KR100482199B1 - A cold rolled steel sheet with extra deep drawability and its manufacturing method - Google Patents

A cold rolled steel sheet with extra deep drawability and its manufacturing method Download PDF

Info

Publication number
KR100482199B1
KR100482199B1 KR10-2000-0080838A KR20000080838A KR100482199B1 KR 100482199 B1 KR100482199 B1 KR 100482199B1 KR 20000080838 A KR20000080838 A KR 20000080838A KR 100482199 B1 KR100482199 B1 KR 100482199B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
cold rolled
rolled steel
temperature
Prior art date
Application number
KR10-2000-0080838A
Other languages
Korean (ko)
Other versions
KR20020051244A (en
Inventor
진광근
홍영광
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0080838A priority Critical patent/KR100482199B1/en
Publication of KR20020051244A publication Critical patent/KR20020051244A/en
Application granted granted Critical
Publication of KR100482199B1 publication Critical patent/KR100482199B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

드로잉성이 우수한 냉연강판 및 그 제조방법이 제공된다.Provided are a cold rolled steel sheet excellent in drawing property and a method of manufacturing the same.

본 발명은, 중량%로, C:0.001~0.004%, Si:0.02%이하, Mn:0.2%이하, P: 0.003~0.02%, S:0.0005~0.005%, N:0.002%이하, 산가용 Al:0.1~0.3%, Ti:0.015~0.1% 및 나머지 Fe를 포함하고, [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%와 [4C+S+0.1Al] ≥0.02%를 만족하도록 조성된 드로잉성이 우수한 강판과, The present invention is, by weight%, C: 0.001% to 0.004%, Si: 0.02% or less, Mn: 0.2% or less, P: 0.003 to 0.02%, S: 0.0005 to 0.005%, N: 0.002% or less, and acid value Al 0.1 to 0.3%, Ti: 0.015 to 0.1% and the rest of Fe, and satisfy [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1% and [4C + S + 0.1Al] ≥0.02% Steel sheet excellent in drawing ability,

상기와 같이 조성된 강 슬라브를 마련하는 단계; 상기 조성의 강을 Ar3 ~ Ar3 + 50℃온도에서 마무리 열간압연한후 냉각하는 단계; 상기 냉각된 강판을 600-750℃에서 권취한후 상온으로 냉각하고, 이어 75~90%의 압하율로 냉간압연하는 단계; 및 상기 냉간압연된 강판을 830~900℃의 온도로 10~180초간 소둔하는 단계;를 포함하여 구성되는 냉연강판 제조방법에 관한 것이다.Providing a steel slab formed as described above; Cooling the steel of the composition after finishing hot rolling at an Ar 3 to Ar 3 + 50 ° C. temperature; Winding the cooled steel sheet at 600-750 ° C. and cooling it to room temperature, followed by cold rolling at a reduction ratio of 75 to 90%; And a step of annealing the cold rolled steel sheet at a temperature of 830 to 900 ° C. for 10 to 180 seconds.

Description

드로잉성이 우수한 냉연강판 및 그 제조방법{A cold rolled steel sheet with extra deep drawability and its manufacturing method}Cold rolled steel sheet with excellent drawing property and its manufacturing method {A cold rolled steel sheet with extra deep drawability and its manufacturing method}

본 발명은 심한 가공을 받는 자동차 판넬부품에 사용되는 드로잉성이 우수한 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는, 강 조성성분을 최적화함과 아울러 열연판의 결정입 성장을 억제함으로써 우수한 드로잉성을 담보할 수 있는 강판 및 그 제조방법에 관한 것이다.      BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet having excellent drawing property and a method for manufacturing the same, which are used for automobile panel parts subjected to severe processing. More particularly, the drawing is optimized by optimizing steel composition and suppressing grain growth of hot rolled sheet. The present invention relates to a steel sheet capable of securing sex and a method of manufacturing the same.

최근, 자동차용 냉연강판의 드로잉성을 높이는 방법으로서 탄소(C), 황 (S), 질소(N)와 같은 강중의 미량원소를 최대한 감소시켜 소둔시 드로잉성에 유리한 (111) 집합조직을 가지는 결정립의 성장을 촉진시키는 방법을 늘리 이용되고 있다. 그러나 이러한 미량원소의 성분을 너무 낮추면 열간압연 직후에 결정립 성장속도가 매우 빨라지고, 이에 따라 두께방향으로 주상정과 비슷한 조대립이 형성되어 결과적으로 냉연강판의 드로잉성이 저하된다는 문제점이 있다. Recently, as a method of improving the drawability of cold rolled steel sheets for automobiles, crystal grains having a (111) texture structure which is advantageous for drawing property when annealing by reducing the trace elements in the steel such as carbon (C), sulfur (S), and nitrogen (N) as much as possible Increasing the way to promote growth has been used. However, if the content of such trace elements is too low, the grain growth rate becomes very fast immediately after hot rolling, and thus coarse grains similar to columnar crystals are formed in the thickness direction, resulting in a drawability of the cold rolled steel sheet.

또한, 열연판의 결정입이 미세할수록 압연방향과 45도 방향으로 드로잉성이 증가하는 경향으로 부터, 열연판의 결정입도와 냉연강판의 드로잉성은 밀접한 관계가 있는 것으로 알려져 있다. 따라서, 열간압연 직후 결정입 성장을 억제하고 미세화하기 위한 방법으로서는 압연출측의 누적압하율을 상향시키거나 압연직후 빠른시간 이내에 냉각을 개시하면서 냉각속도를 제어하는 방법이 제안되고 있으며, 그 일예로서 일본 특개소61-276930, 일본 특개평1-177322 및 일본 특개평7-70650에 기재된 발명을 들 수 있다. In addition, since the finer grain size of the hot rolled sheet tends to increase the drawability in the rolling direction and the 45 degree direction, the grain size of the hot rolled sheet and the drawability of the cold rolled steel sheet are known to be closely related. Therefore, as a method for suppressing and minimizing grain growth immediately after hot rolling, a method of controlling the cooling rate while raising the cumulative reduction ratio on the rolling exit side or starting cooling within a short time immediately after rolling has been proposed. Invention of Unexamined-Japanese-Patent No. 61-276930, Unexamined-Japanese-Patent No. 1-77322, and Unexamined-Japanese-Patent No. 7-70650 is mentioned.

그러나 상기 공개특허공보에 개시된 발명에서는 압연기 출측에 온도계 내지 두께계와 같은 계측기기가 설치되어 있기 때문에 압연직후 냉각개시까지 어느 정도 결정입 성장을 피할 수 없다는 문제가 있다. However, in the invention disclosed in the above-mentioned patent publication, since a measuring device such as a thermometer or a thickness meter is installed on the exit side of the rolling mill, there is a problem that grain growth cannot be avoided to some extent until the start of cooling immediately after rolling.

