KR102639992B1 - 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나 - Google Patents

투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나 Download PDF

Info

Publication number
KR102639992B1
KR102639992B1 KR1020230021776A KR20230021776A KR102639992B1 KR 102639992 B1 KR102639992 B1 KR 102639992B1 KR 1020230021776 A KR1020230021776 A KR 1020230021776A KR 20230021776 A KR20230021776 A KR 20230021776A KR 102639992 B1 KR102639992 B1 KR 102639992B1
Authority
KR
South Korea
Prior art keywords
copper
thin film
forming
layer
transparent antenna
Prior art date
Application number
KR1020230021776A
Other languages
English (en)
Other versions
KR20230123901A (ko
Inventor
양주웅
허정욱
정상천
전용선
Original Assignee
주식회사 루미디아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루미디아 filed Critical 주식회사 루미디아
Publication of KR20230123901A publication Critical patent/KR20230123901A/ko
Application granted granted Critical
Publication of KR102639992B1 publication Critical patent/KR102639992B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3697Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one metallic layer at least being obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Details Of Aerials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명은 비교적 간단한 공정을 통해 구리 전극을 생성하고, 전극의 두께를 조절함으로써, 베이스 전극의 선로 저항을 일정 범위 이하로 유지하도록 하여 안테나의 대전력 신호 출력이 가능하다.
또한, 본 발명은 유리로부터 석출되는 알칼리 물질에 의한 유리와 구리(Cu) 간 접착력 저하를 방지할 수 있어 유리 베이스 기판과 구리(Cu) 박막층 간 접착력을 일정하게 유지할 수 있다.

