JPH10113563A - Photocatalyst and production thereof - Google Patents

Photocatalyst and production thereof

Info

Publication number
JPH10113563A
JPH10113563A JP8270270A JP27027096A JPH10113563A JP H10113563 A JPH10113563 A JP H10113563A JP 8270270 A JP8270270 A JP 8270270A JP 27027096 A JP27027096 A JP 27027096A JP H10113563 A JPH10113563 A JP H10113563A
Authority
JP
Japan
Prior art keywords
photocatalyst
oxides
semiconductor
solid acid
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8270270A
Other languages
Japanese (ja)
Inventor
Eiji Endo
栄治 遠藤
Takashige Yoneda
貴重 米田
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8270270A priority Critical patent/JPH10113563A/en
Publication of JPH10113563A publication Critical patent/JPH10113563A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)
  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use light energy such as solar light and sufficiently provide stain decomposing and hazing-preventive properties to various kinds of substrates such as glass, tiles, etc., by forming a solid acid on a semiconductive photocatalyst surface. SOLUTION: This catalyst having excellent stain-proof, hazing-preventive, mildewproof, deodorizing, and anti-bacterial properties is produced by forming a solid acid on a semiconductive photocatalyst surface and the semiconductor photocatalyst is preferably an oxide semiconductor and especially one or more substances selected from TiO2 , Bi2 O3 , In2 O3 , WO3 , ZnO, SrTiO3 , etc., are used. Also, the solid acid to be used consists of oxides as a carrier (carrier oxides) and oxides (deposited oxides) deposited on the surface of the carrier and as the carrier oxides, one or more oxides selected fromZrO2 , SrTiO3 , Fe2 'O3 , HfO2 , SiO2 , etc., are preferable and as the deposited oxides, one or more oxides selected from SO4 , WO3 , MoO3 , and B2 O3 are preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒およびその
製造方法に関する。
[0001] The present invention relates to a photocatalyst and a method for producing the same.

【0002】[0002]

【従来の技術】環境問題の顕著化に伴い、室内空間にお
ける防臭性とともに、室内、および室外のガラス、タイ
ル等の建築材料の防汚性、防黴性が求められている。従
来、TiO2 に代表される半導体光触媒を、スプレーコ
ート法、ディップコート法、スピンコート法、スパッタ
法、バインダーによる固着等により基板表面に形成し、
汚れ分解能、脱臭性、防黴性を付与することが提案され
ていた(特開平6−278241)。
2. Description of the Related Art As environmental problems have become more prominent, there has been a demand for not only deodorization properties in indoor spaces, but also antifouling properties and antifungal properties of building materials such as glass and tiles in and out of rooms. Conventionally, a semiconductor photocatalyst represented by TiO 2 is formed on a substrate surface by a spray coating method, a dip coating method, a spin coating method, a sputtering method, fixing with a binder, or the like,
It has been proposed to impart stain resolution, deodorizing property, and antifungal property (Japanese Patent Application Laid-Open No. Hei 6-278241).

【0003】[0003]

【発明が解決しようとする課題】しかし、従来技術で形
成した光触媒層は、触媒活性が不充分であり、実用的な
観点からは満足のいくものではなかった。
However, the photocatalyst layer formed by the conventional technique has insufficient catalytic activity and is not satisfactory from a practical viewpoint.

【0004】本発明は、太陽光等の光エネルギーの有効
利用ができ、ガラス、タイル等の各種基体に、汚れ分解
能および防曇性を実用上充分に付与できる、光触媒およ
びその製造方法を提供する。
[0004] The present invention provides a photocatalyst and a method for producing the same, which can effectively utilize light energy such as sunlight and can practically sufficiently impart stain resolution and anti-fog properties to various substrates such as glass and tiles. .

【0005】[0005]

【課題を解決するための手段】本発明は、半導体光触媒
表面に固体酸を形成させたことを特徴とする光触媒を提
供する。
The present invention provides a photocatalyst characterized by forming a solid acid on the surface of a semiconductor photocatalyst.

【0006】本発明の光触媒は、従来最も活性が高いと
考えられているP−25(日本エアロジル社製微粉末T
iO2 )を上回る防汚性、防曇性、防黴性、防臭性、抗
菌性を有する。
[0006] The photocatalyst of the present invention is P-25 (fine powder T manufactured by Nippon Aerosil Co., Ltd.), which is conventionally considered to have the highest activity.
It has antifouling property, antifogging property, antifungal property, deodorant property and antibacterial property exceeding iO 2 ).

【0007】本発明に用いられる半導体光触媒は、化学
的安定性、および光触媒活性から酸化物半導体が好まし
く、特に、TiO2 、Bi23 、In23 、WO
3 、ZnO、SrTiO3 、Fe23 およびSnO2
からなる群から選ばれる1種以上の半導体光触媒である
ことが好ましい。
The semiconductor photocatalyst used in the present invention is preferably an oxide semiconductor in view of chemical stability and photocatalytic activity. In particular, TiO 2 , Bi 2 O 3 , In 2 O 3 , WO
3 , ZnO, SrTiO 3 , Fe 2 O 3 and SnO 2
The photocatalyst is preferably at least one selected from the group consisting of

【0008】本発明における固体酸は、半導体光触媒表
面とは異なる化学組成を有する。本発明に用いられる固
体酸は、担体としての酸化物(以下、担体酸化物とい
う)とその表面に担持される酸化物(以下、担持酸化物
という)とからなる。担体酸化物と半導体光触媒とが同
一組成である場合は、担持酸化物のみで固体酸を形成す
る。
[0008] The solid acid in the present invention has a chemical composition different from that of the semiconductor photocatalyst surface. The solid acid used in the present invention includes an oxide as a carrier (hereinafter, referred to as a carrier oxide) and an oxide supported on the surface thereof (hereinafter, referred to as a supported oxide). When the carrier oxide and the semiconductor photocatalyst have the same composition, a solid acid is formed only by the supported oxide.

【0009】担体酸化物としては、ZrO2 、SrTi
3 、TiO2 、Fe23 、SnO2 、HfO2 、S
iO2 およびAl23 からなる群から選ばれる1種以
上の酸化物が好ましい。担持酸化物としては、強酸性の
ものが得られ、良好な結果が得られることから、SO
4 、WO3 、MoO3 およびB23 からなる群から選
ばれる1種以上の酸化物が好ましい。前記固体酸におい
て、担持酸化物の担体酸化物表面への担持量は、0.2
〜20重量%が適当である。
As carrier oxides, ZrO 2 , SrTi
O 3 , TiO 2 , Fe 2 O 3 , SnO 2 , HfO 2 , S
One or more oxides selected from the group consisting of iO 2 and Al 2 O 3 are preferred. As the supported oxide, a strongly acidic one is obtained, and good results are obtained.
4 , one or more oxides selected from the group consisting of WO 3 , MoO 3 and B 2 O 3 are preferred. In the solid acid, the supported amount of the supported oxide on the surface of the carrier oxide is 0.2%.
-20% by weight is suitable.

【0010】光触媒活性をさらに向上させうることか
ら、前記固体酸に、Fe、Mn、Pt、Os、Ir、R
u、PdおよびRhからなる群から選ばれる1種以上の
金属または該金属を含有する化合物が添加されることが
好ましい。金属含有化合物としては、塩化物や酸化物な
どが挙げられる。
Since the photocatalytic activity can be further improved, Fe, Mn, Pt, Os, Ir, R
It is preferable to add at least one metal selected from the group consisting of u, Pd and Rh or a compound containing the metal. Examples of the metal-containing compound include chlorides and oxides.

【0011】前記金属または該金属含有化合物の添加量
(金属換算)は、担持酸化物(酸化物換算)に対して
0.5〜10重量%であることが好ましい。添加量が
0.5重量%未満では添加した効果が充分でなく、10
重量%超では固体酸の表面が金属で覆われる割合が大き
くなり、活性は逆に低下する傾向にある。
The amount of addition of the metal or the metal-containing compound (in terms of metal) is preferably 0.5 to 10% by weight based on the supported oxide (in terms of oxide). If the addition amount is less than 0.5% by weight, the effect of the addition is not sufficient,
If the amount is more than the percentage by weight, the ratio of the surface of the solid acid covered with metal increases, and the activity tends to decrease.

【0012】本発明における光触媒の形態は、粉体、微
粉体、薄膜等種々のものを使用できる。本発明における
光触媒を基体上に形成する場合、基体は特に限定され
ず、ガラス、セラミックス、金属、その他の無機質材料
等に適用できる。
Various forms such as powder, fine powder, and thin film can be used as the form of the photocatalyst in the present invention. When the photocatalyst of the present invention is formed on a substrate, the substrate is not particularly limited, and can be applied to glass, ceramics, metal, other inorganic materials, and the like.

【0013】また基体の表面は、基体そのものの表面で
もよく、表面処理ガラスの表面処理層表面(例えば、ゾ
ルゲル膜、スパッタ膜、CVD膜、蒸着膜等が設けられ
た表面)等の基体そのものとは異なる材質の表面でもよ
い。また、基体の形状は特に限定されない。例えば平面
でもよく、全面または部分的に曲率を有するものなど、
目的に応じた任意の形状でもよい。
The surface of the substrate may be the surface of the substrate itself, such as the surface of a surface-treated layer of a surface-treated glass (eg, a surface provided with a sol-gel film, a sputter film, a CVD film, a vapor deposition film, etc.). May be surfaces of different materials. The shape of the base is not particularly limited. For example, it may be flat, such as one having a full or partial curvature,
Any shape depending on the purpose may be used.

【0014】本発明はまた、基体上に形成された半導体
光触媒層上に、固体酸を形成する酸化物の前駆体溶液を
塗布した後、熱処理を行って半導体光触媒に酸化物の酸
を担持させることを特徴とする光触媒の製造方法を提供
する。
According to the present invention, a semiconductor photocatalyst layer formed on a substrate is coated with a precursor solution of an oxide which forms a solid acid, and then subjected to a heat treatment to allow the semiconductor photocatalyst to carry the oxide acid. A method for producing a photocatalyst is provided.

【0015】製造方法の例としては、基体上に形成され
た半導体光触媒層上に、固体酸の担体酸化物を形成する
酸化物前駆体溶液を塗布・焼成した後、固体酸の担持酸
化物を形成する酸化物前駆体溶液を含浸し、熱処理を行
う。
As an example of the production method, an oxide precursor solution for forming a solid acid carrier oxide is applied and baked on a semiconductor photocatalyst layer formed on a substrate, and then a solid acid-carrying oxide is applied. Impregnation with the oxide precursor solution to be formed and heat treatment are performed.

【0016】担体酸化物を形成する酸化物前駆体溶液の
塗布方法としては、スプレーコート法、ディップコート
法、フレキソ印刷法、スクリーンプリント法、スピンコ
ート法等が挙げられる。担体酸化物および担持酸化物と
しては、前述した酸化物が好適である。
Examples of the method of applying the oxide precursor solution for forming the carrier oxide include a spray coating method, a dip coating method, a flexographic printing method, a screen printing method, and a spin coating method. The oxides described above are suitable as the carrier oxide and the supported oxide.

【0017】半導体光触媒層は、1)半導体光触媒ゾル
溶液または2)半導体光触媒前駆体溶液を基体に塗布し
て形成されることが好ましい。塗布方法としては、前述
した方法が挙げられる。
The semiconductor photocatalyst layer is preferably formed by applying 1) a semiconductor photocatalyst sol solution or 2) a semiconductor photocatalyst precursor solution to a substrate. Examples of the coating method include the above-described methods.

【0018】1)半導体光触媒ゾル溶液としては、Sr
TiO3 、TiO2 、Fe23 およびSnO2 からな
る群から選ばれる1種以上の酸化物のゾル溶液、2)半
導体光触媒前駆体溶液としては、SrTiO3 、TiO
2 、Fe23 およびSnO2 からなる群から選ばれる
1種以上の酸化物の前駆体溶液が挙げられる。
1) As a semiconductor photocatalyst sol solution, Sr
A sol solution of at least one oxide selected from the group consisting of TiO 3 , TiO 2 , Fe 2 O 3 and SnO 2 , 2) as a semiconductor photocatalyst precursor solution, SrTiO 3 , TiO
2 , a precursor solution of one or more oxides selected from the group consisting of Fe 2 O 3 and SnO 2 .

【0019】半導体光触媒ゾルとしては、半導体光触媒
ゾル中の酸化物粒子の粒径が20nm以下の半導体光触
媒ゾルを用いることが好ましい。半導体光触媒ゾル溶液
を基体に塗布後、半導体光触媒層中の酸化物の結晶子径
が20nm以下となる熱処理条件で熱処理を行い半導体
光触媒層を形成することが好ましい。
As the semiconductor photocatalytic sol, it is preferable to use a semiconductor photocatalytic sol in which the particle diameter of oxide particles in the semiconductor photocatalytic sol is 20 nm or less. After applying the semiconductor photocatalyst sol solution to the substrate, it is preferable to form a semiconductor photocatalyst layer by performing a heat treatment under a heat treatment condition in which the crystallite diameter of the oxide in the semiconductor photocatalyst layer becomes 20 nm or less.

【0020】特に、担体酸化物として、ZrO2 、Sr
TiO3 、TiO2 、Fe23 、SnO2 、HfO
2 、SiO2 およびAl23 からなる群から選ばれる
1種以上の酸化物を熱処理により形成する場合、これら
の酸化物の結晶子径は20nm以下となる熱処理条件を
用いることが好ましい。20nm超では、担持酸化物と
して好適なSO4 、WO3 、MoO3 およびB23
らなる群から選ばれる1種以上の酸化物を前記担体酸化
物表面に形成しても超強酸性が発現しにくい。
In particular, ZrO 2 , Sr
TiO 3 , TiO 2 , Fe 2 O 3 , SnO 2 , HfO
When one or more oxides selected from the group consisting of SiO 2 and Al 2 O 3 are formed by heat treatment, it is preferable to use heat treatment conditions in which the crystallite diameter of these oxides is 20 nm or less. If it exceeds 20 nm, even if one or more oxides selected from the group consisting of SO 4 , WO 3 , MoO 3, and B 2 O 3 suitable as a supported oxide are formed on the surface of the carrier oxide, the super-strong acidity may not be maintained. Difficult to develop.

【0021】半導体光触媒層を、スパッタ法、CVD法
または蒸着法により形成することもできる。この場合、
前記と同様の理由から、半導体光触媒層中の結晶子径が
20nm以下となる条件で半導体光触媒層を形成するこ
とが好ましい。
The semiconductor photocatalyst layer can be formed by a sputtering method, a CVD method or a vapor deposition method. in this case,
For the same reason as described above, it is preferable to form the semiconductor photocatalyst layer under the condition that the crystallite diameter in the semiconductor photocatalyst layer is 20 nm or less.

【0022】本発明において、担体酸化物と、半導体光
触媒が同一組成の酸化物であれば、光触媒の製造が非常
に容易となり、半導体光触媒の表面に、担持酸化物を担
持することで本発明の光触媒が得られる。
In the present invention, if the carrier oxide and the semiconductor photocatalyst are oxides having the same composition, the production of the photocatalyst becomes very easy, and the supporting oxide is supported on the surface of the semiconductor photocatalyst. A photocatalyst is obtained.

【0023】具体的には、半導体光触媒層に、担持酸化
物)の前駆体溶液を含浸し、熱処理を行い半導体光触媒
に固体酸を担持させることで本発明の光触媒が得られ
る。担持酸化物としては、前述したように、SO4 、W
3 、MoO3 およびB23からなる群から選ばれる
1種以上の酸化物が好ましい。
Specifically, the photocatalyst of the present invention can be obtained by impregnating the semiconductor photocatalyst layer with a precursor solution of the supported oxide) and performing a heat treatment to support the solid acid on the semiconductor photocatalyst. As described above, as the supported oxide, SO 4 , W
One or more oxides selected from the group consisting of O 3 , MoO 3 and B 2 O 3 are preferred.

【0024】SO4 、WO3 、MoO3 およびB23
の前駆体としては、硫酸(H2 SO4 )、硫酸アンモニ
ウム[(NH42 SO4 ]、メタタングステン酸アン
モニウム[(NH46 (H21240)]、パラタン
グステン酸アンモニウム5水和物[(NH41012
41・5H2 O]、モリブデン酸[H2 MoO4 ]、モリ
ブデン酸アンモニウム[(NH46 Mo724・4H
2 O]、トリメトキシボラン[(CH3 O)3 B]など
が挙げられ、これらの水溶液や有機溶媒液を適宜使用で
きる。
SO 4 , WO 3 , MoO 3 and B 2 O 3
As precursors of sulfuric acid (H 2 SO 4 ), ammonium sulfate [(NH 4 ) 2 SO 4 ], ammonium metatungstate [(NH 4 ) 6 (H 2 W 12 O 40 )], ammonium paratungstate 5 Hydrate [(NH 4 ) 10 W 12 O
41 · 5H 2 O], molybdate [H 2 MoO 4], ammonium molybdate [(NH 4) 6 Mo 7 O 24 · 4H
2 O], trimethoxyborane [(CH 3 O) 3 B] and the like, and their aqueous solutions and organic solvent solutions can be used as appropriate.

【0025】本発明によれば、粉末状の光触媒も得られ
る。具体的には、半導体光触媒粉末に、固体酸を形成す
る酸化物(担持酸化物のみでも可)の前駆体溶液を含浸
し、熱処理を行い半導体光触媒に固体酸を担持させるこ
とで本発明の光触媒が得られる。半導体光触媒粉末とし
て、結晶子径が20nm以下の粉末を用いることが前記
と同様の理由から好ましい。
According to the present invention, a powdery photocatalyst is also obtained. Specifically, the semiconductor photocatalyst powder is impregnated with a precursor solution of an oxide that forms a solid acid (only a supported oxide may be used), and heat treatment is performed to support the solid acid on the semiconductor photocatalyst. Is obtained. It is preferable to use a powder having a crystallite diameter of 20 nm or less as the semiconductor photocatalyst powder for the same reason as described above.

【0026】本発明における固体酸は超強酸であること
が好ましい。本発明において超強酸とは、100%硫酸
より強い酸強度を有する酸と定義する。ハメットの酸度
定数(H0 )で表すと100%硫酸はH0 =−11.9
3となり、H0 ≦−11.93の酸強度を持つものが超
強酸であり、H0 が小さな値ほど酸として強くなる。本
発明に用いられる固体酸としては、100%硫酸よりも
強い酸性を示すもの、すなわち、固体超強酸が好適であ
る。
The solid acid in the present invention is preferably a super strong acid. In the present invention, a super strong acid is defined as an acid having an acid strength higher than 100% sulfuric acid. In terms of Hammett's acidity constant (H 0 ), 100% sulfuric acid is H 0 = -11.9.
The one having an acid strength of H 0 ≦ −1.93 is a super strong acid, and the smaller the value of H 0 , the stronger the acid. As the solid acid used in the present invention, an acid exhibiting an acidity stronger than 100% sulfuric acid, that is, a solid superacid is preferable.

【0027】本発明において半導体光触媒表面に固体超
強酸を形成させることで光触媒活性が大幅に向上する理
由としては次のことが考えられる。
The reason why the photocatalytic activity is greatly improved by forming a solid superacid on the surface of the semiconductor photocatalyst in the present invention is considered as follows.

【0028】通常の条件では反応しない有機物でも固体
超強酸上では、固体超強酸の触媒作用によりプロトンが
付加した5配位のCH5 +のようなカルボカチオンが生成
したり、H- が引き抜かれることによってCH3 +のよう
なカルベニウムイオンを生ずることが知られている。こ
れらの反応中間体は熱力学的に不安定であるため、本発
明における光触媒に光が照射された際生成する電子や正
孔が前記反応中間体と容易に反応して分解されてしまう
ため光触媒活性が大幅に向上するものと考えられる。す
なわち、半導体光触媒表面に固体超強酸を形成させるこ
とにより、有機物の分解除去が飛躍的に進行することに
なる。
Even on an organic substance which does not react under ordinary conditions, on a solid superacid, a carbocation such as pentacoordinated CH 5 + to which a proton has been added or H is extracted by the catalytic action of the solid superacid. It is known that this produces carbenium ions such as CH 3 + . Since these reaction intermediates are thermodynamically unstable, electrons and holes generated when the photocatalyst of the present invention is irradiated with light easily react with the reaction intermediates and are decomposed. It is considered that the activity is greatly improved. That is, by forming a solid superacid on the surface of the semiconductor photocatalyst, the decomposition and removal of the organic matter progresses remarkably.

【0029】また、Fe、Mn、Pt、Os、Ir、R
u、PdおよびRhからなる群から選ばれる1種以上の
金属または該金属含有化合物を添加することでさらに有
機物の分解除去が容易におこる理由としては、これらの
元素が助触媒となることが考えられる。
Further, Fe, Mn, Pt, Os, Ir, R
The reason why the addition and removal of one or more metals selected from the group consisting of u, Pd and Rh or the metal-containing compound facilitates the decomposition and removal of organic substances is that these elements serve as cocatalysts. Can be

【0030】本発明における光触媒を用いることで、従
来のTiO2 に代表される光触媒に比べて格段の汚れ分
解能、脱臭性、防黴性を付与できる。
By using the photocatalyst in the present invention, a remarkable stain resolution, deodorizing property, and antifungal property can be imparted as compared with a conventional photocatalyst represented by TiO 2 .

【0031】また、本発明において、防曇性が発現する
機構としては、次のように説明できる。本発明の光触媒
への光照射により価電子帯に正孔が生成する。この正孔
は強い酸化力を有するために、空気中の水分を酸化して
光触媒表面にOHラジカルを多数生成する。このため表
面の濡れ性が向上し、防曇性が発現する。また表面に付
着する汚れは、前述の固体酸および光触媒表面に生成し
た酸化力の非常に強いOHラジカルにより分解除去さ
れ、濡れ性が長期に持続することとなる。
In the present invention, the mechanism for exhibiting anti-fogging properties can be explained as follows. The irradiation of the photocatalyst of the present invention with light generates holes in the valence band. Since these holes have a strong oxidizing power, they oxidize moisture in the air to generate a large number of OH radicals on the photocatalyst surface. Therefore, the wettability of the surface is improved, and the antifogging property is exhibited. Further, the dirt adhering to the surface is decomposed and removed by the above-described solid acid and the OH radical having a very strong oxidizing power generated on the photocatalyst surface, so that the wettability is maintained for a long time.

【0032】[0032]

【実施例】以下に実施例(例1、例3〜7)および比較
例(例2)をあげて本発明を具体的に説明するが、本発
明は実施例に限定されない。
EXAMPLES The present invention will be specifically described below with reference to Examples (Example 1, Examples 3 to 7) and Comparative Examples (Example 2), but the present invention is not limited to Examples.

【0033】(例1)平均粒径が15nmの酸化チタン
粒子を含有する酸化チタンゾルの水溶液(6重量%)を
石英ガラス上にスピンコートを行い、その後400℃で
1時間熱処理してTiO2 被膜を形成した。この被膜の
膜厚は約100nmでありTiO2 の結晶子径は17n
mであった。
(Example 1) An aqueous solution (6% by weight) of a titanium oxide sol containing titanium oxide particles having an average particle diameter of 15 nm is spin-coated on quartz glass and then heat-treated at 400 ° C. for 1 hour to form a TiO 2 film. Was formed. The thickness of this film is about 100 nm, and the crystallite diameter of TiO 2 is 17n.
m.

【0034】次にこのTiO2 被膜付き石英ガラスを1
規定の硫酸溶液中に5分浸漬し、その後600℃で20
分焼成して半導体光触媒表面に固体酸を形成させた光触
媒が付与された石英ガラスを得た。
Next, this TiO 2 coated quartz glass was
Immerse in a specified sulfuric acid solution for 5 minutes, and then
Quartz glass to which a photocatalyst in which a solid acid was formed on the surface of the semiconductor photocatalyst by baking for a minute was obtained.

【0035】この光触媒の光触媒活性を評価するため、
タバコの悪臭の主成分であるアセトアルデヒドの光分解
反応速度を評価した。実験は、5cm角の試料を3リッ
トルの石英製角型反応管に入れ、アセトアルデヒド蒸気
を反応管に導入し、光触媒面での紫外線(365nm)
の照射強度が1.8mW/cm2 となるように外部から
試料にブラックライトを照射した。アセトアルデヒドの
減少量をガスクロマトグラフで測定して、アセトアルデ
ヒド分解の反応速度を求めた。アセトアルデヒドの減少
量の経時変化から光分解反応は零次と考えられ、反応速
度kを算出した。その結果、反応速度kは150μg/
hr・cm2 であった。
In order to evaluate the photocatalytic activity of this photocatalyst,
The photodegradation kinetics of acetaldehyde, the main component of tobacco odor, was evaluated. In the experiment, a 5 cm square sample was placed in a 3 liter quartz square reaction tube, acetaldehyde vapor was introduced into the reaction tube, and ultraviolet light (365 nm) on the photocatalyst surface was used.
The sample was irradiated with black light from the outside so that the irradiation intensity was 1.8 mW / cm 2 . The reduction amount of acetaldehyde was measured by gas chromatography, and the reaction rate of acetaldehyde decomposition was determined. The photodegradation reaction was considered to be of zero order based on the change over time in the amount of decrease in acetaldehyde, and the reaction rate k was calculated. As a result, the reaction rate k was 150 μg /
hr · cm 2 .

【0036】(例2)例1におけるTiO2 被膜付き石
英ガラスのみ(すなわち、1規定の硫酸溶液への浸漬な
し)の光触媒活性を例1と同様に評価した結果、反応速
度kは18μg/hr・cm2 であった。
(Example 2) The photocatalytic activity of only the quartz glass with a TiO 2 coating in Example 1 (that is, without immersion in a 1N sulfuric acid solution) was evaluated in the same manner as in Example 1. As a result, the reaction rate k was 18 μg / hr. - it was cm 2.

【0037】(例3)例1と同様にしてTiO2 被膜付
き石英ガラスを得た後、メタタングステン酸アンモニウ
ム[(NH46 (H21240)]の1%水溶液に浸
漬し、100℃で乾燥した後700℃で20分焼成して
WO3 をTiO2 に担持した光触媒を得た。例1と同様
に評価した結果、反応速度kは120μg/hr・cm
2 であった。
Example 3 A quartz glass with a TiO 2 coating was obtained in the same manner as in Example 1, and then immersed in a 1% aqueous solution of ammonium metatungstate [(NH 4 ) 6 (H 2 W 12 O 40 )]. After drying at 100 ° C., the mixture was calcined at 700 ° C. for 20 minutes to obtain a photocatalyst supporting WO 3 on TiO 2 . As a result of evaluation in the same manner as in Example 1, the reaction rate k was 120 μg / hr · cm.
Was 2 .

【0038】(例4)例1の酸化チタンゾルに代えて酸
化チタンの前駆体である2−エチルヘキサン酸チタンの
トルエン溶液(5重量%)を用いた以外は例1と同様に
してTiO2被膜付き石英ガラスを得た。被膜の膜厚は
約100nmでありTiO2 の結晶子径は7nmであっ
た。
(Example 4) A TiO 2 film was formed in the same manner as in Example 1 except that a toluene solution (5% by weight) of titanium 2-ethylhexanoate, which is a precursor of titanium oxide, was used instead of the titanium oxide sol of Example 1. To obtain a quartz glass. The thickness of the film was about 100 nm, and the crystallite diameter of TiO 2 was 7 nm.

【0039】次にこのTiO2 被膜付き石英ガラスをア
ンモニアに溶解したモリブデン酸[H2 MoO4 ]の1
%水溶液に浸漬し、100℃で乾燥した後、700℃で
20分焼成してMoO3 をTiO2 に担持した光触媒を
得た。例1と同様に評価した結果、反応速度kは140
μg/hr・cm2 であった。
Next, molybdic acid [H 2 MoO 4 ] obtained by dissolving the quartz glass with the TiO 2 coating in ammonia was used.
%, Dried at 100 ° C., and calcined at 700 ° C. for 20 minutes to obtain a photocatalyst supporting MoO 3 on TiO 2 . As a result of evaluation in the same manner as in Example 1, the reaction rate k was 140.
μg / hr · cm 2 .

【0040】(例5)例4の2−エチルヘキサン酸チタ
ンのトルエン溶液に代えて、SrTiO3 の前駆体であ
る2−エチルヘキサン酸チタンと2−エチルヘキサン酸
ストロンチウムのトルエン溶液(SrTiO3 として2
重量%)を用いた以外は例4と同様にしてSrTiO3
被膜付き石英ガラスを得た。被膜の膜厚は約100nm
でありSrTiO3 の結晶形態は無定型であった。
[0040] (Example 5) in place of the toluene solution of 2-ethylhexanoic acid titanium Example 4, as a toluene solution (SrTiO 3 which is the precursor of the SrTiO 3 2-ethylhexanoic acid titanium and strontium 2-ethylhexanoate 2
% By weight) except that SrTiO 3 was used.
A quartz glass with a coating was obtained. The film thickness is about 100 nm
And the crystal form of SrTiO 3 was amorphous.

【0041】次にこのSrTiO3 被膜付き石英ガラス
を例4と同様にしてアンモニアに溶解したモリブデン酸
[H2 MoO4 ]の1%水溶液に浸漬し、MoO3 をS
rTiO3 に担持した光触媒を得た。例1と同様に評価
した結果、反応速度kは150μg/hr・cm2 であ
った。
Next, the SrTiO 3 coated quartz glass was immersed in a 1% aqueous solution of molybdic acid [H 2 MoO 4 ] dissolved in ammonia in the same manner as in Example 4, and MoO 3 was changed to S
A photocatalyst supported on rTiO 3 was obtained. As a result of evaluation in the same manner as in Example 1, the reaction rate k was 150 μg / hr · cm 2 .

【0042】(例6)例1で作成した光触媒を、2%の
塩化白金酸溶液[H 2PtCl6 ・6H2 O]に浸漬
し、その後100℃で乾燥してPtを添加した光触媒を
得た。Ptの担持酸化物のSO4 (酸化物換算)に対す
る添加量は、金属換算で2重量%であった。例1と同様
に評価した結果、反応速度kは650μg/hr・cm
2 であった。
[0042] to obtain a photocatalyst created in (Example 6) Example 1, 2% was immersed in chloroplatinic acid solution [H 2 PtCl 6 · 6H 2 O], followed photocatalyst added with Pt and dried at 100 ° C. Was. The amount of Pt-supported oxide relative to SO 4 (as oxide) was 2% by weight in terms of metal. As a result of evaluation in the same manner as in Example 1, the reaction rate k was 650 μg / hr · cm.
Was 2 .

【0043】(例7)例5で作成した光触媒を、2%の
塩化イリジウム溶液[IrCl3 ]に浸漬し、その後1
00℃で乾燥してIrを添加した光触媒を得た。Irの
担持酸化物のMoO3 (酸化物換算)に対する添加量
は、金属換算で5重量%であった。例1と同様に評価し
た結果、反応速度kは700μg/hr・cm2 であっ
た。
Example 7 The photocatalyst prepared in Example 5 was immersed in a 2% iridium chloride solution [IrCl 3 ], and then
After drying at 00 ° C., a photocatalyst to which Ir was added was obtained. The addition amount of the supported oxide of Ir to MoO 3 (in terms of oxide) was 5% by weight in terms of metal. As a result of evaluation in the same manner as in Example 1, the reaction rate k was 700 μg / hr · cm 2 .

【0044】(防曇性、防曇耐久性、防黴性の評価)例
1〜7で得られた光触媒について、下記方法により防曇
性、防曇耐久性、防黴性を評価した。結果を表1に示
す。なお、例1〜6で得られた光触媒について、脱臭
性、抗菌性についても評価したところ、太陽光の光エネ
ルギーで、実用上充分な性能が得られた。
(Evaluation of antifogging property, antifogging durability and antifungal property) The photocatalysts obtained in Examples 1 to 7 were evaluated for antifogging property, antifogging durability and antifungal property by the following methods. Table 1 shows the results. The photocatalysts obtained in Examples 1 to 6 were also evaluated for deodorizing properties and antibacterial properties. As a result, practically sufficient performance was obtained with the light energy of sunlight.

【0045】防曇性は、息を試料に吹きかけ、曇が完全
に消えるまでの時間を測定した。試験は3回行いその平
均時間を調べた。防曇耐久性は、60℃温水に3日浸漬
後の防曇性を調べた。防黴性は、例1〜7で得られた光
触媒付き石英ガラスを一般家庭の風呂場(床面積約3.
3m2 )の壁面のタイル(床面より30cm上部)にセ
ラミックス系接着剤で張り付けた。風呂の使用は1日延
べ2時間、ほぼ連日とし、風呂場使用時は天井に取り付
けてある20Wの蛍光灯を点灯して2カ月後に試料表面
の黴の発生を調べた。
The anti-fogging property was measured by measuring the time required until the fogging completely disappeared by blowing a breath on the sample. The test was performed three times and the average time was examined. The anti-fogging durability was determined by examining the anti-fogging property after immersion in 60 ° C. hot water for 3 days. The antifungal property was obtained by using the quartz glass with a photocatalyst obtained in Examples 1 to 7 in a bathroom (of a floor area of about 3.
A 3 m 2 ) wall tile (30 cm above the floor) was attached with a ceramic adhesive. The bath was used for a total of two hours a day, almost every day. When the bath was used, a 20-W fluorescent lamp attached to the ceiling was turned on, and two months later, the surface of the sample was examined for the occurrence of mold.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】本発明の光触媒は、太陽光の光エネルギ
ーの有効利用が可能であり、汚れ分解能および防曇性が
きわめて優れるとともに、防黴性、脱臭性、抗菌性など
の諸性能も実用上充分である。
Industrial Applicability The photocatalyst of the present invention can effectively utilize the light energy of sunlight, is extremely excellent in dirt resolution and antifogging property, and has various practical properties such as antifungal property, deodorizing property and antibacterial property. Above is enough.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/34 B01J 23/34 M 23/652 23/84 ZABM 23/84 ZAB 23/85 ZABM 23/85 ZAB 23/89 ZABM 23/89 ZAB 27/053 ZABM 27/053 ZAB 37/02 301Z 37/02 301 C09D 5/14 C09D 5/14 5/16 5/16 E06B 7/12 E06B 7/12 B01J 23/64 103M ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/34 B01J 23/34 M 23/652 23/84 ZABM 23/84 ZAB 23/85 ZABM 23/85 ZAB 23/89 ZABM 23/89 ZAB 27/053 ZABM 27/053 ZAB 37/02 301Z 37/02 301 C09D 5/14 C09D 5/14 5/16 5/16 E06B 7/12 E06B 7/12 B01J 23/64 103M

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体光触媒表面に固体酸を形成させたこ
とを特徴とする光触媒。
1. A photocatalyst wherein a solid acid is formed on the surface of a semiconductor photocatalyst.
【請求項2】前記半導体光触媒が、TiO2 、Bi2
3 、In23 、WO3 、ZnO、SrTiO3 、Fe
23 およびSnO2 からなる群から選ばれる1種以上
の半導体光触媒からなる請求項1の光触媒。
2. The method according to claim 1, wherein the semiconductor photocatalyst is TiO 2 , Bi 2 O
3 , In 2 O 3 , WO 3 , ZnO, SrTiO 3 , Fe
2 O 3 and claim 1 of the photocatalyst comprising one or more semiconductor optical catalyst selected from the group consisting of SnO 2.
【請求項3】半導体光触媒表面に形成された固体酸に、
Fe、Mn、Pt、Os、Ir、Ru、PdおよびRh
からなる群から選ばれる1種以上の金属または該金属含
有化合物が添加されてなる請求項1または2の光触媒。
3. A solid acid formed on the surface of a semiconductor photocatalyst,
Fe, Mn, Pt, Os, Ir, Ru, Pd and Rh
The photocatalyst according to claim 1, wherein at least one metal selected from the group consisting of or a metal-containing compound is added.
【請求項4】前記金属または該金属含有化合物の添加量
が、金属に換算して0.5〜10重量%である請求項3
の光触媒。
4. The addition amount of said metal or said metal-containing compound is 0.5 to 10% by weight in terms of metal.
Photocatalyst.
【請求項5】基体上に形成された半導体光触媒層上に、
固体酸を形成する酸化物の前駆体溶液を塗布した後、熱
処理を行って半導体光触媒に固体酸を担持させることを
特徴とする光触媒の製造方法。
5. A semiconductor photocatalyst layer formed on a substrate,
A method for producing a photocatalyst, comprising applying a precursor solution of an oxide that forms a solid acid, and then performing a heat treatment to support the solid acid on the semiconductor photocatalyst.
【請求項6】半導体光触媒層中の結晶子径が20nm以
下となる条件で半導体光触媒層を形成する請求項5の光
触媒の製造方法。
6. The method for producing a photocatalyst according to claim 5, wherein the semiconductor photocatalyst layer is formed under the condition that the crystallite diameter in the semiconductor photocatalyst layer is 20 nm or less.
【請求項7】固体酸を形成する酸化物の前駆体溶液とし
て、SO4 、WO3 、MoO3 およびB23 からなる
群から選ばれる1種以上の酸化物の前駆体溶液を用いる
請求項5または6の光触媒の製造方法。
7. A precursor solution of one or more oxides selected from the group consisting of SO 4 , WO 3 , MoO 3 and B 2 O 3 as a precursor solution of an oxide forming a solid acid. Item 7. The method for producing a photocatalyst according to item 5 or 6.
JP8270270A 1996-10-11 1996-10-11 Photocatalyst and production thereof Withdrawn JPH10113563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8270270A JPH10113563A (en) 1996-10-11 1996-10-11 Photocatalyst and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8270270A JPH10113563A (en) 1996-10-11 1996-10-11 Photocatalyst and production thereof

Publications (1)

Publication Number Publication Date
JPH10113563A true JPH10113563A (en) 1998-05-06

Family

ID=17483918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8270270A Withdrawn JPH10113563A (en) 1996-10-11 1996-10-11 Photocatalyst and production thereof

Country Status (1)

Country Link
JP (1) JPH10113563A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235204A (en) * 1997-02-27 1998-09-08 Toto Ltd Photocatalytic hydrophilic member
KR20020031054A (en) * 2000-10-20 2002-04-26 고오사이 아끼오 Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
WO2003080244A1 (en) * 2002-03-25 2003-10-02 Sumitomo Titanium Corporation Titanium oxide photocatalyst, process for producing the same and application
WO2013008718A1 (en) * 2011-07-08 2013-01-17 日産自動車株式会社 Hydrophilic member and method for producing same
JP2016016337A (en) * 2014-07-04 2016-02-01 シャープ株式会社 Photocatalytic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235204A (en) * 1997-02-27 1998-09-08 Toto Ltd Photocatalytic hydrophilic member
KR20020031054A (en) * 2000-10-20 2002-04-26 고오사이 아끼오 Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
WO2003080244A1 (en) * 2002-03-25 2003-10-02 Sumitomo Titanium Corporation Titanium oxide photocatalyst, process for producing the same and application
US7521133B2 (en) 2002-03-25 2009-04-21 Osaka Titanium Technologies Co., Ltd. Titanium oxide photocatalyst, process for producing the same and application
WO2013008718A1 (en) * 2011-07-08 2013-01-17 日産自動車株式会社 Hydrophilic member and method for producing same
JPWO2013008718A1 (en) * 2011-07-08 2015-02-23 日産自動車株式会社 Hydrophilic member and method for producing the same
JP2016016337A (en) * 2014-07-04 2016-02-01 シャープ株式会社 Photocatalytic material

Similar Documents

Publication Publication Date Title
US7858201B2 (en) Titanium oxide photocatalyst, method for producing same and use thereof
US7521133B2 (en) Titanium oxide photocatalyst, process for producing the same and application
JP5157561B2 (en) Visible light responsive photocatalyst and method for producing the same
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
JP4883912B2 (en) Visible light responsive photocatalyst and method for producing the same
US20070248831A1 (en) Titanium Oxide Base Photocatalyst, Process for Producing the Same and Use Thereof
JP2000051708A (en) Photocatalyst coating film and its forming method
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
EP2000208A9 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
EP2133311B1 (en) Zirconium oxalate sol
JPH06205977A (en) Production of photocatalystic composition and photocatalystic composition
JP5118068B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
JP2001303276A (en) Enamel material
JPH11169726A (en) Functional material having photocatalytic function and composite functional material and manufacture thereof
JPH10113563A (en) Photocatalyst and production thereof
JP2000312830A (en) Photocatalyst composite material and production thereof
JP5313051B2 (en) Zirconium oxalate sol
JP2007289933A (en) Visible light-response type titanium oxide photocatalyst, manufacturing method and application of the same
JPH09225303A (en) Photocatalyst composition, its manufacture, and substrate with photocatalyst composition
JP2006198465A (en) Photocatalyst and its production method
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP2003135972A (en) Porous thin film containing photocatalyst and coating agent
JP2002028494A (en) Photocatalyst carrier, and producing method thereof
JP3595996B2 (en) Photocatalyst composition and method for producing the same
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050720