한편, 알루미늄 킬드 극저탄소강에 티타늄(Ti), 니오비움(Nb) 또는 티타늄-니오비움(Nb)을 첨가하여 침입형 고용원자(C,S,N)를 열연판에서 석출시켜 드로잉성이 부여된 냉연강판[IF(Interstitial Free) 냉연강판]을 제조함에 있어서, 첨가되는 Nb나 B가 열연판의 결정입이 미세화하는 것으로 일반적으로 알려져 있다. 그러나 이는 열간압연후 냉각과정 또는 권취과정에서의 결정입 성장을 억제하는 효과가 있음에 한하고, 열간압연 직후처럼 고온에서는 결정입 성장을 억제함에는 그 한계가 있는 것이다. On the other hand, titanium (Ti), niobium (Nb), or titanium-niobium (Nb) is added to the aluminum-kilted ultra low carbon steel to precipitate invasive solid atoms (C, S, N) from the hot rolled sheet to give drawing properties. In manufacturing a cold rolled steel sheet [Interstitial Free (IF) cold rolled steel sheet], it is generally known that the added grains of Nb or B are finely grained. However, this is limited to the effect of inhibiting grain growth in the cooling process or the winding process after hot rolling, and there is a limitation in suppressing grain growth at a high temperature immediately after hot rolling.

따라서 본 발명은 상술한 종래기술의 문제를 해결하기 위한 것으로, 강 조성성분을 최적화하여 열연판의 결정입 성장을 억제할 뿐만 아니라 소둔온도등과 같은 제조조건을 적절히 제어함으로써 우수한 드로잉성을 갖는 강판 및 그 제조방법을 제공함에 그 목적이 있다.  Accordingly, the present invention is to solve the above-mentioned problems of the prior art, and to optimize the steel composition to suppress grain growth of the hot rolled sheet, as well as to control the manufacturing conditions such as annealing temperature, etc. And to provide a method for producing the object.

상기의 목적을 달성하기 위한 본 발명은, 중량%로, C:0.001~0.004%, Si:0.02%이하, Mn:0.2%이하, P:0.003~0.02%, S:0.0005~0.005%, N:0.002%이하, 산가용 Al:0.1~0.3%, Ti:0.015~0.1% 및 나머지 Fe를 포함하고, [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%와 [4C+S+0.1Al] ≥0.02%를 만족하도록 조성된 드로잉성이 우수한 냉연강판에 관한 것이다. The present invention for achieving the above object, in weight%, C: 0.001 ~ 0.004%, Si: 0.02% or less, Mn: 0.2% or less, P: 0.003 ~ 0.02%, S: 0.0005 ~ 0.005%, N: 0.002% or less, including acid value Al: 0.1 to 0.3%, Ti: 0.015 to 0.1%, and the remaining Fe, and [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1% and [4C + S + 0.1Al ] It relates to a cold rolled steel sheet having excellent drawability formulated to satisfy ≥0.02%.

또한, 본 발명은, 중량%로, C:0.001~0.004%, Si:0.02%이하, Mn:0.2%이하, P:0.003~0.02%, S:0.0005~0.005%, N:0.002%이하, 산가용 Al:0.1~0.3%, Ti:0.015~0.1% 및 나머지 Fe를 포함하고, [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%와 [4C+S+0.1Al] ≥0.02%를 만족하도록 조성된 강 슬라브를 마련하는 단계; 상기 조성의 강을 Ar3 ~ Ar3 + 50℃온도에서 마무리 열간압연한후 냉각하는 단계; 상기 냉각된 강판을 600-750℃에서 권취한후 상온으로 냉각하고, 이어 75~90%의 압하율로 냉간압연하는 단계; 및 상기 냉간압연된 강판을 830~900℃의 온도로 10~180초간 소둔하는 단계;를 포함하여 구성되는 심가공용 드로잉성이 우수한 냉연강판 제조방법에 관한 것이다.In addition, the present invention is, in weight%, C: 0.001% to 0.004%, Si: 0.02% or less, Mn: 0.2% or less, P: 0.003 to 0.02%, S: 0.0005 to 0.005%, N: 0.002% or less, and acid. Soluble Al: 0.1-0.3%, Ti: 0.015-0.1% and the remaining Fe, and [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1% and [4C + S + 0.1Al] ≥0.02% Providing a steel slab configured to satisfy; Cooling the steel of the composition after finishing hot rolling at an Ar 3 to Ar 3 + 50 ° C. temperature; Winding the cooled steel sheet at 600-750 ° C. and cooling it to room temperature, followed by cold rolling at a reduction ratio of 75 to 90%; And annealing the cold rolled steel sheet at a temperature of 830 to 900 ° C. for 10 to 180 seconds. The present invention relates to a cold rolled steel sheet manufacturing method having excellent drawing property for deep processing.

이하, 본 발명을 설명한다. Hereinafter, the present invention will be described.

본 발명은, 먼저 드로잉성을 확보하기 위하여 극저탄소강중 존재하는 탄소, 황 및 질소를 충분히 제거하기 위하여 조성식 [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%를 만족하도록 Ti의 첨가량을 상기 탄소등의 함량에 대하여 상대적으로 제어함을 특징으로 한다. 그러나, 상기 Ti의 첨가량의 제어에 따라 강중에 존재하는 탄소와 황의 함량이 최대한 저감되면, 상술한 바와 같이 열간압연 직후 결정입 성장속도가 빨라지고, 이에 따라 주상정과 같은 조대립이 표층 아래에서 두께방향으로 성장하는 현상이 발생하여 디로잉성을 열화되는 문제가 발생할 수 있다. In the present invention, in order to sufficiently remove carbon, sulfur and nitrogen present in the ultra low carbon steel in order to secure the drawing property, the addition amount of Ti is satisfied so as to satisfy the compositional formula [4C + 1.5S + 3.8N + 0.03] ≦ Ti ≦ 0.1%. It is characterized by relatively controlling for the content of the carbon and the like. However, when the content of carbon and sulfur in the steel is reduced as much as possible according to the control of the amount of Ti added, as described above, the grain growth rate is increased immediately after hot rolling, whereby coarse grains such as columnar crystals are formed in the thickness direction below the surface layer. Growing phenomenon may occur and deterioration of drawing property may occur.

따라서, 본 발명에서는 이러한 문제를 해결하기 위하여, 조성식 [4C+S+0.1Al] ≥0.02%를 만족하도록 탄소, 황 및 알루미늄의 첨가량을 상호 제어함을 그 특징으로 한다. Therefore, in order to solve this problem, the present invention is characterized by mutually controlling the addition amount of carbon, sulfur and aluminum so as to satisfy the compositional formula [4C + S + 0.1Al]? 0.02%.

먼저, 본 발명에 부합하는 강판의 구체적인 조성성분을 설명한다. First, the specific composition component of the steel plate which concerns on this invention is demonstrated.

탄소(C)는 냉연강판의 (111)집합조직의 발달을 억제하여 드로잉성을 감소시키기 때문에 그 첨가량을 최소화시킬 필요가 있다. 그러나 그 첨가량이 너무 적으면 열간압연직후 결정립 성장속도가 매우 빨라져 조대립이 형성되고, 이에 따라 소둔판의 드로잉성이 열화된다. 또한, 본 발명에서는 Ti,Nb,Mo등 탄화물 형성원소를 첨가하여 강중 탄소를 냉연전에 탄화물로 석출시키는데, 탄소함량이 과도하면 탄화물 석출량이 증가하여 소둔과정에서 재결정 온도를 상승시키고, 이에 따라 (111)집합조직을 가진 결정립의 성장을 억제함으로써 드로잉성이 저하될 수 있다. Carbon (C) is required to minimize the amount of addition because it inhibits the development of the (111) aggregate structure of the cold rolled steel sheet to reduce the drawing. However, if the addition amount is too small, the grain growth rate becomes very fast immediately after hot rolling, and coarse grains are formed, thereby degrading the drawing property of the annealing plate. In addition, in the present invention, by adding carbide forming elements such as Ti, Nb, Mo to precipitate carbon in the steel as carbide before cold rolling, if the carbon content is excessive, carbide precipitation increases to increase the recrystallization temperature in the annealing process, accordingly (111 By suppressing the growth of crystal grains having an aggregate structure, the drawing property can be deteriorated.

따라서, 본 발명에서는 탄소(C)의 첨가량을 중량%로 0.001~0.004%로 제한한다. Therefore, in the present invention, the amount of carbon (C) added is limited to 0.001% to 0.004% by weight.

규소(Si)는 본 발명에서 강중에 산화물로 작용하여 연성을 저해할 수 있기 때문에 그 첨가량을 0.02%이하로 제한하며, 망간(Mn)은 강도를 증가시키나 연성을 감소시키기 때문에 0.2%로 제한함이 바람직하다. Since silicon (Si) may act as an oxide in steel in the present invention and inhibit ductility, the addition amount is limited to 0.02% or less, and manganese (Mn) is limited to 0.2% because it increases strength but decreases ductility. This is preferred.

인(P)은 용강중에 필수적으로 존재하는 원소로서, 정련과정에서 그 농도를 극도로 낮출경우 비용이 과다하게 들기 때문에 그 하한을 0.003%로 하며, 아울러 고온권취시에 Ti와 인화물을 형성하여 소둔과정에서 재결정온도를 상승시켜 드로잉성을 저하시키기 때문에 그 상한을 0.02%로 제한한다. Phosphorus (P) is an essential element in molten steel, and if the concentration is extremely low during refining, the lower limit is 0.003%, and the lower limit is 0.003%. The upper limit is limited to 0.02% because the recrystallization temperature is increased in the process to lower the drawing property.

황(S)은 그 첨가량이 0.0005%미만에서는 열연판의 결정입 성장을 억제하는 황화물(Ti4C2S2)이나 입계편석되는 황이 거의 없는 문제가 있다. 또한, 0.005%를 초과하면 열연전에 형성되는 티타늄황화물이 비교적 미세한 Ti4C2S2에서 조대한 TiS로 변화되고, 이에 따라 열연중 고용탄소가 존재하게 되어 열연집합조직을 드로잉성에 나쁜 성분으로 변화시키고 더욱이 고용탄소는 압연후 냉각과정에서 미세한 TiC탄화물을 형성하기 때문에 소둔과정에서 결정입 성장을 억제하여 드로잉성을 저하시키는 문제가 있다. 따라서, 본 발명에서는 황의 첨가량을 0.0005~0.005%로 제한한다.Sulfur (S) has a problem that there is almost no sulfide (Ti 4 C 2 S 2 ) that suppresses grain growth of the hot rolled sheet or sulfur that is intergranular when the addition amount is less than 0.0005%. In addition, when the content exceeds 0.005%, the titanium sulfide formed before hot rolling is changed from relatively fine Ti 4 C 2 S 2 to coarse TiS. Accordingly, solid solution carbon is present during hot rolling, thereby changing the hot rolled structure into a bad component in drawing property. Furthermore, since the solid carbon forms fine TiC carbide in the cooling process after rolling, there is a problem of suppressing the grain growth during the annealing process to lower the drawing property. Therefore, in the present invention, the amount of sulfur added is limited to 0.0005 to 0.005%.

질소(N)는 강중 Ti와 결합하여 연성과 드로잉성을 저하시키기 때문에 본 발명에서는 그 함량을 0.002%이하로 제한한다.Since nitrogen (N) combines with Ti in steel to reduce ductility and drawability, the content of the nitrogen (N) is limited to 0.002% or less.

산가용 Al은 열연직후 고온에서의 입계편석을 이용하여 결정립 성장을 억제하고 탈산을 위해 첨가되는데, 본 발명에서는 그 첨가량을 0.10~0.3%로 제한한다. 왜냐하면, 0.10%미만이면 결정입성장 억제효과가 없으며, 0.3%를 초과하면 연신율이 급격히 저하되고 더욱이 합금비용상 비경제적이기 때문이다. Acid value Al suppresses grain growth using grain boundary segregation at high temperature immediately after hot rolling and is added for deoxidation. In the present invention, the addition amount is limited to 0.10 to 0.3%. This is because if it is less than 0.10%, there is no effect of inhibiting grain growth, and if it exceeds 0.3%, the elongation is drastically lowered and, moreover, it is uneconomical for the alloy cost.

티타늄(Ti)은 강중의 질소, 황 및 탄소를 완전히 결합시키거나 강중에 고용 Ti으로 존재하여 드로잉성을 증가시키는 원소로서, 본 발명에서는 그 첨가량을 0.015~0.1%로 제한한다. 왜냐하면 그 첨가량이 0.015%미만에서는 상기 탄소등의 원소들을 결합제거함에 불충분하며, 0.1%를 초과하면 연주공정에서 산화물(TiO2)이 형성되어 노즐에 부착되고, 이에 따라 작업성을 저하되는 문제가 있기 때문이다.Titanium (Ti) is an element which completely combines nitrogen, sulfur, and carbon in steel or exists as solid solution Ti in steel to increase drawing property, and in the present invention, the amount thereof is limited to 0.015 to 0.1%. If the addition amount is less than 0.015%, it is insufficient to debond the elements such as carbon, and if the content exceeds 0.1%, oxide (TiO 2 ) is formed in the playing process and adheres to the nozzle, thereby degrading workability. Because there is.

한편, 본 발명에서는 강중 탄소,황 및 질소를 충분히 석출시켜 드로잉성을 확보하기 위하여 조성식 [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%을 만족하도록 T i첨가량을 제한해야 하는데, 이는 만일 Ti가 [4C+1.5S+3.8N+0.03]보다 작으면 드로잉성이 매우 저하되기 때문이다. On the other hand, in the present invention, in order to sufficiently precipitate carbon, sulfur and nitrogen in the steel to secure the drawing property, the amount of T i should be limited to satisfy the compositional formula [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1%. If Ti is smaller than [4C + 1.5S + 3.8N + 0.03], the drawability is very degraded.

또한, 본 발명은 상술한 바와 같이 열간압연 직후 결정입 성장속도가 빨라지고, 이에 따라 주상정과 같은 조대립이 표층 아래에서 두께방향으로 성장하는 현상이 발생하여 디로잉성이 열화되는 것을 방지하기 위하여, 조성식 [4C+S+0.1Al] ≥0.02%를 만족하도록 첨가되는 탄소, 황 및 알루미늄의 양을 제한해야 한다. 만일, [4C+S+0.1Al]값이 0.02%미만이면 열간압연 직후의 결정입 성장속도가 빨라지고, 이에 따라 조대립이 발생하여 드로잉성이 나빠지기 때문이다. In addition, the present invention, as described above, the grain growth rate is increased immediately after hot rolling, and thus coarse grains such as columnar crystals grow in the thickness direction under the surface layer, thereby preventing the drawing property from deteriorating. The amount of carbon, sulfur and aluminum added should be limited to satisfy [4C + S + 0.1Al] ≥0.02%. If the value of [4C + S + 0.1Al] is less than 0.02%, the grain growth rate immediately after hot rolling is increased, and coarse grains are generated accordingly, resulting in poor drawing.

본 발명에서는 상기와 같이 마련된 조성성분에 Nb 및/또는 Mo을 추가로 첨가함이 2차가공취성등 방지에 보다 바람직하다. In the present invention, the addition of Nb and / or Mo to the composition component prepared as described above is more preferable for preventing secondary processing brittleness.

Nb는 강중에 고용되어 열연직후 재결정을 지연시킬 뿐만 아니라 냉각과정에서 NbC탄화물을 형성하여 열연판의 결정입을 미세화시켜 압연방향과 45도 방향의 드로잉성을 향상시키며 소둔판의 2 차가공취성을 개선하는 효과가 있는 원소이다.본 발명에서는 Nb의 첨가량을 0.003~0.015%로 제한함이 바람직한데, 이는 그 첨가량이 0.003%미만에서는 그 첨가에 따른 효과를 기대할 수 없으며, 0.015%를 초과하면 소둔판의 재결정온도를 상승하여 항복강도를 증가시키고, 이에 따라 연신율도 저하될 수 있기 때문이다. Nb is dissolved in steel and delays recrystallization after hot rolling. In addition, NbC carbides are formed during cooling to refine crystal grains in hot-rolled sheets to improve the drawability in the rolling direction and the 45 degree direction, and improve the secondary workability of the annealing plate. In the present invention, it is preferable to limit the amount of Nb added to 0.003 to 0.015%, which is not expected to be effective when the amount is less than 0.003%, and exceeds 0.015%. This is because the yield strength is increased by increasing the recrystallization temperature of, and thus the elongation may be lowered.

Mo은 열연후 냉각과정에서 TiC 내지 NbC와 복합석출하여 열연판의 결정입도를 미세화할 뿐만 아니라 일부 고용 Mo은 P의 입계편석에 의한 2차가공취성을 개선시키는 역할을 하는 원소이다. 본 발명에서는 Mo의 첨가량을 0.005~0.04%로 제한함이 바람직한데, 이는 0.005%미만에서는 그 첨가에 따른 효과를 기대할 수 없으며, 0.04%를 초과하면 가공성이 저하하고 비용상승을 초래할 수 있기 때문이다. Mo not only refines the grain size of the hot rolled sheet by complex precipitation with TiC to NbC in the cooling process after hot rolling, but some solid solution Mo is an element that improves secondary workability due to grain boundary segregation of P. In the present invention, it is preferable to limit the amount of Mo added to 0.005 ~ 0.04%, because the effect of the addition can not be expected at less than 0.005%, if exceeding 0.04% may result in a decrease in workability and cost increase .

한편, 본 발명에서는 상기와 같은 성분범위를 갖는 Nb 및/또는 Mo을 첨가할 경우, 조성식 4C + 0.03 ≤[(Ti-0.015)+0.52Nb+0.5Mo)] ≤0.1%를 만족하도록 Nb과 Mo의 참가량을 제어함이 바람직하다. 왜냐하면 [(Ti-0.015)+0.52Nb+0.5Mo)]로 정의되는 값이 (4C+0.03%)보다 작을 경우 고용탄소가 잔존하여 드로잉성이 열화되며, 0.1%를 초과하면 연신율이 감소하고 비용상승을 초래할 수 있기 때문이다. On the other hand, in the present invention, when adding Nb and / or Mo having the above component range, Nb and Mo to satisfy the composition formula 4C + 0.03 ≤ [(Ti-0.015) + 0.52 Nb + 0.5Mo)] ≤ 0.1% It is desirable to control the amount of participation of. If the value defined by [(Ti-0.015) + 0.52Nb + 0.5Mo)] is less than (4C + 0.03%), solid carbon will remain and the drawing performance will be deteriorated. This may cause an increase.

또한, B는 입계에 편석하는 원소로 열간압연시 입계이동을 억제하여 결정입 미세화에 기여할 뿐만 아니라 고순도화에 따른 입계취화를 방지하는 역할을 하는 원소로서, 본 발명에서는 그 첨가가 선택적이다. 만일, 첨가한다면 0.0001~ 0.0020%로 그 첨가량을 제한함이 바람직한데, 이는 0.0001%미만에서는 그 첨가에 따른 효과가 없으며, 0.0020%를 초과하면 소둔판의 재결정온도를 상승시켜 가공성을 저하시키기 때문이다. In addition, B is an element that segregates at the grain boundary, and suppresses grain boundary movement during hot rolling to contribute to grain refinement and prevents grain embrittlement due to high purity, and the addition thereof is optional in the present invention. If it is added, it is preferable to limit the amount to 0.0001 to 0.0020%, since the effect of the addition is less than 0.0001%, and if it exceeds 0.0020%, the recrystallization temperature of the annealing plate is increased to decrease the workability. .

다음으로, 상기와 같이 조성성분을 갖는 강 슬라브를 이용하여 드로잉성이 우수한 냉연강판을 제조하는 방법을 설명한다. Next, a method of manufacturing a cold rolled steel sheet excellent in drawing property using a steel slab having a composition component as described above will be described.

먼저 본 발명에서는 상기 조성의 강슬라브를 열간압연하는데, 이때 그 마무리 열간압연온도를 Ar3 ~ Ar3 + 50℃범위로 제한한다. 왜냐하면 마무리온도가 Ar 3 보다 낮으면 페라이트 변태후 압연변형을 받아 드로잉성이 저하되는 문제가 있으며, Ar3 + 50℃보다 높으면 열간압연 직후 결정입 성장속도가 증가하여 조대한 결정입이 얻어지고, 이에 따라 가공성이 열화될 수 있기 때문이다.First, in the present invention, the steel slab of the composition is hot rolled, in which the finishing hot rolling temperature is limited to the range of Ar 3 ~ Ar 3 + 50 ℃. Because being a finishing temperature low, ferrite transformation after which is received the rolling deformation problem that the drawability deterioration, Ar 3 + higher than 50 ℃ increase the crystal grain growth immediately after hot rolling to obtain a mouth determines a coarse than Ar 3, This is because workability may deteriorate.

그리고 상기와 같이 열간압연된 강판을 냉각한후 권취하는데, 본 발명에서는 그 권취온도를 600~750℃로 제한한다. 왜냐하면 권취온도가 600℃미만에서는 탄소의 결합이 충분하지 못해 드로잉성이 나빠지며, 750℃를 초과하면 결정입의 성장으로 압연방향과 45도방향의 드로잉성이 감소하기 때문이다.And after winding the hot rolled steel sheet as described above, in the present invention, the winding temperature is limited to 600 ~ 750 ℃. This is because, if the coiling temperature is less than 600 ° C, the drawability is poor due to insufficient bonding of carbon. If the temperature is higher than 750 ° C, the drawing property in the rolling direction and the 45 degree direction decreases due to grain growth.

상기 권취된 강판은 상온으로 냉각되고, 이어 통상의 산세공정을 거친후 냉간압연처리된다. 본 발명에서는 이때 그 냉간압하율을 75~90%로 제한함이 바람직하다. 왜냐하면 그 압하율이 75%미만에서는 원하는 수준의 드로잉성을 얻을 수 없는 반면에, 90%를 초과하면 소둔판의 (111)집합조직이 다시 감소하여 드로잉성이 저하할 수 있기 때문이다. The rolled steel sheet is cooled to room temperature, and then subjected to a normal pickling process, followed by cold rolling. In the present invention, the cold reduction rate is preferably limited to 75 to 90% at this time. This is because, if the reduction ratio is less than 75%, the desired level of drawability cannot be obtained, while if the reduction ratio exceeds 90%, the (111) aggregate structure of the annealing plate may decrease again, leading to deterioration of the drawing property.

이후, 상기 냉간압연된 강판은 가열되어 소둔처리되는데, 이때 소둔온도는 드로잉성에 유익한 (111)집합조직을 형성, 발달시키는데 직접적인 영향을 미치는 중요한 인자가 된다. 따라서 본 발명에서는 상기 소둔온도를 830~900℃로 제한하는데, 이는 830℃미만에서는 (111)집합조직이 충분히 발달하지 못하며, 900℃를 초과하면 오스테나이트가 형성되어 드로잉성을 감소시키기 때문이다. Thereafter, the cold rolled steel sheet is heated and annealed, wherein the annealing temperature is an important factor that directly affects the formation and development of the (111) aggregate structure, which is beneficial for drawing property. Therefore, in the present invention, the annealing temperature is limited to 830 ~ 900 ℃, because the (111) aggregate structure is not sufficiently developed at less than 830 ℃, because the austenite is formed over 900 ℃ to reduce the drawing.

또한, 본 발명에서는 (111) 집합조직을 형성, 발달시키는데 필요한 시간으로서, 소둔시간을 10~180초로 제한함이 바람직하다. 왜냐하면 그 소둔시간이 10초미만이면 충분한 소둔이 일어나지 않으며, 180초를 초과하면 과다한 결정입 성장이 일어나 강판의 성형과정중 오렌지 껍질모양의 표면결함(orange peel)이 발생하기 때문이다. In addition, in the present invention, it is preferable to limit the annealing time to 10 to 180 seconds as the time required for forming and developing the (111) texture. This is because if the annealing time is less than 10 seconds, sufficient annealing does not occur. If the annealing time exceeds 180 seconds, excessive grain growth occurs and orange peel-like surface defects occur during forming of the steel sheet.

상술한 바와 같이, 본 발명에서는 그 조성성분을 적절히 제어하고 냉간압하율과 소둔조건을 최적화함으로써 재결정 온도가 낮고 소둔과정에서 (111)집합조직을 가진 결정립의 성장을 용이하게 하여 랭크포드(r)값 2.6-3.0수준, 연신율 53%이상의 우수한 드로잉성을 가지는 냉연강판을 효과적으로 제조할 수 있는 것이다.As described above, in the present invention, by appropriately controlling the composition components and optimizing the cold reduction rate and annealing conditions, it is easy to grow crystal grains having a low recrystallization temperature and having a (111) texture in the annealing process, thereby ranking Rankford (r). It is possible to effectively produce cold rolled steel sheet having excellent drawing property of 2.6-3.0 value and 53% or more elongation.

이하 실시예를 통하여 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예 1)(Example 1)

하기 표 1과 같은 조성을 가진 강 슬라브를 각각 마련하였다. 그리고 이렇게 마련된 각각의 강 슬라브를 1200℃에서 1시간 가열한 다음, Ar3 ~ Ar3 + 50℃온도범위에서 마무리 열간압연한후 720℃에서 권취하였다.To prepare a steel slab having a composition as shown in Table 1 below. Each steel slab thus prepared was heated at 1200 ° C. for 1 hour, and then hot rolled at a temperature range of Ar 3 to Ar 3 + 50 ° C., followed by winding at 720 ° C.

상기 권취된 각각의 강판을 상온으로 냉각한후 산세처리하였으며, 이후 80%의 압하율로 두께 0.8mm까지 냉간압연하였다. 그리고 상기 냉간압연된 각각의 강판을 가열하여 860℃에서 50초간 소둔처리하였다. Each of the wound steel sheets was cooled to room temperature and then pickled, and then cold rolled to a thickness of 0.8 mm at a reduction ratio of 80%. Each cold rolled steel sheet was heated and annealed at 860 ° C. for 50 seconds.

상기와 같은 제조조건으로 제조된 각각의 소둔강판에 대하여 항복강도, 인장강도, 연신율, 랭크포드(r)값 및 연성-취성 전이온도를 측정하였으며, 그 결과를 하기 표 2에 나타내었다. Yield strength, tensile strength, elongation, Rankford (r) value, and ductile-brittle transition temperature were measured for each of the annealed steel sheets manufactured under the above-described manufacturing conditions, and the results are shown in Table 2 below.

조성성분(중량%)           Ingredients (% by weight) 조성식1Formula 1 조성식2Formula 2 조성식3Formula 3 비고Remarks C C MnMn P P S S N N Sol. Al Sol. Al Ti Ti NbNb MoMo BB 1One 0.00140.0014 0.050.05 0.0090.009 0.00130.0013 0.00190.0019 0.160.16 0.0750.075 OO OO -- 발 명 강 foot persons River 22 0.00240.0024 0.050.05 0.0100.010 0.00080.0008 0.00180.0018 0.140.14 0.0790.079 OO OO -- 33 0.00310.0031 0.050.05 0.0100.010 0.00100.0010 0.00180.0018 0.130.13 0.0760.076 OO OO -- 44 0.00140.0014 0.080.08 0.0060.006 0.00330.0033 0.00150.0015 0.170.17 0.0810.081 OO OO -- 55 0.00100.0010 0.080.08 0.0080.008 0.00130.0013 0.00160.0016 0.200.20 0.0510.051 0.0050.005 OO OO OO 66 0.00160.0016 0.050.05 0.0100.010 0.00090.0009 0.00170.0017 0.150.15 0.0790.079 0.0070.007 OO OO OO 77 0.00130.0013 0.070.07 0.0090.009 0.00150.0015 0.00170.0017 0.170.17 0.0490.049 0.0200.020 OO OO OO 88 0.00180.0018 0.050.05 0.0110.011 0.00080.0008 0.00150.0015 0.150.15 0.0850.085 0.0220.022 OO OO OO 99 0.00100.0010 0.080.08 0.0080.008 0.00210.0021 0.00180.0018 0.160.16 0.0440.044 0.010.01 0.0210.021 OO OO OO 1010 0.00110.0011 0.080.08 0.0090.009 0.00300.0030 0.00150.0015 0.220.22 0.0560.056 0.00080.0008 OO OO OO 1111 0.00140.0014 0.060.06 0.0100.010 0.00270.0027 0.00190.0019 0.190.19 0.0510.051 0.0080.008 0.00060.0006 OO OO OO 1212 0.00100.0010 0.050.05 0.0070.007 0.00140.0014 0.00160.0016 0.220.22 0.0590.059 0.0150.015 0.00080.0008 OO OO OO 1313 0.00120.0012 0.050.05 0.0100.010 0.00180.0018 0.00210.0021 0.200.20 0.0550.055 0.0070.007 0.00100.0010 OO OO OO 1414 0.00140.0014 0.060.06 0.0100.010 0.00120.0012 0.00170.0017 0.120.12 0.0480.048 XX OO -- 비 교 강ratio School River 1515 0.00120.0012 0.050.05 0.0070.007 0.00080.0008 0.00250.0025 0.110.11 0.0600.060 XX OO -- 1616 0.00170.0017 0.060.06 0.0100.010 0.00190.0019 0.00170.0017 0.150.15 0.0300.030 OO XX -- 1717 0.00150.0015 0.050.05 0.0080.008 0.00450.0045 0.00190.0019 0.140.14 0.0410.041 OO XX -- 1818 0.00140.0014 0.060.06 0.0100.010 0.00200.0020 0.0020.002 0.040.04 0.0500.050 -- -- -- 1919 0.00450.0045 0.060.06 0.0100.010 0.00190.0019 0.0020.002 0.150.15 0.0300.030 -- -- -- 2020 0.00150.0015 0.050.05 0.0080.008 0.00760.0076 0.0020.002 0.140.14 0.0410.041 -- -- -- 2121 0.00150.0015 0.100.10 0.0100.010 0.00480.0048 0.0020.002 0.150.15 0.0120.012 -- -- --

* 상기 표 1에서 조성식 1은 [4C+S+0.1Al] ≥0.02%, 조성식 2는 [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%, 그리고 조성식 3은 4C + 0.03 ≤[(Ti-0.015)+0.52Nb+0.5Mo)] ≤0.1%를 의미하며, 이러한 조성식으로 얻어진 값이 본 발명범위내인 경우를 (O), 벗어난 경우를 (X)로 표시하였다.  * In Table 1, Formula 1 is [4C + S + 0.1Al] ≥0.02%, Formula 2 is [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1%, and Formula 3 is 4C + 0.03 ≤ [( Ti-0.015) + 0.52Nb + 0.5Mo)] ≦ 0.1%, and the value obtained by such a composition formula is within the scope of the present invention (O), and the deviation is indicated by (X).

YS (kg/mm2)YS (kg / mm 2 ) TS (kg/mm2)TS (kg / mm 2 ) El(%)   El (%) r값  r value 연성-취성 천이온도(℃)Ductile-brittle transition temperature (℃) 비 고Remarks 1One 12.212.2 26.926.9 55.455.4 2.972.97 -50-50 발 명 강 foot persons River 22 13.413.4 27.927.9 54.154.1 2.832.83 -50-50 33 14.114.1 28.528.5 53.053.0 2.672.67 -55-55 44 12.612.6 27.027.0 54.854.8 2.902.90 -50-50 55 13.213.2 27.527.5 55.055.0 2.712.71 -55-55 66 13.813.8 27.827.8 53.853.8 2.892.89 -60-60 77 13.113.1 27.727.7 55.955.9 2.812.81 -60-60 88 13.313.3 28.128.1 56.156.1 2.882.88 -65-65 99 13.613.6 28.428.4 54.954.9 2.912.91 -65-65 1010 13.013.0 27.427.4 55.055.0 2.882.88 -70-70 1111 13.513.5 27.827.8 54.154.1 2.852.85 -70-70 1212 13.613.6 28.028.0 55.055.0 2.802.80 -70-70 1313 14.014.0 28.528.5 54.054.0 2.772.77 -70-70 1414 15.115.1 28.728.7 52.552.5 2.352.35 -40-40 비 교 강 ratio School River 1515 13.913.9 27.827.8 51.651.6 2.422.42 -50-50 1616 16.116.1 28.128.1 53.153.1 2.212.21 -50-50 1717 14.114.1 27.927.9 51.951.9 2.292.29 -40-40 1818 14.114.1 28.328.3 51.051.0 2.252.25 -50-50 1919 16.516.5 29.229.2 49.449.4 2.132.13 -60-60 2020 13.613.6 27.227.2 52.852.8 2.332.33 -55-55 2121 18.318.3 27.527.5 52.352.3 2.062.06 -60-60

상기 표 1및 표 2에 나타난 바와 같이, 그 조성성분 뿐만 아니라 그 조성성분상호간의 첨가량을 최적으로 제어한 발명강(1~13)의 경우 모두 드로잉성을 나타내는 r값이 2.67~3.06수준이고 연신율도 53%이상으로 매우 우수한 가공성을 나타내었다. 또한 드로잉비율을 2.16으로 하여 원통컵을 만든 다음 행한 낙하충격시험에서도 -50℃이하의 연성-취성 천이온도를 나타내었다. As shown in Table 1 and Table 2, in the invention steels (1 to 13) that optimally controlled not only the composition component but also the amount of addition between the composition components, the r value showing the drawing property was 2.67 to 3.06, and the elongation was elongated. 53% or more showed very excellent workability. In addition, in the drop impact test performed after the cylindrical cup was prepared with the drawing ratio of 2.16, the ductile-brittle transition temperature was lower than -50 ° C.

특히, Nb 및/또는 Mo이 첨가되고 4C + 0.03 ≤[(Ti-0.015)+0.52 Nb+0.5Mo)] ≤0.1%를 만족하는 발명강(5~13)의 경우, 보다 낮은 연성-취성 천이온도를 나타내어 2차가공취성방지에 유리함을 알 수 있다. In particular, in the case of the inventive steels (5 to 13) in which Nb and / or Mo is added and satisfying 4C + 0.03 ≤ [(Ti-0.015) + 0.52 Nb + 0.5Mo)] ≤ 0.1%, a lower ductile-brittle transition It can be seen that the temperature is advantageous in preventing secondary processing brittleness.

이에 반하여, 그 조성성분은 본 발명범위내이나 조성식 [4C+S+0.1Al] ≥0.02%를 충족하지 못하는 비교강(14~15)은 열연직후 조대립이 형성되어 발명강에 비하여 r값이 낮았으며, 2차가공취성을 나타내는 연성-취성 천이온도도 상대적으로 높게 나타났다. 또한, 조성식 [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%를 만족하지 못하는 비교강(16~17)도 고용 Ti의 고갈로 r값이 낮았으며 연성-취성 천이온도도 높았다. On the contrary, although the composition is within the scope of the present invention, the comparative steels 14 to 15, which do not satisfy the composition formula [4C + S + 0.1Al] ≥0.02%, have coarse grains formed immediately after hot rolling, so that the r value is higher than that of the inventive steel. It was low and the ductile-brittle transition temperature, which shows secondary processing brittleness, was also relatively high. In addition, the comparative steels (16 to 17), which did not satisfy the composition formula [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1%, had a low r value due to the depletion of solid solution Ti and a high ductile-brittle transition temperature.

그리고 Sol. Al, C, S 및 Ti의 첨가량이 본 발명범위를 벗어난 비교강(18~21)은 모두 매우 낮은 r값을 나타내었으며, 다만 고용탄소가 일부 잔존함에 기인하여 연성-취성 천이온도는 발명강과 비슷한 수준을 나타내었다. And Sol. Comparative steels (18 to 21) of the addition amount of Al, C, S and Ti out of the present invention all showed a very low r value, but ductile-brittle transition temperature was similar to that of the inventive steel due to some residual solid carbon. Levels were indicated.

(실시예 2)(Example 2)

상기 표 1의 강재 1과 동일한 성분을 갖는 강 슬라브를 마련하였다. 그리고 마련된 강슬라브를 하기 표 3과 같이 그 제조조건을 달리하여 소둔강판을 각각 제조하였으며, 아울러 제조된 각 소강둔판에 대하여 항복강도, 인장강도, 연신율, 랭크포드(r)값 및 연성-취성 전이온도를 측정하였으며, 그 결과를 또한 하기 표 3에 나타내었다. Steel slabs having the same components as in Steel 1 of Table 1 above were prepared. And the prepared steel slab was prepared by annealed steel sheet by varying its manufacturing conditions as shown in Table 3 below, and also yield strength, tensile strength, elongation, Rankford (r) value and ductile-brittle transition for each of the prepared annealed steel sheet The temperature was measured and the results are also shown in Table 3 below.

열연조건(℃) Hot Rolling Condition (℃) 소둔온도 (℃)Annealing Temperature (℃) YS(kg/mm2)YS (kg / mm 2 ) TS (kg/mm2)TS (kg / mm 2 ) El(%)El (%) r값 r value 연성-취성 천이온도(℃)Ductile-brittle transition temperature (℃) 비 고Remarks 마무리 압연온도 Finish rolling temperature 권취온도Coiling temperature 1-11-1 925925 720720 830830 13.313.3 27.627.6 54.554.5 2.812.81 -50-50 발명강Invention steel 1-21-2 925925 720720 860860 12.012.0 26.526.5 55.055.0 3.063.06 -50-50 1-31-3 870870 720720 880880 12.512.5 27.227.2 52.552.5 2.432.43 -45-45 비교강Comparative steel 1-41-4 919919 560560 880880 13.013.0 27.527.5 52.652.6 2.512.51 -40-40 1-51-5 925925 720720 800800 14.514.5 28.128.1 52.052.0 2.332.33 -50-50

상기 표 3에 나타난 바와 같이, 그 열연조건 및 소둔온도가 적절하게 제어된 발명강(1-1,1-2)은 모두 우수한 드로잉성을 나타내었으나, 본 발명의 범위를 벗어난 비교강의 경우 모두 재질이 열화되었다. As shown in Table 3, the invention steel (1-1,1-2), the hot rolling conditions and the annealing temperature are properly controlled, all showed excellent drawing, but in the case of comparative steel outside the scope of the present invention This deteriorated.

상술한 바와 같이, 본 발명은 C, S 및 Al의 양을 적절히 제어하여 열연직후의 결정입성장을 억제하고 강중 C,S,P를 최대한 저감함과 아울러, Ti,Nb,Mo,B를 적정량 투입하여 강중 불순물에 의한 악영향을 제거함으로써 드로잉성 및 내2차가공취성이 극히 우수한 냉연강판을 제공할 수 있어, 자동차의 대형판넬 및 일부 내판 용도로 사용하거나 초심가공용 합금화 용융도금의 원판의 제조에 유용하게 이용될 수 있다. As described above, the present invention appropriately controls the amount of C, S and Al to suppress grain growth immediately after hot rolling, and to reduce the C, S, P in steel as much as possible, and to appropriately reduce Ti, Nb, Mo, and B. By removing the adverse effects of impurities in the steel by inputting, it is possible to provide a cold rolled steel sheet with excellent drawing and secondary processing brittleness. It can be usefully used.

Claims (6)

중량%로, C:0.001~0.004%, Si:0.02%이하, Mn:0.2%이하, P:0.003~0.02%, S: 0.0005~0.005%, N:0.002%이하, 산가용 Al:0.1~0.3%, Ti:0.015~0.1% 및 나머지 Fe를 포함하고, [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%와 [4C+S+0.1Al] ≥0.02%를 만족하도록 조성된 드로잉성이 우수한 냉연강판. By weight%, C: 0.001 to 0.004%, Si: 0.02% or less, Mn: 0.2% or less, P: 0.003 to 0.02%, S: 0.0005 to 0.005%, N: 0.002% or less, acid value Al: 0.1 to 0.3 %, Ti: 0.015-0.1% and the remaining Fe, and drawability formulated to satisfy [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤ 0.1% and [4C + S + 0.1Al] ≥ 0.02% This excellent cold rolled steel sheet. 제 1항에 있어서, Nb: 0.003~0.015%와 Mo: 0.005~0.04%중 1종이상을 추가로 포함하고, 4C + 0.03 ≤[(Ti-0.015)+0.52Nb+0.5Mo)] ≤0.1%를 만족하도록 조성된 드로잉성이 우수한 냉연강판. The method of claim 1, further comprising at least one of Nb: 0.003-0.015% and Mo: 0.005-0.04%, wherein 4C + 0.03 ≦ [(Ti-0.015) + 0.52Nb + 0.5Mo)] ≦ 0.1% Cold rolled steel sheet with excellent drawability formulated to satisfy. 제 1항에 있어서, B: 0.0001~0.0020%를 추가로 포함하여 조성된 드로잉성이 우수한 냉연강판.The cold rolled steel sheet having excellent drawing property according to claim 1, further comprising B: 0.0001 to 0.0020%. 중량%로, C:0.001~0.004%, Si:0.02%이하, Mn:0.2%이하, P:0.003~0.02%, S: 0.0005~0.005%, N:0.002%이하, 산가용 Al:0.1~0.3%, Ti:0.015~0.1% 및 나머지 Fe를 포함하고, [4C+1.5S+3.8N + 0.03] ≤ Ti ≤0.1%와 [4C+S+0.1Al] ≥0.02%를 만족하도록 조성된 강 슬라브를 마련하는 단계; By weight%, C: 0.001 to 0.004%, Si: 0.02% or less, Mn: 0.2% or less, P: 0.003 to 0.02%, S: 0.0005 to 0.005%, N: 0.002% or less, acid value Al: 0.1 to 0.3 Steel slab comprising%, Ti: 0.015-0.1% and the remaining Fe and satisfying [4C + 1.5S + 3.8N + 0.03] ≤ Ti ≤0.1% and [4C + S + 0.1Al] ≥0.02% Providing a; 상기 조성의 강을 Ar3 ~ Ar3 + 50℃온도에서 마무리 열간압연한후 냉각하는 단계; 상기 냉각된 강판을 600-750℃에서 권취한후 상온으로 냉각하고, 이어 75~90%의 압하율로 냉간압연하는 단계; 및Cooling the steel of the composition after finishing hot rolling at an Ar 3 to Ar 3 + 50 ° C. temperature; Winding the cooled steel sheet at 600-750 ° C. and cooling it to room temperature, followed by cold rolling at a reduction ratio of 75 to 90%; And 상기 냉간압연된 강판을 830~900℃의 온도로 10~180초간 소둔하는 단계;를 포함하여 구성되는 드로잉성이 우수한 냉연강판 제조방법.Annealing the cold-rolled steel sheet at a temperature of 830 ~ 900 ℃ for 10 ~ 180 seconds; excellent cold rolled steel sheet manufacturing method comprising a. 제 4항에 있어서, 상기 강슬라브는 Nb: 0.003~0.015%와 Mo: 0.005~0.04%중 1종이상을 추가로 포함하고, 4C + 0.03 ≤[(Ti-0.015)+0.52Nb+0.5Mo)] ≤0.1%를 만족하도록 조성됨을 특징으로 하는 드로잉성이 우수한 냉연강판 제조방법. The steel slab of claim 4, wherein the steel slab further comprises at least one of Nb: 0.003-0.015% and Mo: 0.005-0.04%, and 4C + 0.03 ≦ [(Ti-0.015) + 0.52Nb + 0.5Mo). ] Cold drawing steel sheet manufacturing method with excellent drawability, characterized in that the composition to satisfy ≤0.1%. 제 4항에 있어서, 상기 강 슬라브는 B: 0.0001~0.0020%를 추가로 포함하여 조성됨을 특징으로 하는 드로잉성이 우수한 냉연강판 제조방법. The method of claim 4, wherein the steel slab is B: 0.0001 to 0.0020% of the cold rolled steel sheet manufacturing method with excellent drawability, characterized in that the composition further comprises.
KR10-2000-0080838A 2000-12-22 2000-12-22 A cold rolled steel sheet with extra deep drawability and its manufacturing method KR100482199B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0080838A KR100482199B1 (en) 2000-12-22 2000-12-22 A cold rolled steel sheet with extra deep drawability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0080838A KR100482199B1 (en) 2000-12-22 2000-12-22 A cold rolled steel sheet with extra deep drawability and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20020051244A KR20020051244A (en) 2002-06-28
KR100482199B1 true KR100482199B1 (en) 2005-04-13

Family

ID=27685044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0080838A KR100482199B1 (en) 2000-12-22 2000-12-22 A cold rolled steel sheet with extra deep drawability and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100482199B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283426A (en) * 1985-10-08 1987-04-16 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel sheet for deep drawing
JPH06122940A (en) * 1992-08-31 1994-05-06 Nippon Steel Corp Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof
JPH0718382A (en) * 1993-07-05 1995-01-20 Nisshin Steel Co Ltd Production of cold rolled steel sheet excellent in deep drawability
KR960034447A (en) * 1995-03-16 1996-10-22 에모또 간지 A thin steel sheet having excellent moldability and a manufacturing method thereof
KR970703439A (en) * 1995-03-27 1997-07-03 다나까 미노루 ULTRALOW-CARBON COLD-ROLLED SHEET AND GALVANIZED SHEET BOTH EXCELLENT IN FATIGUE CHARACTERISTICS AND PROCESS FOR PRODUCING BOTH

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283426A (en) * 1985-10-08 1987-04-16 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel sheet for deep drawing
JPH06122940A (en) * 1992-08-31 1994-05-06 Nippon Steel Corp Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof
JPH0718382A (en) * 1993-07-05 1995-01-20 Nisshin Steel Co Ltd Production of cold rolled steel sheet excellent in deep drawability
KR960034447A (en) * 1995-03-16 1996-10-22 에모또 간지 A thin steel sheet having excellent moldability and a manufacturing method thereof
KR970703439A (en) * 1995-03-27 1997-07-03 다나까 미노루 ULTRALOW-CARBON COLD-ROLLED SHEET AND GALVANIZED SHEET BOTH EXCELLENT IN FATIGUE CHARACTERISTICS AND PROCESS FOR PRODUCING BOTH

Also Published As

Publication number Publication date
KR20020051244A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
US8449698B2 (en) Dual phase steel sheet and method of manufacturing the same
JPH0555586B2 (en)
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
KR100482199B1 (en) A cold rolled steel sheet with extra deep drawability and its manufacturing method
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
KR100270395B1 (en) The manufacturing method forlow alloy composite structure type high strength cold rolling steel sheet with excellent press workability
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100530073B1 (en) High strength steel sheet having superior workability and method for manufacturing there of
KR100470643B1 (en) A high strength cold rolled steel sheet with excellent drawability and secondary working brittleness resistance, and a method for manufacturing it
KR100530077B1 (en) Deep Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Formability and A Method for Manufacturing Thereof
KR100530076B1 (en) Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
KR100530058B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability
KR100584755B1 (en) Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press
JPH08109416A (en) Production of baking-hardened-type cold rolled steel sheet excellent in formability
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
JPH0673498A (en) Cold rolled steel sheet excellent in baking hardenability in coating/baking at low temperature and its production
KR100481364B1 (en) A method for manufacturing high strength cold rolled steel sheet with excellent workability
JPH05195079A (en) Production of cold rolled steel sheet combining superior deep drawability with resistance to secondary working brittleness
JPH075989B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability
KR20050045104A (en) Non―aging cold rolled steel sheet having less anisotropy and process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
LAPS Lapse due to unpaid annual fee