Description

투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나{TRANSPARENT ANTENNA SUBSTRATE MANUFACTURING METHOD AND TRANSPARENT ANTENNA MANUFACTURED THEREFROM}
본 발명은 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나에 관한 것으로, 보다 상세하게는 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 공정을 통해 전극의 두께를 조절하고, 미세 선폭을 가진 메탈 메쉬 안테나 패턴을 형성하여 대전력 신호 출력이 가능한 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나에 관한 것이다.
안테나는 무선통신을 위한 필수적인 구성이다. 모바일 장치 및 차량에 적용되는 통신 기술이 발전하고, IoT(internet on things) 기술이 발전함에 따라 안테나 성능에 대한 요구도 증가하고 있다. 특히, 디스플레이, 윈도우 등에 안테나를 적용하는 기술이 시도되고 있다. 이를 위하여, 안테나는 투명으로 구현될 필요가 있다.
일반적으로, 은(Ag) 나노 와이어를 글래스 기판 상에 코팅하는 방법으로 투명 안테나가 구현될 수 있다. 이때, 안테나의 성능을 높이기 위하여 은(Ag) 나노와이어의 농도 및 두께를 높여야 하지만, 은(Ag) 나노와이어의 농도 및 두께가 높아지면 안테나의 투과도가 낮아지는 문제가 있다.
또는, 은(Ag) 합금을 필름 상에 스퍼터링 기법으로 증착한 후, 은(Ag) 합금을 패터닝하는 방법으로 투명 안테나가 구현될 수도 있다. 이때, 스퍼터링 기법을 이용하여 소정 두께 이상으로 은(Ag) 합금을 증착시키기 위하여 많은 시간이 소요될 수 있으며, 패터닝에 의하여 다량의 은(Ag) 합금이 소실될 수 있으므로 비용 측면에서 효율적이지 않은 문제가 있다.
본 발명이 해결하고자 하는 과제는 간단한 공정을 통해 구리 전극을 생성하고, 미세 선폭을 가진 메탈 메쉬 안테나 패턴을 형성하여 대전력 신호 출력이 가능한 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나를 제공하는 것이다.
상술한 과제를 해결하기 위하여, 본 발명은 12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계; 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계; 상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계; 상기 포토레지스트층을 노광시키는 단계; 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계; 상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계; 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 메탈 메쉬 안테나 패턴은 12 ~ 100㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선은 하기의 관계식 1을 만족할 수 있다.
[관계식 1]
Figure 112023019125737-pat00001
(LWCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu)의 선폭, TCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선의 두께)
본 발명의 바람직한 일실시예에 따르면, 상기 구리(Cu) 박막을 형성하는 단계는 구리(Cu) 박막의 일 면에 열경화성 접착제층을 롤 형태로 핫-프레스(hot-press) 또는 라미네이팅 방식으로 접합함으로써 수행될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 열경화성 접착제층은 폴리올레핀계, 요소계, 멜라민계, 페놀계, 불포화 폴리에스테르 계, 에폭시계, 레졸시놀계, 폴리이미드계 수지, 이들의 변성물 및 이들의 혼합물 중 어느 하나 이상일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 열경화성 접착제층의 두께는 10 ~ 25㎛일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 구리(Cu) 박막층을 형성하는 단계는 핫-프레스(hot-press) 또는 라미네이팅 공정을 통해 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 접착시켜 합착하는 방식으로 수행될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 구리(Cu) 박막층을 형성하는 단계는, 상기 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착한 후 상기 유리 베이스 기판의 일 면과 상기 구리(Cu) 박막의 접착면 사이에 발생하는 미세 기포를 제거하기 위한 탈포 공정을 더 포함할 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 탈포 공정은 오토크레이브(Autoclave) 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 탈포 공정은 핫-프레스 장비 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 메탈 메쉬 안테나 패턴을 형성하는 단계 이후에, 투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계;를 더 포함할 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 오버코트층을 형성하는 단계에서 상기 오버코트층은 액상 코팅, 필름 코팅 및 열가소성 수지 코팅 중 어느 하나의 코팅 방법으로 형성될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 오버코트층을 형성하는 단계 이후에, 안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계;를 더 포함할 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 표면 처리 공정은 주석, 니켈, 금, 은 및 팔라듐으로 이루어진 군으로부터 선택되는 어느 하나의 금속을 이용하여 수행될 수 있다.
나아가, 본 발명은 상술한 어느 하나의 제조방법으로부터 제조된 투명 안테나를 제공한다.
본 발명은 비교적 간단한 공정을 통해 구리 전극을 생성하고, 전극의 두께를 조절함으로써, 베이스 전극의 선로 저항을 일정 범위 이하로 유지하도록 하여 안테나의 대전력 신호 출력이 가능하다.
또한, 본 발명은 유리로부터 석출되는 알칼리 물질에 의한 유리와 구리(Cu) 간 접착력 저하를 방지할 수 있어 유리 베이스 기판과 구리(Cu) 박막층 간 접착력을 일정하게 유지할 수 있다.
도 1은 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다.
도 2는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다.
도 3은 본 발명의 바람직한 일실시예에 따른 투명 안테나의 메탈 메쉬 안테나 패턴을 나타낸다.
도 4는 본 발명의 바람직한 일실시예에 따른 투명 안테나의 메탈 메쉬 안테나 패턴을 나타낸다.
도 5는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다.
도 6은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다.
도 7은 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸 도면이다.
도 8은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다.
도 9는 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
상술한 바와 같이 미세 선폭을 가진 메탈 메쉬 안테나 패턴을 형성하여 대전력 신호 출력이 가능하도록 하기 위해서는 전극 두께와 선폭을 조절함으로써 베이스 기판이 적정 범위 이하의 선로 저항을 유지하도록 하여야 한다. 또한, 비교적 간단한 공정을 통해 구리 전극을 생성하고, 목표하는 적정 두께의 전극을 형성하는 방법이 필요한 실정이다.
이에 본 발명은 12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계; 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계; 상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계; 상기 포토레지스트층을 노광시키는 단계; 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계; 상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계; 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법을 제공하여 상술한 한계점의 해결책을 모색하였다.
이에 따라, 본 발명은 스퍼터 공정을 이용하지 않고, 비교적 간단한 공정을 통해 구리 전극을 생성할 수 있고, 전극의 두께를 용이하게 조절할 수 있다. 이를 통해 본 발명은 베이스 전극의 선로 저항을 일정 범위 이하로 유지함과 동시에 미세 선폭을 가진 안테나 패턴의 대전력 신호 출력을 달성할 수 있다.
또한, 본 발명은 유리로부터 석출되는 알칼리 물질에 의한 유리와 구리(Cu) 간 접착력 저하를 방지할 수 있어 유리 베이스 기판과 구리(Cu) 박막층 간 접착력을 일정하게 유지할 수 있다.
도 1은 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 도 1을 참조하면, 본 발명은 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계(S10), 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20), 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30), 포토레지스트층을 노광시키는 단계(S40), 노광된 포토레지스트층을 현상하고, 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계(S50), 포토레지스트층의 노광되지 않은 부분을 박리하는 단계(S60) 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계(S70)를 포함한다.
먼저, 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계(S10)는, 유리 베이스 기판의 일 면 위에 형성되는 구리(Cu) 박막층을 박막 형태로 준비하는 단계이다.
본 발명은 구리(Cu) 박막층을 스퍼터 공정으로 형성하는 것이 아니라, 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합함으로써 접착면을 구비한 구리(Cu) 박막을 형성한 후, 후술하는 바와 같이 이를 유리 베이스 기판의 일 면에 합착함으로써 형성한다.
즉, 본 발명은 스퍼터 공정을 수행하지 않고, 비교적 간단한 공정만으로 구리(Cu) 박막층을 형성할 수 있다. 또한, 구리(Cu) 박막 자체의 두께 범위를 조절함으로써 목표하는 전극 두께 조절을 용이하게 구현할 수 있다.
이에 따라, 본 발명은 공정 비용을 절감할 수 있고, 공정 효율을 현저히 향상시킬 수 있다. 또한, 제작하고자 하는 베이스 기판의 제작 크기가 각 공정별 장비의 크기에 영향을 받는 것을 방지할 수 있다.
구리(Cu) 박막의 두께는 12 ~ 100㎛이다. 바람직하게는 15 ~ 60㎛일 수 있고, 보다 바람직하게는 18 ~ 35㎛ 일 수 있다. 만일 구리(Cu) 박막의 두께가 상기 범위 미만인 경우에는 합지 공정이 용이하지 않으며, 요구 전류 범위를 충족하지 못하여 원활한 전원 공급이 어려운 한계점이 있을 수 있다. 또한, 만일 구리(Cu) 박막의 두께가 상기 범위를 초과하는 경우에는 구리(Cu) 박막의 접착력이 낮아지면서 박막이 무너지거나 미세패턴이 박리되는 등 필요 이상의 제조 공정 비용이 증가할 수 있다.
열경화성 접착제층은 열경화성 접착제를 포함하도록 형성되며, 열경화성 접착제는 후술하는 바와 같이 에칭 공정, 안테나 패턴 형성 등의 고온 환경에서 잘 견디는 물질로 해당 기술 분야에서 통상적으로 사용되는 것을 사용할 수 있다. 바람직하게는, 폴리올레핀계, 요소계, 멜라민계, 페놀계, 불포화 폴리에스테르계, 에폭시계, 레졸시놀계, 폴리이미드계 수지, 이들의 변성물 및 이들의 혼합물 중 어느 하나 이상을 사용할 수 있다. 이 경우 제조 공정 상에서의 고온 환경 및 작업 중 받게 되는 외력에도 접착력을 유지할 수 있는 장점이 있다.
본 발명의 바람직한 일실시예에 따르면, 열경화성 접착제층의 두께는 10 ~ 25㎛일 수 있다. 보다 바람직하게는, 열경화성 접착제층의 두께는 10 ~ 15㎛일 수 있다. 이 경우 구리(Cu) 박막과 열경화성 접착제층 간의 접촉성이 향상될 수 있다. 특히, 유리 베이스 기판의 유리 표면에서 알칼리 물질이 토출됨으로써 유리와 구리(Cu) 박막 간의 접착력이 저하되는 경우가 발생할 수 있는데, 본 발명은 열경화성 접착제층의 두께를 상기 범위 내로 함으로써 이러한 유리와 구리(Cu) 박막 간의 접착력 저하를 방지할 수 있도록 하였다.
만일 열경화성 접착제층의 두께가 상기 범위 미만인 경우에는 구리(Cu) 박막과 열경화성 접착제층 간의 접촉성 및 유리와 구리(Cu) 박막 간의 접착력이 저하되는 한계점이 발생할 수 있다. 또한, 만일 열경화성 접착제층의 두께가 상기 범위를 초과하는 경우에는 회로에서 발생한 열의 전달형이 저하되고 핫-프레스 또는 라미네이팅 공정에서 기포가 발생할 수 있다.
한편, 구리(Cu) 박막을 형성하는 단계(S10)는 구리(Cu) 박막의 일 면에 열경화성 접착제층을 롤 형태로 핫-프레스(hot-press) 또는 라미네이팅 방식으로 접합함으로써 수행될 수 있다. 또한 접합 후에는 일정 시간동안 숙성의 시간을 가질 수 있다.
다음으로, 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20)는, 접착면을 구비한 구리(Cu) 박막의 접착면과 유리 베이스 기판의 일 면을 합착하여 유리 베이스 기판 위에 구리(Cu) 박막층을 형성하는 단계이다.
이 경우, 상술한 바와 같이 별도의 스퍼터 공정 없이 비교적 간단한 합착 공정만으로 유리 베이스 기판 위에 구리(Cu) 박막층을 형성할 수 있는 효과가 있다. 또한, 구리(Cu) 박막의 두께를 사전에 조절함으로써 목표하는 전극 두께를 용이하게 구현할 수 있는 장점이 있다.
유리 베이스 기판의 재질은 소다라임(Sodalime, 소다석회유리) 유리 또는 보로실리케이트(Borosilicate, 붕규산 유리)를 사용함이 바람직하며, 화학 강화 또는 열 강화를 통해 강성이 확보된 유리를 사용할 수 있다.
또한, 바람직하게는 유전율이 낮은 유리 기판을 사용할 수 있다. 안테나의 유전 물질로 사용되는 베이스 유리 기판의 유전율이 낮을수록 안테나의 성능이 향상될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 구리(Cu) 박막층을 형성하는 단계(S20)는 핫-프레스(hot-press) 공정을 통해 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 접착시켜 합착하는 방식으로 수행될 수 있다. 이 경우 각 소재의 매질 간 접착력을 현저히 향상시킬 수 있다.
이 때, 바람직하게는 사전 합지 공정을 먼저 수행할 수 있다. 사전 합지 공정은 100 ~ 150℃ 온도 범위로 구리(Cu) 박막의 접착면을 유리 표면에 접착시켜 가경화하여 수행될 수 있다.
사전 합지 공정 수행 후에 상기 핫-프레스 공정을 수행할 수 있다. 상기 핫-프레스 공정은, 바람직하게는 120 ~ 180℃의 가열 온도, 50 ~ 70kgf의 가압 압력으로 약 30 ~ 50분 간 수행될 수 있다.
한편, 구리(Cu) 박막층을 형성하는 단계(S20)는, 상기 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착한 후 상기 유리 베이스 기판의 일 면과 상기 구리(Cu) 박막의 접착면 사이에 발생하는 미세 기포를 제거하기 위한 탈포 공정을 더 포함할 수 있다.
이 때, 상기 탈포 공정은 오토크레이브(Autoclave) 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수 있다. 또한, 상기 탈포 공정은 핫-프레스 장비 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수도 있다. 이 경우 유리 베이스 기판과 구리(Cu) 박막 간의 부착력 및 접착력을 보다 향상시킬 수 있다.
이와 같이, 유리 베이스 기판 위에 구리(Cu) 박막을 합착하여 구리(Cu) 박막층을 형성한 후에는 메탈 메쉬 안테나 패턴 형성을 위해 Ÿ‡공정(Wet) 공정을 이용하여 미세 패턴을 형성할 수 있다.
경우에 따라, 구리(Cu) 박막층을 형성하는 단계(S20) 이후에, 상기 구리(Cu) 박막층의 일 표면을 세척하는 단계를 더 수행할 수도 있다. 이 경우 소프트 에칭 공정을 통해 표면 세척을 수행할 수 있다.
즉, 본 발명은 목표하는 두께의 구리 전극의 형성 내지 구현이 가능한 장점이 있다. 결국, 본 발명은 구리(Cu) 전극의 두께를 조절하여, 상기 메탈 메쉬 안테나 패턴의 선폭 내지 두께를 조절할 수 있게 된다.
이 경우 베이스 전극의 선로 저항이 1Ω/m 이하로 유지될 수 있으며, 미세 메쉬 전극 패턴에 수 암페어(A) 또는 수십 암페어(A)의 전류를 메쉬 전극 패턴을 통해 흘릴 수 있어, 투명 안테나 기판의 패턴으로 대전력 신호 출력이 가능한 효과가 있다.
한편, 경우에 따라 본 발명은 구리(Cu) 박막층 위에 구리(Cu) 도금층을 형성하는 단계를 더 포함할 수도 있다.
