KR19980030543A - Epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient - Google Patents

Epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient Download PDF

Info

Publication number
KR19980030543A
KR19980030543A KR1019960049996A KR19960049996A KR19980030543A KR 19980030543 A KR19980030543 A KR 19980030543A KR 1019960049996 A KR1019960049996 A KR 1019960049996A KR 19960049996 A KR19960049996 A KR 19960049996A KR 19980030543 A KR19980030543 A KR 19980030543A
Authority
KR
South Korea
Prior art keywords
epoxy resin
resin composition
inorganic filler
thermal conductivity
sealing
Prior art date
Application number
KR1019960049996A
Other languages
Korean (ko)
Other versions
KR100226047B1 (en
Inventor
유제홍
김진모
김조균
윤호규
Original Assignee
유현식
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 제일모직 주식회사 filed Critical 유현식
Priority to KR1019960049996A priority Critical patent/KR100226047B1/en
Publication of KR19980030543A publication Critical patent/KR19980030543A/en
Application granted granted Critical
Publication of KR100226047B1 publication Critical patent/KR100226047B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 에폭시 수지, 경화제, 경화촉진제, 변성실리콘 오일 및 무기충전제를 필수 성분으로 하는 수지 조성물에 있어서, 용융실리카가 표면 피복된 질화알루미늄 충전제를 무기충전제 총량중 45중량% 이상 포함하고 나머지의 무기충전제는 용융 실리카 또는 합성 실리카로 구성된 무기충전제를 전체 수지 조성물에 대해 80중량% 이상 함유하는 것을 특징으로 하는 고열전도도 및 저열팽창계수의 에폭시 수지 조성물에 관한 것으로, 본 발명의 반도체소자 밀봉용 에폭시 수지 조성물은 솔더 내크랙성 뿐만 아니라 열발산효과가 우수하기 때문에 고신뢰성 고집적 반도체소자 밀봉에 매우 적합하다.The present invention is a resin composition comprising an epoxy resin, a curing agent, a curing accelerator, a modified silicone oil and an inorganic filler as essential components, comprising at least 45% by weight of the total amount of the inorganic filler and the remainder of the inorganic filler in the molten silica surface-coated aluminum nitride filler The filler relates to an epoxy resin composition having a high thermal conductivity and a low thermal expansion coefficient, comprising an inorganic filler composed of fused silica or synthetic silica with respect to the total resin composition, wherein the epoxy resin for sealing a semiconductor device according to the present invention. The composition is well suited for sealing high reliability and highly integrated semiconductor devices because of its excellent heat dissipation effect as well as solder crack resistance.

Description

고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시 수지 조성물Epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient

본 발명은 고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시수지 조성물에 관한 것으로, 더욱 상세하게는 에폭시수지, 경화제, 경화촉진제, 변성 실리콘 오일 및 무기충전제를 필수 성분으로 하는 에폭시 수지 조성물에 있어서, 상기 무기충전제가 용융 실리카가 표면에 피복된 질화알루미늄(FSCAN:Fused Silica Coated Aluminium Nitride)이 혼합된 것임을 특징으로 하는 내크랙성과 열발산이 뛰어난 반도체소자 밀봉용 에폭시 수지 조성물에 관한 것이다.The present invention relates to an epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient, and more particularly, to an epoxy resin composition comprising epoxy resin, a curing agent, a curing accelerator, a modified silicone oil and an inorganic filler as essential components. The inorganic filler relates to an epoxy resin composition having excellent crack resistance and heat dissipation, characterized in that a mixture of aluminum nitride (FSCAN: Fused Silica Coated Aluminum Nitride) coated on a surface of fused silica is mixed.

최근 반도체 패키이지의 대형화, 복합화 및 표면실장화라는 기술동향에 따라 반도체소자에 있어서 배선의 미세화, 소자 크기의 대형화, 셀(Cell)면적의 축소, 다핀화 및 박형화가 급속하게 진전되고 있다. 반도체 패키이지의 디자인의 개선도 활발하게 진행되고 있는데, 박형화에 의한 박형 패키이지(Thin Package) 뿐만 아니라 BGA(Ball Grid Array), MCM(MultiChip Module), KGD(Known Good Die) 및 3D(Dimensional) 메모리 큐브 등의 패키이지도 이미 실용화된지 오래이며, 일부는 신뢰성 개선의 목적으로 많은 연구가 진행되고 있는 실정이다.In recent years, in accordance with the technology trend of increasing, increasing and increasing the size of semiconductor packages, semiconductor devices have rapidly progressed in miniaturization of wiring, large device sizes, cell area reduction, multi-pinning, and thinning. Improvements in the design of semiconductor packages are also in progress, including thin package (BGA), thin grid array (BGA), multichip module (MCM), known good die (KGD) and dimensional (D) as well as thin packages. Packages such as memory cubes have also been in practical use for a long time, and some researches have been conducted for the purpose of improving reliability.

이 중에서도 3D-메모리 큐브는 보다 큰 메모리 용량을 목적으로 등장한 것으로서, 예를 들어 4MDRAM TSOJ(Thin Smiall Outline J-leaded Package)를 적충하는 등 기존의 메모리 반도체를 병렬 연결한 대용량의 반도체 패키이지라 할 수 있다.Among them, the 3D-memory cube has emerged for the purpose of larger memory capacity. For example, a 3D-memory cube is a large-capacity semiconductor package in which existing memory semiconductors are connected in parallel, for example, by stacking 4 MDRAM TSJ (Thin Smiall Outline J-leaded Package). Can be.

이와 같은 대형 반도체소자를 소형-박형 패키이지로 밀봉한 수지 밀봉형 반도체 장치에서는 외부 환경의 온도 및 습도 변화에 따른 열응력에 기인하여 패키이지 크랙 또는 알루미늄 패드 부식 발생 등, 고장 발생의 빈도가 매우 높아지게 된다. 특히, 단품의 메모리를 적층시킨 메모리 큐브의 경우 적층으로 인한 층과 층 사이의 접촉에 따른 열의 발생 및 발산이 심각한 문제가 되고 있으며, 따라서 반도체소자, 밀봉용 에폭시 수지 성형재료에 대해서는 우수한 내크랙성과 고열전도도의 특성이 요구된다.In a resin-sealed semiconductor device in which such a large semiconductor device is sealed with a small-thin package, the frequency of failure such as package crack or corrosion of aluminum pads is very high due to thermal stress caused by temperature and humidity changes in the external environment. Will be higher. In particular, in the case of a memory cube in which a single memory is stacked, heat generation and dissipation due to layer-to-layer contact due to the stacking are a serious problem. Therefore, excellent crack resistance for semiconductor devices and epoxy resin molding materials for sealing is caused. High thermal conductivity characteristics are required.

종래의 내크랙성을 부여하는 기술로서는 탄성률을 낮추는 방법과 열팽창계수를 낮추는 방법이 있으며, 구체적으로 탄성률을 낮추는 방법으로는 일본특허공개 소63-1894호 일본특허공개 평5-291436호에서와 같이 각종 고무 성분에 의한 개질이 검토되어 열안정성이 우수한 실리콘 중합체를 배합, 개질시키는 방법이 광범위하게 채택되고 있다. 그러나, 이 방법에서 실리콘 오일은 성형재료의 기저 수지인-에폭시 수지 및 경화제와 상용성이 없어 기저 수지 중에 미립자 분산되므로 내열성을 유지한 채 저탄성률을 달성할 수는 없다.Conventional techniques for imparting crack resistance include a method of lowering the modulus of elasticity and a method of lowering the coefficient of thermal expansion. Specifically, a method of lowering the modulus of elasticity is as in Japanese Patent Laid-Open No. 63-1894 and Japanese Patent Laid-Open No. 5-291436. Modification by various rubber components has been studied, and a method of blending and modifying a silicone polymer having excellent thermal stability has been widely adopted. In this method, however, the silicone oil is incompatible with the epoxy resin and the curing agent, which are the base resins of the molding material, and thus fine particles are dispersed in the base resin, so that the low elastic modulus cannot be achieved while maintaining the heat resistance.

저열팽창화에 의해 내크랙성을 부여하는 종래의 방법으로는 팽창계수가 낮은 무기충전제, 특히 응용 실리카의 충전량을 늘리는 방법이 있는데, 이러한 방법은 무기충전제의 충전량 증가에 따라 에폭시 수지 성형재료의 유동성이 저하되고 탄성이 커지는 단점을 갖는다. 이와 관련하여 일본특허공개 소64-11355호에서는 구형 충전제의 입도분포 및 입자크기를 조절함으로써 다량의 충전제를 배합할 수 있는 기술을 제안하기도 하였다.Conventional methods of imparting crack resistance by low thermal expansion include increasing the amount of inorganic fillers having a low coefficient of expansion, in particular, applied silica, and this method has the fluidity of the epoxy resin molding material as the amount of inorganic fillers increases. This has the disadvantage that it is lowered and the elasticity becomes larger. In this regard, Japanese Patent Laid-Open No. 64-11355 has proposed a technique for blending a large amount of filler by controlling the particle size distribution and particle size of the spherical filler.

한편, 반도체소자 밀봉용 에폭시 수지 조성물의 열전도도를 향상시키는 방법은 무기충전제를 다량으로 배합하되, 무기충전제로서 용융 실리카가 아닌 결정형 실리카를 적용하는 극히 제한된 방법만이 채택되고 있다.On the other hand, the method of improving the thermal conductivity of the epoxy resin composition for semiconductor device sealing is a very limited method of mixing a large amount of inorganic filler, applying crystalline silica rather than fused silica as an inorganic filler.

다만 결정형 실리카 이외에 알루미나(Al2O3), 또는 알루미늄 나이트라이드(AIN)등 고열전도도의 무기충전제를 적용하는 경우도 있다.However, inorganic fillers with high thermal conductivity, such as alumina (Al 2 O 3 ) or aluminum nitride (AIN), may be used in addition to crystalline silica.

반도체소자 밀봉용 에폭시 수지 조성물의 열전도도를 높이는 가장 효율적인 방법은 상기와 같이 고열전도도의 무기충전제를 적용하는 것이라 할 수 있으나, 고열전도도의 무기충전제는 열팽창계수가 매우 높아 고신뢰성에 요구되는 내크랙성에는 매우 취약한 단점을 나타내게 된다. 특히 고집적의 3차원 메모리 큐브에서는 최소 4MDRAM 이상의 반도체를 단품으로 적층하기 때문에 4MDRAM 박형 패키이지에 필요한 신뢰성으로써 뛰어난 내크랙성이 요구되며, 따라서 단순히 고열전도도의 무기충전제를 적용하는 방법은 변성 실리콘 오일을 다량 적용하는 방법에도 한계가 따를 만큼 높은 열팽창계수를 나타내어 고열전도도와 저응력을 동시에 달성할 수 없는 한계를 갖는다.The most efficient way to increase the thermal conductivity of the epoxy resin composition for semiconductor device sealing may be to apply a high thermal conductivity inorganic filler as described above, but the high thermal conductivity inorganic filler has a high thermal expansion coefficient, which is required for high reliability Sex is very vulnerable. Particularly in the highly integrated three-dimensional memory cube, since at least 4MDRAM or more semiconductors are stacked separately, excellent crack resistance is required as the reliability required for the 4MDRAM thin package. Therefore, simply applying a high thermal conductivity inorganic filler is a modified silicone oil. Even in the case of a large amount of application, the coefficient of thermal expansion is high enough to follow the limit, and thus high thermal conductivity and low stress cannot be achieved at the same time.

따라서 본 발명의 목적은 상술한 종래 기술상의 문제점들을 극복하는 것으로, 저열팽창계수 및 고열전도도를 동시에 달성하여 솔더 내크랙성이 우수하고 나아가 열발생에 의한 메모리 반도체의 오동작 발생을 방지할 수 있는 반도체소자 밀봉용 에폭시 수지 조성물을 제공하는 것이다.Accordingly, an object of the present invention is to overcome the above-mentioned problems in the prior art, and to achieve a low thermal expansion coefficient and high thermal conductivity at the same time, which is excellent in solder crack resistance and can prevent malfunction of the memory semiconductor due to heat generation. It is providing the epoxy resin composition for element sealing.

본 발명자들은 상기 목적을 달성하기 위하여 예의 연구한 결과, 무기충전제로서 용융 실리카, 또는 합성실리카를 80중량% 이상 적용하되 이중 45중량% 이상을 용융 실리카가 표면 피복된 질화알루미늄(FSCAN)을 사용할 경우 솔더 내크랙성이 뛰어나고 열전도도도 높은 에폭시 수지 경화물을 얻을 수 있음을 발견하고 본 발명을 완성하게 되었다.The present inventors have diligently researched to achieve the above object, and when fused silica or synthetic silica is applied as an inorganic filler by at least 80% by weight, at least 45% by weight of fused silica is coated with aluminum nitride (FSCAN). The present invention has been completed by discovering that an epoxy resin cured product having excellent solder crack resistance and high thermal conductivity can be obtained.

즉, 본 발명은 에폭시 수지, 경화제, 경화촉진제, 변성 실리콘 오일 및 무기충전제를 필수 성분으로 포함하는 반도체소자 밀봉용 에폭시 수지 조성물에 있어서, 용융실리카가 표면 피복된 질화알루미늄 충전제를 무기 충전제 총량중 45중량% 이상 포함하고 나머지의 무기충전제는 용융 실리카 또는 합성 실리카로 구성된 무기충전제를 전체 조성물에 대해 80중량% 이상 함유하는 것을 특징으로 하는 고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시 수지 조성물을 제공하는 것이다.That is, the present invention relates to an epoxy resin composition for sealing semiconductor elements comprising an epoxy resin, a curing agent, a curing accelerator, a modified silicone oil, and an inorganic filler as essential components, wherein the aluminum nitride filler coated with molten silica is 45% of the total inorganic filler. It provides an epoxy resin composition for sealing a semiconductor device having a high thermal conductivity and low thermal expansion coefficient, characterized in that it comprises at least 80% by weight of the inorganic filler consisting of fused silica or synthetic silica with respect to the total composition. It is.

이하 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명에서 기저 수지로 사용되는 에폭시 수지는 적어도 2개 이상의 에폭시기를 갖는 것이면 어느 것이든 적용 가능하다. 예를 들어, 일반적으로 사용되는 크레졸 노볼락 수지, 페놀 노볼락 수지, 비폐닐, 비스페놀 A, 디사이클로펜타디엔 등을 단독 또는 2종류 이상 병행해서 사용할 수 있는데, 내열 크랙성, 성형시의 관점에서 에폭시 당량이 180-220이고 볼순물 함량이 10ppm 이하인 고순도 올소 크레졸 노볼락형 에폭시 수지 및 비례닐계 에폭시 수지를 선별하여 사용하는 것이 가장 바람직하다. 본 발명에서 상기 에폭시 수지는 전체 조성물에 대해 5.0~10.0중량% 사용한다.The epoxy resin used as the base resin in the present invention is applicable to any one having at least two epoxy groups. For example, cresol novolak resin, phenol novolak resin, biphenyl, bisphenol A, dicyclopentadiene, and the like, which are generally used, may be used alone or in combination of two or more thereof. It is most preferable to select and use a high purity oxo cresol novolac-type epoxy resin and a proportional nil epoxy resin having an epoxy equivalent of 180-220 and a ball-purity content of 10 ppm or less. In the present invention, the epoxy resin is used 5.0 to 10.0% by weight based on the total composition.

본 발명에서 경화제로는 2개 이상의 수산기를 갖고 수산기 당량이 100~200인 통상의 폐놀 노볼락 수지, 크레졸 노볼락 수지, 자일록(Xylok)수지, 디사이클로펜타디엔 수지 등이 사용될 수 있으며, 이를 단독으로 사용하거나 또는 2종류 이상 병행하여 사용할 수 있다. 그러나 가격 및 성형성의 관점에서 페놀 노볼락형 수지를 경화제 전체를 50중량% 이상 사용한은 것이 바람직하며, 자일록형 경화제를 단독으로 사용하는 것도 바람직하다. 에폭시 수지와 경화제의 조성비는 수산기 당량에 대한 에폭시 당량 0.8~1.2인 것이 좋으며, 또한 경화제의 사용량은 전체 에폭시 수지 조성물에 대하여 2.0~10.0중량%인 것이 바람직하다.In the present invention, as a curing agent, a conventional phenolic novolac resin, a cresol novolac resin, a xylok resin, a dicyclopentadiene resin, etc. having two or more hydroxyl groups and having a hydroxyl equivalent of 100 to 200 may be used. It may be used alone or in combination of two or more. However, it is preferable to use 50 weight% or more of whole hardening | curing agents from a phenol novolak-type resin from a viewpoint of price and moldability, and it is also preferable to use a xylock type hardening | curing agent independently. It is preferable that the composition ratio of an epoxy resin and a hardening | curing agent is 0.8-1.2 of epoxy equivalent with respect to hydroxyl equivalent, and it is preferable that the usage-amount of a hardening | curing agent is 2.0-10.0 weight% with respect to the whole epoxy resin composition.

본 발명에서 경화촉진제는 에폭시 수지와 경화제의 경화반응을 촉진하기 위해 필요한 성분으로, 예를 들어 벤질디메틸아민,트리에탄올아민, 트리에틸렌디아민, 디메틸아미노에탄올, 트리(디메틸아미노메틸)페놀 등이 3급 아민류, 2-메틸아미다졸, 2-페닐이미다졸 등의 이미다졸류, 트리페닐포스핀, 디페닐포스핀, 페닐포스핀 등의 유기 포스핀류, 테트라페닐포스포니움 테트라페닐보레이트, 트리페닐포스핀 테트라페닐보레이트 등의 테트라페닐보론염 등이 사용될 수 있으며, 이들을 단독으로 사용하거나 또는 2종 이상을 병용해도 좋다. 이러한 경화촉진제의 사용량은 전체 에폭시 수지 조성물에 대하여 0.05~0.2중량%가 좋다. 경화촉진제의 함량이 0.05중량% 미만이면 경화시간의 지연으로 생산성이 떨어지고, 이와 반대로 0.2중량%를 초과하는 경우에는 경화시간이 너무 짧아지기 때문에 성형 불량이 발생하기 쉽다.In the present invention, the curing accelerator is a component necessary for promoting the curing reaction of the epoxy resin and the curing agent, for example, benzyldimethylamine, triethanolamine, triethylenediamine, dimethylaminoethanol, tri (dimethylaminomethyl) phenol, etc. Imidazoles such as amines, 2-methylimidazole and 2-phenylimidazole, organic phosphines such as triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, triphenyl Tetraphenyl boron salts, such as phosphine tetraphenyl borate, etc. can be used, These may be used independently or may use 2 or more types together. The amount of the curing accelerator used is preferably 0.05 to 0.2% by weight based on the total epoxy resin composition. If the content of the curing accelerator is less than 0.05% by weight, the productivity decreases due to the delay of the curing time. On the contrary, when the content of the curing accelerator exceeds 0.2% by weight, the molding failure is likely to occur because the curing time is too short.

또한 본 발명에서는 가소성부여제로서 변성 실리콘 오일이 사용되는데, 변성 실리콘 오일로는 내열성이 우수한 실리콘 중합체가 좋으며, 에폭시 관능기를 갖는 실리콘 오일, 아민 관능기를 갖는 실리콘 오일 및 카르복실 관능기를 갖는 시리콘 오일 등을 1종 또는 2종 이상 혼합하여 사용할 수 있다. 이러한 변성 실리콘 오일의 첨가량은 전체 에폭시 수지 조성물에 대해 0.5~1.5중량%이며, 변성 실리콘 오일을 1.5중량% 이상 초과하여 사용하는 경우에는 표면 오염이 발생하기 쉽고 레진 블리드가 길어질 우려가 있으며, 0.5중량% 미만으로 사용시에는 충분한 저탄성률을 수득할 수 없게 된다.In the present invention, a modified silicone oil is used as a plasticizer, and the modified silicone oil is preferably a silicone polymer having excellent heat resistance, a silicone oil having an epoxy functional group, a silicone oil having an amine functional group, and a silicone oil having a carboxyl functional group. Etc. can be used 1 type or in mixture of 2 or more types. The amount of the modified silicone oil is 0.5 to 1.5% by weight based on the total epoxy resin composition, and when the modified silicone oil is used in an amount of more than 1.5% by weight or more, surface contamination is likely to occur and the resin bleed may be long, and 0.5 weight is used. When used at less than%, a sufficient low modulus of elasticity cannot be obtained.

본 발명에서 사용된 무기충전제는 용융 실리카가 표면에 피복된 질화알루미늄(FSCAN)을 무기충전제 총량 중 45중량% 이상 함유하고, 그 나머지는 평균입자가 0.1~35.0μm인 용융 또는 합성 실리카를 함유하는 것으로, 이러한 무기충전제의 함량의 전체 에폭시 수지 조성물에 대해 80중량% 이상이어야 한다.The inorganic filler used in the present invention contains at least 45% by weight of aluminum nitride (FSCAN) coated on the surface of the fused silica, the remainder containing fused or synthetic silica having an average particle of 0.1 ~ 35.0μm It should be at least 80% by weight relative to the total epoxy resin composition of the content of such an inorganic filler.

무기충전제 가운데 용융 실리카가 표면에 피복된 질화알루미늄의 함량이 45중량% 미만이면 에폭시 수지 조성물에 충분한 고열전도도를 부여할 수 없게 되므로, 본 발명에서 상기 FSCAN의 함량은 총 무기충전제 함량중 45중량% 이상인 것이 필수적이다.If the content of aluminum nitride coated on the surface of the fused silica in the inorganic filler is less than 45% by weight, it is impossible to give sufficient high thermal conductivity to the epoxy resin composition, the content of the FSCAN in the present invention is 45% by weight of the total inorganic filler content It is essential that the above.

또한 무기충전제의 전체 수지 조성물에 대한 함량은 80중량% 이상이어야 저열팽창화를 실현할 수 있으며 80중량% 보다 적게 사용할 경우에는 수분의 침투가 용이해져 솔더 리플로우(Solder reflow)시 내크랙성이 저하되고 알루미늄 패드 부식에도 치명적인 될 수 있다. 다만, 무기충전제의 충전량의 상한성은 성형성을 고려하여 선정하여야 하는데, 에폭시 수지의 점도를 고려하면 82~85중량%의 양으로 사용하는 것이 바람직하다.In addition, the content of the inorganic filler with respect to the total resin composition should be at least 80% by weight to realize low thermal expansion, and when less than 80% by weight is used, moisture is easily penetrated and crack resistance is reduced during solder reflow. And aluminum pads can become fatal even to corrosion However, the upper limit of the filling amount of the inorganic filler should be selected in consideration of the moldability, it is preferable to use in an amount of 82 ~ 85% by weight in consideration of the viscosity of the epoxy resin.

무기충전제 중 FSCAN을 제외한 나머지 부분으로는 FSCAN의 형태가 완전 구형이 아니므로 주로 구형의 용융 또는 합성 실리카를 단독으로 사용하는 것이 좋으나, 강도의 향상을 위하여 성형성이 허용되는 범위내에서 분쇄형의 실리카를 사용할 수도 있다. 특히 FSCAN을 포함하는 무기 충전제는 고순도의 제품이라야 한다.In the other parts of the inorganic filler except FSCAN, the form of FSCAN is not completely spherical, so it is preferable to use spherical molten or synthetic silica alone. Silica may also be used. In particular, inorganic fillers comprising FSCAN should be high purity products.

본 발명의 조성물에는 브로모 에폭시의 난연제, 삼산화안티몬, 수산화알루미나, 오산화안티몬 등의 난연조제, 고급 지방산, 고급 지방산 금속염, 에스테르계 왁스 등의 이형제, 카본블랙, 유·무기염료 등의 착색제, 에폭시 실란, 아미노 실란, 알킬 실란 등의 커플링제 등을 필요에 따라 첨가사용할 수 있다.The composition of the present invention includes a flame retardant of bromo epoxy, flame retardant aids such as antimony trioxide, alumina hydroxide, antimony pentoxide, release agents such as higher fatty acids, higher fatty acid metal salts, ester waxes, colorants such as carbon black, organic and inorganic dyes, and epoxy Coupling agents, such as a silane, an amino silane, an alkyl silane, etc. can be added and used as needed.

이상과 같은 원재료를 이용하여 반도체소자 밀봉용 에폭시 수지 조성물을 제조하는 일반적인 방법으로는 소정의 배합량의 재료들을 헨셀믹서나 뢰디게 믹서를 이용하여 균일하게 충분히 혼합한 뒤, 롤밀이나 니더로 용융 혼련한 후, 냉각시켜서 분쇄기를 이용하여 분말화하는 방법이 사용되고 있다.As a general method for producing an epoxy resin composition for semiconductor element sealing using the raw materials as described above, uniformly and sufficiently mixed materials of a predetermined amount using a Henschel mixer or a solid mixer, followed by melt kneading with a roll mill or a kneader Then, the method of cooling and powdering using a grinder is used.

본 발명에서 얻어진 반도체소자 밀봉용 에폭시 수지 조성물을 사용하여 반도체소자를 밀봉하는 방법으로는 분말상태의 조성물을 타정기로 타정한 후 이렇게 하여 제조된 타블렛 형태의 수지 조성물을 고주파 예열기를 이용하여 예열시킨 후 170~180℃에서 90~120초간 트랜스퍼 몰딩 프레스로 성형하는 저압 트랜스퍼 성형법, 인젝션(Injection) 성형법 또는 캐스팅(Casting) 등의 방법이 사용될 수 있다.As a method of sealing a semiconductor device using the epoxy resin composition for sealing a semiconductor device obtained in the present invention, after the composition of the powder form with a tableting machine and then preheating the resin composition prepared in this way using a high frequency preheater Low pressure transfer molding, injection molding or casting may be used to form the transfer molding press at 170 to 180 ° C. for 90 to 120 seconds.

본 발명의 반도체소자 밀봉용 에폭시 수지 조성물을 고열전도도 및 저열팽창계수를 시현할 수 있기 때문에 솔더 내크랙성 뿐만 아니라 열발산효과가 우수하여 고신뢰성 고집적 반도체 밀봉에 매우 적합하다.Since the epoxy resin composition for sealing a semiconductor device of the present invention can exhibit high thermal conductivity and low thermal expansion coefficient, it is excellent in solder crack resistance as well as heat dissipation effect, and is highly suitable for high reliability and highly integrated semiconductor sealing.

이하에서 본 발명을 실시예에 의하여 상세히 설명하나, 이하의 실시예들은 본 발명의 구체적인 실시태양을 예시하는 것일 뿐으로 본 발명의 보호범위를 제한하거나 한정하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in detail by way of examples, but the following examples are only illustrative of specific embodiments of the present invention and should not be construed as limiting or limiting the protection scope of the present invention.

[실시예 1~4]EXAMPLES 1-4

본 발명의 반도체소자 밀봉용 에폭시 수지 조성물을 제조하기 위해 하기 표 1에 나타낸 바와 같이 각 성분들을 평량한 뒤, 헨셀 믹서를 이용하여 균일하게 혼합한 분말 상태의 1차 조성물을 제조한 다음, 믹싱 2-롤밀을 이용하여 80℃에서 10분간 용융혼련한 뒤, 냉각 및 분쇄과정을 거쳐 본 발명의 반도체소자 밀봉용 에폭시 수지 조성물을 제조하였다.In order to prepare the epoxy resin composition for sealing a semiconductor device of the present invention, as shown in Table 1 below, each component was weighed, and then a uniform composition was prepared using a Henschel mixer, followed by mixing. After melt-kneading at 80 DEG C for 10 minutes using a roll mill, the epoxy resin composition for sealing a semiconductor device of the present invention was prepared by cooling and pulverizing.

이렇게 하여 수득된 고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시 수지 조성물에 대하여 스파이랄 플로우를 측정하였으며, 시험편을 제작, 175℃에서 6시간 후경화시킨 뒤, 굴곡강도, 탄성률, 및 흡습률을 측정하였다. 또한 열전도도 측정용 시험편을 제작하여 4.5×10-3cal/cm sec ℃의 목표 열전도도의 달성 여부를 검토하였다.The spiral flow was measured for the epoxy resin composition for sealing a semiconductor device having a high thermal conductivity and a low thermal expansion coefficient obtained in this way. Measured. In addition, a test piece for measuring thermal conductivity was prepared to examine whether the target thermal conductivity of 4.5 × 10 −3 cal / cm sec ° C. was achieved.

본 발명에서 이용된 물성 평가 방법은 다음과 같다.Physical property evaluation method used in the present invention is as follows.

[물성 측정 방법][Measurement Method]

1) 스파이랄플로우(Spiral Flow):EMMI 규격에 준해 금형을 제작하여 성형온도 175℃, 성형압력 70kg/cm2에서 유동길이를 평가.1) Spiral Flow: The mold is manufactured according to the EMI standard and the flow length is evaluated at molding temperature of 175 ℃ and molding pressure of 70kg / cm 2 .

2) 굴곡강도(Kg/mm2) 및 굴곡탄성율(Kg/mm2):2) Flexural Strength (Kg / mm 2 ) and Flexural Modulus (Kg / mm 2 ):

UTM을 사용하여 ASTM D190에 의해 측정.Measured by ASTM D190 using UTM.

3) 열팽창수 α(℃-1):ASTM D696에 의해 TMA(Thermomechanical Analyzer)를 이용하여 측정.3) Thermal expansion coefficient α (° C- 1 ): measured by TMA (Thermomechanical Analyzer) by ASTM D696.

4) 열전도도(cal/cm sec ℃):열전도도 측정설비를 30분 동안 가동한 후 성형품을 열전도도 측정설비로 60초 동안 측정.4) Thermal conductivity (cal / cm sec ℃): After operating the thermal conductivity measuring equipment for 30 minutes, measure the molded product for 60 seconds with the thermal conductivity measuring equipment.

5) 흡습율(%):성형품을 121℃ 2기압 수증기 중에 주어진 시간 동안 방치한 후 포화 흡수율을 측정.5) Moisture Absorption Rate (%): The molded article is left in 121 ° C. 2 atm water vapor for a given time, and then the saturated water absorption is measured.

6) 내크랙성:48 QFP를 측정하여 후경화시킨 후 85℃/65% RH의 항온항습 조건하에서 각각 48, 168시간 동안 흡습시킨 뒤 245℃에서 10초 동안 IR 리프로우를 3회 통과시켜 전처리를 실시하여 패키이지 크랙발생수를 측정하였다. 내크랙성에서의 숫치 중 분모는 시료수를, 분자는 불량갯수를 나타낸다.6) Crack resistance: 48 QFP was measured and post-cured, and then absorbed for 48 and 168 hours under constant temperature and humidity conditions of 85 ° C / 65% RH, and then pretreated by three passes of IR reflow for 10 seconds at 245 ° C. Was carried out to measure the number of package cracks. The denominator of the numerical value in crack resistance shows the number of samples, and the molecule shows the number of defects.

비교예 1~4Comparative Examples 1 to 4

하기 표 4에 나타낸 바와 같이 각 성분을 주어진 조성대로 평량하여 실시예 1과 같은 방법으로 반도체소자 밀봉용 에폭시 수지 조성물을 제조하고, 제반 물성을 평가하여 그 결과를 하기 표 2에 나타내었다.As shown in Table 4 below, each component was basis weighted according to a given composition to prepare an epoxy resin composition for semiconductor element sealing in the same manner as in Example 1, and the physical properties were evaluated and the results are shown in Table 2 below.

[표 1]TABLE 1

(단위:중량%)(Unit: weight%)

[표 2]TABLE 2

상기 표 1 및 표 2의 비교를 통해 본 발명의 반도체소자 밀봉용 에폭시 수지 조성물은 용융 실리카가 피복된 질화알루미늄을 포함하는 무기충전제를 사용함으로써 고열전도도를 발현할 수 있음과 동시에 솔더 내크랙성이 우수하다는 것을 확인할 수 있다.Through comparison of Table 1 and Table 2, the epoxy resin composition for sealing a semiconductor device of the present invention can express high thermal conductivity by using an inorganic filler including aluminum nitride coated with fused silica and at the same time solder crack resistance. It can be confirmed that it is excellent.

Claims (3)

에폭시 수지, 경화제, 경화촉진체, 변성 실리콘 오일 및 무기충전제를 필수 성분으로 포함하는 반도체소자 밀봉용 에폭시 수지 조성물에 있어서, 상기 무기충전제가 용융 또는 합성 실리카와 용융 실리카가 표면에 피복된 질화알루미늄이 혼합된 것임을 특징으로 하는 고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시 수지 조성물.In the epoxy resin composition for sealing a semiconductor device comprising an epoxy resin, a curing agent, a curing accelerator, a modified silicone oil and an inorganic filler as essential components, the inorganic filler may be aluminum nitride coated with fused or synthetic silica and fused silica. Epoxy resin composition for sealing a semiconductor device of high thermal conductivity and low thermal expansion coefficient, characterized in that the mixture. 제1항에 있어서,The method of claim 1, 상기 무기충전제의 배합량이 전체 수지 조성물에 대하여 80중량% 이상인 것을 특징으로 하는 고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시 수지 조성물.Epoxy resin composition for sealing semiconductor elements with high thermal conductivity and low thermal expansion coefficient, characterized in that the compounding amount of the inorganic filler is 80% by weight or more based on the total resin composition. 제1항에 있어서,The method of claim 1, 상기 무기충전제가 용융실리카가 표면 피복된 질화알루미늄 충전제를 무기충전제 총량중 45중량% 이상 포함하는 것을 특징으로 하는 고열전도도 및 저열팽창계수의 반도체소자 밀봉용 에폭시 수지 조성물.The epoxy resin composition for sealing a semiconductor device having high thermal conductivity and low thermal expansion coefficient, wherein the inorganic filler comprises 45 wt% or more of the total amount of the inorganic filler with an aluminum nitride filler coated with molten silica.
KR1019960049996A 1996-10-30 1996-10-30 High heat conductive and low heat expanding coefficient epoxy resin composition for the encapsulation of semiconductor KR100226047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960049996A KR100226047B1 (en) 1996-10-30 1996-10-30 High heat conductive and low heat expanding coefficient epoxy resin composition for the encapsulation of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960049996A KR100226047B1 (en) 1996-10-30 1996-10-30 High heat conductive and low heat expanding coefficient epoxy resin composition for the encapsulation of semiconductor

Publications (2)

Publication Number Publication Date
KR19980030543A true KR19980030543A (en) 1998-07-25
KR100226047B1 KR100226047B1 (en) 1999-10-15

Family

ID=19479721

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960049996A KR100226047B1 (en) 1996-10-30 1996-10-30 High heat conductive and low heat expanding coefficient epoxy resin composition for the encapsulation of semiconductor

Country Status (1)

Country Link
KR (1) KR100226047B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000038720A (en) * 1998-12-08 2000-07-05 유현식 High heat-conductive epoxy resin composition for sealing semiconductor device
KR100364244B1 (en) * 2000-12-18 2002-12-12 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device
KR100364619B1 (en) * 2000-12-18 2002-12-16 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device
KR100387219B1 (en) * 2000-12-28 2003-06-12 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462143B1 (en) * 1996-12-30 2005-04-08 고려화학 주식회사 Manufacturing method of low stress modified silicone epoxy resin for encapsulation of semiconductor device and resin composition for encapsulation of semiconductor device containing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000038720A (en) * 1998-12-08 2000-07-05 유현식 High heat-conductive epoxy resin composition for sealing semiconductor device
KR100364244B1 (en) * 2000-12-18 2002-12-12 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device
KR100364619B1 (en) * 2000-12-18 2002-12-16 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device
KR100387219B1 (en) * 2000-12-28 2003-06-12 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device

Also Published As

Publication number Publication date
KR100226047B1 (en) 1999-10-15

Similar Documents

Publication Publication Date Title
JP4496786B2 (en) Epoxy resin composition and semiconductor device
US6297306B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
KR20130064000A (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
KR19980030543A (en) Epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient
JP5407767B2 (en) Epoxy resin composition and semiconductor device
KR100189095B1 (en) Epoxy resin compositions for sealing semiconductor precisely
JPS62209128A (en) Epoxy resin composition for sealing semiconductor device
KR100201708B1 (en) Epoxy resin composition for encapsulation of semiconductor
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
KR100413357B1 (en) Epoxy resin composition for encapsulating semiconductor device
KR100447547B1 (en) Epoxy Resin Composition For Packaging Semiconductor Device
KR100430196B1 (en) Epoxy Resin Compositions for Semiconductor Device Sealing
KR100474961B1 (en) Epoxy resin composition for encapsulating semiconductor device
KR100387219B1 (en) Epoxy resin composition for encapsulating semiconductor device
KR100582662B1 (en) Epoxy molding compound for semiconductor encapsulant
KR100543092B1 (en) Epoxy Molding Compound for Encapsulation of Semiconductor Devices
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
KR19990001511A (en) Epoxy Resin Compositions for Semiconductor Device Sealing
KR100414202B1 (en) Epoxy resin composition for encapsulating semiconductor device
KR100519656B1 (en) Epoxy Resin Composition for Encapsulating Semiconductor, Having Good Mold-Releasing Property
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
KR100565421B1 (en) Epoxy molding composition for semiconductor encapsulant
KR100479854B1 (en) Epoxy molding compound having improved heat-release property for use as semiconductor encapsulant
KR100364244B1 (en) Epoxy resin composition for encapsulating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150623

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 18