KR100530058B1 - Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability - Google Patents

Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability Download PDF

Info

Publication number
KR100530058B1
KR100530058B1 KR10-2001-0073939A KR20010073939A KR100530058B1 KR 100530058 B1 KR100530058 B1 KR 100530058B1 KR 20010073939 A KR20010073939 A KR 20010073939A KR 100530058 B1 KR100530058 B1 KR 100530058B1
Authority
KR
South Korea
Prior art keywords
less
rolling
steel
steel sheet
cold rolled
Prior art date
Application number
KR10-2001-0073939A
Other languages
Korean (ko)
Other versions
KR20030052249A (en
Inventor
진광근
박기현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2001-0073939A priority Critical patent/KR100530058B1/en
Publication of KR20030052249A publication Critical patent/KR20030052249A/en
Application granted granted Critical
Publication of KR100530058B1 publication Critical patent/KR100530058B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

본 발명은 사이드 판넬(Side panel)이나 리어플로어(Rear floor)와 같이 심한 스트레칭과 드로잉 가공을 받는 자동차 대형 판넬부품등에 사용되는 냉연강판의 제조방법에 관한 것으로서, 강의 화학성분, 슬라브 냉각속도, 열간압연 압하율 및 압연속도를 적절히 제어함으로써 티타늄 첨가 고순도 극저탄소강에서 열연판의 결정립 성장을 억제함 동시에 연성과 드로잉성을 향상시킬 수 있는 냉연강판의 제조방법을 제공하고자 하는데, 그 목적이 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cold rolled steel sheet used in automobile large panel parts subjected to severe stretching and drawing processing, such as side panels and rear floors. It is an object of the present invention to provide a method for manufacturing a cold rolled steel sheet which can improve the ductility and drawing property while suppressing grain growth of hot rolled sheet in titanium-added high purity ultra low carbon steel by appropriately controlling the rolling reduction rate and rolling speed.

본 발명은 중량%로 C:0.001-0.003%이하, Mn:0.5%이하, P:0.003-0.02%이하, S:0.003%이하, N:0.002%이하, 산가용Al:0.01-0.05%, Ti: [4C+1.5S+3.8N + 0.005] ≤ Ti ≤[4C+1.5S+3.8N + 0.020], 나머지 Fe로 조성된 강의 슬라브 냉각과정시 1300℃에서 900℃까지 분당 10℃-100℃의 속도로 냉각한 다음, 1000-1250℃로 가열하여 최종 압연의 압하율을 5%-15%, 압연속도를 분당 600m-1200m으로 Ar3이상에서 마무리 열간압연하는 조건으로 열간압연하고 650-750℃로 권취한 다음, 상온으로 냉각하여 산세후 80%-90%범위로 냉간압연하고 820℃~900℃로 가열하여 10-180초 동안 소둔하여 연성과 드로잉성이 우수한 냉연강판을 제조하는 방법을 그 요지로 한다.In the present invention, by weight% C: 0.001-0.003% or less, Mn: 0.5% or less, P: 0.003-0.02% or less, S: 0.003% or less, N: 0.002% or less, acid value Al: 0.01-0.05%, Ti : [4C + 1.5S + 3.8N + 0.005] ≤ Ti ≤ [4C + 1.5S + 3.8N + 0.020], 10 ℃ -100 ℃ per minute from 1300 ℃ to 900 ℃ during slab cooling of steel composed of remaining Fe After cooling at speed, it was heated to 1000-1250 ℃ and hot-rolled under the condition of finishing hot rolling at Ar 3 or higher at 5% -15% of final rolling and 600m-1200m per minute, rolling speed at 650-750 ℃ After winding to room temperature, cold-rolled to 80% -90% after pickling, heated to 820 ℃ ~ 900 ℃ and annealed for 10-180 seconds to produce cold rolled steel sheet having excellent ductility and drawing property. Make a point.

Description

연성 및 드로잉성이 우수한 냉연강판의 제조방법{Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability} Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability}

본 발명은 사이드 판넬(Side panel)이나 리어플로어(Rear floor)와 같이 심한 스트레칭과 드로잉 가공을 받는 자동차 대형 판넬부품등에 사용되는 냉연강판의 제조방법에 관한 것으로서, 보다 상세하게는 연성과 드로잉성이 우수한 냉연강판 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing cold rolled steel sheets used in automobile large panel parts subjected to severe stretching and drawing processing, such as side panels and rear floors. It relates to an excellent cold rolled steel sheet manufacturing method.

자동차용 냉연강판의 연성과 드로잉성을 높이는 방법으로는 극저탄소강에 티타늄, 니오비움 또는 티타늄-니오비움을 첨가하여 열간압연 과정에서 강 중 탄소와 질소를 석출시킴으로써 소둔과정에서 결정립 성장을 용이하게 하여 연성을 확보하고 또한 (111)집합조직을 가지는 결정립의 성장을 촉진시켜 드로잉성을 동시에 확보하는 방법이 주로 이용되고 있다. In order to improve the ductility and drawing property of cold rolled steel sheet for automobiles, titanium, niobium or titanium-niobium is added to ultra low carbon steel to precipitate carbon and nitrogen in the steel during hot rolling to facilitate grain growth during annealing. Therefore, a method of securing ductility and promoting the growth of crystal grains having a (111) aggregate structure to simultaneously secure drawing property is mainly used.

그러나, 티타늄 첨가 극저탄소강 슬라브를 만드는 연속주조 과정에서 슬라브 표면에 수냉을 하는데 이때 표층의 냉각속도는 고온역에서 매우 빠르기 때문에 티타늄이 강중 황이나 질소와 결합이 어렵게 되고 미석출된 티타늄 양이 증가하게 된다. 통상 슬라브는 1000℃이상으로 가열한 다음 열간압연을 하는데 가열과정에서 미석출된 고용상태의 티타늄이 산소와 결합하여 조대한 티타늄 산화물을 만들기 때문에 열간압연 이후에 미세한 티타늄 석출물 형성이 감소하여 열간압연 이후 고온영역에서 결정립 성장을 억제할 수 없게 되어 표층에 조대한 결정립이 만들어진다. However, in the continuous casting process to make titanium-added ultra-low carbon steel slab, the surface of the slab is cooled by water. At this time, the cooling rate of the surface layer is very fast in the high temperature range, which makes it difficult for titanium to combine with sulfur or nitrogen in the steel and the amount of unprecipitated titanium increases. Done. In general, the slab is heated to more than 1000 ℃ and then hot rolled. Since the solid titanium unprecipitated in the heating process combines with oxygen to form coarse titanium oxide, the formation of fine titanium precipitates after hot rolling decreases, resulting in hot rolling. In the high temperature region, grain growth cannot be suppressed, resulting in coarse grains in the surface layer.

이러한 조대한 결정립은 연성과 드로잉성을 나쁘게 하기 때문에 티타늄을 첨가한 고순도 극저탄소강 제조에는 문제가 된다. Since these coarse grains deteriorate ductility and drawability, there is a problem in manufacturing high purity ultra low carbon steel containing titanium.

열간압연 직후의 결정립 성장을 억제하고 미세화하기 위한 방법으로는 일본 특개소61-276930, 일본 특개평1-177322, 및 일본 특개평7-70650에서와 같이 티타늄 이외에 니오비움을 복합첨가하는 방법과 압연출측의 누적압하율을 상향시키거나 압연직후 냉각개시 시간과 냉각속도를 제어하는 방법이 있다. As a method for suppressing and minimizing grain growth immediately after hot rolling, as in Japanese Patent Application Laid-Open No. 61-276930, Japanese Patent Application Laid-Open No. 1-77322, and Japanese Patent Application Laid-open No. Hei 7-70650, a combination of niobium and titanium is added. There is a method of increasing the cumulative reduction ratio on the production side or controlling the cooling start time and cooling rate immediately after rolling.

열연판의 결정립을 미세화시키는 것으로 알려진 니오비움을 첨가하는 방법의 경우에는 열간압연후 냉각후기 또는 권취후에 탄화물이 석출되어 결정립 성장을 억제하기 때문에 열간압연 직후처럼 고온에서는 결정립 억제효과가 없다. In the case of adding niobium, which is known to refine the grains of a hot rolled sheet, carbides are precipitated after cooling after hot rolling or after winding, thereby suppressing grain growth. Therefore, there is no effect of suppressing grains at high temperatures as immediately after hot rolling.

또한, 열간압연에서 누적압하율을 높이는 방법의 경우에는 압연판의 중심부 결정립을 미세화하는데는 효과가 있으나 표층 결정립의 미세화에는 오히려 역효과가 있다. 즉, 열간압연 직후 압연에 의하여 표층에 부여된 변형에너지는 결정립 성장의 원인이 되기 때문에(변형 소둔 효과라고 함) 높은 누적압하율의 적용은 결정립을 조대하게 만드는 문제가 있다. In addition, the method of increasing the cumulative reduction ratio in hot rolling is effective in miniaturizing the central grains of the rolled plate, but has an adverse effect in miniaturizing the surface grains. That is, since the strain energy applied to the surface layer by rolling immediately after hot rolling causes grain growth (called the strain annealing effect), the application of a high cumulative reduction ratio causes a problem of making the grain coarse.

본 발명자들은 상기한 종래기술의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 강의 화학성분, 슬라브 냉각속도, 열간압연 압하율 및 압연속도를 적절히 제어함으로써 티타늄 첨가 고순도 극저탄소강에서 열연판의 결정립 성장을 억제함 동시에 연성과 드로잉성을 향상시킬 수 있는 냉연강판의 제조방법을 제공하고자 하는데, 그 목적이 있다. The present inventors conducted research and experiments to solve the above-mentioned problems of the prior art, and based on the results, the present invention proposes the present invention, the present invention is a chemical composition of steel, slab cooling rate, hot rolling reduction rate and rolling It is an object of the present invention to provide a method for manufacturing a cold rolled steel sheet capable of improving ductility and drawing property while suppressing grain growth of a hot rolled sheet in titanium-added high purity ultra low carbon steel by appropriately controlling the speed.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로 C:0.001-0.003%이하, Mn:0.5%이하, P:0.003-0.02%이하, S:0.003%이하, N:0.002%이하, 산가용Al:0.01-0.05%, Ti: [4C+1.5S+3.8N + 0.005] ≤ Ti ≤[4C+1.5S+3.8N + 0.020], 나머지 Fe로 조성된 강의 슬라브 냉각과정시 1300℃에서 900℃까지 분당 10℃-100℃의 속도로 냉각한 다음, 1000-1250℃로 가열하여 최종 압연의 압하율을 5%-15%, 압연속도를 분당 600m-1200m으로 Ar3이상에서 마무리 열간압연하는 조건으로 열간압연하고 650-750℃로 권취한 다음, 상온으로 냉각하여 산세후 80%-90%범위로 냉간압연하고 820℃~900℃로 가열하여 10-180초 동안 소둔하여 연성과 드로잉성이 우수한 냉연강판을 제조하는 방법에 관한 것이다.In the present invention, by weight% C: 0.001-0.003% or less, Mn: 0.5% or less, P: 0.003-0.02% or less, S: 0.003% or less, N: 0.002% or less, acid value Al: 0.01-0.05%, Ti : [4C + 1.5S + 3.8N + 0.005] ≤ Ti ≤ [4C + 1.5S + 3.8N + 0.020], 10 ℃ -100 ℃ per minute from 1300 ℃ to 900 ℃ during slab cooling of steel composed of remaining Fe After cooling at speed, it was heated to 1000-1250 ℃ and hot-rolled under the condition of finishing hot rolling at Ar 3 or higher at 5% -15% of final rolling and 600m-1200m per minute, rolling speed at 650-750 ℃ After winding to cold at room temperature, cold rolled to 80% -90% range after pickling, heated to 820 ℃ ~ 900 ℃ annealing for 10-180 seconds to produce a cold rolled steel sheet excellent in ductility and drawing will be.

또한, 본 발명은 상기한 강에 Nb:0.003-0.01% 및 B:0.0001-0.0010%를 1종 또는 2종을 추가로 첨가한 연성과 드로잉성이 우수한 냉연강판의 제조방법에 관한 것이다.In addition, the present invention relates to a method for producing a cold rolled steel sheet having excellent ductility and drawing property by adding one or two of Nb: 0.003-0.01% and B: 0.0001-0.0010% to the above-described steel.

이하, 본 발명의 화학성분 및 제조조건에 대하여 상세히 설명한다. Hereinafter, the chemical components and the production conditions of the present invention will be described in detail.

본 발명은 티타늄(Ti)을 첨가한 고순도 극저탄소 알루미늄 킬드(Al-killed)강에 슬라브 냉각과정에서 냉각속도를 제어함으로써 표층에 티타늄 석출물을 형성시키고, 열간압연 최종압연에서 압하율과 압연속도를 제어하여 표층 결정립의 성장속도를 제한함으로써 열간압연후 표층의 결정립이 과도하게 성장하는 것을 억제한다.The present invention forms a titanium precipitate on the surface layer by controlling the cooling rate in the slab cooling process in the high purity ultra-low carbon aluminum-kilted (Al-killed) steel containing titanium (Ti), and the reduction rate and rolling speed in the hot rolling final rolling By controlling the growth rate of the surface crystal grains, excessive growth of the grains of the surface layer after hot rolling is suppressed.

또한, 본 발명은 강중 탄소와 황의 양 및 열간압연후 권취온도를 적절히 제어하여 열간압연판의 석출물의 일부를 소둔과정에서 재용해가 용이한 미세한 티타늄탄화물로 만들어 줌으로써 소둔과정 중 재결정과정에서 (111)집합조직을 확보하여 드로잉성을 확보하고 미량의 탄소를 용출시켜 입계를 강화함으로써 연성을 크게 개선시킨다.In addition, the present invention by controlling the amount of carbon and sulfur in the steel and the coiling temperature after hot rolling to make a part of the precipitate of the hot rolled sheet into a fine titanium carbide that is easy to re-dissolve in the annealing process (111) ) Securing drawing structure and securing drawing property, eluting trace amount of carbon to strengthen grain boundary, greatly improving ductility.

또한, 본 발명은 용융아연도금 특성을 개선시킨다.The present invention also improves hot dip galvanizing properties.

강 중 탄소(C)의 함량이 0.001%이하인 경우에는 열간압연 직후 결정립 성장속도가 너무 빨라 조대립이 형성되어 드로잉성이 열화되고 그 양이 너무 많으면 다량의 미세한 티타늄 탄화물을 형성하여 연성을 해치기 때문에 그 함량은 0.001-0.003%로 제한하는 것이 바람직하다. If the content of carbon in steel is less than 0.001%, the grain growth rate is too fast immediately after hot rolling, and coarse grains are formed, and drawing property is deteriorated. If the amount is too large, a large amount of fine titanium carbide forms to damage ductility. Its content is preferably limited to 0.001-0.003%.

상기 망간(Mn)은 과다하게 첨가하면 티타늄 탄화물 형성을 억제하여 드로잉성을 감소시키고, 고용강화에 의하여 연성을 감소시키기므로, 그 함량은 0.5%이하로 제한하는 것이 바람직하다. The manganese (Mn) is excessively added to inhibit the formation of titanium carbide to reduce the drawability, and decrease the ductility by strengthening the solid solution, the content is preferably limited to 0.5% or less.

상기 인(P)은 용강중에 필수적으로 존재하는데 정련과정에서 극도의 농도로 낮추는 경우 비용이 과다하게 소요되고, 또한 고온권취시에 티타늄 인화물을 형성하여 소둔과정에서 재결정온도를 상승시켜 연성과 드로잉성을 저하시키기 때문에 그 함량은 0.003∼0.02%로 제한하는 것이 바람직하다. Phosphorus (P) is essentially present in molten steel, but if it is lowered to an extreme concentration in the refining process, it is excessively costly, and also forms titanium phosphide during the high temperature winding to increase the recrystallization temperature in the annealing process to increase the ductility and drawability It is preferable to limit the content to 0.003 to 0.02% because it lowers.

상기 황(S)의 함량이 0.003%이상인 경우에는 티타늄 황화물이 Ti4C2S2에서 TiS로 석출되기 때문에 그 함량은 0.003%이하로 한정하는 것이 바람직하다.When the content of sulfur (S) is 0.003% or more, since titanium sulfide is precipitated as TiS in Ti 4 C 2 S 2 , the content thereof is preferably limited to 0.003% or less.

상기 질소(N)는 강중 티타늄과 결합하여 연성과 드로잉성을 저하시키기 때문에 그 함량은 0.002%이하로 제한하는 것이 바람직하다.Since the nitrogen (N) is combined with titanium in the steel to reduce the ductility and drawability, the content is preferably limited to 0.002% or less.

또한, 산가용 Al의 함량이 0.01%이하인 경우에는 용강의 탈산이 불충분하여 슬라브의 응고과정에서 터짐현상이 발생하고 0.05%이상인 경우에는 입계에 편석하여 연성을 저하시키기 때문에 그 함량은 0.01-0.05%로 제한하는 것이 바람직하다. In addition, if the content of acid-soluble Al is less than 0.01%, the deoxidation of molten steel is insufficient, resulting in bursting during the slag solidification process, and if it is more than 0.05%, segregation at grain boundaries lowers the ductility, so the content is 0.01-0.05%. It is preferable to limit to.

상기 티타늄(Ti)은 강중의 탄소, 황, 질소와 화학양론적으로 완전히 결합하는데 필요한 이론적인 양(Ti=4C+1.5S+3.8N) 이상 첨가하지 않으면 드로잉성이 크게 저하하기 때문에 이론적인 양에 동력학적으로 석출의 불완전 반응을 고려하여 이론적인 양+0.005%를 하한으로 하는 것이 바람직하고, 티타늄 양이 너무 많은 경우에는 연성을 해치기 때문에 이론적인 양+0.020%로 상한을 설정하는 것이 바람직하다.The titanium (Ti) does not add more than the theoretical amount (Ti = 4C + 1.5S + 3.8N) necessary to combine stoichiometrically with carbon, sulfur and nitrogen in the steel, so that the drawability is greatly lowered. It is preferable to lower the theoretical amount + 0.005% to the lower limit in consideration of the incomplete reaction of precipitation, and to set the upper limit to the theoretical amount + 0.020% because the amount of titanium is too high, which impairs the ductility. .

한편, 상기 Nb는 열간압연과정에서 재결정을 지연시키고 권취이후 냉각과정에서 티타늄-니오비움 복합탄화물을 형성하여 열연판의 결정립을 미세화시켜 드로잉성을 증대시키는데 0.003%이하에서는 효과가 매우 작고 0.01%이상에서는 티타늄-니오비움 복합탄화물이 과다하게 형성되어 소둔판의 재결정 온도를 상승시킴으로써 연성을 저하시키기 때문에 그 함량은 0.003-0.01%로 제한하는 것이 바람직하다.On the other hand, Nb delays recrystallization during hot rolling and forms titanium-niobium composite carbide during cooling after winding to refine grains of the hot-rolled sheet to increase drawing ability. The effect is very small at 0.003% or less and 0.01% or more. In the titanium-niobium composite carbide is excessively formed to decrease the ductility by raising the recrystallization temperature of the annealing plate, the content is preferably limited to 0.003-0.01%.

상기 B은 입계에 편석하는 원소로 열간압연시 입계이동을 억제하여 결정립 미세화에 기여하고 또한 고순도화에 따른 입계취화를 방지하기 위하여 첨가한 것으로서, 그 첨가량이 0.0001%이하인 경우에는 첨가효과가 없고, 그 함량이 0.0010%이상인 경우에는 소둔판의 재결정온도를 상승시켜 연성과 드로잉성을 저하시키므로 그 함량은 0.0001-0.0010%로 한정하는 것이 바람직하다. B is added to prevent grain boundary embrittlement by suppressing grain boundary movement during hot rolling as an element segregating at grain boundary, and to prevent grain embrittlement due to high purity, and when the amount is less than 0.0001%, there is no addition effect. If the content is 0.0010% or more, the recrystallization temperature of the annealing plate is increased to decrease the ductility and drawing property, so the content is preferably limited to 0.0001-0.0010%.

상기와 같이 조성되는 강 슬라브를 냉각할 때 냉각속도를 티타늄 황화물, 질화물이 석출하기 시작하는 1300℃에서 석출이 완료되는 900℃까지 분당 10℃-100℃의 속도로 제한하는 것이 바람직하다.When cooling the steel slab formed as described above, it is preferable to limit the cooling rate at a rate of 10 ° C.-100 ° C. per minute from 1300 ° C. at which titanium sulfide and nitride starts to precipitate at 900 ° C. when precipitation is completed.

상기와 같이 슬라브의 냉각속도를 제한한 이유는 슬라브 냉각속도가 너무 느린 경우에는 슬라브 표면에 스케일이 대량 발생하기 때문에 비경제적이고 이보다 빠른 속도로 냉각하면 티타늄 황화물과 질화물이 석출하기 어렵기 때문이다. The reason why the cooling rate of the slabs is limited as described above is that when the slab cooling rate is too slow, a large amount of scale is generated on the surface of the slab, which is uneconomical and it is difficult to precipitate titanium sulfide and nitride when cooled at a higher rate.

상기와 같이 냉각된 슬라브는 열간압연온도를 확보하기 위하여 1000-1250℃로 가열하는데, 그 이유는 가열온도가 1000℃이하인 경우에는 압연온도를 확보하기 어렵고, 1250℃이상인 경우에는 슬라브 내부의 결정립이 너무 크게 되어 드로잉성을 저하시키기 때문이다. The slab cooled as described above is heated to 1000-1250 ° C. in order to secure the hot rolling temperature. The reason is that when the heating temperature is less than 1000 ° C., the slab is difficult to secure the rolling temperature. It is because it becomes so large that it will reduce drawing property.

상기와 같이 가열된 슬라브를 열간압연시 최종 압연에서 압하율은 5-15%로 선정하는 것이 바람직하다.It is preferable to select a reduction ratio of 5-15% in the final rolling of the slab heated as described above during hot rolling.

상기 압하율은 표층 결정립의 성장에너지로 작용하는데 압하율이 5%이하인 경우에는 열간압연에 의한 치수 감소가 작고 형상제어가 어려운 반면, 15%이상인 경우에는 결정립 성장에너지가 너무 커서 표층에 조대립을 형성하므로, 압하율은 상기와 같이 제한하는 것이 바람직하다. The reduction ratio acts as a growth energy of the surface grains. When the reduction ratio is 5% or less, the size reduction due to hot rolling is small and shape control is difficult, whereas when the reduction ratio is 15% or more, the grain growth energy is so large that coarse grains are formed on the surface layer. Since it forms, it is preferable to limit a reduction ratio as mentioned above.

또한, 열간압연속도는 강판의 표면 마찰과 관계되는데 너무 느리면 마찰이 증가하여 표층 결정립의 성장속도를 증가시키고, 너무 빠르면 압연기의 부하가 커서 경제성이 없기 때문에 분당 600-1200m로 하는 것이 바람직하다. In addition, the hot rolling speed is related to the surface friction of the steel sheet, but if it is too slow, the friction is increased to increase the growth rate of the surface grains, and if it is too fast, it is preferable to set it to 600-1200m per minute because the load of the rolling mill is not economical.

또한, 열간압연의 마무리온도가 Ar3이하가 되면 결정립이 조대하게 되고 드로잉성이 저하하고, 조대한 Ti4C2S2과 TiC가 압연 가공에 의하여 석출하여 소둔과정에서 재용해가 지연됨으로써 연성이 저하되기 때문에 열간압연의 마무리온도는 Ar3이상으로 제한하는 것이 바람직하다.In addition, when the finishing temperature of hot rolling is less than or equal to Ar 3 , grains become coarse and drawing performance is reduced, and coarse Ti 4 C 2 S 2 and TiC are precipitated by rolling and delayed re-dissolution during annealing. Since this falls, it is preferable to limit the finishing temperature of hot rolling to Ar 3 or more.

열연 권취온도가 650℃이하인 경우에는 티타늄 탄화물의 석출이 느려져 드로잉성이 저하되고 750℃이상인 경우에는 결정립의 성장으로 압연방향과 45도 방향의 드로잉성이 감소하기 때문에 권취온도는 650-750℃로 제한하는 것이 바람직하다. If the hot rolling temperature is below 650 ° C, the precipitation of titanium carbide is slowed down and the drawing property is lowered. If the temperature is over 750 ° C, the drawing property decreases in the rolling direction and the 45 ° direction due to grain growth, so the winding temperature is 650-750 ° C. It is desirable to limit.

냉간압하율이 80%보다 낮으면 냉간압연시 변형에너지 도입이 작아 소둔과정에서 (111)집합조직의 발달 효과가 작기 때문에 드로잉성이 낮고 90%를 초과하면 결정립이 너무 미세화되어 연성이 감소하기 때문에 냉간압하율은 80-90%로 한정하는 것이 바람직하다. If the cold reduction rate is lower than 80%, since the introduction of strain energy during cold rolling is small, the developmental effect of the (111) aggregate structure is small during the annealing process, and the drawing property is low, and if it exceeds 90%, the grain size becomes too fine and the ductility decreases. The cold reduction rate is preferably limited to 80-90%.

상기와 같이 냉간압연된 냉연강판의 소둔시 소둔온도는 강중의 티타늄 탄화물 일부를 재용해시켜 연성을 확보하고 드로잉성에 유리한 (111)집합조직을 형성,발달시키기 위하여 제한되는데, 소둔온도가 820℃이하인 경우에는 석출물의 재용해가 거의 일어나지 않아 연성이 낮고, 900℃를 넘으면 오스테나이트로 변태가 일어나서 연성과 드로잉성을 감소시키므로 소둔온도는 820-900℃로 제한하는 것이 바람직하다.The annealing temperature during annealing of the cold rolled cold rolled steel sheet as described above is limited to re-dissolve a part of titanium carbide in the steel to secure ductility and to form and develop a (111) aggregate structure which is advantageous for drawing property, and the annealing temperature is 820 ° C. or less. In this case, the precipitate hardly re-dissolves, so the ductility is low, and when it exceeds 900 ° C., transformation occurs into austenite, reducing ductility and drawing property, and therefore, the annealing temperature is preferably limited to 820-900 ° C.

또한, 냉연강판의 소둔시 결정립 성장과 (111)집합조직을 형성,발달시키기 위해서는 적절한 소둔시간이 필요한데, 소둔시간이 10초이하인 경우에는 충분한 소둔이 일어나지 않고 180초 이상인 경우에는 과다한 결정립 성장이 일어나 강판의 성형과정중 오렌지 껍질모양의 표면결함(orange peel)이 발생하므로, 상기 소둔시간은 10-180초로 제한하는 것이 바람직하다.In addition, in order to form and develop the grain growth and (111) aggregate structure during annealing of the cold rolled steel sheet, an appropriate annealing time is required. When the annealing time is 10 seconds or less, sufficient annealing does not occur. Orange peel-like surface defects (orange peel) occurs during the forming process of the steel sheet, the annealing time is preferably limited to 10-180 seconds.

상기한 바와 같이, 본 발명의 주요특징은 티타늄(Ti)을 첨가한 고순도 극저탄소 알루미늄 킬드(Al-killed)강에 슬라브 냉각과정에서 냉각속도를 제어함으로써 표층에 티타늄 석출물을 형성시키고, 열간압연 최종압연에서 압하율과 압연속도를 제어하여 표층 결정립의 성장속도를 제한함으로써 열간압연후 표층의 결정립이 과도하게 성장하는 것을 억제하고, 강중 탄소와 황의 양 및 열간압연후 권취온도를 제한하여 열간압연판의 석출물의 일부를 소둔과정에서 재용해가 용이한 미세한 티타늄탄화물로 만들어 줌으로써 소둔과정 중 재결정과정에서 (111)집합조직을 확보하여 드로잉성을 확보하고 미량의 탄소를 용출시켜 입계를 강화함으로써 연성을 크게 개선시키는데 있다할 것이다. As described above, the main feature of the present invention is to form a titanium precipitate on the surface layer by controlling the cooling rate in the slab cooling process in a high purity ultra-low carbon aluminum-kilted (Al-killed) steel with titanium (Ti), hot rolling final By controlling the reduction rate and rolling speed in rolling, limiting the growth rate of grains in the surface layer, it is possible to suppress excessive growth of grains in the surface layer after hot rolling, and to limit the amount of carbon and sulfur in the steel and the coiling temperature after hot rolling. Part of the precipitates are made of fine titanium carbide which can be easily re-dissolved during annealing, thus securing (111) aggregation structure during recrystallization during annealing, securing drawingability and eluting trace amounts of carbon to strengthen grain boundaries. Will be greatly improved.

따라서, 본 발명에 의하면, 랭크포드값 2.5이상, 연신율 56%이상의 우수한 드로잉성을 가지는 냉연강판을 제조할 수 있다. Therefore, according to this invention, the cold rolled steel sheet which has the outstanding drawing property of Rankford value 2.5 or more and elongation of 56% or more can be manufactured.

이하, 실시예를 통하여 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

하기 표 1의 조성을 갖는 발명강(1-10)과 비교강(11-17)의 슬라브를 냉각속도 분당 30℃로 하여 900℃까지 냉각한 다음, 1200℃에서 1시간 가열하여 최종 압하율을 10%, 압연속도를 분당 800m로 하여 Ar3이상의 온도에서 열간마무리압연하고 680℃에서 권취하고 85%냉간압연후 860℃에서 50초간 소둔하고, 기계적 성질을 측정하고, 그 결과를 하기 표 2에 나타내었다.The slabs of the inventive steels (1-10) and the comparative steels (11-17) having the composition shown in Table 1 were cooled to 900 ° C at a cooling rate of 30 ° C per minute, and then heated at 1200 ° C for 1 hour to obtain a final reduction rate of 10 %, Rolling speed 800m per minute, hot-rolled at a temperature of Ar 3 or higher, wound at 680 ° C, annealing at 860 ° C for 50 seconds after 85% cold rolling, and measuring the mechanical properties, the results are shown in Table 2 below. It was.

하기 표 2에는 발명강 1에 대하여 본 발명의 범위내에서 제조조건을 변화시킨 시편들(발명재 11-15) 및 슬라브 냉각속도, 최종 압하율, 압연속도, 권취온도, 및 소둔온도조건중에서 하나의 조건이 본 발명의 범위를 벗어나는 시편들(비교재 23-29)에 대한 기계적 성질이 나타나 있다. Table 2 below is one of the specimens (invention material 11-15) and the slab cooling rate, final rolling rate, rolling rate, winding temperature, and annealing temperature conditions that changed the manufacturing conditions within the scope of the invention for invention steel 1 The mechanical properties of the specimens (Comparative Materials 23-29) outside the scope of the present invention are shown.

강종Steel grade 화학조성(중량%)Chemical composition (% by weight) CC MnMn PP SS Sol.AlSol.Al NN TiTi NbNb BB 발명강 Invention steel 1One 0.00110.0011 0.050.05 0.0070.007 0.00150.0015 0.0250.025 0.00110.0011 0.0250.025 -- -- 22 0.00180.0018 0.050.05 0.0080.008 0.00110.0011 0.0240.024 0.00130.0013 0.0290.029 -- -- 33 0.00210.0021 0.050.05 0.0080.008 0.00100.0010 0.0230.023 0.00130.0013 0.0350.035 -- -- 44 0.00140.0014 0.150.15 0.0080.008 0.00090.0009 0.0190.019 0.00150.0015 0.0310.031 -- -- 55 0.00160.0016 0.050.05 0.0030.003 0.00090.0009 0.0260.026 0.00110.0011 0.0300.030 -- -- 66 0.00140.0014 0.040.04 0.0090.009 0.00250.0025 0.0310.031 0.00140.0014 0.0320.032 -- -- 77 0.00140.0014 0.050.05 0.0080.008 0.00100.0010 0.0250.025 0.00120.0012 0.0300.030 0.0050.005 -- 88 0.00120.0012 0.050.05 0.0090.009 0.00100.0010 0.0210.021 0.00150.0015 0.0350.035 -- 0.00060.0006 99 0.00160.0016 0.100.10 0.0100.010 0.00270.0027 0.0190.019 0.00190.0019 0.0310.031 -- 0.00060.0006 1010 0.00140.0014 0.080.08 0.0080.008 0.00120.0012 0.0250.025 0.00120.0012 0.0300.030 0.0050.005 0.00060.0006 비교강 Comparative steel 1111 0.00380.0038 0.060.06 0.0100.010 0.00120.0012 0.0320.032 0.00170.0017 0.0330.033 -- -- 1212 0.00120.0012 0.050.05 0.0250.025 0.00080.0008 0.0360.036 0.00160.0016 0.0320.032 -- -- 1313 0.00150.0015 0.070.07 0.0080.008 0.00450.0045 0.0340.034 0.00150.0015 0.0300.030 -- -- 1414 0.00170.0017 0.050.05 0.0100.010 0.00200.0020 0.080.08 0.00120.0012 0.0290.029 -- -- 1515 0.00150.0015 0.080.08 0.0110.011 0.00150.0015 0.0250.025 0.00150.0015 0.0160.016 -- -- 1616 0.00170.0017 0.040.04 0.0080.008 0.00110.0011 0.0290.029 0.00170.0017 0.0620.062 -- -- 1717 0.00150.0015 0.050.05 0.0110.011 0.00180.0018 0.0450.045 0.00160.0016 0.0320.032 -- 0.00150.0015

시편 No.Psalm No. 슬라브냉각속도(℃/min)Slab cooling rate (℃ / min) 최종압하율(%)Final rolling reduction rate (%) 압연속도(mpm)Rolling speed (mpm) 권취온도(℃)Winding temperature (℃) 냉간압하율(%)Cold rolling reduction (%) 소둔온도(℃)Annealing Temperature (℃) 연신율(%)Elongation (%) r값r value 강종Steel grade 발명재 Invention 1One 3030 1010 800800 680680 8282 860860 58.658.6 2.822.82 발명강 1Inventive Steel 1 22 3030 1010 800800 580580 8282 860860 57.357.3 2.762.76 발명강 2Inventive Steel 2 33 3030 1010 800800 680680 8282 860860 57.057.0 2.722.72 발명강 3Inventive Steel 3 44 3030 1010 800800 680680 8282 860860 56.556.5 2.652.65 발명강 4Inventive Steel 4 55 3030 1010 800800 680680 8282 860860 58.258.2 2.762.76 발명강 5Inventive Steel 5 66 3030 1010 800800 680680 8282 860860 57.857.8 2.832.83 발명강 6Inventive Steel 6 77 3030 1010 800800 680680 8282 860860 56.956.9 2.752.75 발명강 7Inventive Steel 7 88 3030 1010 800800 680680 8282 860860 56.556.5 2.722.72 발명강 8Inventive Steel 8 99 3030 1010 800800 680680 8282 860860 56.156.1 2.622.62 발명강 9Inventive Steel 9 1010 3030 1010 800800 680680 8282 860860 56.056.0 2.652.65 발명강10Inventive Steel 10 1111 8080 1010 800800 680680 8282 860860 57.257.2 2.772.77 발명강 1Inventive Steel 1 1212 3030 1010 10001000 680680 8282 860860 58.958.9 2.882.88 발명강 1Inventive Steel 1 1313 3030 1010 800800 720720 8282 860860 59.059.0 2.912.91 발명강 1Inventive Steel 1 1414 3030 1010 800800 680680 8585 860860 56.356.3 2.672.67 발명강 1Inventive Steel 1 1515 3030 1010 800800 680680 8282 880880 57.057.0 2.902.90 발명강 1Inventive Steel 1 비교재 Comparative material 1616 3030 1010 800800 680680 8282 860860 50.950.9 2.242.24 비교강11Comparative Steel 11 1717 3030 1010 800800 680680 8282 860860 49.649.6 2.482.48 비교강12Comparative Steel 12 1818 3030 1010 800800 680680 8282 860860 52.552.5 2.352.35 비교강13Comparative Steel 13 1919 3030 1010 800800 680680 8282 860860 51.051.0 2.642.64 비교강14Comparative Steel 14 2020 3030 1010 800800 680680 8282 860860 48.348.3 1.981.98 비교강15Comparative Steel 15 2121 3030 1010 800800 680680 8282 860860 53.853.8 2.722.72 비교강16Comparative Steel 16 2222 3030 1010 800800 680680 8282 860860 54.754.7 2.532.53 비교강17Comparative Steel 17 2323 300300 1010 800800 680680 8282 860860 53.653.6 2.592.59 발명강 1Inventive Steel 1 2424 3030 3030 800800 680680 8282 860860 52.052.0 2.362.36 발명강 1Inventive Steel 1 2525 3030 1010 200200 680680 8282 860860 51.551.5 2.212.21 발명강 1Inventive Steel 1 2626 3030 1010 800800 620620 8282 860860 53.953.9 2.652.65 발명강 1Inventive Steel 1 2727 3030 1010 800800 680680 7575 860860 57.457.4 2.452.45 발명강 1Inventive Steel 1 2828 3030 1010 800800 680680 8282 800800 54.554.5 2.342.34 발명강 1Inventive Steel 1 2929 3030 1010 800800 680680 8282 910910 54.854.8 2.952.95 발명강 1Inventive Steel 1

상기 표 2에 나타난 바와 같이, 본 발명에 부합되는 강의 화학조성 및 열간압연조건에 부합되는 발명재(1-15)의 경우에는 드로잉성을 나타내는 r값이 2.62 - 2.91수준이고 연신율도 56%이상으로 연성과 드로잉성이 매우 우수함을 알 수 있다. As shown in Table 2, in the case of the invention material (1-15) meeting the chemical composition and hot rolling conditions of the steel according to the present invention, the r value representing the drawing property is 2.62-2.91 level and the elongation is 56% or more. It can be seen that the ductility and drawing is very excellent.

또한, 비교강을 소재로 한 비교재(11-17)의 경우에는 연신율 또는 r값이 56%와 2.5에 각각, 또는 모두 미달함을 알 수 있다.In addition, in the case of the comparative material 11-17 made of the comparative steel, it can be seen that the elongation or r value is less than or equal to 56% and 2.5, respectively.

또한, 발명강 1을 본 발명의 범위를 벗어나는 제조조건으로 제조한 비교재(23-29)의 경우에도 연신율과 r값이 발명재들에 비하여 부분적으로 낮게 나타남을 알 수 있다.In addition, it can be seen that the elongation and r-value of the comparative steel materials 23-29 manufactured with the inventive steel 1 under the manufacturing conditions outside the scope of the present invention are partially lower than those of the inventive materials.

즉, 본 발명에 부합되는 발명재(1-15)의 경우에는 티타늄 고순도 극저탄소강의 결정립과 석출물을 적절히 제어함으로써 비교재들에 비하여 양호한 연성과 드로잉성을 함께 얻을 수 있음을 알 수 있다. That is, in the case of the inventive material (1-15) according to the present invention, it can be seen that by controlling the crystal grains and precipitates of the titanium high purity ultra low carbon steel properly, better ductility and drawing property can be obtained than the comparative materials.

상술한 바와 같이, 본 발명은 연성과 드로잉성이 우수한 냉연강판을 종래의 방법에 비하여 용이하게 제조할 있으므로, 심한 가공을 받는 자동차의 대형판넬 및 초심가공용 합금화 용융도금의 원판의 제조분야등에 보다 효과적으로 적용될 수 있는 효과가 있는 것이다.As described above, since the present invention can easily produce cold rolled steel sheet having excellent ductility and drawing property as compared to the conventional method, it is more effective in the field of manufacturing large panels of automobiles subjected to severe processing and the original plate of alloyed hot-dip plating for deep core processing. There is an effect that can be applied.

Claims (2)

중량%로, C:0.001-0.003%이하, Mn:0.5%이하, P:0.003-0.02%이하, S:0.003%이하, N:0.002%이하, 산가용Al:0.01-0.05%, Ti: [4C+1.5S+3.8N + 0.005] ≤ Ti ≤[4C+1.5S+3.8N + 0.020], 나머지 Fe로 조성된 강의 슬라브 냉각과정시 1300℃에서 900℃까지 분당 10℃-100℃의 속도로 냉각한 다음, 1000-1250℃로 가열하여 최종 압연의 압하율을 5%-15%, 압연속도를 분당 600m-1200m으로 Ar3이상에서 마무리 열간압연하는 조건으로 열간압연하고 650-750℃로 권취한 다음, 상온으로 냉각하여 산세후 80%-90%범위로 냉간압연하고 820℃~900℃로 가열하여 10-180초 동안 소둔하는 연성과 드로잉성이 우수한 냉연강판의 제조방법By weight%, C: 0.001-0.003% or less, Mn: 0.5% or less, P: 0.003-0.02% or less, S: 0.003% or less, N: 0.002% or less, acid value Al: 0.01-0.05%, Ti: [ 4C + 1.5S + 3.8N + 0.005] ≤ Ti ≤ [4C + 1.5S + 3.8N + 0.020] at the rate of 10 ℃ -100 ℃ per minute from 1300 ℃ to 900 ℃ during slab cooling of steel composed of remaining Fe After cooling, it is heated to 1000-1250 ° C, hot rolling at the final rolling reduction rate of 5% -15% and the rolling speed of 600m-1200m per minute, under the condition that hot-rolled at Ar 3 or higher and wound at 650-750 ° C. After cooling to room temperature, cold rolling after pickling in the range of 80% -90% and heating to 820 ℃ ~ 900 ℃ annealing for 10-180 seconds an excellent cold rolled steel sheet manufacturing method 제1항에 있어서, 강에 Nb:0.003-0.01% 및 B:0.0001-0.0010%를 1종 또는 2종을 추가로 첨가하는 것을 특징으로 하는 연성과 드로잉성이 우수한 냉연강판의 제조방법The method for manufacturing a cold rolled steel sheet having excellent ductility and drawing property according to claim 1, wherein Nb: 0.003-0.01% and B: 0.0001-0.0010% are further added to the steel.
KR10-2001-0073939A 2001-11-26 2001-11-26 Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability KR100530058B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0073939A KR100530058B1 (en) 2001-11-26 2001-11-26 Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0073939A KR100530058B1 (en) 2001-11-26 2001-11-26 Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability

Publications (2)

Publication Number Publication Date
KR20030052249A KR20030052249A (en) 2003-06-27
KR100530058B1 true KR100530058B1 (en) 2005-11-22

Family

ID=29571411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0073939A KR100530058B1 (en) 2001-11-26 2001-11-26 Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability

Country Status (1)

Country Link
KR (1) KR100530058B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971176B1 (en) * 2010-01-14 2010-07-20 이광호 Natural water supplied steam production apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330844A (en) * 1997-05-28 1998-12-15 Nippon Steel Corp Manufacture of cold rolled steel sheet excellent in formability
JPH11236648A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Ind Ltd Cold rolled steel sheet for porcelain enameling and its production
JP2000129362A (en) * 1998-10-27 2000-05-09 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing, excellent in workability as well as in secondary workability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330844A (en) * 1997-05-28 1998-12-15 Nippon Steel Corp Manufacture of cold rolled steel sheet excellent in formability
JPH11236648A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Ind Ltd Cold rolled steel sheet for porcelain enameling and its production
JP2000129362A (en) * 1998-10-27 2000-05-09 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing, excellent in workability as well as in secondary workability

Also Published As

Publication number Publication date
KR20030052249A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
CN109097705B (en) 800 MPa-grade cold-rolled hot-galvanized dual-phase steel and production method thereof
CN114921726A (en) Low-cost high-yield-ratio cold-rolled hot-galvanized ultrahigh-strength steel and production method thereof
CN109825768B (en) 780 MPa-grade ultrathin hot-galvanized dual-phase steel and preparation method thereof
CN108929987B (en) 460 MPa-grade cold-rolled microalloy high-strength steel and manufacturing method thereof
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
KR100530058B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability
JPS60149719A (en) Manufacture of hot-rolled high-tension steel sheet
JPH0559970B2 (en)
JPS6411088B2 (en)
EP0119088B1 (en) Steel for use as material of cold-rolled steel sheet
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JPS5856023B2 (en) Cold-rolled steel sheet with excellent deep drawability
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100470643B1 (en) A high strength cold rolled steel sheet with excellent drawability and secondary working brittleness resistance, and a method for manufacturing it
KR20000042008A (en) Method of manufacturing molten metal with ferrite structure
KR100530073B1 (en) High strength steel sheet having superior workability and method for manufacturing there of
JPS6367524B2 (en)
KR100530075B1 (en) High strength steel sheet having superior formability and method for manufacturing there of
JPS624450B2 (en)
KR100928769B1 (en) Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation
KR20220064621A (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same
CN117089774A (en) 780 MPa-grade high-reaming-performance cold-rolled dual-phase steel plate and production method thereof
KR100482199B1 (en) A cold rolled steel sheet with extra deep drawability and its manufacturing method
KR100325707B1 (en) The hot rolled steel with good drawability and ductility and a method of manufacturing thereof
JP3150188B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151112

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161110

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181114

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 15