구리(Cu)는 다른 금속 재료와 달리 구리(Cu) 표면 위에 추가적인 구리(Cu) 도금 공정이 가능한 특징이 있는데, 본 발명은 이러한 특징을 이용하여 구리(Cu) 박막층 위에 구리(Cu)를 추가 도금하도록 함으로써 구리(Cu) 전극의 두께 조절이 가능하도록 하였다.
이와 관련하여, 도 2는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 도 2를 참조하면, 본 발명은 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20)와 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30) 사이에 구리(Cu) 박막층 위에 구리(Cu) 도금층을 형성하는 단계(S21)를 추가로 더 실시할 수도 있다.
다음으로, 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30)는 포토레지스트액을 도포하여 포토레지스트층을 형성하는 방식으로 수행될 수도 있고, 드라이필름 포토레지스트(DFR: Dry Film Photoresist)를 구리(Cu) 박막층 위에 라미네이션하는 방식으로 수행될 수도 있다. 그 밖에 감광을 통하여 회로 패턴을 형성할 수 있는 포토레지스트라면 다양한 종래기술이 널리 적용될 수 있다.
다음으로, 포토레지스트층을 노광시키는 단계(S40)는 포토레지스트층을 자외선(UV)에 노광시키는 단계이다. 이 때, 포토마스크의 UV 차단 부분 아래에 있는 포토레지스트는 노광되지 않은 채로 남아 있게 된다. UV가 조사되는 영역에서 포토레지스트층은 자외선(UV)에 노광된다.
다음으로, 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계(S50)에서는 노광된 포토레지스트층에 대한 현상 및 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분에 대한 에칭이 이루어진다.
다음으로, 포토레지스트층의 노광되지 않은 부분을 박리하는 단계(S60)에서는 포토레지스트층의 나머지 부분에 대한 박리가 이루어진다. 이를 통해, 구리(Cu) 박막층이 노출되게 된다.
다음으로, 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계(S70)에서는 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하게 된다.
메탈 메쉬 안테나 패턴은 전도성을 제공하고, 투명 전극으로 적용가능한 전도성 물질로 구성될 수 있다. 예를 들어, 메탈 메쉬 패턴들은, 예를 들어, 은(Ag), 구리(Cu), 알루미늄(Al), 금(Au), 니켈(Ni), 티타늄(Ti), 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 백금(Pt), 또는 이들의 합금; 및 그래핀, 탄소나노튜브, 탄소나노리본, 탄소나노와이어, 탄소섬유 및 카본블랙 등의 탄소계 물질; 로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 바람직하게는, 메탈 메쉬 패턴들은 구리(Cu)로 이루어질 수 있다.
상술한 바와 같이, 본 발명은 박막층 및 메탈 메쉬 안테나 패턴을 모두 구리(Cu) 금속으로 형성함으로써, 구리(Cu) 전극의 두께 조절이 가능하도록 하였으며, 나아가 메탈 메쉬 안테나 패턴 역시 구리(Cu)로 형성함으로써 메탈 메쉬 안테나 패턴의 선폭 내지 두께 조절이 용이하도록 하였다.
도 3 및 도 4는 본 발명의 바람직한 일실시예에 따른 투명 안테나의 메탈 메쉬 안테나 패턴을 나타낸다. 도 3 및 도 4를 참조하면, 메탈 메쉬 안테나 패턴(40)은 제1방향으로 연장되는 복수의 제1메탈 라인들(410) 및 제2방향으로 연장되는 복수의 제2메탈 라인들(420)을 포함할 수 있다. 복수의 제1메탈 라인들(410) 각각과 복수의 제2메탈 라인들(420) 각각은 교차하고, 이들 교차 영역이 메탈 메쉬 안테나 패턴의 형상을 이룰 수 있다.
한편, 본 발명의 일실시예에 따른 메탈 메쉬 안테나 패턴(40)은 송수신 대상이 되는 신호의 주파수 대역, 적용 분야 등에 따라 크기 및 형상이 달라질 수 있다. 특히, 본 발명의 일실시예에 따른 메탈 메쉬 안테나 패턴은 대전력 신호 출력을 위해 미세 선폭으로 구현될 수 있고, 원형, 타원형, 곡선형 또는 다각형의 형태를 가질 수 있으나, 이에 한정되는 것은 아니다.
구체적으로, 도 3에 도시된 바와 같이 메탈 메쉬 안테나 패턴(40)은 직사각형의 격자 형상을 가질 수 있다. 또한, 대안적으로, 도 4에 도시된 바와 같이 메탈 메쉬 안테나 패턴(40)은 마름모의 격자 형상을 가질 수 있다.
본 발명의 바람직한 일실시예에 따르면, 메탈 메쉬 안테나 패턴(40)은 12 ~ 100㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴일 수 있다. 보다 바람직하게는, 메탈 메쉬 안테나 패턴(40)은 18 ~ 35㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴일 수 있다. 또한, 메탈 메쉬 안테나 패턴(40)의 선폭은 12 ~ 140㎛임이 바람직하며, 보다 바람직하게는 20 ~ 100㎛일 수 있다.
또한, 본 발명의 바람직한 일실시예에 따르면, 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu) 도선은 하기의 관계식 1을 만족할 수 있다.
[관계식 1]
(LWCu : 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu)의 선폭, TCu : 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu) 도선의 두께)
보다 바람직하게는, 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu) 도선은의 선폭 및 두께는 를 만족할 수 있다.
이 경우 메탈 메쉬 안테나 패턴(40)은 미세 선폭으로 형성됨으로써 투명 안테나의 구현이 가능하고, 이와 동시에 대전력 신호 출력이 가능한 장점이 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명은 메탈 메쉬 안테나 패턴을 형성하는 단계(S70) 이후에, 투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계(S80)를 더 포함할 수 있다.
오버코트층을 형성하는 단계(S80)에서는 투명안테나를 감싸는 형태로 오버코트층을 형성할 수 있다. 이 경우 방수성, 방진성, 방습성 등의 특성이 만족될 수 있다.
오버코트층은 액상 코팅, 필름 코팅 내지 열가소성 수지 코팅 중 어느 하나의 코팅 방법으로 형성될 수 있다.
오버코트층은 스프레이나 디스펜서를 이용하여 적정 두께 범위로 도포가 가능하다. 또한, 오버코트층이 열가소성 수지로 이루어지는 경우, 열과 압력을 인가하여 열가소성 수지가 용융되어 베이스 기판에 부착될 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 오버코트층을 형성하는 단계(S80) 이후에, 안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계를 더 포함할 수 있다.
이와 관련하여, 도 5는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 도 5를 참조하면, 본 발명은 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계(S10), 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20), 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30), 포토레지스트층을 노광시키는 단계(S40), 노광된 포토레지스트층을 현상하고, 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계(S50), 포토레지스트층의 노광되지 않은 부분을 박리하는 단계(S60), 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계(S70), 투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계(S80) 및 안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계(S90)를 포함한다.
이와 같이, 본 발명은 오버코트층 형성 이후 표면 처리 공정을 추가로 수행함으로써 안테나의 주파수 특성 및 단자 보호 효과가 있다.
이 때, 상기 표면 처리 공정은 주석, 니켈, 금, 은 및 팔라듐으로 이루어진 군으로부터 선택되는 어느 하나의 금속을 이용하여 수행될 수 있다.
나아가, 본 발명은 상술한 투명 안테나 기판 제조방법 중 어느 하나의 방법으로부터 제조된 투명 안테나를 제공한다.
이와 관련하여, 도 6은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다. 도 6을 참조하면, 본 발명은 메탈 메쉬 안테나 패턴을 형성하기 이전에는 투명 재질의 베이스 기판(10), 구리(Cu) 박막에 부착된 접착층(20), 구리(Cu) 박막층(30)을 포함할 수 있다. 이후, 상술한 바와 같이 단계 S40 ~ S70의 공정 순서에 따라 구리(Cu) 박막층(30)을 에칭함으로써 메탈 메쉬 안테나 패턴을 형성하게 되는 것이다.
이와 관련하여, 도 7은 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸다. 도 7을 참조하면, 투명 안테나는 투명 전극을 활용한 안테나로서, 투명 재질의 베이스 기판(10), 구리(Cu) 박막에 부착된 접착층(20), 메탈 메쉬 안테나 패턴(40), 오버코트층(50)을 포함한다. 이 때, 메탈 메쉬 안테나 패턴(40)은 구리(Cu) 박막층(30)을 에칭하여 형성될 수 있다.
한편, 도 8은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다. 도 8을 참조하면, 본 발명은 메탈 메쉬 안테나 패턴을 형성하기 이전에는 투명 재질의 베이스 기판(10), 구리(Cu) 박막에 부착된 접착층(20), 구리(Cu) 박막층(30)을 포함하고, 구리(Cu) 박막층(30) 위에 구리(Cu) 도금층(31)을 추가로 형성할 수 있다. 이후, 상술한 공정 순서에 따라 구리(Cu) 박막층(30)과 구리(Cu) 도금층(31)을 에칭함으로써 메탈 메쉬 안테나 패턴을 형성하게 되는 것이다.
이와 관련하여, 도 9는 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸다. 도 9를 참조하면, 구리(Cu) 박막층(30) 위에 구리(Cu) 도금층(31)을 추가로 형성하는 경우에는 구리(Cu) 박막층(30)과 구리(Cu) 도금층(31)이 함께 메탈 메쉬 안테나 패턴(40')이 형성될 수 있다. 이 경우 상술한 바와 같이, 두께가 얇은 구리(Cu) 박막을 이용하여 기본 패턴을 제작 후, 추가적인 구리(Cu) 도금층 형성을 통해 목표 두께를 만족하는 메탈 메쉬 안테나 패턴(40')을 형성할 수 있다.
또한, 절연부 및 그라운드부를 더 포함할 수 있다. 이 때, 상기 안테나부는 상기 절연부를 사이에 두고 대응되는 형상 및 구조를 가진 그라운드부와 대칭적으로 형성될 수 있다.
절연부는 안테나부와 접촉되어, 그라운드부와 안테나부를 절연시킬 수 있으며, 안테나부와 그라운드부를 접착시킬 수 있는 효과가 있다. 그라운드부는 투명 안테나의 접지를 제공할 수 있다.
또한, 상술한 바와 같이 안테나부는 메탈 메쉬 안테나 패턴(40)을 포함할 수 있다. 이와 대응하도록 그라운드는 메탈 메쉬 그라운드 패턴을 포함할 수 있다.
결국, 본 발명은 대전력 신호 출력이 가능한 미세 선폭의 메탈 메쉬 안테나 패턴을 포함하는 투명 안테나를 제공할 수 있고, 이에 따라 본 발명의 투명 안테나 는 시각적으로 실질적으로 투명하도록 구현되어 다양한 곳에 유용하게 활용될 수 있다.

Claims (15)

12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계;
유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계;
상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계;
상기 포토레지스트층을 노광시키는 단계;
노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계;
상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계;및
포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법.
제1항에 있어서,
상기 메탈 메쉬 안테나 패턴은 12 ~ 100㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴인, 투명 안테나 기판 제조방법.
제2항에 있어서,
상기 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선은 하기의 관계식 1을 만족하는, 투명 안테나 기판 제조방법.
[관계식 1]

(LWCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu)의 선폭, TCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선의 두께)
제1항에 있어서,
상기 구리(Cu) 박막을 형성하는 단계는 구리(Cu) 박막의 일 면에 열경화성 접착제층을 롤 형태로 핫-프레스(hot-press) 또는 라미네이팅 방식으로 접합함으로써 수행되는, 투명 안테나 기판 제조방법.
제1항에 있어서,
상기 열경화성 접착제층은 폴리올레핀계, 요소계, 멜라민계, 페놀계, 불포화 폴리에스테르 계, 에폭시계, 레졸시놀계, 폴리이미드계 수지, 이들의 변성물 및 이들의 혼합물 중 어느 하나 이상인, 투명 안테나 기판 제조방법.
제1항에 있어서,
상기 열경화성 접착제층의 두께는 10 ~ 25㎛인, 투명 안테나 기판 제조방법.
제1항에 있어서,
상기 구리(Cu) 박막층을 형성하는 단계는 핫-프레스(hot-press) 또는 라미네이팅 공정을 통해 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 접착시켜 합착하는 방식으로 수행되는, 투명 안테나 기판 제조방법.
제1항에 있어서,
상기 구리(Cu) 박막층을 형성하는 단계는, 상기 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착한 후 상기 유리 베이스 기판의 일 면과 상기 구리(Cu) 박막의 접착면 사이에 발생하는 미세 기포를 제거하기 위한 탈포 공정을 더 포함하는, 투명 안테나 기판 제조방법.
제8항에 있어서,
상기 탈포 공정은 오토크레이브(Autoclave) 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행되는, 투명 안테나 기판 제조방법.
제8항에 있어서,
상기 탈포 공정은 핫-프레스 장비 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행되는, 투명 안테나 기판 제조방법.
제1항에 있어서,
상기 메탈 메쉬 안테나 패턴을 형성하는 단계 이후에,
투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계;를 더 포함하는, 투명 안테나 기판 제조방법.
제11항에 있어서,
상기 오버코트층을 형성하는 단계에서 상기 오버코트층은 액상 코팅, 필름 코팅 및 열가소성 수지 코팅 중 어느 하나의 코팅 방법으로 형성되는, 투명 안테나 기판 제조방법.
제11항에 있어서,
상기 오버코트층을 형성하는 단계 이후에,
안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계;를 더 포함하는, 투명 안테나 기판 제조방법.
제13항에 있어서,
상기 표면 처리 공정은 주석, 니켈, 금, 은 및 팔라듐으로 이루어진 군으로부터 선택되는 어느 하나의 금속을 이용하여 수행되는, 투명 안테나 기판 제조방법.
제1항 내지 제14항 중 어느 한 항의 제조방법으로부터 제조된 투명 안테나.
KR1020230021776A 2022-02-17 2023-02-17 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나 KR102639992B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220020808 2022-02-17
KR20220020808 2022-02-17

Publications (2)

Publication Number Publication Date
KR20230123901A KR20230123901A (ko) 2023-08-24
KR102639992B1 true KR102639992B1 (ko) 2024-03-19

Family

ID=87578643

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020230021778A KR20230123903A (ko) 2022-02-17 2023-02-17 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나
KR1020230021776A KR102639992B1 (ko) 2022-02-17 2023-02-17 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나
KR1020230021777A KR102608978B1 (ko) 2022-02-17 2023-02-17 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020230021778A KR20230123903A (ko) 2022-02-17 2023-02-17 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230021777A KR102608978B1 (ko) 2022-02-17 2023-02-17 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나

Country Status (2)

Country Link
KR (3) KR20230123903A (ko)
WO (3) WO2023158274A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926558B1 (ko) 2012-07-31 2019-03-12 엘지이노텍 주식회사 안테나 모듈 및 이의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055019B2 (ja) * 2005-05-26 2008-03-05 グンゼ株式会社 透明面状体及び透明タッチスイッチ
KR101113854B1 (ko) * 2006-03-11 2012-02-29 삼성테크윈 주식회사 전극 구조체와 그 제조방법
KR100901017B1 (ko) * 2007-10-11 2009-06-04 성균관대학교산학협력단 기판의 금속패턴 형성방법
KR100975565B1 (ko) * 2008-12-24 2010-08-13 한국과학기술원 투습률 및 투산소율이 낮은 플렉시블 디스플레이 기판의 제조 방법
JP2011077116A (ja) * 2009-09-29 2011-04-14 Sharp Corp 配線構造およびそれを備えた表示装置
KR101079394B1 (ko) * 2009-10-30 2011-11-02 삼성전기주식회사 회로기판의 제조방법
KR101095380B1 (ko) * 2010-01-29 2011-12-16 대덕전자 주식회사 미세 피치의 인쇄회로기판 제조 방법
JP2012207265A (ja) * 2011-03-29 2012-10-25 Toppan Printing Co Ltd ディスプレイ用フィルム基板の製造方法
KR101333087B1 (ko) * 2011-11-29 2013-12-03 삼원에프에이 (주) 안테나에 적용되는 다층 금속 패턴, 이러한 다층 금속 패턴을 가지는 안테나 및 안테나 제조 방법
KR101796587B1 (ko) * 2015-08-11 2017-11-10 한국항공대학교산학협력단 다중금속막 식각 방법 및 식각액
CN107634328B (zh) * 2017-09-01 2020-10-09 中国科学院重庆绿色智能技术研究院 一种石墨烯透明天线及其制备方法
CN111355026B (zh) * 2020-03-03 2023-02-03 安徽精卓光显技术有限责任公司 透明天线及其制作方法、电子设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926558B1 (ko) 2012-07-31 2019-03-12 엘지이노텍 주식회사 안테나 모듈 및 이의 제조방법

Also Published As

Publication number Publication date
KR20230123902A (ko) 2023-08-24
KR20230123903A (ko) 2023-08-24
WO2023158273A1 (ko) 2023-08-24
KR20230123901A (ko) 2023-08-24
KR102608978B1 (ko) 2023-12-01
WO2023158274A1 (ko) 2023-08-24
WO2023158275A1 (ko) 2023-08-24

Similar Documents

Publication Publication Date Title
US9153363B2 (en) Light-transmitting metal electrode and process for production thereof
CN101197355B (zh) 电子器件及其制造方法、发光二极管显示单元及其制造方法
CN101345277B (zh) 发光二极管装置的制造方法
US20140293149A1 (en) Capacitive touch screen and manufacturing method thereof
KR20200110307A (ko) 플래트 액정 안테나 및 그 제조방법
US20070029204A1 (en) Manufacturing process of emboss type flexible or rigid printed circuit board
CN111477589A (zh) 阵列基板的制造方法、阵列基板和显示装置
US20050218491A1 (en) Circuit component module and method of manufacturing the same
KR20070106669A (ko) 회로기판 및 그 제조방법
TW201308616A (zh) 於基板上形成導電性圖案之方法
JP2007149633A (ja) 透光性導電膜基板の製造方法
JP2019204921A (ja) ガラス回路基板およびその製造方法
KR102639992B1 (ko) 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나
US20070228541A1 (en) Method for fabricating chip package structure
CN113064517A (zh) 一种触摸屏铜制程方法及触摸屏
CN101540591A (zh) 一种蓝宝石声表面波换能器的制作方法
TWI780454B (zh) 觸控面板及其製作方法
KR20040083094A (ko) 전자 부재 및 그 제조 방법, 및 반도체 장치
US9433107B2 (en) Printed circuit board and method of manufacturing the same
CN114242733A (zh) 显示面板及其制作方法、显示装置
WO2022012351A1 (zh) 透明导电电极及其制备方法、电子器件
CN220359425U (zh) 一种镀膜电路板
CN104919908A (zh) 印刷电路图案及通孔内导通线而形成的双面印刷电路板的形成方法
WO2023039881A1 (zh) 金属网格阵列及其制备方法、薄膜传感器及其制备方法
JP2001044603A (ja) 電気メッキにより直接基板に銅配線を形成するプロセス

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right