the silica sol organoalkoxysilane formed by hydrolysis, any claims 1-6 which is 10 to 80 wt% on the sum of the semiconductor photocatalyst and silica method for producing a photocatalyst composition according to any one of claims.
JP24232596A 1996-09-12 1996-09-12 Method for producing photocatalyst composition Expired - Fee Related JP3794067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24232596A JP3794067B2 (en) 1996-09-12 1996-09-12 Method for producing photocatalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24232596A JP3794067B2 (en) 1996-09-12 1996-09-12 Method for producing photocatalyst composition

Publications (2)

Publication Number Publication Date
JPH1085599A JPH1085599A (en) 1998-04-07
JP3794067B2 true JP3794067B2 (en) 2006-07-05

Family

ID=17087533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24232596A Expired - Fee Related JP3794067B2 (en) 1996-09-12 1996-09-12 Method for producing photocatalyst composition

Country Status (1)

Country Link
JP (1) JP3794067B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010075751A (en) * 2000-01-17 2001-08-11 김영웅 porous material contained titanium dioxide photo-catalyst and its processing method
JP4576526B2 (en) * 2004-07-07 2010-11-10 国立大学法人京都大学 Ultraviolet and visible light responsive titania photocatalyst
JP5288429B2 (en) * 2005-08-11 2013-09-11 三重県 Method for producing titania porous layer
JP5874266B2 (en) * 2010-10-20 2016-03-02 信越化学工業株式会社 Photocatalyst coating liquid and photocatalytic thin film obtained therefrom
JP5874267B2 (en) * 2010-10-26 2016-03-02 信越化学工業株式会社 Room temperature curable highly active photocatalyst coating liquid and photocatalytic thin film obtained therefrom

Also Published As

Publication number Publication date
JPH1085599A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
EP2343125B1 (en) Hydrophilic films and components and structures using same
DE102008056792B4 (en) Method for applying a porous self-cleaning anti-reflection coating and glass with this anti-reflection coating and use of a self-cleaning porous anti-reflection coating
EP1196359B1 (en) Photocatalytic preparations of colloidal titanium dioxide for preserving the original appearance of cementitious, stone, or marble products
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
US5780380A (en) Photocatalyst composition and process for its production, and photocatalyst composition-attached substrate
JP2005205411A (en) Substrate with photocatalytic coating
JP3794067B2 (en) Method for producing photocatalyst composition
JP3780592B2 (en) Photocatalyst composition, method for producing the same, and substrate with photocatalyst composition
JPH1192689A (en) Inorganic coating
JPH11228865A (en) Coating agent for forming photocatalytic hydrophilic coating film and photocatalytic hydrophilic member
JP2006198465A (en) Photocatalyst and its production method
JP3595996B2 (en) Photocatalyst composition and method for producing the same
DE10235803A1 (en) Substrate used as self-cleaning substrate for protecting objects in medicine and where hygiene is important comprises photocatalytic layer comprising photocatalytically active titanium dioxide and matrix material
JP5065636B2 (en) Method for producing optical semiconductor fine particles
JPH10113563A (en) Photocatalyst and production thereof
JPH11267517A (en) Photocatalyst coating film and its production
JPH10287238A (en) Stepping stone accident preventing rolling stock
JPH10214985A (en) Solar-cell cover
JP2000350938A (en) Photocatalyst film of adhering stain-removing properties, laminate and its forming method
JPH10212139A (en) Window glass for construction
JPH10216629A (en) Railroad car
JPH10193524A (en) Facing plate for road
JP2000026138A (en) Photocatalyst thin film having deposited fouling removal activity, laminate and formation of the same
JPH10211680A (en) Membrane structural material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees