KR19990021114A - Capacitor Formation Method of Semiconductor Device - Google Patents

Capacitor Formation Method of Semiconductor Device Download PDF

Info

Publication number
KR19990021114A
KR19990021114A KR1019970044619A KR19970044619A KR19990021114A KR 19990021114 A KR19990021114 A KR 19990021114A KR 1019970044619 A KR1019970044619 A KR 1019970044619A KR 19970044619 A KR19970044619 A KR 19970044619A KR 19990021114 A KR19990021114 A KR 19990021114A
Authority
KR
South Korea
Prior art keywords
film
capacitor
semiconductor device
deposited
plasma
Prior art date
Application number
KR1019970044619A
Other languages
Korean (ko)
Other versions
KR100235973B1 (en
Inventor
임찬
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019970044619A priority Critical patent/KR100235973B1/en
Priority to GB9812283A priority patent/GB2326279B/en
Priority to DE19825736A priority patent/DE19825736C2/en
Priority to TW087109222A priority patent/TW396501B/en
Priority to JP17656798A priority patent/JP3451943B2/en
Priority to CN98102096A priority patent/CN1129171C/en
Priority to US09/095,696 priority patent/US5985730A/en
Publication of KR19990021114A publication Critical patent/KR19990021114A/en
Application granted granted Critical
Publication of KR100235973B1 publication Critical patent/KR100235973B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 반도체소자의 캐패시터 형성방법에 관한 것으로, 고유전율을 갖는 Ta2O5막을 유전체막으로 사용하는 캐패시터에서 LPCVD 방법으로 증착된 Ta2O5막의 누설전류 특성을 개선하기 위해서, 증착하고자 하는 전체 Ta2O5막을 LPCVD 방법으로 2회에 걸쳐 증착하고, 처음 증착한 TaO5막에 특수 처리한 후에 나머지 Ta2O5막을 증착함으로써 캐패시터의 전기적 특성을 개선하여 누설전류가 발생하는 것을 방지하고 그에 따른 반도체소자의 특성 및 신뢰성을 향상시키는 기술이다.The present invention relates to a method for forming a capacitor of a semiconductor device, in order to improve the leakage current characteristics of the Ta 2 O 5 film deposited by the LPCVD method in a capacitor using a Ta 2 O 5 film having a high dielectric constant as a dielectric film The entire Ta 2 O 5 film is deposited twice by LPCVD method, and after special treatment to the first deposited TaO 5 film, the remaining Ta 2 O 5 film is deposited to improve the electrical characteristics of the capacitor to prevent leakage current from occurring. Accordingly, it is a technology for improving the characteristics and reliability of semiconductor devices.

Description

반도체소자의 캐패시터 형성방법Capacitor Formation Method of Semiconductor Device

본 발명은 반도체소자의 캐패시터 형성방법에 관한 것으로써, 특히 캐패시터의 유전체로 전기적 특성이 나쁜 LPCVD Ta2O5막을 사용할 경우, 상기 LPCVD Ta2O5막을 두 번에 걸쳐 형성함으로써 캐패시터의 전기적 특성을 개선시키고 그에 따른 반도체소자의 특성 및 신뢰성을 향상시킬 수 있는 기술에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a capacitor of a semiconductor device. In particular, when an LPCVD Ta 2 O 5 film having poor electrical properties is used as a dielectric of a capacitor, the LPCVD Ta 2 O 5 film is formed twice to improve the electrical characteristics of the capacitor. The present invention relates to a technology capable of improving and thereby improving the characteristics and reliability of semiconductor devices.

최근 반도체소자의 고집적화 추세에 따라 셀 크기가 감소되어 충분한 정전용량을 갖는 캐패시터를 형성하기가 어려워지고 있다.Recently, due to the trend toward higher integration of semiconductor devices, it is difficult to form capacitors with sufficient capacitance due to a decrease in cell size.

특히, 하나의 모스 트랜지스터와 캐패시터로 구성되는 디램 소자에서는 캐패시터의 정전용량을 증가시키기 위하여 유전상수가 높은 물질을 유전체막으로 사용하거나, 유전체막의 두께를 얇게 하거나 또는 전하저장전극의 표면적을 증가시키는 등의 방법이 있다.In particular, in a DRAM device composed of one MOS transistor and a capacitor, a material having a high dielectric constant is used as the dielectric film, a thickness of the dielectric film is increased, or the surface area of the charge storage electrode is increased to increase the capacitance of the capacitor. There is a way.

도시되어 있지는 않지만, 종래기술에 따른 반도체소자의 캐패시터 제조방법을 살펴보면 다음과 같다.Although not shown, looking at the capacitor manufacturing method of the semiconductor device according to the prior art as follows.

먼저, 반도체기판 상에 소자분리 산화막과 게이트산화막을 형성하고, 게이트 전극과 소오스/드레인전극으로 구성되는 모스 전계효과 트랜지스터를 형성한 후, 상기 구조의 전표면에 층간절연막을 형성한다.First, a device isolation oxide film and a gate oxide film are formed on a semiconductor substrate, and a MOS field effect transistor including a gate electrode and a source / drain electrode is formed, and then an interlayer insulating film is formed on the entire surface of the structure.

그 다음 상기 소오스/드레인전극 중 전하저장전극 콘택으로 예정되어 있는 부분 상측의 층간절연막을 제거하여 전하저장전극 콘택홀을 형성하고, 상기 콘택홀을 통하여 소오스/드레인전극과 접촉되는 전하저장전극을 다결정실리콘층 패턴으로 형성한 후, 상기 전하저장전극의 표면에 산화막이나 질화막 또는 산화막-질화막-산화막의 적층구조로 된 유전체막을 도포하며, 상기 유전체막상에 전하저장전극을 감싸는 플레이트전극을 형성하여 캐패시터를 완성한다.Next, a charge storage electrode contact hole is formed by removing an interlayer insulating layer on an upper portion of the source / drain electrode, which is intended to be a charge storage electrode contact, and polycrystalline a charge storage electrode contacting the source / drain electrode through the contact hole. After forming a silicon layer pattern, a dielectric film having an oxide film, a nitride film, or an oxide film-nitride film-oxide film laminated structure is coated on the surface of the charge storage electrode, and a plate electrode is formed on the dielectric film to surround the charge storage electrode. Complete

상기와 같은 종래기술에 따른 반도체소자의 캐패시터에서 유전체막은 고유전율, 저누설전류밀도, 높은 절연파괴전압 및 상하측 전극과의 안정적인 계면특성 등이 요구되는데, 상기 산화막은 유전상수가 약 3.8 정도이고 질화막은 약 7.2정도로 비교적 작고, 전극으로 사용되는 다결정실리콘층은 비저항이 800~1000μΩ㎝ 정도로 비교적 높아 정전용량이 제한된다.In the capacitor of the semiconductor device according to the prior art as described above, the dielectric film requires high dielectric constant, low leakage current density, high dielectric breakdown voltage, and stable interfacial characteristics with the upper and lower electrodes. The oxide film has a dielectric constant of about 3.8. The nitride film is relatively small, about 7.2, and the polysilicon layer used as an electrode has a relatively high resistivity of about 800 to 1000 µΩcm.

상기와 같은 문제점을 해결하기 위하여 산화막-질화막-산화막의 적층구조로된 유전체막 대신에 Ta2O5막과 같은 고유전체막을 사용한다.In order to solve the above problems, a high-k dielectric film such as a Ta 2 O 5 film is used instead of a dielectric film having a stacked structure of an oxide film-nitride film-oxide film.

상기 Ta2O5막은 256M DRAM 이상의 고집적 메모리 소자의 캐패시터의 유전체막으로 사용이 널리 고려되고 있다.The Ta 2 O 5 film is widely considered to be used as a dielectric film of a capacitor of a high density memory device of 256M DRAM or more.

그러나 상기 Ta2O5막을 유전체막으로 사용하는 캐패시터는 상기 Ta2O5막의 증착방법에 따라 캐패시터의 전기적 특성이 크게 변화된다.However, in the capacitor using the Ta 2 O 5 film as the dielectric film, the electrical characteristics of the capacitor change greatly according to the deposition method of the Ta 2 O 5 film.

즉, 플라즈마 화학기상증착(plasma enhanced chemical vapor deposition, 이하 PECVD라 함)방법으로 상기 Ta2O5막을 증착하여 평판 캐패시터를 형성하는 경우, 저압화학기상증착(low pressure chemical vapor deposition, 이하 LPCVD라 함) 방법으로 Ta2O5막을 증착할 때보다 전기적 특성이 우수하다.That is, when the Ta 2 O 5 film is deposited to form a flat plate capacitor by plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD) is called. The electrical property is better than that of the Ta 2 O 5 film deposited by the method.

그러나, 실제로 사용되는 캐패시터는 LPCVD Ta2O5막이 많이 사용되지만, PECVD Ta2O5막에 비해서는 누설전류가 높다는 문제점이 있다.However, the capacitor actually used is a lot of LPCVD Ta 2 O 5 film, there is a problem that the leakage current is higher than the PECVD Ta 2 O 5 film.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 캐패시터 형성시 LPCVD Ta2O5막을 두번에 걸쳐 증착함으로써 캐패시터의 전기적 특성을 개선하고 그에 따른 반도체소자의 특성 및 신뢰성을 향상시키는 반도체소자의 캐패시터 형성 방법을 제공하는데 그 목적이 있다.In order to solve the above problems of the prior art, a capacitor of a semiconductor device which improves the electrical characteristics of the capacitor and thereby improves the characteristics and reliability of the capacitor by depositing the LPCVD Ta 2 O 5 film twice during the formation of the capacitor. The purpose is to provide a formation method.

도 1 및 도 2는 본 발명에 따른 반도체소자의 캐패시터 형성방법을 나타낸 단면도.1 and 2 are cross-sectional views showing a method of forming a capacitor of a semiconductor device according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

11 ; 반도체기판 13 : 전하저장전극11; Semiconductor substrate 13: charge storage electrode

15 : RTN막 17 : 1차 Ta2O515: RTN film 17: primary Ta 2 O 5 film

19 : 플라즈마처리된 RTN막 21 : 플라즈마처리된 1차 Ta2O519: plasma treated RTN film 21: plasma treated primary Ta 2 O 5 film

이상의 목적을 달성하기 위하여 본 발명에 따른 반도체소자의 캐패시터 형성방법은, 반도체기판 상부에 도프트 다결정실리콘으로 전하저장전극을 형성하는 공정과, 상기 전하저장전극 상부의 자연산화막을 제거하는 공정과, 상기 구조 표면을 질화하는 공정과, 상기 질화된 표면을 플라즈마 처리하는 공정과, 상기 구조 상부에 1차 Ta2O5막의 일부를 증착하는 공정과, 상기 1차 Ta2O5막을 플라즈마 처리하는 공정과, 상기 구조 상부에 2차 Ta2O5막을 증착하는 공정과, 증착된 상기 1차 및 2차 Ta2O5막을 플라즈마 처리 및 고온 열처리하는 공정과, 상기 구조 상부에 플레이트전극을 형성하는 공정을 포함하는 것을 특징으로 한다.In order to achieve the above object, a method of forming a capacitor of a semiconductor device according to the present invention comprises the steps of: forming a charge storage electrode with doped polycrystalline silicon on a semiconductor substrate; and removing a natural oxide film on the charge storage electrode; a step of plasma-process the nitride surface and the step of nitriding the structure surface, and depositing a part of the first Ta 2 O 5 film with the above structure the upper, a step of plasma processing the first Ta 2 O 5 film and a step of forming a second Ta 2 O step, a plate electrode deposited above the primary and secondary Ta 2 O 5 film on the step of the structure upper portion to the heat treatment the plasma treatment and the high temperature deposition of 5 a film on the structure of the upper Characterized in that it comprises a.

이하, 첨부된 도면을 참고로 하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail.

도 1 및 도 2는 본 발명에 따른 반도체소자의 캐패시터 형성방법을 도시한 단면도이다.1 and 2 are cross-sectional views illustrating a method of forming a capacitor of a semiconductor device according to the present invention.

먼저, 반도체기판(11)에 소자분리 절연막(도시안됨), 게이트산화막(도시안됨), 게이트전극(도시안됨) 및 비트라인(도시안됨) 등의 하부구조물을 형성한다.First, lower structures such as an isolation layer (not shown), a gate oxide layer (not shown), a gate electrode (not shown), and a bit line (not shown) are formed on the semiconductor substrate 11.

다음, 전체표면에 평탄화막(도시안됨)을 형성한다.Next, a planarization film (not shown) is formed over the entire surface.

그 다음, 도핑되지 않은 산화막으로 층간절연막(도시안됨)을 형성한다.Then, an interlayer insulating film (not shown) is formed of an undoped oxide film.

그리고, 상기 층간절연막은 콘택마스크를 이용하여 콘택부분으로 예정되는 부분에 콘택홀(도시안됨)을 형성한다.In addition, the interlayer insulating layer forms a contact hole (not shown) in a portion that is intended to be a contact portion using a contact mask.

그 다음, 상기 구조의 전표면에 다결정실리콘막(도시안됨)을 화학기상증착방법(Chemical Vapor Deposition, 이하 CVD라 함)으로 형성한 다음, 상기 콘택홀(도시안됨) 내부에만 상기 다결정실리콘막이 남도록 식각하여 상기 콘택홀(도시안됨)을 메우는 콘택플러그(도시안됨)를 형성한다.Then, a polysilicon film (not shown) is formed on the entire surface of the structure by chemical vapor deposition (CVD), and then the polysilicon film remains only inside the contact hole (not shown). Etching forms a contact plug (not shown) filling the contact hole (not shown).

그리고, 상기 콘택플러그(도시안됨)와 접촉되는 전하저장전극(13)을 형성한다. 여기서, 상기 전하저장전극(13)은 불순물이 도핑된 다결정실리콘으로 형성하며, 전하저장전극(13)의 구조는 실린더형, 핀형 및 다른 구조를 가지는 경우가 있다. 그리고, 상기 전하저장전극(13)의 구조에 반구형 다결정실리콘(hemispherical grained silicate glass, HSG)을 사용하는 경우도 있다.In addition, the charge storage electrode 13 in contact with the contact plug (not shown) is formed. Here, the charge storage electrode 13 is formed of polycrystalline silicon doped with impurities, and the structure of the charge storage electrode 13 may have a cylindrical shape, a fin shape, and another structure. In addition, hemispherical grained silicate glass (HSG) may be used for the structure of the charge storage electrode 13.

그 다음, 전하저장전극(13) 표면에 발생한 자연산화막(도시안됨)을 제거한다.Next, a natural oxide film (not shown) generated on the surface of the charge storage electrode 13 is removed.

이때, 상기 자연산화막은 산화막 식각용액인 불산용액, 불산증기 또는 비.오.이.(buffer oxide etchant, 이하 BOE라 함)용액을 사용하여 제거한다.At this time, the natural oxide film is removed using an oxide etching solution, a hydrofluoric acid solution, hydrofluoric acid vapor or B. O. (buffer oxide etchant, BOE) solution.

그 후, 상기 전하저장전극(13)인 도프트 다결정실리콘의 전체표면을 질화화시켜 알.티.엔.(rapid thermal nitration, 이하 RTN라 함)막(15)을 형성한다.Thereafter, the entire surface of the doped polycrystalline silicon, which is the charge storage electrode 13, is nitrided to form a rapid thermal nitration (RTN) film 15.

여기서, 상기 RTN 막(15)은 NH3가스를 이용하여 800~900℃ 정도의 온도에서 20~120초 정도 실시한다.Here, the RTN film 15 is carried out for about 20 to 120 seconds at a temperature of about 800 ~ 900 ℃ using NH 3 gas.

이어서, 상기 RTN 막(15)의 표면을 N2O 또는 O2가스를 이용하여 플라즈마 처리한다.Subsequently, the surface of the RTN film 15 is subjected to plasma treatment using N 2 O or O 2 gas.

이것은 상기 RTN 처리된 표면을 SiN에서 SiON 형태로 바꾸어 줌으로써 전기적 특성을 향상시킨다. 이때, 상기 플라즈마처리 조건은 N2O 또는 O2가스에 의한 플라즈마 가스로 130~450℃ 온도에서 100~300w 파워(power)로 1~20분간 실시한다.This improves the electrical properties by changing the RTN treated surface from SiN to SiON form. At this time, the plasma treatment conditions are carried out for 1 to 20 minutes at 100 ~ 300w power at 130 ~ 450 ℃ temperature with plasma gas by N 2 O or O 2 gas.

다음, 상기 RTN막(15) 상부에 LPCVD 방법으로 1차 Ta2O5막(17)을 일정두께 증착한다.Next, the first Ta 2 O 5 film 17 is deposited to a predetermined thickness on the RTN film 15 by the LPCVD method.

이때, 상기 Ta2O5막(17)은 O2가스와 Ta(OC2H5)5또는 O2가스와 Ta(OCH3)5를 원료로 사용하여 1mTorr~6Torr 정도의 압력 및 370~450℃ 정도 온도에서 1차로 증착한다.At this time, the Ta 2 O 5 film 17 is a pressure of about 1mTorr ~ 6Torr and 370 ~ 450 using O 2 gas and Ta (OC 2 H 5 ) 5 or O 2 gas and Ta (OCH 3 ) 5 as a raw material First deposition at a temperature of about ℃.

여기서, 상기 1차 Ta2O5막(17)은 50~70Å 정도 두께로 한다.Here, the primary Ta 2 O 5 film 17 has a thickness of about 50 to 70 kPa.

또한, 상기 1차 Ta2O5막(17)은 비정질이다. (도 1)In addition, the primary Ta 2 O 5 film 17 is amorphous. (Figure 1)

그 다음, 상기 1차 Ta2O5막(17)을 플라즈마 처리한다.The primary Ta 2 O 5 film 17 is then plasma treated.

이때, 상기 플라즈마처리한 1차 Ta2O5막(19)은 N2O 또는 O2가스에 의한 플라즈마 가스로 130~450℃ 정도의 온도에서 처리한다.At this time, the plasma-treated primary Ta 2 O 5 film 19 is treated with a plasma gas by N 2 O or O 2 gas at a temperature of about 130 ~ 450 ℃.

그리고, 상기 플라즈마 처리공정은 100~300w 정도의 파워로 1~20분간 실시한다.The plasma treatment step is performed for 1 to 20 minutes at a power of about 100 to 300 watts.

상기와 같이 N2O 플라즈마 처리를 실시하면, 여기된 산소원자가 Ta2O5막(17) 내의 결함(defect)이 감소하여, 상기 Ta2O5막(17) 하부의 플라즈마 처리된 RTN 막(15) 표면을 좀 더 산질화막 형태로 변형시킨다.When subjected to N 2 O plasma treatment as described above, the defect (defect) in the excited oxygen atom is Ta 2 O 5 film 17 is reduced, the Ta 2 O 5 film 17 of the lower plasma processing RTN film ( 15) The surface is transformed into a more oxynitride film.

질화막에 비하여 산질화막은 전기적인 장벽역할을 하므로 누설전류 감소효과를 갖지만, 상기와 N2O 플라즈마 처리로 인하여 질화화된 다결정실리콘이 산화가 급격히 일어나지 않으므로 캐패시터의 유효 산화막 두께 증가에 끼치는 영향은 3Å이하로 미약하다.Compared to the nitride film, the oxynitride film has an effect of reducing leakage current because it serves as an electrical barrier, but since the oxidation of the nitrided polysilicon does not occur rapidly due to the N 2 O plasma treatment, the effect of increasing the effective oxide film thickness of the capacitor is 3Å. It is weak as follows.

또한, 증착하고자 하는 전체 Ta2O5막을 증착한 후, 플라즈마 처리나 UV-O3처리는 표면의 일정 깊이의 Ta2O5막에 효과적이지만 전체 Ta2O5막의 처리에는 효과적이지 못하다.In addition, after depositing the entire Ta 2 O 5 film to be deposited, plasma treatment or UV-O 3 treatment is effective for the Ta 2 O 5 film of a certain depth of the surface, but not effective for the treatment of the entire Ta 2 O 5 film.

그리고, 질화화된 면의 산화효과는 더욱 미약하여 일부 Ta2O5막을 형성한 후 처리에 비하여 누설전류 개선 효과는 매우 작다.In addition, the oxidation effect of the nitrided surface is much weaker, and the leakage current improvement effect is very small compared to the treatment after forming some Ta 2 O 5 film.

또한, 750℃ 이상의 산소분위기에서 Ta2O5막을 열처리하는 경우에는 산소가 Ta2O5막으로 확산·투과하여 상기 RTN막(15)의 표면의 산화는 플라즈마 처리나 UV-O3처리에 비하여 빠르게 일어나고, 국부적으로 산화되는 정도의 차이가 있기 때문에 1차 Ta2O5막(17)을 증착한 후, 750℃ 정도의 고온에서 열처리 하지 않는다.In addition, when the Ta 2 O 5 film is heat treated in an oxygen atmosphere of 750 ° C. or higher, oxygen diffuses and passes through the Ta 2 O 5 film, so that oxidation of the surface of the RTN film 15 is more effective than that of plasma or UV-O 3 . Since it occurs rapidly and there is a difference in the degree of local oxidation, after the primary Ta 2 O 5 film 17 is deposited, it is not heat treated at a high temperature of about 750 ° C.

한편, 상기 1차 Ta2O5막(17)의 두께를 40~50Å로 형성하는 경우에는, 상기 1차 Ta2O5막(17) 증착전의 플라즈마 처리공정은 생략 가능하다. (도 2)On the other hand, in the case where the thickness of the primary Ta 2 O 5 film 17 is formed to be 40 to 50 kPa, the plasma treatment step before deposition of the primary Ta 2 O 5 film 17 can be omitted. (Figure 2)

다음, 2차로 LPCVD 방법으로 Ta2O5박막(도시안됨)을 형성한다.Next, a Ta 2 O 5 thin film (not shown) is formed by a second LPCVD method.

이 때, 상기 Ta2O5막의 증착조건은 O2가스와 Ta(OC2H5)5또는 O2가스와 Ta(OC2H3)5를 원료로 사용하여 1mTorr~6Torr 정도의 압력 및 370~450℃ 정도 온도에서 증착한다.At this time, the deposition conditions of the Ta 2 O 5 film is a pressure of about 1mTorr ~ 6Torr and 370 using O 2 gas and Ta (OC 2 H 5 ) 5 or O 2 gas and Ta (OC 2 H 3 ) 5 as a raw material Deposit at a temperature of ~ 450 ℃.

그 다음, 상기 Ta2O5막의 표면을 N2O 플라즈마 처리한다.Then, the surface of the Ta 2 O 5 film is subjected to N 2 O plasma treatment.

그리고, 750~820℃ 정도의 온도의 O2분위기에서 5~30분 정도 열처리한다.Then, the heat treatment at 750 to the temperature of the O 2 atmosphere at about 820 ℃ about 5 to 30 minutes.

한편, 상기 열처리공정 대신 RTP 방법으로 800~900℃ 정도 온도의 O2또는 N2O 분위기에서 70~80초정도 열처리 공정을 실시한다.Meanwhile, instead of the heat treatment process, the heat treatment process is performed in an O 2 or N 2 O atmosphere at a temperature of about 800 to 900 ° C. for about 70 to 80 seconds using the RTP method.

그 후, 상기 구조 상부에 TiN 또는 다결정실리콘으로 플레이트전극을 형성한다.Thereafter, a plate electrode is formed on the structure of TiN or polycrystalline silicon.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 캐패시터 형성방법은, 고유전율을 갖는 Ta2O5막을 유전체막으로 사용하는 캐패시터에서 LPCVD 방법으로 증착된 Ta2O5막의 누설전류 특성을 개선하기 위해서, 증착하고자 하는 전체 Ta2O5막을 LPCVD 방법으로 2회에 걸쳐 증착하고, 처음 증착한 Ta2O5막에 특수 처리한 후에 나머지 Ta2O5막을 증착함으로써 캐패시터의 전기적 특성을 개선하여 누설전류가 발생하는 것을 방지하고 그에 따른 반도체소자의 특성 및 신뢰성을 향상시키는 이점이 있다.As described above, the method for forming a capacitor of a semiconductor device according to the present invention is to improve the leakage current characteristics of a Ta 2 O 5 film deposited by LPCVD in a capacitor using a Ta 2 O 5 film having a high dielectric constant as a dielectric film. The entire Ta 2 O 5 film to be deposited is deposited twice by LPCVD method, and after special treatment to the first deposited Ta 2 O 5 film, the remaining Ta 2 O 5 film is deposited to improve the electrical characteristics of the capacitor to improve leakage current. Is prevented from occurring and thereby improving the characteristics and reliability of the semiconductor device.

Claims (7)

반도체기판 상부에 도프트 다결정실리콘으로 전하저장전극을 형성하는 공정과,Forming a charge storage electrode with doped polycrystalline silicon on the semiconductor substrate; 상기 전하저장전극 상부의 자연산화막을 제거하는 공정과,Removing the native oxide film on the charge storage electrode; 상기 구조 표면을 질화화하는 공정과,Nitriding the structural surface; 상기 질화된 표면을 플라즈마 처리하는 공정과,Plasma-processing the nitrided surface; 상기 구조 상부에 1차 Ta2O5막의 일부를 LPCVD 방법으로 증착하는 공정과,Depositing a portion of the primary Ta 2 O 5 film on the structure by LPCVD; 상기 1차 Ta2O5막을 플라즈마 처리하는 공정과,Plasma-processing the primary Ta 2 O 5 film; 상기 구조 상부에 2차 Ta2O5막을 LPCVD 방법으로 증착하는 공정과,Depositing a secondary Ta 2 O 5 film on the structure by LPCVD; 증착된 상기 1차 및 2차 Ta2O5막을 플라즈마 처리 및 고온 열처리하는 공정과,Plasma treatment and high temperature heat treatment of the deposited primary and secondary Ta 2 O 5 films; 상기 구조 상부에 플레이트전극을 형성하는 공정을 포함하는 반도체소자의 캐패시터 형성방법.And forming a plate electrode on the structure. 청구항 1에 있어서,The method according to claim 1, 상기 1차 Ta2O5막은 50~70Å 정도 두께로 증착하는 것을 특징으로 하는 반도체소자의 캐패시터 형성방법.The first Ta 2 O 5 film is a capacitor formation method of a semiconductor device, characterized in that for depositing about 50 ~ 70Å thickness. 청구항 1에 있어서,The method according to claim 1, 상기 1차, 2차 Ta2O5막은 비정질상태로 증착하는 것을 특징으로 하는 반도체소자의 캐패시터 형성방법.And the first and second Ta 2 O 5 films are deposited in an amorphous state. 청구항 1에 있어서,The method according to claim 1, 상기 N2O 플라즈마 처리공정은 100~300w 정도의 파워(power)로 130~450℃ 정도 온도에서 1~20분간 실시하는 것을 특징으로 하는 반도체소자의 캐패시터 형성방법.The N 2 O plasma treatment process is a capacitor forming method of a semiconductor device, characterized in that performed for 1 to 20 minutes at a temperature of about 130 ~ 450 ℃ with a power of about 100 ~ 300w. 청구항 1에 있어서,The method according to claim 1, 상기 열처리공정은 750~820℃ 정도의 온도의 O2분위기에서 5~30분 정도 실시하는 것을 특징으로 하는 반도체소자의 캐패시터 형성방법.The heat treatment process is a capacitor forming method of a semiconductor device, characterized in that performed for about 5 to 30 minutes in an O 2 atmosphere at a temperature of about 750 ~ 820 ℃. 청구항 1 또는 청구항 5에 있어서,The method according to claim 1 or 5, 상기 열처리공정은 RTP 방법으로 800~900℃ 정도 온도의 O2또는 N2O 분위기에서 70~80초정도 열처리하는 것으로 대신하는 것을 특징으로 하는 반도체소자의 캐패시터 형성방법.The heat treatment process is a capacitor forming method of a semiconductor device, characterized in that instead of the heat treatment for about 70 ~ 80 seconds in O 2 or N 2 O atmosphere of 800 ~ 900 ℃ temperature by RTP method. 청구항 1에 있어서,The method according to claim 1, 상기 질화된 표면을 플라즈마 처리하지 않는 경우 상기 1차 Ta2O5막의 두께를 40~50Å으로 하는 것을 특징으로 하는 반도체소자의 캐패시터 형성방법.When the nitrided surface is not subjected to plasma treatment, the thickness of the primary Ta 2 O 5 film is 40 to 50 GPa.
KR1019970044619A 1997-06-11 1997-08-30 Manufacturing method of capacitor in the semiconductor device KR100235973B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019970044619A KR100235973B1 (en) 1997-08-30 1997-08-30 Manufacturing method of capacitor in the semiconductor device
GB9812283A GB2326279B (en) 1997-06-11 1998-06-09 Method of forming a capacitor of a semiconductor device
DE19825736A DE19825736C2 (en) 1997-06-11 1998-06-09 Method of forming a capacitor of a semiconductor device
TW087109222A TW396501B (en) 1997-06-11 1998-06-10 Method of forming a capacitor of a semiconductor device
JP17656798A JP3451943B2 (en) 1997-06-11 1998-06-10 Method for forming capacitor of semiconductor device
CN98102096A CN1129171C (en) 1997-06-11 1998-06-11 Method of forming capacitor of semiconductor device
US09/095,696 US5985730A (en) 1997-06-11 1998-06-11 Method of forming a capacitor of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970044619A KR100235973B1 (en) 1997-08-30 1997-08-30 Manufacturing method of capacitor in the semiconductor device

Publications (2)

Publication Number Publication Date
KR19990021114A true KR19990021114A (en) 1999-03-25
KR100235973B1 KR100235973B1 (en) 1999-12-15

Family

ID=19520272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970044619A KR100235973B1 (en) 1997-06-11 1997-08-30 Manufacturing method of capacitor in the semiconductor device

Country Status (1)

Country Link
KR (1) KR100235973B1 (en)

Also Published As

Publication number Publication date
KR100235973B1 (en) 1999-12-15

Similar Documents

Publication Publication Date Title
JP3451943B2 (en) Method for forming capacitor of semiconductor device
KR100371142B1 (en) Capacitor Formation Method of Semiconductor Device
KR100469158B1 (en) A method for forming a capacitor of a semiconductor device
KR100548553B1 (en) method for fabricating capacitor
KR100308501B1 (en) Method for forming capacitor of semiconductor device
KR100235973B1 (en) Manufacturing method of capacitor in the semiconductor device
KR20000042429A (en) Method for manufacturing ferroelectric capacitor of semiconductor device
KR100268782B1 (en) Method for manufacturing capacitor of semiconductor device
KR100271715B1 (en) Manufacturing method for capacitor of the semiconductor device
KR100231604B1 (en) Manufacturing method of capacitor of semiconductor device
KR100475018B1 (en) Manufacturing Method of Semiconductor Memory Device
KR100311178B1 (en) A method of fabricating a capacitor
KR100434708B1 (en) Method for forming capacitor of semiconductor device
KR20000042480A (en) Method for fabricating capacitor of semiconductor device
KR100382610B1 (en) Method for forming of capacitor the cell used high-integrated DRAM
KR100504434B1 (en) Method of forming capacitor
KR100253587B1 (en) Method for manufacturing capacitor of semiconductor device
KR100865545B1 (en) Method for forming capacitor of semiconductor device
KR20040061278A (en) Method for fabricating capacitor of semiconductor device
KR100574473B1 (en) Capacitor Manufacturing Method of Semiconductor Device_
KR100529393B1 (en) Capacitor with aluminium nitride for oxygen barrier and method for manufacturing the same
KR20020018355A (en) Method of fabricating a capacitor in a semiconductor device
KR100386450B1 (en) Method for forming of capacitor in semiconductor
KR20040059970A (en) Method for fabricating capacitor in semiconductor device
KR20000042485A (en) Method for forming capacitor of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100825

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee