KR19990080447A - 베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법 - Google Patents

베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법 Download PDF

Info

Publication number
KR19990080447A
KR19990080447A KR1019980013716A KR19980013716A KR19990080447A KR 19990080447 A KR19990080447 A KR 19990080447A KR 1019980013716 A KR1019980013716 A KR 1019980013716A KR 19980013716 A KR19980013716 A KR 19980013716A KR 19990080447 A KR19990080447 A KR 19990080447A
Authority
KR
South Korea
Prior art keywords
palladium
compound
general formula
added
catalyst
Prior art date
Application number
KR1019980013716A
Other languages
English (en)
Other versions
KR100267596B1 (ko
Inventor
함원훈
최경석
이한원
서성기
박진규
이기영
김용현
Original Assignee
강재헌
동국제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강재헌, 동국제약 주식회사 filed Critical 강재헌
Priority to KR1019980013716A priority Critical patent/KR100267596B1/ko
Publication of KR19990080447A publication Critical patent/KR19990080447A/ko
Priority to CA002299958A priority patent/CA2299958A1/en
Priority to FR0003417A priority patent/FR2806083A1/fr
Application granted granted Critical
Publication of KR100267596B1 publication Critical patent/KR100267596B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/14Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/67Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/68Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/73Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/12Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

본 발명은 α-아미노산으로부터 β-아미노-α-하이드록시산과 균등한 옥사졸린 유도체를 합성하는 방법이다. α-아미노산을 출발물질로 하여 팔라듐(0) 촉매의 기질로 이용할 수 있는 중간체 화합물을 합성한 후 팔라듐(0) 촉매를 이용한 분자내 고리화반응을 이용하여 옥사졸린 유도체를 합성하는 방법으로 기존의 방법과는 달리 모든 α-아미노산에 적용이 가능하고 탁솔측쇄의 합성에 있어서는 기존의 방법보다 입체선택성이 뛰어난 것을 특징으로 한다.

Description

베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법
본 발명은 β-아미노-α-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법에 관한 것이다. 더욱 상세히는 하기 일반식 (Ⅰ)의 구조를 지니는 옥사졸린 유도체의 합성방법에 관한 것이다.
(일반식 Ⅰ)
상기식에서
R은 페닐, 벤질, 메틸, 에틸, 이소프로필, 이소부틸, 시클로헥실 또는 시클로헥실메틸이다.
β-아미노-α-하이드록시산은 HIV 프로테아제 저해제(Protease inhibitor) 나 여러 가지 생리활성이 강한 화합물의 중요한 구성성분이다. 하기 일반식 (A)의 구조를 지닌 탁솔이 효과적인 항암제인 것이 밝혀져 있고, 이때 탁솔의 항암효과를 나타내기 위해서는 C-13위치에 3-(N-벤조일아미노)-2-하이드록시-3-페닐프로피오닉산이 필수적인 것으로 알려져 있다.
(일반식 A)
이러한 천연 탁산은 식물에서 발견되었으며 식물로부터 단리시켜 왔다. 그러나 이러한 탁산은 식물중에 비교적 소량으로 존재하기 때문에 항암효과가 뛰어난 반면, 이러한 화합물을 다량으로 확보하는데 어려움이 있다. 하지만 탁솔의 모핵인 일반식 (B)의 바카틴(Baccatin) Ⅲ는 식물로부터 탁솔보다는 다량으로 확보할 수 있어서 반합성을 통하여 탁솔을 합성할 수 있다. 그러므로 탁솔의 항암효과에 필수적인 측쇄와 같은 β-아미노-α-하이드록시산의 입체선택적인 합성방법의 개발은 매우 중요하다고 하겠다. 따라서, 이와같은 β-아미노-α-하이드록시산의 입체선택적인 합성방법에 있어서 문헌은Tetrahedron Letter.,35, pp 2845-2848 (1994),35, pp 9289-9292 (1994),J.Org. Chem.,59, pp 1238-1240 (1994),J.Am. Chem. Soc.,117, pp 7824-7825 (1995) 등에서 많은 연구가 진행되었고, 특허로는 대한민국특허 출원번호 제97-2930호 등이있다. 이들 선행연구들은 대부분 순수한 β-(N-벤조일아미노)-α-하이드록시산의 합성연구에 관한 것이다.
(일반식 B)
한편 탁솔에서 바카틴 Ⅲ C-13 위치의 하이드록시 부분과 측쇄와의 결합반응에서 위의 합성법에서 만들어진 순수한 3-(N-벤조일아미노)-2-하이드록시-3-페닐프로피오닉산과의 결합반응은 매우 격렬한 반응조건을 필요로 하고, 그 수율도 좋지 않다는 것이 알려진 후 David(Tetrahedron Letter,26, pp 4483-4484 (1994))등은 옥사졸린 유도체를 이용한 결합반응이 매우 좋다는 것을 발표하였다. 이러한 옥사졸린 유도체들은 입체적인 선택성을 특징화할 수 있어서 이성체의 혼합없이 필요로하는 단일 이성체를 합성할 수 있는 특징이 있다. 따라서 바카틴 Ⅲ와 반합성의 과정을 거쳐 탁솔을 얻을 수 있으나, 얼마만큼 고순도로 합성하느냐에 따라 최종 제품인 탁솔의 약효에 영향을 미친다. 그러므로 여러 가지 β-아미노-α-하이드록시산과 균등한 화합물인 옥사졸린의 합성방법의 독특한 개발은 탁솔 항암제의 순도에 직접적인 영향을 미치므로 매우 중요한 의미를 지니고, 또한 이 화합물은 나아가 HIV 프로테아제 저해제의 중간체로써 그 역할을 할 수 있으므로 큰 의의가 있다할 것이다.
본 발명은 여러 가지 자연에 존재하는 α-아미노산을 출발물질로 사용하여 생물학적 활성이 큰 β-아미노-α-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적인 합성방법을 발명하는데 그 목적이 있다. 본 발명은 또한 지금까지 연구된 문헌이나 특허와는 달리 독특하면서도 새로운 방법으로 옥사졸린 유도체를 합성하여 일반식 (B)의 바카틴 Ⅲ 로부터 일반식 (A)의 탁솔을 합성할 뿐만 아니라 HIV 프로테아제 저해제의 중간체로써 활용이 가능한 물질을 제공함으로써, 지금까지 알려진 방법보다 탁월한 탁솔 합성공정을 제공하는데 있다. 따라서 본 발명자들은 α-아미노산을 몇 단계 합성을 거친 후, 팔라듐(0)을 촉매로 이용하여 분자내 고리화 반응을 실행하여 입체선택적으로 합성하는 방법을 완성하였다. 본 발명의 또다른 목적으로는 탁솔의 합성시 바카틴 Ⅲ 와의 결합반응에 사용되는 옥사졸린 유도체를 입체선택적으로 합성하여 지금까지 생산되고 있는 합성공정보다 더욱 저렴한 가격으로 탁솔을 사회에 공급하는데 있다.
따라서 본 발명의 목적은 하기 일반식 (Ⅱ)의 화합물을 출발물질로 하여, 일반식 (Ⅱ) 화합물의 0.02∼0.1 몰%의 팔라듐(Pd) 촉매 존재하에서 20∼50℃에서 고리화 반응시키고, 이탈기 X를 이탈시켜 하기 일반식 (Ⅲ)의 화합물을 제조하고, 다시 루테니움(Ru) 촉매 존재하에서 아세토니트릴/사염화탄소/물의 혼합용매에 산화제를 가하여 산화반응시켜 하기 일반식 (Ⅰ)로 표시되는 옥사졸린 유도체의 제조방법을 제공하는 것이다.
상기 반응식에서
R은 페닐, 벤질, 메틸, 에틸, 이소프로필, 이소부틸, 시클로헥실 또는
시클로헥실메틸이고 ;
X는 이탈기로서 아세틸, 벤조일 또는 카보네이트이다.
또한, 이때 팔라듐(0) 촉매는 테트라키스트리페닐포스핀 팔라듐(0) ; Pd(OAc)2, PdCl2및 Ph3P의 팔라듐 촉매 혼합물 ; 다이벤질리덴아세톤 팔라듐(0), 다리클로로다이페닐 팔라듐(0) 및 히드라진의 촉매혼합물에서 선택된 촉매임을 특징으로 하고, 일반식 (Ⅲ)의 화합물에 가하는 산화제는 소디움페리오데이트(NaI04), 포타시움페리오데이트(KIO4) 및 과망간산칼리(KMnO4)에서 선택된 것임을 특징으로 한다.
한편 일반식 (Ⅱ)로 표시되는 화합물은 α-아미노산으로부터 제조될 수 있으며, α-아미노산으로부터 일반식 (Ⅰ)의 화합물을 제조하는 제법을 하기 반응 스킴으로 나타내었다. 하기 반응식 중 R은 알킬, 아릴로써 구체적으로는 페닐, 벤질, 메틸, 에틸, 이소프로필, 이소부틸, 시클로헥실, 시클로헥실메틸등을 들 수 있으며, X로 표시되어진 이탈기(Leaving group)로는 아세틸, 벤조일, 카보네이트등을 들 수 있으며, 그 중 아세틸이 가장 바람직 하다.
상기 반응식에서
X는 이탈기로서 아세틸, 벤조일 또는 카보네이트이고 ;
Bz는 벤조일기를 나타내며 ; M.C.는 메틸렌 클로라이드 ;
Ph는 페닐 ; pyr은 피리딘 ; THF는 테트라하이드로퓨란 ;
DMSO 는 디메틸술폭사이드를 나타낸다.
이하 본 발명을 더욱 상세히 설명한다.
본 발명에서 촉매로 쓰이는 팔라듐(0)을 테트라키스트리페닐포스핀 팔라듐(0)으로 표시하였지만 Pd(OAc)2, PdCl2및 Ph3P을 혼합하여 사용하여도 반응성이 좋다. 또한 다이벤질리덴아세톤 팔라듐(0), 다이클로로다이페닐 팔라듐(0)과 히드라진을 사용하는 것도 가능하지만 테트라키스트리페닐포스펜 팔라듐(0)이 촉매로서 가장 바람직하다. 팔라듐(0)의 양은 0.02∼0.1몰% 까지 사용할 수 있지만 0.04∼0.06몰% 이 반응성과 경제적인 측면에서 가장 바람직하다.
반응온도는 20∼50℃에서 수행할 수 있으며 가장 바람직한 온도는 22∼28℃이다. 반응용매로는 테트라키스트리페닐포스핀 팔라듐(0)을 사용할 경우에는 디메틸포름아마이드가 가장 바람직하고, 다이벤질리덴아세톤 팔라듐(0)을 사용할 경우 테트라하이드로퓨란이나 클로로포름을 사용하는 것이 바람직하다. 팔라듐(Ⅱ) 아세테이트와 트리페닐포스핀을 사용할 경우 용매로는 디메틸포름아마이드가 가장 바람직하다. 반응시간은 6∼10시간 정도이며, 7∼9시간이 가장 바람직하다. 그리고, X로 표시되어 있는 이탈기로는 아세테이트, 벤조일, 카보네이트가 가능하지만 수율이나 반응성의 측면에서 아세테이트가 가장 바람직하다.
또한 본 발명의 출발물질 일반식(Ⅱ)의 화합물을 합성하기 위한 반응식 2에 대한 설명은 다음과 같다.
α-아미노산(Ⅳ)을 NaBH4를 이용하여 α-아미노알코올(Ⅴ)로 환원시키는 반응에서 NaBH4의 양과 황산의 비율은 약 2:1이어야 하고 황산을 가할 때는 꼭 에테르에 희석시켜 가해야한다. 황산을 가할 때의 반응온도는 0∼20℃사이 이어야 하며, 가하는 시간은 3∼5시간이 바람직하고 5N-수산화나트륨을 가하고 환류시키는 시간은 3∼5시간이 가장 바람직하다. 벤조일 클로라이드를 가할때의 반응온도는 0℃가 좋고, 가하는 속도는 1.0∼2.0 ml/분이 바람직하다.
α-아미노알코올(Ⅴ)을 α-아미노알데하이드(Ⅵ)로 산화하는 반응에서 설퍼 트리옥사이드/피리딘을 가할 때 고체로 가하는 것이 좋고 반응온도는 0℃가 바람직하며, 반응시간은 2∼3시간사이가 가장 수율이 좋다. α-아미노알데하이드(Ⅵ)를 포밀메틸렌트라이페닐포스포레인을 이용하여 4-N-벤조일아미노-4-페닐-2-부틴알데하이드(Ⅶ)를 만드는 과정에서 반응온도는 20∼90℃이며, 약 60℃가 가장 바람직하다. 반응시간은 1.5∼2.5시간이며, 용매로는 벤젠, 톨루엔, 클로로포름이 사용가능하다. 4-N-벤조일아미노-4-페닐-2-부틴알데하이드(Ⅶ)를 환원하여 4-N-벤조일아미노-4-페닐-2-부틴올(Ⅷ)을 합성하는 반응에서 용매는 테트라하이드로퓨란/물(9:1)이 가장 바람직하고 반응시간은 약 30분이다. 반응온도는 0∼20℃가 바람직하다.
4-N-벤조일아미노-4-페닐-2-부틴올(Ⅷ)을 무수초산, 벤조일 클로라이드, 에틸클로로포메이트등을 이용하여 각각 팔라듐(0)을 이용한 옥사졸린 합성의 기질로 전환할 수 있다. 반응시간은 6∼10시간 정도이며 반응온도는 0℃ 내지 상온이 바람직하다. 무수초산, 벤조일클로라이드, 에틸클로로포메이트의 각각의 양은 1.5∼2.5 당량이 사용되어질 수 있지만 2.0 당량이 가장 바람직하다.
본 발명은 다음의 실시예에서는 출발 물질로써 (S)-(+)-페닐글라이신과 L-페닐알라닌을 예로 서술하지만 이에 한정되지 않고 모든 α-아미노산에 적용이 가능하므로 아미노산을 이용하여 옥사졸린 유도체(Ⅰ)을 합성하는 범위를 포함시킨다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 그러나 이러한 실시예들로 본 발명의 범위를 한정하는 것은 아니다.
(실시예 1) 일반식 (Ⅴ) 화합물의 합성
S-(+)-페닐글라이신 1몰(151g)을 테트라하이드로퓨란 1L에 현탁시킨 후 NaBH42.5몰(100g)을 가한 후 0℃에서 에테르에 희석된 황산 1.25몰(66ml, 총 부피:200ml)을 천천히 적가하였다. 황산의 적가가 끝나면 상온에서 12시간동안 반응시킨 후 메탄올 200ml를 서서히 가하고, 5N-NaOH 1L를 가한 후 유기용매를 증류하고 3시간동안 환류하였다. 이 용액을 상온으로 냉각한 후, 메틸렌클로라이드 1L를 가하고 벤조일클로라이드 1몰을 0℃에서 서서히 적가하였다. 반응이 종결된 후 감압여과한 후 hot water 로 3번 세척하고 감압하에서 건조하여 195g(81%)의 N-벤조일페닐글라이신올을 얻었다.
1H-NMR(DMSO-d6) 3.67(dd, 1H), 4.96(t, 1H), 5.06(dd, 1H), 7.20-7.55(m, 8H), 7.90(m, 2H), 8.72(d, 1H)
(실시예 2) 일반식 (Ⅵ) 화합물의 합성
N-벤조일페닐글라이신올 0.1몰(24.1g)을 메틸렌클로라이드/메틸 설폭사이드 5:1 용매 100ml에 현탁시킨 후 0℃로 냉각한 후 설퍼 트리옥사이드-피리딘 31.8g(0.2몰)을 가하고 트리에틸아민 55ml(0.4몰)를 가한 후 2시간 동안 교반하였다. 반응이 종결된 후 에틸 아세테이트 200ml를 가하고 물 100ml, 포화 NH4Cl용액 100ml로 세척한 후 무수황산마그네슘으로 건조하고 여과, 건조하여 crude 한 N-벤조일아미노알데하이드 21g(87%)을 얻어 다음 반응에 정제없이 사용하였다.
1H-NMR(CDCl3) 4.80(br, 1H), 6.19(d, 1H), 7.23-7.87(m, 10H), 9.83(s, 1H)
(실시예 3) 일반식 (Ⅶ) 화합물의 합성
N-벤조일페닐글라이신알데하이드 21g(0.087몰)에 톨루엔 100ml를 가하고 포밀메틸렌트라이페닐포스포레인 34g(0.11몰)을 가하고 2시간동안 환류했다. 반응이 종결된 후 감압 건조한 후 칼럼 크로마토그래피(핵산:에틸 아세테이트 = 1:1)로 분리하여 13.8g(60%)의 4-N-벤조일아미노-4-페닐-2-부틴알데하이드를 얻었다.
(실시예 4) 일반식 (Ⅷ) 화합물의 합성
4-N-벤조일아미노-4-페닐-2-부틴알데하이드 13.3g(0.05몰)에 테트라하이드로퓨란/물(9:1) 50ml를 가하고 NaBH41.9g(0.05몰)을 가하였다. 30분간 교반한 후 1N-HCl 30ml를 가하고 에테르 50ml로 추출하여 무수황산마그네슘으로 건조한 후 여과, 감압 증류하여 crude 한 4-N-벤조일아미노-4-페닐-2-부틴올 13.6g을 얻어 다음 반응에 사용하였다.
(실시예 5) 일반식 (Ⅱ) 화합물의 합성
4-N-벤조일아미노-4-페닐-2-부틴올 13.6g(0.05몰)에 피리딘 20ml를 가하고 아세틱 안하이드라이드 10.2g(0.1몰)을 가하고 4시간동안 교반하였다. 반응이 종결된 후 메틸렌 클로라이드 50ml를 가하고 1N-HCl 50ml, 포화 NaHCO3용액 50ml로 세척한 후 핵산 : 에틸아세테이트 (2:1) 용매로 재결정하여 14.7g(95%)의 1-아세톡시-4-N-벤조일아미노-4-페닐-2-부틴을 합성하였다.
1H-NMR(CDCl3) 2.08(s, 3H), 4.63(d, 2H), 5.82(dt, 1H), 5.89(dd, 1H), 6.04(dd, 1H), 6.4(br, 1H), 7.32-7.53(m, 8H), 7.79(m, 2H)
다른 이탈기도 상기와 같은 방법으로 벤조일 클로라이드, 메틸클로로포메이트를 이용하여 합성할 수 있다.
(실시예 6) 일반식 (Ⅴ) 화합물의 합성
엘-페닐알라닌 1몰(163g)을 테트라하이드로퓨란 1L에 현탁시킨 후 NaBH42.5몰(100g)을 가한후 0℃에서 에테르에 희석된 황산 1.25몰(66m,총부피:200ml)을 천천히 적가하였다. 황산의 적가가 끝나면 상온에서 12시간동안 반응시킨후 메탄올 200ml를 서서히 가하고, 5N-NaOH 1L를 가한후 유기용매를 증류하고 3시간동안 환류하였다. 이 용액을 상온으로 식힌후 메틸렌클로라이드 1L를 가하고 벤조일클로라이드 1몰을 0℃에서 서서히 적가하였다. 반응이 종결된후 감압여과한후 hot water로 3번 세척하고 감압하에서 건조하여 207g(81%)의 N-벤조일페닐알라니놀을 얻었다.
1H-NMR(DMSO-d6)δ2.79(dd, 1H), 2.94(dd, 1H), 3.45(m, 2H), 4.14(m, 1H), 4.87(bt,1H), 7.13-7.51(m, 8H), 7.77(d, 2H), 8.18(d, 1H)
(실시예 7) 일반식 (Ⅵ) 화합물의 합성
N-벤조일페닐알라니놀 0.1몰(25.5g)을 메틸렌클로라이드/메틸설폭사이드 5:1 용매 100ml에 현탁시킨후 0℃로 냉각한후 설퍼트리옥사이드-피리딘 31.8g(0.2몰)을 가하고 트리에틸라민 55ml(0.4몰)를 가한후 2시간동안 교반하였다. 반응이 종결된후 에틸아세테이트 200ml를 가하고 물 100ml, 포화 NH4Cl 용액 100ml 로 세척한 후 무수황산마그네슘으로 건조하고 여과, 건조하여 crude한 N-벤조일아미노알데하이드 22g(87%)을 얻어 다음 반응에 정제없이 사용하였다.
1H-NMR(CDCl3)δ3.32(m, 2H), 4.93(dd, 1H), 6.71(m, 1H), 7.20-7.72(m, 8H), 7.74(d, 2H), 9.74(s, 1H)
(실시예 8) 일반식 (Ⅶ) 화합물의 합성
N-벤조일페닐알라닌알데하이드 22g(0.087몰)에 톨루엔 100ml를 가하고 포밀메틸렌트라이페닐포스포레인 34g(0.11몰)을 가하고 2시간동안 가열환류했다. 반응이 종결된 후 감압 건조한 후 칼럼크로마토그래피(핵산:에틸아세테이트 = 1:1)로 분리하여 14.6g(60%)의 4-N-벤조일아미노-5-페닐-2-펜테날을 얻었다.
1H-NMR(CDCl3)δ3.12(m, 2H), 5.22(m, 1H), 6.20(dd, 1H), 6.83(dd, 1H), 7.20-7.77(m, 10H), 9.49(d, 1H)
(실시예 9) 일반식 (Ⅷ) 화합물의 합성
4-N-벤조일아미노-5-페닐-2-펜테날 14.0g(0.05몰)에 테트라하이드로퓨란/물(9:1)50ml를 가하고 NaBH41.9g(0.05몰)을 가하였다. 30분간 교반한 후 1N-HCl 30ml를 가하고 에테르 50ml로 추출하여 무수황산나트륨으로 건조한 후 여과, 감압증류하여 crude한 4-N-벤조일아미노-5-페닐-2-펜테놀 14.06g을 얻어 다음 반응에 사용하였다.
(실시예 10) 일반식 (Ⅱ) 화합물의 합성
4-N-벤조일아미노-5-페닐-2-펜테놀 14.6g(0.05몰)에 피리딘 20ml를 가하고 무수초산 10.2g(0.1몰)을 가하고 4시간동안 교반하였다. 반응이 종결된 후 메틸렌클로라이드 50ml를 가하고 1N-HCl 50ml, 포화 NaHCO3용액 50ml로 세척한 후 핵산/에틸아세테이트(2:1) 용매로 재결정하여 15.36g(95%) 의 1-아세톡시-4-N-벤조일아미노-5-페닐-2-펜텐을 합성하였다.
1H-NMRδ2.05(s, 3H), 3.00(dd, 2H), 4.54(d, 2H), 5.02(m, 1H), 5.70(dt,1H), 5.84(dd, 1H), 7.22-7.49(m, 8H), 7.67-7.69(m, 2H)
다른 이탈기도 상기와 같은 방법으로 벤조일클로라이드, 메틸클로로포메이트를 이용하여 합성하였다.
(실시예 11) 일반식 (Ⅲ) 화합물의 합성
소디움 하이드라이드 15.6mg(0.65밀리몰)을 다이메틸포름아마이드(이하 DMF로 칭함) 2ml에 현탁시킨 후 1-아세톡시-4-N-벤조일아미노-4-페닐-2-부틴 200mg (0.65밀리몰)을 DMF 1ml에 용해시켜 0℃에서 서서히 적가하고 테트라키스트라이페닐포스핀 팔라듐(0) 38.1mg(0.033밀리몰)을 가하였다. 8시간동안 교반한 후 반응완결을 확인한 후 에틸 아세테이트 20ml를 가하고 4ml의 증류수로 5회, 20ml의 brine으로 1회 세척한 후 무수황산마그네슘으로 건조하고 여과, 감압증류한 후 칼럼 크로마토그래피(핵산:에틸 아세테이트 = 6:1)로 분리하여 84.3mg(52%, 100% de)의 (4S-트랜스)-4,5-다이하이드로-2,4-다이페닐-5-바이닐-옥사졸린을 얻었다.
1H-NMR(CDCl3) 4.88(dd, J=7.0, 8.0Hz, 1H), 5.05(d, J=8.0Hz, 1H), 5.33(d, J=10.5Hz, 1H), 5.38(d, J=17.5Hz, 1H), 6.09(ddd, J=7.0, 10.5, 17.5Hz, 1H), 7.31-7.53(m, 8H), 8.08(m, 2H)
(실시예 12) 일반식 (Ⅲ) 화합물의 합성
소디움하이드라이드 15mg(0.61밀리몰)을 DMF 2ml에 현탁시킨 후 1-아세톡시-4-N-벤조일아미노-5-페닐-2-펜텐 200mg(0.61밀리몰)을 DMF 1ml에 용해시켜 0℃에서 서서히 적가하고 테트라키스트리페닐포스핀 팔라듐 36mg(0.03밀리몰)을 가하였다. 8시간동안 교반한 후 반응완결을 확인한 후 에틸아세테이트 20ml를 가하고 4ml의 증류수로 5회, 20ml 의 brine으로 1회 세척한 후 무수황산마그네슘으로 건조하고 여과, 감압증류한 후 칼럼크로마토그래피(핵산:에틸아세테이트 = 4:1)로 분리하여 79mg(53% 수율, 60% de)의 (4S-트랜스)-4,5-다이하이드로-2-페닐-4-벤질-5-바이닐-옥사졸린을 얻었다.
1H-NMR δ2.79(dd, J=7.5, 13Hz, 1H), 3.26(dd, J=5.5, 13Hz, 1H), 4.26(ddd, J=5.5, 7.0, 7.5Hz, 1H), 4.76(dd, J=6.5, 7.0Hz, 1H), 5.06(dd, 2H), 5.72(ddd, 1H), 7.22-7.51(m, 8H), 7.97-8.01(m, 2H)
(실시예 13) 일반식 (Ⅲ) 화합물의 합성
소디움 하이드라이드 15.6mg(0.65밀리몰)을 DMF 2ml에 현탁시킨 후 1-아세톡시-4-N-벤조일아미노-6-메틸-2-헵틴 200mg(0.65밀리몰)을 DMF 1ml 에 용해시켜 0℃에서 서서히 적가하고 테트라키스트리페닐포스핀 팔라듐(0) 38.1mg(0.033밀리몰)을 가하였다. 8시간동안 교반한 후 반응완결을 확인한 후 에틸 아세테이트 20ml를 가하고 4ml의 증류수로 5회, 20ml의 brine으로 1회 세척한 후 마그네슘 설페이트로 건조하고 여과, 감압증류한 후 칼럼 크로마토그래피(핵산:에틸 아세테이트 = 6:1)로 분리하여 84.3mg(61% 수율, 58% de)의 (4S-트랜스)-4,5-다이하이드로-2-페닐-4-아이소프로필-5-바이닐-옥사졸린을 얻었다.
여러가지 R 그룹과 이탈기에 대한 팔라듐(0)을 촉매로 한 분자내 고리화 반응의 수율을 표 1에 요약하였다.
이탈기(X)
아세틸 벤조일 메틸 카보네이트
R 페닐 52% 35% 37%
벤질 53% 37% 39%
이소프로필 61% 39% 43%
(실시예 14) 일반식 (Ⅰ) 화합물의 합성
상온에서 교반중인 아세토나이트릴/사염화탄소/물(1:1:1) 혼합용액 10ml에 (4S-트랜스)-4,5-다이하이드로-2,4-다이페닐-5-바이닐-옥사졸린 124.6mg(0.5밀리몰 )을 가한 후 소디움 바이카보네이트 273mg(3.25밀리몰)과 소디움 페리오데이트 588mg(5.75밀리몰)을 가하고 5분간 교반한 후 촉매량의 루테니움 클로라이드(약 1mg)을 가하고 이틀간 교반하였다. 반응이 종결된 후 에테르로 추출한 후 1N-HCl로 산성화한 후 메틸렌클로라이드로 추출하여 (4S-트랜스)-4,5-다이하이드로-2,4-다이페닐-5-카복실산 105.5mg(53%수율, 100% de)을 얻었다. 이 화합물에 에테르 10ml를 가하고 다이아조메탄을 가해 메틸 에스테르화 반응을 하고 에테르를 감압증류하여 (4S-트랜스)-4,5-다이하이드로-2,4-다이페닐-5-카복실산 메틸 에스테르 110mg 을 얻었다.
1H-NMR(CDCl3) 3.84(s, 3H), 4.91(d, J=6.5Hz, 1H), 5.45(d, J=6.5Hz, 1H), 7.29-7.57(m, 8H), 8.08(m, 2H)
(실시예 15) 일반식 (Ⅰ) 화합물의 합성
상온에서 교반중인 아세토나이트릴/사염화탄소/물(1:1:1) 혼합용액 10ml에 (4S-트랜스)-4,5-다이하이드로-2-페닐-4-벤질-5-바이닐-옥사졸린 138.6mg(0.5밀리몰)을 가한 후 소디움 바이카보네이트 273mg(3.25밀리몰)과 소디움 페리오데이트 588mg(5.75밀리몰)을 가하고 5분간 교반한 후 촉매량의 루테니움 클로라이드(약 1mg)을 가하고 이틀간 교반하였다. 반응이 종결된 후 에테르로 추출한 후 1N-HCl로 산성화한 후 메틸렌클로라이드로 추출하여 95.6mg(68%수율)의 (4S-트랜스)-4,5-다이하이드로-2-페닐-4-벤질-5-카복실산을 얻었다.
본 발명은 기존의 방법에 비해 여러 가지 α-아미노산에 모두 적용할 수 있는 장점이 있고, 특히 탁솔측쇄의 구성성분인 3-(N-벤조일아미노)-2-하이드록시-3-페닐프로피오닉산에 균등한 옥사졸린 유도체(Ⅰ)의 합성시 선택적으로 하나의 입체이성질체만을 합성할 수 있어 효율적인 탁솔측쇄의 합성방법으로서 기존의 방법보다 고순도로 탁솔을 합성할 수 있다. 또한 탁솔의 합성에 있어 앞에서 서술한 3-(N-벤조일아미노)-2-하이드록시-3-페닐프로피오닉산이 가지는 단점을 해결할 수 있으므로 탁솔의 합성에 있어 기존의 방법보다 매우 경제적이라는 장점을 가진다. 더 나아가 본 발명의 옥사졸린 유도체(Ⅰ)을 활용하여 HIV 프로테아제 저해제의 중간체를 합성할 수 있는 포괄적인 화합물로 그 활용도는 매우 높은 특징을 지닌다.

Claims (4)

  1. 하기 일반식 (Ⅱ)의 화합물을 출발물질로 하여, 일반식 (Ⅱ) 화합물의 0.02∼0.1 몰%의 팔라듐(Pd) 촉매 존재하에서 20∼50℃에서 고리화 반응시키고, 이탈기 X를 이탈시켜 하기 일반식 (Ⅲ)의 화합물을 제조하고, 다시 루테니움(Ru) 촉매 존재하에서 아세토니트릴/사염화탄소/물의 혼합용매에 산화제를 가하여 산화반응시켜 하기 일반식 (Ⅰ)로 표시되는 옥사졸린 유도체의 제조방법
    (반응식 1)
    상기 반응식에서
    R은 페닐, 벤질, 메틸, 에틸, 이소프로필, 이소부틸, 시클로헥실 또는
    시클로헥실메틸이고 ;
    X는 이탈기로서 아세틸, 벤조일 또는 카보네이트이다.
  2. 제 1항에 있어서, 팔라듐(0) 촉매는 테트라키스트리페닐포스핀 팔라듐(0) ; Pd(OAc)2, PdCl2및 Ph3P의 팔라듐 촉매 혼합물 ; 다이벤질리덴아세톤 팔라듐(0), 다이클로로다이페닐 팔라듐(0) 및 히드라진의 촉매혼합물에서 선택된 촉매임을 특징으로 하는 옥사졸린 유도체의 제조방법
  3. 제 1항에 있어서, 일반식 (Ⅲ)의 화합물에 가하는 산화제는 소디움페리오데이트(NaI04), 포타시움페리오데이트(KIO4) 및 과망간산칼리(KMnO4)에서 선택된 것임을 특징으로 하는 옥사졸린 유도체의 제조방법
  4. 제 1항에 있어서, 일반식 (Ⅱ) 화합물의 합성은 아미노산을 출발물질로 하여 하기 합성경로로 합성됨을 특징으로 하는 옥사졸린 유도체의 제조방법
    (반응식)
    상기 반응식에서
    X는 이탈기로서 아세틸, 벤조일 또는 카보네이트이고 ;
    Bz는 벤조일기를 나타내며 ; M.C.는 메틸렌 클로라이드 ;
    Ph는 페닐 ; pyr은 피리딘 ; THF는 테트라하이드로퓨란 ;
    DMSO 는 디메틸술폭사이드를 나타낸다.
KR1019980013716A 1998-04-17 1998-04-17 베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법 KR100267596B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019980013716A KR100267596B1 (ko) 1998-04-17 1998-04-17 베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법
CA002299958A CA2299958A1 (en) 1998-04-17 2000-03-02 Preparation method for oxazoline compounds
FR0003417A FR2806083A1 (fr) 1998-04-17 2000-03-13 Procede pour preparer un compose d'oxazoline

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019980013716A KR100267596B1 (ko) 1998-04-17 1998-04-17 베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법
CA002299958A CA2299958A1 (en) 1998-04-17 2000-03-02 Preparation method for oxazoline compounds
FR0003417A FR2806083A1 (fr) 1998-04-17 2000-03-13 Procede pour preparer un compose d'oxazoline

Publications (2)

Publication Number Publication Date
KR19990080447A true KR19990080447A (ko) 1999-11-05
KR100267596B1 KR100267596B1 (ko) 2000-10-16

Family

ID=27171176

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980013716A KR100267596B1 (ko) 1998-04-17 1998-04-17 베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법

Country Status (3)

Country Link
KR (1) KR100267596B1 (ko)
CA (1) CA2299958A1 (ko)
FR (1) FR2806083A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606868B (zh) * 2020-06-23 2023-02-17 温州大学新材料与产业技术研究院 一种双齿噁唑啉手性配体的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740451B1 (fr) * 1995-10-27 1998-01-16 Seripharm Nouveaux intermediaires pour l'hemisynthese de taxanes, leurs procedes de preparation et leur utilisation dans la synthese generale des taxanes
US5773629A (en) * 1996-06-14 1998-06-30 Industrial Technology Research Institute Synthesis of (4S, 5R) -2, 4-diphenyl-5-carboxy-oxazoline derivative as taxol side-chain precursor
US6143900A (en) * 1999-10-26 2000-11-07 Dong Kook Pharmaceutical Co., Ltd. Stereoselective synthesis of oxazoline derivative

Also Published As

Publication number Publication date
CA2299958A1 (en) 2001-09-02
FR2806083A1 (fr) 2001-09-14
KR100267596B1 (ko) 2000-10-16

Similar Documents

Publication Publication Date Title
CA3100162A1 (en) Process for the preparation of apalutamide
US10538539B2 (en) Method for preparing 3-((2S, 5S)-4-methylene-5-(3-oxopropyl)tetrahydrofurane-2-yl) propanol derivative, and intermediate therefor
KR100267596B1 (ko) 베타-아미노-알파-하이드록시산과 균등한 옥사졸린 유도체의 입체선택적 합성방법
KR950011419B1 (ko) 6, 7-디아실-7-디아세틸포르스콜린 유도체의 제조방법
US6143900A (en) Stereoselective synthesis of oxazoline derivative
US5869694A (en) Process for preparing 4-hydroxy-2-pyrrolidone
US20100317868A1 (en) Method of preparing taxane derivatives and intermediates used therein
US6130336A (en) Process for preparing paclitaxel
RU2388747C2 (ru) Способы получения производных бицикло [3.1.0]гексана и промежуточные соединения для этой цели
US6127546A (en) Process for the preparation of oxazoline compound
JPH0228144A (ja) ペプチド誘導体合成に有用な立体特異性中間体の製法
Tanimori et al. A Concise Enantioselective Pathway to Carbocyclic Nucleoside: Asymmetric Synthesis of Carbocyclic Moiety of Carbovir
KR0136706B1 (ko) 광학 활성이 있는 3-아미노 피롤리딘 유도체의 제조방법
NO332367B1 (no) Taksanderivater funksjonalisert pa den 14. posisjonen
EP0413832A1 (en) Oxazolidinedione derivatives and production thereof
KR0145401B1 (ko) 실릴아크릴레이트 유도체 및 그 제조방법
KR950003333B1 (ko) α,β-불포화케톤 및 케토옥심유도체
EP1140874A1 (en) Stereoselective synthesis of oxazoline derivative
KR100250241B1 (ko) 파클리탁셀의제조방법
JP3740783B2 (ja) 4−(2−アルケニル)−2,5−オキサゾリジンジオン類の製造法
JPH0124782B2 (ko)
KR0144378B1 (ko) 이중 아제티디논 고리형성 반응을 통한 4-아세톡시아제티디논의 입체선택적 제조 방법
KR100225534B1 (ko) (2R,3S)-베타-페닐이소세린 유도체의 입체선택적 제조방법[Storcospecific process for preparing(2R,3S)-β0phenylisoserine]
PL178240B1 (pl) Nowe cis-N-iminometylo-beta-laktamy i sposób wytwarzania z nich pochodnych beta-laktamów
HU221164B1 (en) Method for the preparation of 1,3-oxazolidin 5-carboxylic acid

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050704

Year of fee payment: 6

EXTG Extinguishment