KR19990026909A - Method for manufacturing oriented electrical steel sheet with excellent decarburization and annealing productivity - Google Patents

Method for manufacturing oriented electrical steel sheet with excellent decarburization and annealing productivity Download PDF

Info

Publication number
KR19990026909A
KR19990026909A KR1019970049226A KR19970049226A KR19990026909A KR 19990026909 A KR19990026909 A KR 19990026909A KR 1019970049226 A KR1019970049226 A KR 1019970049226A KR 19970049226 A KR19970049226 A KR 19970049226A KR 19990026909 A KR19990026909 A KR 19990026909A
Authority
KR
South Korea
Prior art keywords
annealing
temperature
less
oriented electrical
electrical steel
Prior art date
Application number
KR1019970049226A
Other languages
Korean (ko)
Other versions
KR100340500B1 (en
Inventor
최규승
한규석
오재훈
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970049226A priority Critical patent/KR100340500B1/en
Publication of KR19990026909A publication Critical patent/KR19990026909A/en
Application granted granted Critical
Publication of KR100340500B1 publication Critical patent/KR100340500B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심재료로 사용되는 방향성 전기강판의 제조방법에 관한 것이며; 그 목적은 탈탄성 및 소둔생산성이 우수한 방향성 전기강판의 제조방법을 제공함에 있다.The present invention relates to a method for producing a grain-oriented electrical steel sheet used as iron core materials such as transformers, electric motors, generators and other electronic devices; The object is to provide a method for producing a grain-oriented electrical steel sheet excellent in decarburization and annealing productivity.

상기 목적을 달성하기 위한 본 발명은 중량%로, Si:2.9-3.3%, C:0.025-0.045%, P:0.015%이하, 용존 Al:0.008-0.020%, N:0.0080-0.012%, S:0.007%이하, Mn:0.12-0.32%, Cu:0.60%이하 및 Fe와 기타 불가피하게 불순물로 이루어지는 강 스라브를 1250-1340℃의 온도에서 재가열하고, 통상의 열간압연을 행한 다음, 1000℃ 이하의 온도에서 열연판소둔을 하고, 이어 중간에 탈탄소둔을 포함한 2회의 냉간압연을 행하여 최종두께의 냉연판을 만든다음, 상기 냉연판을 600℃ 이하의 건조분위기에서 회복소둔하고, 이어 MgO를 주성분으로 하는 용착방지제를 도포하여 권취하고, 이후 전구간을 수소분위기로 하여 700-1200℃구간의 승온율을 15℃/hr이상 유지 하면서, 1200 ±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔하여 이루어지는 저온재가열 방향성 전기강판의 제조방법에 있어서,The present invention for achieving the above object by weight, Si: 2.9-3.3%, C: 0.025-0.045%, P: 0.015% or less, dissolved Al: 0.008-0.020%, N: 0.0080-0.012%, S: A steel slab of 0.007% or less, Mn: 0.12-0.32%, Cu: 0.60% or less and Fe and other unavoidable impurities is reheated at a temperature of 1250-1340 ° C, subjected to normal hot rolling, and then to 1000 ° C or less. After hot-rolled sheet annealing at temperature, followed by two cold rollings including decarbonized annealing in the middle to form a cold-rolled sheet having a final thickness. The cold-rolled sheet is then recovered and annealed in a dry atmosphere of 600 ° C. or lower, followed by MgO as a main component. Thermal cycle to cool after coating for 20 hours at 1200 ± 10 ℃ while maintaining the temperature rise rate of 700-1200 ℃ over 15 ℃ / hr by applying the anti-deposition agent. Low temperature reheating oriented electrical steel made by high temperature annealing In the method of,

상기 탈탄소둔은 940-980℃의 온도에서 PH2O/PH2:0.60-0.98의 습윤분위기로 2-5분간 행하는 것을 포함하여 이루어지는 탈탄성 및 소둔생산성이 우수한 방향성 전기강판의 제조방법에 관한 것을 그 요지로 한다.The decarbonization annealing relates to a method for producing a grain-oriented electrical steel sheet having excellent de-elasticity and annealing productivity, which is performed at a temperature of 940-980 ° C. in a humid atmosphere of P H 2 O / P H 2 : 0.60-0.98 for 2-5 minutes. Make a point.

Description

탈탄성 및 소둔생산성이 우수한 방향성전기강판의 제조방법Method for manufacturing oriented electrical steel sheet with excellent decarburization and annealing productivity

본 발명은 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심재료로 사용되는 방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 탈탄성이 우수하여 소둔생산성을 극대화할 수 있는 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials such as transformers, electric motors, generators and other electronic devices, and more particularly, to produce a grain-oriented electrical steel sheet which can maximize annealing productivity due to its excellent decarburizing property. It is about a method.

방향성 전기강판은 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며, 압연방향으로 극히 우수한 자기적특성을 가지고 있으므로 이특성을 이용하여 변압기, 전동기, 발전기 및 기타 전기기기 등의 철심으로 사용되고 있다.A grain-oriented electrical steel sheet has an aggregate structure in which the orientation of grains is aligned in the direction of (110) [001], and has very good magnetic properties in the rolling direction. Therefore, it is possible to use transformers, motors, generators, and other electrical equipment by using this characteristic. It is used as an iron core.

방향성 전기강판의 제조공정은 약2-4%의 규소와 입성장억제제로 대부분 MnS나 MnSe를 함유하고 있는 성분계를 용해하여 스라브를 만든 후, 재가열 및 열간압연→예비 소둔→중간소둔이 낀 2회의 냉간압연→탈탄 소둔→용착방지제 도포→ 마무리 고온소둔 등의 복잡한 공정을 거쳐서 최종 제품으로 완성된다. 이러한 복잡한 제조공정중 가장 제조상 어려운 것은 고온에서 열처리를 행하는 스라브 재가열공정이다. 이 스라브 재가열공정은 입성장억제제로 사용되는 MnS 나 AlN 등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시키기 위하여 약 1400 ℃ 정도의 고온에서 5시간 정도로 유지하는 것이 불가피하다. 이때, 고온의 스라브 표면에서는 공기와의 산화반응으로 Si 및 Fe성분이 복합된 파이어라이트(Fe2SiO4)라는 산화물이 생기는데, 이 산화물은 융점이 1340℃ 정도로 낮아 재가열시 표면에서 부터 녹아서 흘러 내리게 된다. 녹아내리는 산화물은 일부 로 바깥으로 흘러내리게 설계되어 있지만, 대부분은 로 상부의 내화물 등에 축척되어 작업종료와 동시에 산화물 제거를 위한 전체적인 내부수리가 불가피하다. 따라서, 연속작업을 특징으로 하는 제철소에서는 작업성 불량, 생산성 감소, 원가 상승 등의 경제적 부담을 주고 있다.The manufacturing process of the grain-oriented electrical steel is made of slab by dissolving the component system containing about 2-4% of silicon and grain growth inhibitor, mostly MnS or MnSe, and then reheating and hot rolling → pre-annealing → intermediate annealing. The final product is completed through a complex process such as cold rolling, decarburization annealing, coating of anti-deposition agent and finishing high temperature annealing. Among the complicated manufacturing processes, the most difficult in manufacturing is the slab reheating process, which is heat-treated at a high temperature. In this slab reheating process, it is inevitable to keep the precipitates such as MnS and AlN, which are used as grain growth inhibitors, in a solid solution for 5 hours at a high temperature of about 1400 ° C. in order to finely precipitate them. At this time, on the surface of the high temperature slab, an oxide called Pyrite (Fe 2 SiO 4 ), in which Si and Fe components are combined, is formed by oxidation with air. do. Molten oxide is designed to flow out partly, but most of it accumulates in the refractory of the upper part of the furnace, so that the entire internal repair for oxide removal is inevitable at the end of work. Therefore, in steel mills characterized by continuous work, economic burdens such as poor workability, reduced productivity, and higher costs are incurred.

스라브 재가열온도의 하향화 노력은 선진 제조사를 중심으로 총력적인 관심속에 진행되고 있으며, 여러 가지 방법이 제시되고 있는 중이다. 즉, 재가열온도를 파이어라이트 산화물이 녹지 않는 약 1350℃이하의 온도에서 가열하는 것을 기준으로 하여 기본 성분계의 조정을 행하고, 이 성분설계에 부가하여 제조공정중의 석출물 관리기법등이 제안되고 있다.Efforts to lower the slab reheating temperature are proceeding with full attention from leading manufacturers, and various methods are being proposed. That is, the basic component system is adjusted on the basis of heating the reheating temperature at about 1350 ° C. or less at which the pyrite oxide does not dissolve, and in addition to the component design, a precipitate management method during the manufacturing process and the like have been proposed.

현재까지 공지 기술들은 주로 일본에서 제안되어 국내에 기술을 공개한 한국공개 특허번호 89-8334, 공고번호 89-882 등이 있다.To date, well-known technologies are mainly disclosed in Japan, and Korean Patent Publication No. 89-8334, Publication No. 89-882, etc., which disclose the technology in Korea.

한편, 본 발명자들은 재래식 방향성전기강판을 제철소 일반강의 처리 조건과 동일한 재가열온도인 1250-1340℃ 부근에서 열처리하여 열간압연을 하는 성분계를 설계하였으며, 기존의 제조 공정에서 추가적인 설비보완이나 신설이 없이도 작업이 가능한 새로운 제조방법을 확립하여, 한국특허출원 93-23751호에, 부가적인 요소기술들을 한국특허출원 94-21388, 21389, 21390 및 21391호 등에 제안한 바 있다. 상기 방법에 의하면 저온재가열법을 이용하여 실기 생산시 높은 실수율 및 우수한 자기적 특성을 갖는 제품을 생산할 수 있었다.Meanwhile, the present inventors designed a component system for hot rolling by heat treating a conventional grain-oriented electrical steel sheet in the vicinity of 1250-1340 ° C., which is the reheating temperature same as that of general steelworks, without any additional equipment supplement or new installation in the existing manufacturing process. By establishing this possible new manufacturing method, Korean Patent Application No. 93-23751 proposed additional element technologies to Korean Patent Application Nos. 94-21388, 21389, 21390, and 21391. According to the method, it was possible to produce a product having a high real rate and excellent magnetic properties in the production of the actual machine using the low temperature reheating method.

그러나, 이제조 방법은 통상재의 제조 순서와 달리 1차냉간압연 후 통상 0.60-0.70㎜의 중간두께에서 탈탄소둔을 하므로 장시간의 탈탄이 필요로 하여 생산성이 저하되고, 또한 최종 제품에서의 잔류탄소량 관리한계 범위를 넘기도 하여 수요가가 가공하여 사용할 때 자기시효현상이 나타나 사용하는데 문제가 되고 있다.However, unlike the manufacturing procedure of conventional materials, the detonation method usually decarburizes an intermediate thickness of 0.60-0.70 mm after primary cold rolling, which requires long decarburization and lowers the productivity, and also reduces the amount of carbon remaining in the final product. It is a problem that the self-aging phenomenon occurs when the demand price is processed and used because it exceeds the control limit.

자기시효현상은 수요가가 방향성 전기강판을 변압기로 가공 조립하여 사용할 때에 변압기 자체의 온도가 상승하게 되고, 이에 따라 소재 내부에 있던 잔존 탄소성분이 Fe3C등의 탄화물로 되어 결정입계에 석출되고, 자구의 이동을 방해하기 때문에 자기적특성이 열화되어서 생기는 것을 말한다.In the self-aging phenomenon, when the demand-oriented oriented electrical steel sheet is processed and used as a transformer, the temperature of the transformer itself increases, and thus the residual carbon component inside the material becomes carbide such as Fe 3 C and precipitates at the grain boundary. In other words, it is caused by deterioration of magnetic properties because it impedes movement of magnetic domains.

결국, 이러한 자기시효현상은 소재의 잔류성분중에서 탄소가 가장 심하게 영향을 미치기 때문에, 제조 공정에서 최종제품의 탄소를 집중관리해야 할 필요가 있다. 구체적으로 잔류탄소량이 25ppm이하에서는 시간에 따른 자기시효현상이 거의 없기 때문에 공장자체의 잔류 탄소량의 관리범위는 통상 25ppm이하로 관리하고 있다.After all, this self-aging phenomenon is the most severely affected carbon among the residual components of the material, it is necessary to focus the carbon of the final product in the manufacturing process. Specifically, since the amount of residual carbon is less than 25 ppm, there is almost no self aging phenomenon with time, and the management range of the residual carbon amount of the factory itself is usually controlled to 25 ppm or less.

그러나, 상기 한국 특허출원 93-23751에서는 1차압연후인 중간두께에서의 탈탄소둔을 적용하기 때문에 잔류탄소 관리를 위해 4-7분간의 장시간 소둔이 불가피한 실정이며, 이에 따라 연속생산을 특징으로 하는 공정진행상 생산성을 엄청나게 떨어뜨리게 된다. 반대로 생산성향상을 위해 단시간에 탈탄소둔을 할 경우는 잔류탄소량의 관리기준을 만족할 수가 없어서 수요가 사용시 자기시효에 의한 제품특성열화가 불가피한 상태이다.However, in the Korean patent application 93-23751, since decarbonization annealing at the intermediate thickness after primary rolling is applied, annealing for 4-7 minutes is inevitable for the management of residual carbon, and thus a process characterized by continuous production. As you progress, your productivity will drop tremendously. On the contrary, if decarbonization is performed in a short time to improve productivity, it is inevitable to deteriorate the product characteristics due to self-aging when the demand cannot be satisfied.

따라서, 생산공장에서는 단시간에 탈탄성을 확보함으로써 소둔생산성을 극대화할 수 있는 방안이 요구되어지고 있다.Therefore, in the production plant, a method for maximizing annealing productivity by securing decarburization in a short time is required.

본 발명자는 이러한 문제를 동시에 해결할 수 있는 여러 가지 방안을 검토한 결과, 탈탄소둔공정의 적정한 제어에 의해 탈탄성 및 소둔생산성을 획기적으로 개선할 수 있다는 것을 확인하고, 본 발명을 제안하게 이르렀다.The present inventors have studied various ways to solve these problems at the same time. As a result, the present inventors have found that the decarburization and annealing productivity can be significantly improved by appropriate control of the decarbonization annealing process.

즉, 본 발명은 2회 냉간압연 중간에 행하는 탈탄소둔조건을 적절히 조절하여 탈탄성 및 탈탄소둔 생산성이 우수한 방향성 전기강판의 제조방법을 제공하는데, 그 목적이 있다.That is, the present invention provides a method for producing a grain-oriented electrical steel sheet excellent in decarburization and decarbonization productivity by appropriately adjusting the decarbonization annealing performed in the middle of two cold rollings.

상기 목적을 달성하기 위한 본 발명의 방향성 전기강판의 제조방법은, 중량%로, Si:2.9-3.3%, C:0.025-0.045%, P:0.015%이하, 용존 Al:0.008-0.020%, N:0.0080-0.012%, S:0.007%이하, Mn:0.12-0.32%, Cu:0.60%이하 및 Fe와 기타 불가피하게 불순물로 이루어지는 강 스라브를 1250-1340℃의 온도에서 재가열하고, 통상의 열간압연을 행한 다음, 1000℃ 이하의 온도에서 열연판소둔을 하고, 이어 1차 냉간압연한 후 940-980℃의 온도에서 PH2O/PH2:0.60-0.98의 습윤분위기로 2-5분간 탈탄소둔하고, 2차 냉간압연하여 최종두께의 냉연판을 만든다음, 상기 냉연판을 600℃ 이하의 건조분위기에서 회복소둔하고, 이어 MgO를 주성분으로 하는 용착방지제를 도포하여 권취하고, 이후 전구간을 수소분위기로 하여 700-1200℃구간의 승온율을 15℃/hr이상 유지 하면서, 1200 ±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔하는 것을 포함하여 구성된다.Method for producing a grain-oriented electrical steel sheet of the present invention for achieving the above object, by weight, Si: 2.9-3.3%, C: 0.025-0.045%, P: 0.015% or less, dissolved Al: 0.008-0.020%, N : 0.0080-0.012%, S: 0.007% or less, Mn: 0.12-0.32%, Cu: 0.60% or less, and steel slabs made of Fe and other unavoidable impurities are reheated at a temperature of 1250-1340 ° C., and hot rolled. After performing a hot rolled sheet annealing at a temperature of 1000 ° C. or lower, followed by primary cold rolling, followed by decarbonization at a temperature of 940-980 ° C. for 2-5 minutes under a humid atmosphere of P H 2 O / P H 2 : 0.60-0.98. After the second cold rolling to make a cold rolled sheet of final thickness, the cold rolled sheet is recovered and annealed in a dry atmosphere of 600 ° C. or lower, and then wound by applying an anti-deposition agent containing MgO as a main component, and then the whole section with a hydrogen atmosphere. While maintaining the temperature increase rate of 700-1200 ℃ over 15 ℃ / hr, it is cracked for more than 20 hours at 1200 ± 10 ℃ The excitation consists of finishing high temperature annealing through a thermal cycle.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 후물재에서 탄소원자의 확산속도가 최적이 되도록 탈탄소둔온도를 설정함과 더불어 산화능(PH2O/PH2)조건을 제어하여 소재의 내부산화물을 가능한 다공성의 외부산화물층으로 변화시켜 탄소원자의 외부확산을 촉진하여 탈탄성을 향상시키는데, 그 특징이 있다.The present invention sets the decarbonization annealing temperature to optimize the diffusion rate of carbon atoms in the thick material and controls the oxidizing ability (P H2O / P H2 ) conditions to change the internal oxide of the material into a porous outer oxide layer as possible as possible. It promotes external diffusion and improves decarburization.

본 발명에 의하면, 1차 냉간압연한 후물재에서는 탈탄정도가 탈탄소둔온도에 의해 대부분 지배되는 것이 확인되었다. 이는 약 0.3mm 두께의 박물재의 탈탄소둔이 830-840℃의 저온에서 주로 산화능(PH2O/PH2)에 따라 표면산화층 형성에 의해 탈탄반응이 지배되는 것과는 큰 차이가 있는 중요한 사실인 것이다.According to the present invention, it was confirmed that the degree of decarburization is largely governed by the decarbonization temperature in the primary cold rolled material material. This is an important fact that the decarbonization of the thin material of about 0.3 mm thickness is significantly different from that in which the decarburization reaction is dominated by the surface oxide layer formation mainly depending on the oxidation capacity (P H2O / P H2 ) at a low temperature of 830-840 ℃.

이러한 차이는 탈탄성에 미치는 인자들이 주어진 상태에 따라 여러 가지 있으나 후물재 탈탄에서는 온도에 의한 탄소원자의 확산속도가 전체 탈탄반응을 지배하기 때문이다.These differences vary depending on the conditions given for decarburization, but in thick ash decarburization, the rate of diffusion of carbon atoms by temperature dominates the entire decarburization reaction.

그런데, 본 발명에 의하면 탈탄온도와 더불어 산화능(PH2O/PH2)의 제어도 중요하다. 즉, 탈탄온도가 높아질수록 소재표면의 산화물층의 두께가 증가하고 상대적으로 내부산화물층의 증가하여 탄소원자의 외부확산을 방해하게 된다. 특히, 본 성분계처럼 Mn성분이 0.32%이하로 비교적 높은 소재에서는 Mn성분이 습윤분위기의 수분에 의해 MnO 및 MnO2의 내부 산화물층을 형성하는데, 이는 소재중의 Si성분과 유사한 내부산화물을 형성시킨다.However, according to the present invention, control of the oxidation capacity (P H 2 O / P H 2 ) is also important in addition to the decarburization temperature. In other words, as the decarburization temperature increases, the thickness of the oxide layer on the surface of the material increases and the internal oxide layer increases, which hinders the external diffusion of carbon atoms. In particular, in materials with a relatively high Mn content of 0.32% or less, as in the present component system, the Mn component forms an internal oxide layer of MnO and MnO 2 by moisture in a wet atmosphere, which forms an internal oxide similar to the Si component in the material. .

따라서, 탈탄성을 향상시키려면 온도상향과 동시에 내부 MnO와 SiO2등의 내부산화물을 가능한 외부 산화물인 FeSiO3나 MnSiO3등의 다공성의 외부산화물층으로 변화시킴으로써 탄소원자의 외부확산을 촉진하여 후물재에서의 탈탄성을 향상시킬 수 있다.Therefore, in order to improve decarburization, the internal oxides such as internal MnO and SiO 2 can be changed to a porous external oxide layer such as FeSiO 3 or MnSiO 3 , which is an external oxide, to promote external diffusion of carbon atoms. The decarburization at can be improved.

본 발명은 이러한 야금학적인 확인 결과를 바탕으로 하여 탈탄소둔공정의 최적화 관리기준으로 탈탄온도를 940-980℃의 범위로 하고, 산화능(PH2O/PH2)을 0.60-0.98의 습윤분위기에서 탈탄하는 것으로 이때의 적정탈탄시간은 2-5분이다.The present invention is based on the results of the metallurgical confirmation, the decarburization temperature in the range of 940-980 ℃ as the optimal management criteria of the decarbonization annealing process, and the oxidation capacity (P H2O / P H2 ) in the wet atmosphere of 0.60-0.98 At this time, the proper decarburization time is 2-5 minutes.

이것은 통상의 조건인 온도 890-910℃, 산화능(PH2O/PH2)을 0.50-0.60의 처리하는 것과 비교해 30%정도의 소둔시간 단축이 가능하여 소둔생산성을 약 30%정도 향상시킬 수 있다.This can be compared to the annealing treatment as time reduction of about 30% that of the conventional temperature 890-910 ℃, oxidizing ability (P H2O / P H2) conditions can be improved by about 30% from 0.50 to 0.60 the annealing productivity.

이하, 본 발명강의 수치한정이유에 대해 설명한다.Hereinafter, the reason for numerical limitation of the present invention steel will be described.

C는 AlN석출물의 미세 고용 분산에 유리하게 작용하고, 적정한 압연조직을 형성하게 하며, 냉간압연시 가공에너지를 부여하기 때문에 가능한한 상향 관리하는 것이 유리하나 이후, 탈탄공정의 어려움을 고려하여 0.025-0.045%의 범위로 첨가하는 것이 바람직하다.C is advantageous to finely disperse AlN precipitates, form an appropriate rolled structure, and give processing energy during cold rolling, so it is advantageous to manage it upwards as much as possible. It is preferable to add in 0.045% of range.

Si는 소재의 비저항치를 증가시켜 철손을 낮추는 역할을 하지만, 첨가 함량이 2.9%이하에서는 철손특성이 나쁘고, 첨가 함량이 3.3%이상 일 경우에는 강이 취약해져 냉간압연성이 극히 나빠지므로 첨가함량은 2.9-3.3%로 한정하는 것이 바람직하다.Si plays a role of lowering iron loss by increasing the specific resistance of the material, but the iron loss property is bad at the addition content below 2.9%, and the steel is vulnerable when the addition content is above 3.3%, so the cold rolling property is extremely bad. It is preferable to limit to 2.9-3.3%.

Mn은 재가열시 석출물의 고용온도를 낮추며 열간압연시 소재 양 끝 부분에 생성되는 크랙을 방지하는 역할을 하는데, 0.12%미만의 경우 석출물형성에 불리하며, 0.32%이상 첨가시에는 Mn산화물에 의해 고온소둔시 형성되는 포스테라이트피막의 밀착성이 악화되므로 0.12-0.32%로 첨가하는 것이 바람직하다.Mn lowers the solid solution temperature of the precipitate during reheating and prevents cracks formed at both ends of the material during hot rolling.If less than 0.12%, Mn is disadvantageous for the formation of precipitates. Since the adhesion of the forsterite film formed during annealing is deteriorated, it is preferable to add 0.12-0.32%.

S은 가능한 하한 관리가 필요하며 만약 0.007%이상 함유되면 열연에서 저온재가열시 중심편석부의 고용 및 확산이 어려워지므로 탈S공정을 채용하여 강력억제하여야 한다.S needs to be managed as low as possible, and if it contains more than 0.007%, it is difficult to employ and diffuse the central segregation part during low temperature reheating in hot rolled steel.

Al은 N과 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소로이며 0.008%이하에서는 2차재결정에 필요한 충분한 역제력을 갖지 못하기 때문에 결정립크기가 적고 불완전 미립자가 나타나며, 0.020%이상에서는 억제력이 너무 강해 2차재결정 형성 자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 필요한 대표적 성분이다. 따라서 Al은 0.008-0.020%로 한정하는 것이 바람직하다.Al is the central element that forms the precipitate of AlN together with N to secure grain growth inhibition. If it is less than 0.008%, Al does not have sufficient reverse force necessary for secondary recrystallization, so the grain size is small and incomplete fine particles appear. In the case of, the inhibitory force is so strong that it is difficult to form secondary recrystallization, and the magnetic property is rapidly deteriorated. Therefore, Al is preferably limited to 0.008-0.020%.

N는 용존Al과 반응 석출물을 형성하여 2차재결정형성에 있어서 필수적인 성분이며 0.008%이하에서는 석출물의 형성이 부족하게되고, 0.012%이상 첨가시에는 강판표면에 브리스터라는 결함이 생겨 제품이 표면특성을 열화시키므로 과잉 함유를 억제한다.N forms an reacted precipitate with dissolved Al, which is an essential component for secondary recrystallization. If it is less than 0.008%, N is insufficient to form precipitates, and when it is added at 0.012% or higher, a blister defect occurs on the surface of the steel sheet. Since it deteriorates, excess content is suppressed.

Cu는 불순성분인 S과 결합하여 Cu2S의 석출물을 형성하고, 석출물중 가장 저온에서 고용되므로 가능한 한 많이 첨가할수록 유리하다. 그러나 0.6%이상되면 탈탄소둔시 형성되는 산화물이 절연피막 형성에 악영향을 주므로 0.6%까지로 한정한다.Cu combines with S, which is an impure component, to form a precipitate of Cu 2 S, and it is advantageous to add as much as possible because it is solid-solution at the lowest temperature among the precipitates. However, if more than 0.6%, the oxide formed during decarbonization annealing adversely affects the formation of the insulating film, so it is limited to 0.6%.

이상의 성분계는 방향성전기강판 제조시 재가열온도를 하향화시키는 기본 조건이다. 상기와 같은 조성의 규소강 스라브는 재가열온도를 통상 일반 탄소강의 재가열 온도인 1250℃에서 작업을 행하여도 자기특성의 확보가 가능하며, 이때 재가열온도가 1340℃를 넘으면 전기강판 스라브가 용융하기 시작하는 온도이므로 제철소에서 가장 경제적인 온도인 1250-1340℃까지로 한정한다.The above component system is a basic condition for lowering the reheating temperature in manufacturing the grain-oriented electrical steel sheet. Silicon steel slab of the composition as described above can secure the magnetic properties even if the reheating temperature is usually worked at 1250 ℃ reheating temperature of ordinary carbon steel, when the reheating temperature exceeds 1340 ℃ electrical steel slab begins to melt Because of the temperature, it is limited to 1250-1340 ℃ which is the most economical temperature in steel mills.

이와같이 재가열된 스라브를 통상의 방법으로 열간압연하고, 이어 1000℃이하의 온도에서 열연판소둔을 행하고, 중간소둔을 포함한 2회의 냉간압연을 한다.The reheated slab in this manner is hot rolled in a conventional manner, followed by hot roll annealing at a temperature of 1000 ° C. or lower, and two cold rollings including intermediate annealing.

이때, 1차냉간압연을 할 때에는 최종 2차냉연율이 46-69%가 되도록 중간 두께를 조정해야 한다. 즉, 2차냉연율이 46%이하 및 69%이상이 되면 2차재결정형성에 필요한 구동에너지가 너무 작아 재결정형성이 불안정하여 자기적특성이 열화된다.At this time, when the primary cold rolling, the intermediate thickness should be adjusted so that the final secondary cold rolling rate is 46-69%. That is, when the secondary cold rolling ratio is 46% or less and 69% or more, the driving energy required for secondary recrystallization is too small, so that the recrystallization is unstable and the magnetic properties are deteriorated.

본 발명은 상기 1,2차 냉간압연공정사이에 행하는 탈탄소둔공정을 적절하게 제어함에 본 발명의 특징이 있다. 즉, 940-980℃의 온도에서 PH2O/PH2:0.60-0.98의 습윤분위기로 2-5분간 행하는 것이다.The present invention is characterized in that the decarbonization annealing process performed between the first and second cold rolling processes is appropriately controlled. That is, at a temperature of 940-980 ℃ P H2O / P H2: 2-5 minutes in a humid atmosphere is performed for 0.60 to 0.98.

만일 탈탄소둔온도가 940℃이하에서는 탈탄성이 저조하고, 980℃이상에서는 용존 AlN의 분해 가능성이 있어서 자기적측면에서 바람직하지 않다.If the decarbonization annealing temperature is lower than 940 ° C., the decarburization is poor, and if the decarbonization annealing temperature is higher than 980 ° C., there is a possibility of decomposition of dissolved AlN, which is not preferable in terms of magnetic compatibility.

또한, 산화능을 나타내는 PH2O/PH2가 0.60이하에서는 탈탄성이 나쁘고, 0.98이상에서는 형성된 표면피막이 검게 변색되어 특성이 저하된다. 이때의 적정탈탄시간은 2-5분 이내이며 충분한 탈탄성을 고려하여 적정시간을 결정하는 것이 바람직하다.In addition, when P H2O / P H2 which exhibits oxidizing ability is not more than 0.60, decarburization is poor, and when it is 0.98 or more, the surface coating formed is black and discolored, thereby deteriorating characteristics. At this time, the proper decarburization time is within 2-5 minutes, it is preferable to determine the appropriate time in consideration of sufficient decarburization.

상기 중간소둔이 끝나면 2차 냉간압연하여 최종 두께로 조정한 후 600℃이하의 온도에서 회복소둔하고, MgO를 주성분으로 하는 융착방지제를 도포하고 권취하여 대형코일로 만든다음 마무리소둔을 행한다.After the intermediate annealing is finished, the second cold rolling is adjusted to the final thickness, and then recovered and annealed at a temperature of 600 ° C. or lower, and coated with a fusion inhibitor containing MgO as a main component to make a large coil, followed by finishing annealing.

마무리소둔은 전구간을 100%수소분위기로 하여 700-1200℃구간의 승온율을 15℃/hr이상 유지 하고, 1200 ±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 소둔을 행함으로써, 제품의 탈탄성 및 자성이 우수한 방향성 전기강판을 제조할 수 있다.Finishing annealing is performed at 100% hydrogen atmosphere to maintain the temperature increase rate of 700-1200 ° C over 15 ° C / hr, and to undergo annealing through a heat cycle that is cooled after cracking for 20 hours at a temperature of 1200 ± 10 ° C. By doing so, a grain-oriented electrical steel sheet excellent in decarburization and magnetic properties of the product can be produced.

본 발명의 구성에 있어서 탈탄소둔조건을 제외한 기타공정 조업조건은 본 발명자가 기출원한 발명에 제시되어 있어 본 발명에서는 특별히 한정하지 않는다.In the configuration of the present invention, other process operating conditions except for the decarbonization annealing conditions are set forth in the present invention which has been filed by the present inventor, and the present invention is not particularly limited.

이하 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

중량비로 Si:3.16%, C:0.039%, P:0.014%, 용존 Al:0.015%, N:0.009%, S:0.005%, Mn:0.23%, Cu:0.41% 및 나머지 Fe와 기타 불가피한 불순물로 된 200mm 두께의 스라브를 표면용융이 없는 1320℃의 온도에서 3.5 시간 저온재가열후 열간압연을 행하여 2.3mm 두께의 열연판을 만들었다. 이어 950℃에서 열연판소둔을 시행하고 산세후 0.70mm 두께까지 1차 냉간압연을 한 후 탈탄소둔을 실시하였다. 탈탄소둔은 하기표 1에 나타난 조건으로 다양하게 실시하였으며, 종래재의 경우 910℃의 온도에서 32.5H2+67.5N2분위기, PH2O/PH2가 0.56의 이슬점에서 3분동안 하였다. 상기와 같이 탈탄소둔한 후 소재의 잔류탄소량을 측정하여 하기표 1에 나타나었다.By weight ratio Si: 3.16%, C: 0.039%, P: 0.014%, dissolved Al: 0.015%, N: 0.009%, S: 0.005%, Mn: 0.23%, Cu: 0.41% and the rest of Fe and other unavoidable impurities The slab with a thickness of 200 mm was hot rolled after low temperature reheating for 3.5 hours at a temperature of 1320 ° C. without surface melting, thereby making a 2.3 mm thickness hot rolled plate. Subsequently, hot-rolled sheet annealing was performed at 950 ° C, followed by primary cold rolling to 0.70 mm thickness after pickling, followed by decarbonization annealing. Decarbonization annealing was carried out variously under the conditions shown in Table 1, in the case of the prior art, 32.5H 2 + 67.5N 2 atmosphere, P H 2 O / P H 2 at a temperature of 910 ℃ for 3 minutes at a dew point of 0.56. After decarbonization annealing as described above to measure the residual carbon amount of the material is shown in Table 1.

이어서 2차 냉간압연하여 최종 두께인 0.30mm로 조정하고 550℃의 건조분위기에서 회복소둔 및 MgO를 주성분으로 하는 융착방지제를 도포한후 건조한 다음 각각 권취하여 대형코일로 만든 다음 최종 마무리 소둔공정을 행하였다. 이때 최종 마무리 소둔은 전 구간을 100% 수소분위기로 하여, 700-1200℃ 구간의 승온율을 18℃/hr 로 유지하면서 1200℃ 의 온도에서 25시간 균열한 후 냉각하는 열사이클을 거쳐 최종 제품을 만들었다. 그리고 이들 시편의 표면형상 및 자성을 측정후 이들의 결과를 종합하여 하기표 1에 나타내었다.After the second cold rolling, the final thickness was adjusted to 0.30mm. After application of recovery annealing and fusion inhibitor containing MgO as a main ingredient in a dry atmosphere at 550 ℃, it was dried and wound up to make a large coil. It was. At this time, the final finishing annealing is performed with 100% hydrogen atmosphere, while maintaining the temperature raising rate of 700-1200 ° C at 18 ° C / hr while cracking for 25 hours at 1200 ° C. made. And after measuring the surface shape and magnetic properties of these specimens, the results are summarized in Table 1 below.

상기표 1에 나타나 있듯이, 종래재의 경우 표면형상이나 자성등의 제품특성은 양호하나 소재의 잔류탄소량이 46ppm 수준으로 높아서 시효현상에 의한 자성열화가 우려되었다.As shown in Table 1, in the case of the conventional materials, the product characteristics such as surface shape and magnetic properties are good, but the residual carbon content of the material is high at 46 ppm, which may cause magnetic deterioration due to aging.

또한, 본 발명의 탈탄소둔조건중 온도조건을 벗어난 비교재(1-2)의 경우 잔류탄소량이 높거나 또는 표면형상이 검어서 제품특성이 다소 저조하다는 것을 알 수 있었다.In addition, in the case of the comparative material (1-2) out of the temperature condition of the decarbonization annealing condition of the present invention, it was found that the product characteristics were somewhat poor due to the high residual carbon content or the black surface shape.

또한, 본 발명에서 제시한 산화능의 조건보다 낮은 조건에서 탈탄소둔한 비교재(3)의 경우 표면피막형성이 얇고, 본 발명에서 제시한 산화능의 조건보다 높은 조건에서 탈탄소둔처리한 비교재(4)의 경우 표면형상이 검어저서 전체적인 피막특성이 열악하였다.In addition, in the case of the comparative carbon annealing decarbonized under the conditions lower than the oxidizing ability proposed in the present invention, the surface coating is thin, and the comparative material decarbonized annealing under the conditions higher than the oxidizing ability proposed in the present invention (4). ), The surface shape was black and the overall film properties were poor.

그리고, 탈탄소둔시간이 부족한 비교재(5)의 경우 탈탄성이 부족하고, 피막형성이 부족하였으며, 과잉소둔한 비교재(6)의 경우 피막형성이 불균일하고, 표면이 검게 되어 특성이 열화되었다.In addition, in the case of the comparative material 5, which lacked the decarbonization time, the decarburization property was insufficient, and the film formation was insufficient. In the case of the excessively annealed comparative material, the film formation was uneven and the surface became black, resulting in deterioration of characteristics. .

이에 반해, 본 발명의 탈탄소둔조건을 만족하는 발명재(1-7)의 경우 잔류탄소량이 25ppm이하로 낮고, 피막 및 자성도 양호하여 우수한 제품을 생산할 수 있었다. 이와 더불어 탈탄성이 우수하여 소둔시간을 줄일 수 있으므로 소둔작업성이 우수하였다.On the contrary, in the case of the inventive material (1-7) which satisfies the decarbonization annealing condition of the present invention, the residual carbon content was 25 ppm or less, and the film and the magnetic properties were good, and thus an excellent product could be produced. In addition, the annealing time is excellent because the decarburizing property is excellent to reduce the annealing time.

상술한 바와같이, 본 발명에 의하면 탈탄성 및 소둔생산성이 우수한 저온재가열방향성 전기강판의 제조방법을 제공할수 있고, 제공된 상기 강판은 자기시효현상이 없고 우수한 자성이 요구되는 변압기등의 전기기기제조 분야에 적용될 수 있는 효과가 있는 것이다.As described above, according to the present invention, it is possible to provide a method for manufacturing a low-temperature reheating oriented electrical steel sheet having excellent decarburization and annealing productivity, and the steel sheet provided has no magnetic aging phenomenon and an electric device manufacturing field such as a transformer requiring excellent magnetic properties. There is an effect that can be applied to.

Claims (1)

중량%로, Si:2.9-3.3%, C:0.025-0.045%, P:0.015%이하, 용존 Al:0.008-0.020%, N:0.0080-0.012%, S:0.007%이하, Mn:0.12-0.32%, Cu:0.60%이하 및 Fe와 기타 불가피하게 불순물로 이루어지는 강 스라브를 1250-1340℃의 온도에서 재가열하고, 통상의 열간압연을 행한 다음, 1000℃ 이하의 온도에서 열연판소둔을 하고, 이어 탈탄소둔을 포함한 2회의 냉간압연을 행하여 최종두께의 냉연판을 만든다음, 상기 냉연판을 600℃ 이하의 건조분위기에서 회복소둔하고, 이어 MgO를 주성분으로 하는 용착방지제를 도포하여 권취하고, 이후 전구간을 수소분위기로 하여 700-1200℃구간의 승온율을 15℃/hr이상 유지 하면서, 1200 ±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔하여 이루어지는 저온재가열 방향성 전기강판의 제조방법에 있어서,By weight%, Si: 2.9-3.3%, C: 0.025-0.045%, P: 0.015% or less, dissolved Al: 0.008-0.020%, N: 0.0080-0.012%, S: 0.007% or less, Mn: 0.12-0.32 %, Cu: 0.60% or less and steel slab made of Fe and other unavoidable impurities are reheated at a temperature of 1250-1340 ° C, subjected to ordinary hot rolling, and then hot rolled annealing at a temperature of 1000 ° C or less, and then Cold rolling is carried out two times including decarbonization annealing to make a cold rolled plate of final thickness. Then, the cold rolled sheet is recovered and annealed in a dry atmosphere of 600 ° C or lower, followed by winding up by applying an anti-deposition agent containing MgO as a main component. Is a hydrogen atmosphere, while maintaining the temperature increase rate of 700-1200 ° C over 15 ° C / hr, after finishing for 20 hours at a temperature of 1200 ± 10 ° C, undergoing a heat cycle for cooling In the manufacturing method of the steel sheet, 상기 탈탄소둔은 940-980℃의 온도에서 PH2O/PH2:0.60-0.98의 습윤분위기로 2-5분간 행하는 것을 포함하여 이루어짐을 특징으로 하는 탈탄성 및 소둔생산성이 우수한 방향성 전기강판의 제조방법.The decarbonization annealing is a method of manufacturing a grain-oriented electrical steel sheet having excellent de-elasticity and annealing productivity, characterized in that it is performed for 2-5 minutes in a humid atmosphere of P H 2 O / P H 2 : 0.60-0.98 at a temperature of 940-980 ℃. .
KR1019970049226A 1997-09-26 1997-09-26 A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time KR100340500B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970049226A KR100340500B1 (en) 1997-09-26 1997-09-26 A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970049226A KR100340500B1 (en) 1997-09-26 1997-09-26 A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time

Publications (2)

Publication Number Publication Date
KR19990026909A true KR19990026909A (en) 1999-04-15
KR100340500B1 KR100340500B1 (en) 2002-07-18

Family

ID=37480262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970049226A KR100340500B1 (en) 1997-09-26 1997-09-26 A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time

Country Status (1)

Country Link
KR (1) KR100340500B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294624B1 (en) * 2008-08-08 2013-08-16 바오샨 아이론 앤 스틸 유한공사 A method of manufacturing oriented si steel containing cu
KR20240098255A (en) 2022-12-20 2024-06-28 주식회사 포스코 Method for manufaturing grain oriented electrical steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119622A (en) * 1987-10-30 1989-05-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
DE3882502T2 (en) * 1987-11-20 1993-11-11 Nippon Steel Corp Process for the production of grain-oriented electrical steel sheets with high flux density.
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294624B1 (en) * 2008-08-08 2013-08-16 바오샨 아이론 앤 스틸 유한공사 A method of manufacturing oriented si steel containing cu
KR20240098255A (en) 2022-12-20 2024-06-28 주식회사 포스코 Method for manufaturing grain oriented electrical steel sheet

Also Published As

Publication number Publication date
KR100340500B1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
JP5479448B2 (en) Method for producing directional silicon steel with high electromagnetic performance
EP0743370A2 (en) Grain oriented electrical steel having high volume resistivity and method for producing same
JP2607869B2 (en) Method for manufacturing grain-oriented electrical steel sheet by low-temperature slab heating
KR20160057754A (en) Method of manufacturing oriented electrical steels
EP0709470A1 (en) Production method of directional electromagnetic steel sheet of low temperature slab heating system
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100340500B1 (en) A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time
KR100321044B1 (en) Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density
KR960006026B1 (en) Process for production of oriented electrical steel sheet having excellent magnetic properties
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
KR100276283B1 (en) The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
KR100340495B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100325534B1 (en) Method for manufacturing grain oriented silicon steel sheet
KR102319831B1 (en) Method of grain oriented electrical steel sheet
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR100479994B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
KR970007334B1 (en) Method for manufacturing oriented electrical steel sheet having magnetic properties
KR20000008646A (en) Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee