KR20000042008A - Method of manufacturing molten metal with ferrite structure - Google Patents

Method of manufacturing molten metal with ferrite structure Download PDF

Info

Publication number
KR20000042008A
KR20000042008A KR1019980058049A KR19980058049A KR20000042008A KR 20000042008 A KR20000042008 A KR 20000042008A KR 1019980058049 A KR1019980058049 A KR 1019980058049A KR 19980058049 A KR19980058049 A KR 19980058049A KR 20000042008 A KR20000042008 A KR 20000042008A
Authority
KR
South Korea
Prior art keywords
steel
ferrite
rolling
strength
temperature
Prior art date
Application number
KR1019980058049A
Other languages
Korean (ko)
Other versions
KR100370473B1 (en
Inventor
서동한
이상우
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1998-0058049A priority Critical patent/KR100370473B1/en
Publication of KR20000042008A publication Critical patent/KR20000042008A/en
Application granted granted Critical
Publication of KR100370473B1 publication Critical patent/KR100370473B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method of manufacturing molten metal with a ferrite structure is provided to have high strength of 65kgf/mm¬2 as well as to meet the demand of molten metal. CONSTITUTION: An alloy steel consists of, by weight %: 0.05-0.2% of C, 0-0.5% of Si, 0.9-1.8% of Mn, 0.08-0.12% of Ti, 0.03-0.08% of V, 0.005-0.01% of N, Fe and incidental impurities. The alloy steel is casts to a steel ingot, and then the steel ingot is heated at a temperature of 1100-1300°C. The steel ingot is rolled at a rolling rate of not less than 50% at an austenitic recrystallization temperature of 850-1000°C. Ferrite is formed by rolling the steel sheet at a rolling rate of not less than 50% at a temperature of 700-850°C and annealing the steel sheet. The steel sheet is rolled at a rolling rate of not less than 50% again to recrystallize the ferrite, and finally cooled down to the normal temperature of 1-10°C.

Description

페라이트 세립형 구조용강 제조방법(Production Method of the high strength Structure steel)Production Method of the high strength Structure steel

본 발명은 페라이트 세립형 구조용강 제조방법에 관한 것으로 상세하게는 항복강도 48㎏f/㎟이상, 인장강도 62㎏f/㎟이상, 연신율2%이상을 갖는 고강도의 65㎏f/㎟급 구조용강 제조방법에 관한 것이다.The present invention relates to a method for manufacturing ferritic fine grained structural steel, specifically, high strength 65 kgf / mm2 structural steel having a yield strength of 48 kgf / mm2 or more, a tensile strength of 62 kgf / mm2 or more, and an elongation of 2% or more. It relates to a manufacturing method.

산업의 발달과 더불어 구조용강은 산업 및 건축, 토목등 많은 분야에서 사용되고 있으며 고강도의 품질을 요구하고 있다.With the development of industry, structural steel is used in many fields such as industry, construction, and civil engineering, and it demands high strength quality.

이는 강의 고강도화에 따라 강의 중량을 낮출 수 있는 장점이 있어 강의 부피와 중량을 줄여주며 필요한 강도의 구조물을 형성시킬 수 있기 때문이다.This is because there is an advantage that the weight of the steel can be lowered according to the strength of the steel to reduce the volume and weight of the steel and to form a structure of the required strength.

일반적으로 구조용강으로 사용되는 강은 인장강도 40∼50㎏f/㎟급으로서 통상의 제어압연(Controlled relling)이나 재결정 제어압연(Recrystallization Controlled rolling) 등의 열간압연을 행한 후에 공냉하거나 경우에 따라서는 가속냉각시키는 방법으로 제조된다.In general, the steel used for structural steel has a tensile strength of 40 to 50kgf / mm2, which is air-cooled after performing hot rolling such as normal controlled rolling or recrystallization controlled rolling. It is prepared by a method of accelerated cooling.

재결정 제어압연(RCR)이란 Ti, V, N 등의 합금원소로 설계한 강에서 스라브재가열과 고온압연시의 결정립 성장의 억제, 압연중의 정적재결정에 의한 결정립 미세화, r→α변태시 탄질화물 석출에 의한 페라이트 결정립 미세화 및 석출강화를 이용하여 FRT(압연종료온도)를 900℃∼1050℃로 높히고도 강도와 충격인상을 높일 수 있는 기술이다.Recrystallized Controlled Rolling (RCR) is the suppression of grain growth during slab reheating and high-temperature rolling in steels designed with alloy elements such as Ti, V, and N, refinement of grains by static recrystallization during rolling, and carbonitride during r → α transformation. It is a technology that can increase the strength and impact impression even if the FRT (rolling end temperature) is increased to 900 ° C to 1050 ° C by using ferrite grain refinement and precipitation strengthening.

또한 강도를 증가시키기 위하여 합금원소를 첨가하거나 열처리(퀀칭이나 템퍼링)을 실시하는 경우도 있다.In addition, alloying elements may be added or heat treatment (quenching or tempering) may be performed to increase the strength.

그러나 상술한 구조용강은 인장강도가 40∼50㎏f/㎟급으로서 수요자의 고강도 구조용강에 부합하지 못하여 근래에는 고강도의 60㎏f/㎟급 구조용강 제조방법이 발표되고 있다.However, the structural steel described above has a tensile strength of 40-50 kgf / mm 2, which does not correspond to the high-strength structural steel of the consumer. Recently, a method of manufacturing high strength 60 kgf / mm 2 structural steel has been announced.

60㎏급 구조용강 제조방법의 일예로는 합금원소의 첨가없이 압연방법을 달리하여 압연함으로 페라이트를 미세화시켜 강도를 향상시키는 것으로 이를 조금더 상세하게 설명하면 오스테나이트 변태온도 직상에서 50%이상을 압연하여 페라이트를 생성시키고 다시 연속해서 50%이상 압연하여 이미 형성된 페라이트를 재결정 시킴으로 페라이트를 미세화하여 강도를 향상시키는 것이다.An example of a 60 kg class structural steel manufacturing method is to improve the strength by miniaturizing the ferrite by rolling by varying the rolling method without adding alloying elements. If this is explained in more detail, rolling 50% or more directly above the austenite transformation temperature By forming ferrite and rolling again 50% or more continuously to recrystallize the already formed ferrite to refine the ferrite to improve the strength.

상술한 압연방법은 포항제철소에서도 98년 특허를 신청한바 있다.The rolling method described above has applied for a patent in 1998 at Pohang Works.

그러나 산업의 발달에 따라 고강도 저중량의 소재를 필요로 하는 운송수단에 소요되는 소재나 부양력을 필요로 하는 기재나 구조물 특히 off shore에 소요되는 구조물등은 끊임 없이 고강도의 소재를 피요로 하는바 이에 부응하기 위하여 조금이라도 강도가 높은 고강도의 구조용강의 개발이 요구되고 있다.However, according to the development of the industry, materials required for transportation that require high strength and low weight materials, substrates or structures requiring flotation, especially structures required for off shore, are constantly demanding high strength materials. In order to achieve this, development of high strength structural steel with a high degree of strength is required.

따라서 본 발명이 이루고자 하는 기술적 과제는 상술한 구조용강의 수요에 적합하며 기존의 구조용강의 강도보다 높은 강도 65㎏f/㎟를 갖는 구조용강의 제조방법을 제공함에 있다.Therefore, the technical problem to be achieved by the present invention is to provide a method for producing a structural steel having a strength of 65kgf / ㎡ higher than the strength of the existing structural steel suitable for the demand of the structural steel described above.

도 1은 발명강과 비교강의 광학현미경 미세조직 사진,1 is an optical microscope microstructure photograph of the invention and comparative steel,

도 2는 발명강의 석출물 미세조직 사진.Figure 2 is a microstructure photograph of the precipitate of the invention steel.

상술한 기술적 과제를 성취시키기 위한 구성은 기존의 압연방법을 이용하여 페라이트를 미세화 시키고 용접성을 저해하지 않는 수준에서 타이타늄을 첨가하여 재가열시 오스테나이트의 결정립 성장을 억제시키고 바나늄을 첨가하여 탄질화물의 석출로 강도를 더욱 향상시키고 이들 석출물에 의해 페라이트의 성장을 억제하여 페라이트를 세립화시킴으로 구성된다.In order to achieve the above-described technical problem, ferrite is refined by using a conventional rolling method and titanium is added at a level that does not impair weldability, thereby suppressing grain growth of austenite when reheating, and adding vanadium to add carbon. Precipitation is further achieved by further improving the strength and inhibiting the growth of ferrite by these precipitates, thereby making the ferrite finer.

이를 상세히 설명하면 다음과 같다.This will be described in detail as follows.

중량비로 C : 0.05∼0.2%, Si : 0∼0.5%, Mn : 0.9∼1.8%, Ti : 0.008∼0.012%, V : 0.03∼0.08%, N : 0.005∼0.01%와 미량의 불가피한 불순 원소 및 Fe로 구성된 합금강을 강괴로 주조하는 단계와, 상술한 강괴를 1100∼1300℃범위에서 가열한 후 오스테나이트 재결정 온도(850∼1000℃)에서 50%이상 압하율로 압연하여 오스테나이트를 미세화시키는 단계와, 상기 오스테나이트가 미세화된 강판을 Ar3-Ae3사이의 돈도(700∼850℃)에서 50%이상 압연을 행한 후 서냉시켜 페라이트를 생성시키는 단계와, 페라이트가 생성된 강판을 다시 50%이상의 압하로 압연하여 압연시의 가공열로 변형된 페라이트를 재결정시키는 단계와,C: 0.05 to 0.2% by weight, Si: 0 to 0.5%, Mn: 0.9 to 1.8%, Ti: 0.008 to 0.012%, V: 0.03 to 0.08%, N: 0.005 to 0.01% and a small amount of unavoidable impurities Casting the alloy steel composed of Fe into a steel ingot, and heating the above-described ingot in a range of 1100 to 1300 ° C. and then rolling it at a reduction ratio of 50% or more at an austenite recrystallization temperature (850 to 1000 ° C.) to refine the austenite. And rolling the fine austenite plated steel sheet at a degree between 700 and 850 ° C. over 50% of Ar 3 to Ae 3 , followed by slow cooling to produce ferrite, and again producing ferrite. Recrystallizing the ferrite deformed by the heat of rolling during rolling by rolling at a pressure of not less than%;

페라이트가 재결정된 강판을 1∼10℃/S로 상온까지 냉각시키는 단계로 구성된다.The ferrite is recrystallized steel sheet is cooled to room temperature at 1 ~ 10 ℃ / S.

이하 상기 성분의 한정이유 및 열간압연 등에 대하여 상세히 설명하면 다음과 같다.Hereinafter, the reason for limitation of the components and hot rolling will be described in detail.

상기 탄소(C)는 함량이 적을 경우 제 2상 조직의 분율이 저하하여 강도가 저하되고, 많을 경우에는 강도는 증가하나 연신율을 해치고 용접성에도 나쁘므로 0.05∼0.2%범위로 한정하는 것이 바람직하다.When the content of carbon (C) is small, the fraction of the second phase structure is lowered, and the strength is lowered. When the carbon (C) is high, the strength is increased but the elongation is deteriorated and the weldability is bad.

상기 규소(Si)는 제강시 탈산제로 첨가되며 고용강화효과도 있으나, 충격천이온도를 높이고, 0.5%이상 첨가되면 용접성이 저하되며 강판 표면에 산화피막이 심하게 형성되므로 그 함량은 0.5%이하로 제한 하는 것이 바람직하다.The silicon (Si) is added as a deoxidizer during steelmaking and also has a solid solution effect, but the impact transition temperature is increased, and when the 0.5% or more is added, the weldability is deteriorated and the oxide film is severely formed on the surface of the steel sheet. It is preferable.

상기 망간(Mn)은 0.9%이하가 되면 강의 경화능을 저하시켜 열간압연후의 냉각시 제 2상 조직인 베이나이트를 형성하기 어려워 강도확보가 어렵고, 1.8%이상 첨가되면 용접성이 저하하므로 그 함량은 0.9∼1.8%로 제한 하는 것이 바람직하다.When the manganese (Mn) is less than 0.9%, the hardenability of the steel is lowered, so that it is difficult to form bainite, which is a second phase structure upon cooling after hot rolling, and thus it is difficult to secure strength. It is preferable to limit it to -1.8%.

상기 타이타늄(Ti)은 TiN 석출물을 형성하여 재가열시에 오스테나이트의 결정립성장을 막고, 압연중 재결정후에 일어나는 결정립 성장을 억제 하는 효과가 있다. 화학양론적인 차이에 따라 석출물의 크기는 달라지게 되는데 적정한 크기의 TiN 석출물을 위하여 Ti의 함량은 0.008∼0.012%이 바람직하다.The titanium (Ti) forms an TiN precipitate to prevent grain growth of austenite during reheating and to suppress grain growth after recrystallization during rolling. Depending on the stoichiometric difference, the size of the precipitates is different. For the TiN precipitates of appropriate size, the content of Ti is preferably 0.008 to 0.012%.

상기 바나듐(V)은 0.01%이하가 되면 강의 탄질화물 형성에 의한 강도 향상 효과가 저하되고 0.08%이상 첨가되면 재가열시에 오스테나이트 강중에 용해시키기가 어려우므로 그 함량은 0.01∼0.08%정도로 제한 하는 것이 바람직하다.When the vanadium (V) is less than 0.01%, the strength improvement effect due to carbonitride formation of the steel is lowered, and when added over 0.08%, it is difficult to dissolve in austenite steel during reheating, so the content is limited to about 0.01 to 0.08%. It is preferable.

상기 질소(N)은 TiN이나 V(C,N)을 형성하는 중요한 원소로서 양이 너무 적으면 효과적인 석출물을 기대하기 어렵고 양이 너무 많으면 제조 공정상의 어려움이 있기 때문에 그 함량을 0.005∼0.01%로 하는 것이 바람직하다.Nitrogen (N) is an important element for forming TiN or V (C, N), if the amount is too small it is difficult to expect effective precipitates, if the amount is too large because the difficulty in the manufacturing process, the content is 0.005 ~ 0.01% It is desirable to.

상기 재가열 온도에서 가열온도가 1300℃ 이상일 경우에는 오스테나이트 입자도 너무 조대화 되고 강중에 델타-페라이트가 일부 생성되어 강판의 성질을 열화시키는 문제가 있고, 가열온도가 너무 낮으면 용질원자가 완전히 오스테나이트에 고용되지 않아서 강도 확보가 어렵고, 재결정역압연온도를 맞추기 어려우므로 주괴가열온도는 1100∼1300℃사이로 하는 것이 바람직하다.At the reheating temperature, when the heating temperature is 1300 ° C. or more, the austenite particles are too coarse and delta-ferrite is partially formed in the steel, thereby degrading the properties of the steel sheet. It is preferable that the ingot heating temperature be between 1100 and 1300 ° C because it is difficult to secure the strength because it is not dissolved in.

상기 재결정역압연에서 압연온도가 1000℃이상에서는 오스테나이트가 재결정된다고 하더라도 결정립 크기가 조대하여 다음에 이루어 지는 압연에 의한 페라이트 미세화 효과가 적고 850℃이하에서는 미재결정역이므로 조대한 오스테나이트의 변형에 의해 다음 공정이 이루어지게 되는데 그 때의 페라이트 미세화 효과는 작다.In the recrystallization reverse rolling, even if the austenite is recrystallized at a rolling temperature of 1000 ° C. or higher, the grain size is coarse, so that the ferrite refining effect is small due to the subsequent rolling. By this process, the following process is performed, and the ferrite refinement effect at that time is small.

상기 미재결정역(Ar3∼Ae3)에서의 압연은 오스테나이트에서 페라이트로 변태가 되기 직전에 압연을 행하여 변형대 생성을 극대화 시키고자 하는 것으로 이때 압하량이 50%이상을 주어야 하고 압연후 페라이트를 30%이상 생성할 때까지 서냉하고 다시 압연을 50%이상을 하여 페라이트를 재결정시킨다.The rolling in the non-recrystallization zone (Ar3 ~ Ae3) is to maximize the generation of strain bands by rolling just before transformation from austenite to ferrite. At this time, the rolling reduction should give more than 50% and the ferrite after rolling 30% Slow cooling until the above-mentioned production is performed, and rolling is again 50% or more to recrystallize ferrite.

상기 냉각 속도는 너무 느리면 생성되는 페라이트의 입도가 조대해지고 너무 바르면 마르텐사이트나 하부베이나이트의 생성으로 연속항복(Continuous yielding)이 발생하여 항복강도가 저하하고 또한 연성이 저하되므로 1∼10℃/S로 한정하는 것이 바람직하다.If the cooling rate is too slow, the grain size of the ferrite produced is coarse, and if it is too straight, continuous yielding occurs due to the formation of martensite or lower bainite, resulting in lower yield strength and lower ductility. It is preferable to limit to.

이하 실시예에 의하여 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the following examples.

〈실시예〉<Example>

중량비로 C : 0.15%, Mn : 1.5%, Si : 0.25%, V : 0.03%, Ti : 0.01%, N : 0.008, P : 0.003, S : 0.003 및 Fe로 구성된 강괴를 1200℃로 가열하여 본 발명 방법인 표 2에 도시된 압연프로세스로 열간압연한 후 상온까지 5℃/S의 냉각속도로 냉각하여 본 발명강의 시편을 제조하였고,Ingots composed of C: 0.15%, Mn: 1.5%, Si: 0.25%, V: 0.03%, Ti: 0.01%, N: 0.008, P: 0.003, S: 0.003 and Fe were heated to 1200 ° C. After the hot rolling in the rolling process shown in Table 2 of the invention method and cooled to room temperature at a cooling rate of 5 ℃ / S to prepare a specimen of the present invention steel,

비교강 1 은 주요성분이 발명강과 동일하며 V이 발명강에 비해 조금 증가된 조성으로 일반적인 제어압연 및 가속냉각(RCR)에 의하여 제조된 강으로 시편을 제조하였다.Comparative steel 1 was prepared from the steel produced by general controlled rolling and accelerated cooling (RCR) with the same composition as the main steel and slightly increased compared to the invention steel.

비교강 2 는 주요성분인 C, Si, Mn성분이 발명강 및 비교강과 동일하며 합금원소가 첨가되지 않은 탄소강으로 표 2에 도시된 압연프로세스를 이용하여 시편을 제조하였다.Comparative steel 2 is a carbon steel, the main components of C, Si, Mn components are the same as the invention steel and comparative steel, and the alloying elements are not added to prepare a specimen using the rolling process shown in Table 2.

표 1은 각 시편의 조성을 나타낸 표로 P,S는 불순물로 강내에 함유된 원소이다.Table 1 shows the composition of each specimen. P and S are impurities contained in the steel as impurities.

표 1Table 1

(wt%)(wt%)

시 편Psalms CC SiSi MnMn PP SS TiTi VV NN 발명강Invention steel 0.150.15 0.250.25 1.51.5 0.0040.004 0.0030.003 0.010.01 0.030.03 0.0080.008 비교강 1Comparative Steel 1 0.150.15 0.250.25 1.51.5 0.020.02 0.0070.007 0.010.01 0.050.05 0.0050.005 비교강 2Comparative Steel 2 0.150.15 0.250.25 1.51.5 0.0040.004 0.0030.003 -- -- --

표 2는 압연프로세스를 표시한 그라프이다.Table 2 is a graph showing the rolling process.

표 2TABLE 2

상술한 바와 같이 제조된 시편에 대한 항복강도, 인장강도, 연신율 페라이트 입도를 측정하여 그 측정 결과를 표 3에 나타 내었다.The yield strength, tensile strength, and elongation ferrite grain size of the specimens prepared as described above were measured, and the measurement results are shown in Table 3.

표 3TABLE 3

항복강도(㎏f/㎟)Yield strength (㎏f / ㎠) 인장강도(㎏f/㎟)Tensile Strength (㎏f / ㎠) 연신율(%)Elongation (%) 페라이트입도(㎛)Ferrite Particle Size (㎛) 제조방법Manufacturing method 발명강Invention steel 5353 6565 2727 33 2단압연2-stage rolling 비교강 1Comparative Steel 1 4040 5454 3030 1010 RCRRCR 비교강 2Comparative Steel 2 5151 6161 2828 44 2단압연2-stage rolling

상기 표 3에 나타난 바와 같이, 발명강은 항복강도 53㎏f/㎟, 연신율 27%이며, 페라이트 결정립 3㎛이다. 비교강 1은 RCR 법으로 제조된 것으로 1250℃에서 2시간 재가열하고 난 후 6∼7패스로 제어압연을 행한 후 FRT 950℃에서 5℃/S으로 가속냉각하여 제조된 것으로 항복강도 40㎏f/㎟, 인장강도 54㎏f/㎟, 연신율은 30%였다. 본 발명강은 석출강화 효과가 큰 바나듐의 함량이 더 높은 비교강 1보다 인장강도가 더 높았다. 이것은 발명강의 경우 오스테나이트의 재결정역에서의 압연에 의하여 오스테나이트 결정이 재가열온도에서 보다 1/10로 작아지고(250→25㎛), 비교강의 경우는 재결정역에서의 오스테나이트 재결정정 입도가 1/5정도로 작다(250→50㎛). 이는 페라이트가 생성될 수 있는 유효입계 면적이 그 만큼 발명강의 경우가 더 크다는 것을 말한다. 발명강의 경우 도 1에서와 같은 760℃에서의 연속압연은 먼저 1-step 압연의 경우 앞서 작아진 오스테나이트를 60%의 변형에 의해 조직내의 변형대를 증가시켜서 페라이트의 핵생성 장소를 증대시키고 그 후 서냉에 의해 조직내의 페라이트가 변태된 후 연속된 2-step의 압연으로 가공발열에 의하여 이미 생성된 페라이트를 재결정시켰다. 이때 탄질화물에 의해 페라이트의 조대화를 최대한 억제시키고 이어서 -5℃/S의 냉각속도로 상온까지 냉각하여 페라이트가 조대하지 않고 연속항복을 일으키는 마르텐사이트나 베이나이트의 생성을 억제하고 미세한 페라이트와 펄라이트를 얻었다. 도 1에 발명강(가)와 비교강 1(나), 비교강 2(다)의 광학현미경 미세조직을 보였다. 페라이트 결정립의 크기는 발명강의 경우 3㎛이고, 비교강 1의 경우는 10㎛, 비교강 2의 경우는 4㎛로서 발명강의 경우가 제일 작았다. 또한 발명강은 동일한 압연조건으로 제조된 비교강 2에 비하여 항복강도와 인장강도가 상승하였는데 이는 미재결정압연 후 도 2에서와 같은 바나듐 탄질화물의 석출에 의한 강화효과와 페라이트 결정립의 성장억제로 인한 효과에 의한 것이다.As shown in Table 3, the invention steel has a yield strength of 53 kgf / mm 2, an elongation of 27%, and a ferrite grain of 3 μm. Comparative steel 1 was manufactured by RCR method, and after reheating at 1250 ° C. for 2 hours, control rolling was carried out in 6 to 7 passes and accelerated cooling at 5 ° C./S at FRT 950 ° C., yield strength of 40 kgf / Mm 2, tensile strength 54 kgf / mm 2, and elongation were 30%. The steel of the present invention had a higher tensile strength than Comparative Steel 1 having a higher content of vanadium having a greater precipitation strengthening effect. This is because austenite crystals are reduced by 1/10 (250 → 25㎛) at the reheating temperature due to rolling in the recrystallization zone of austenite in the case of the inventive steel, and in the recrystallization zone, the austenite recrystallization grain size in the recrystallization zone is 1 It is small as about / 5 (250 → 50㎛). This means that the effective grain boundary area where ferrite can be produced is larger in the case of the invention steel. In the case of the invention steel, continuous rolling at 760 ° C. as shown in FIG. 1 first increases the strain band in the tissue by 60% deformation of austenite, which was previously reduced in the case of 1-step rolling, thereby increasing the nucleation site of the ferrite and After the ferrite in the tissue was transformed by slow cooling, the ferrite had already been recrystallized by processing exotherm by continuous 2-step rolling. At this time, the coarsening of ferrite is suppressed by carbonitride as much as possible, followed by cooling to room temperature at a cooling rate of -5 ° C / S to suppress the formation of martensite or bainite which causes continuous yield without ferrite being coarse and fine ferrite and pearlite. Got. 1 shows the optical microscope microstructure of the inventive steel (a), comparative steel 1 (b), and comparative steel 2 (c). The size of the ferrite grains was 3 µm for the inventive steel, 10 µm for the comparative steel 1, and 4 µm for the comparative steel 2, which was the smallest for the invention steel. In addition, the yield strength and the tensile strength of the inventive steel were increased compared to Comparative Steel 2 manufactured under the same rolling conditions. This is due to the reinforcing effect of precipitation of vanadium carbonitride as shown in FIG. It is due to the effect.

이러한 효과로 인해 Ar-Ae3영역에서 2-pass 압연에 의해 제조한 발명강의 경우가 다패스로 압연한 비교강의 경우보다 그리고 합긍이 첨가되지 않고 2-pass압연한 경우보다 페라이트가 미세한 조직을 갖게 되고 석출물에 의한 강도 상승으로 우수한 기계적성질을 나타내었다. 이와같이, 압연하는 동안 탄질화물을 석출시키고 페이트 변태 직전에 압하를 하고 다시 연속적인 압연을 행하여 미세한 페라이트를 얻을 수 있었고 그에 따라 페라이트 세립형 65㎏f/㎟급의 구조용강을 얻을 수 있었다.Due to this effect, the ferritic steel produced by the 2-pass rolling in the Ar-Ae3 region has a finer structure than that of the comparative steel rolled by the multipass and the 2-pass rolling without adding the joint. Increasing strength by precipitates showed excellent mechanical properties. In this way, carbonitride was precipitated during rolling, pressed down immediately before the fate transformation, and continuous rolling again to obtain fine ferrite, thereby obtaining ferrite fine grain type 65 kgf / mm 2 structural steel.

본 발명의 효과로는 강도향상을 위하여 합금 원소를 첨가하여 오스테나이트의 결정립 성장을 최대한 억제시키고, 냉각하는 동안 탄질화물을 석출시키고, Ar3-Ae3 사이의 온도에서 연속적으로 2번의 압연을 행하여 가속냉각시킴으로 미세한 페라이트를 얻고 페라이트의 결정립 성장을 석출물로 억제시켜 인장강도가 65㎏f/㎟급 구조용강을 제조함으로써 고강도의 저중량을 필요로 하는 off shore 또는 수송수단에 사용되는 구조용강의 고강도를 이루어 수송시 경비절감은 물론 제작경비 및 mainteance경비를 절감시키는 효과가 있다.In order to enhance the strength of the present invention, an alloying element is added to suppress the grain growth of austenite as much as possible, to precipitate carbonitride during cooling, and to perform accelerated cooling by performing two rollings continuously at a temperature between Ar3-Ae3. By obtaining fine ferrite and suppressing the grain growth of ferrite with precipitates, the structural strength of 65kgf / mm2 grade steel is produced to achieve high strength of structural steel used for off shore or transportation means requiring high strength and low weight. Cost savings, as well as manufacturing and mainteance costs can be reduced.

Claims (1)

인장강도 65㎏f/㎟급 구조용강을 제조하는 방법에 있어서 중량비로 C : 0.05∼0.2%, Si : 0∼0.5%, Mn : 0.9∼1.8%, Ti : 0.08∼0.12%, V : 0.03∼0.08%, N : 0.005∼0.01%와 미량의 불가피한 불순원소 및 Fe로 조성된 합금강을 강괴로 주조하는 단계와, 주조된 강괴를 1100∼1300℃범위에서 가열한 후 오스테나이트 재경정온도(850∼1000℃)에서 50%이상 압하율로 압연하여 오스테나이트를 미세화 시키는 단계와,Tensile strength 65kgf / mm2 class structural steel in the weight ratio of C: 0.05 to 0.2%, Si: 0 to 0.5%, Mn: 0.9 to 1.8%, Ti: 0.08 to 0.12%, V: 0.03 to Casting alloy steel composed of 0.08%, N: 0.005% to 0.01% and a small amount of unavoidable impurity elements and Fe into steel ingots, and heating the cast steel in the range of 1100 to 1300 ° C., followed by austenite re-correction temperature (850 to 1000 ℃) at a rolling reduction of 50% or more to refine the austenite, 상기 오스테나이트가 미세화된 강판을 Ar3-Ae3사이의 온도(700∼850℃)에서 50%이상 압연을 행한 후 서냉시켜 페라이트를 생성시키는 단계와,50% or more of the austenitic steel sheet is rolled at a temperature (700 to 850 ° C.) between Ar3-Ae3, followed by slow cooling to produce ferrite; 페라이트가 생성된 강판을 다시 50%이상의 압하로 압연하여 압연시 가공열로 변형된 페라이트를 재결정시키는 단계와,Re-crystallizing the ferrite deformed by the processing heat during rolling by rolling the steel sheet on which ferrite is produced by rolling over 50% again; 페라이트가 재결정된 강판을 1∼10℃/S로 상온까지 냉각시키는 단계로 구성된 것을 특징으로 하는 페라이트 세립형 구조용강 제조방법.A ferrite fine grain structure steel manufacturing method comprising the step of cooling the steel sheet recrystallized ferrite to room temperature at 1 ~ 10 ℃ / S.
KR10-1998-0058049A 1998-12-24 1998-12-24 A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites KR100370473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0058049A KR100370473B1 (en) 1998-12-24 1998-12-24 A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0058049A KR100370473B1 (en) 1998-12-24 1998-12-24 A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites

Publications (2)

Publication Number Publication Date
KR20000042008A true KR20000042008A (en) 2000-07-15
KR100370473B1 KR100370473B1 (en) 2003-05-12

Family

ID=19565252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0058049A KR100370473B1 (en) 1998-12-24 1998-12-24 A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites

Country Status (1)

Country Link
KR (1) KR100370473B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554756B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 A Method of Manufacturing the Fine-Grained Ferrite High-Strength Steel
KR100946049B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the high strength steel by grain refinement
KR100946051B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the good weldability and high strength thick plate steel
KR100946046B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Manufacturing of fine-grained low-carbon ferritic steels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554756B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 A Method of Manufacturing the Fine-Grained Ferrite High-Strength Steel
KR100946049B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the high strength steel by grain refinement
KR100946051B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the good weldability and high strength thick plate steel
KR100946046B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Manufacturing of fine-grained low-carbon ferritic steels

Also Published As

Publication number Publication date
KR100370473B1 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
EP1035222B1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
KR100431851B1 (en) structural steel having High strength and method for menufactreing it
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPS59166651A (en) Two-phase high tensile hot rolled steel plate comprising two-phase structure of ultra-fine grain ferrite phase and hardening phase and preparation tehereof
KR100370473B1 (en) A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites
KR100431850B1 (en) High strength steel having low yield ratio and method for manufacturing it
KR100544645B1 (en) Manufacturing method of multiphase cold rolled steel sheet with good formability
KR100352596B1 (en) Manufacturing method of 60KGF / mm2 structural steel
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JPS60149719A (en) Manufacture of hot-rolled high-tension steel sheet
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
KR970007203B1 (en) Method for making hot rolled steel sheet having excellent treatment
KR19980044921A (en) Manufacturing method of low alloy composite structure high strength cold rolled steel sheet with excellent press formability
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
KR100419647B1 (en) A METHOD FOR MANUFACTURING 50kgf/㎟ GRADE BUILDING STEEL PLATE WITH HIGH TEMPERATURE STRENGTH
JPS6367524B2 (en)
JPH02179847A (en) Hot rolled steel plate excellent in workability and its production
KR100325705B1 (en) Method of manufacturing high strength steel sheet
KR100530058B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability
KR100256357B1 (en) The manufacturing method for high strength steel sheet with cu precipitation hardening type
KR100530075B1 (en) High strength steel sheet having superior formability and method for manufacturing there of
KR100368222B1 (en) THE METHOD OF MANUFACTURING 58kgf/㎟ GRADE BUILDING STEEL SHEETS WITH HIGH TEMPREATURE STRENGTH

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130117

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140116

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150113

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160118

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170118

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee