KR102630744B1 - 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지 Download PDF

Info

Publication number
KR102630744B1
KR102630744B1 KR1020220070084A KR20220070084A KR102630744B1 KR 102630744 B1 KR102630744 B1 KR 102630744B1 KR 1020220070084 A KR1020220070084 A KR 1020220070084A KR 20220070084 A KR20220070084 A KR 20220070084A KR 102630744 B1 KR102630744 B1 KR 102630744B1
Authority
KR
South Korea
Prior art keywords
particles
positive electrode
average particle
particle diameter
secondary battery
Prior art date
Application number
KR1020220070084A
Other languages
English (en)
Other versions
KR20220168979A (ko
Inventor
한기범
김종우
노은솔
박강준
곽민
김슬기
김형일
박상민
이상욱
정왕모
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of KR20220168979A publication Critical patent/KR20220168979A/ko
Application granted granted Critical
Publication of KR102630744B1 publication Critical patent/KR102630744B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 소정 평균 입경(D50)을 갖는 소입자와 상기 소입자보다 큰 평균 입경(D50)을 갖는 대입자가 혼합된 양극 활물질로서, 상기 소입자는 평균 입경(D50)이 1 내지 10 ㎛로서, 평균 입경(D50)이 1㎛ 이상인 거대 1차 입자의 표면 일부 또는 전부에 탄소재 코팅층이 형성된 입자, 상기 거대 1차 입자가 응집되어 형성된 2차 입자의 표면의 일부 또는 전부에 탄소재 코팅층이 형성된 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상이고, 상기 대입자는 평균 입경(D50)이 5 내지 20 ㎛로서, 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 2차 입자이고, 상기 거대 1차 입자 및 미세 1차 입자는 니켈계 리튬 전이금속 산화물인, 리튬 이차전지용 양극 활물질을 개시한다.

Description

리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지{POSITIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY AND POSITIVE ELECTRODE MIXTURE, POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING SAME}
본 발명은 서로 다른 평균입경을 갖는 니켈 함유 리튬 전이금속 산화물 입자들이 혼합된 양극 활물질과, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차 전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차 전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차 전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 니켈계 리튬 전이금속 산화물, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었고, 특히 고함량의 니켈 함유 (Ni-rich) 리튬 복합전이금속 산화물로 된 양극 활물질은 높은 용량 발현으로 주목 받고 있다.
현재 상용화된 니켈 함유 리튬 복합 전이금속 산화물의 양극 활물질로는 평균 입경(D50)이 수백 nm 수준의 미세 1차 입자가 응집되어 형성된 2차 입자들을 이용하는데, 출력 및 압연밀도를 높이기 위하여 2차 입자들의 평균입경(D50)이 상이한 2종, 즉 평균입경이 큰 2차 입자로 된 대입자와 평균입경이 작은 2차 입자로 된 소입자를 혼합한 바이모달(bimodal) 양극 활물질이 통상적으로 사용된다.
미세 1차 입자가 응집된 2차 입자들은 비표면적이 크고, 입자 강도가 낮다. 따라서, 바이모달 양극 활물질로 전극을 제조한 후 압연하는 경우, 특히 2차 대입자 깨짐이 심해 셀 구동 시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있다. 고용량 확보를 위해 니켈(Ni)의 함량을 증가시킨 고함량의 니켈계(High-Ni) 리튬 전이금속 산화물의 경우 구조적인 문제로 인하여 입자 깨짐이 발생하면 화학적 안정성이 더욱 저하되고, 열 안정성 확보도 어렵다.
한편, 평균입경이 큰 대입자와 평균입경이 작은 소입자를 혼합한 바이모달(bimodal) 양극 활물질을 사용하여 양극 합재를 제조시, 대입자와 소입자가 필요로 하는 도전재의 적정 함량이 다르다. 즉, 평균입경이 상대적으로 작은 소입자가 더 많은 도전재가 필요하다. 대입자를 기준으로 도전재 함량을 적정하게 조절시 소입자는 필요한 함량보다 더 낮은 함량의 도전재를 포함하게 되고, 반대로 소입자를 기준으로 도전재 함량을 적정하게 조절시 대입자는 필요한 함량보다 더 높은 함량의 도전재를 포함하게 된다. 이에 따라 양극 활물질 간에 저항 차이가 발생하고 퇴화가 집중되어 양극재 전체의 퇴화가 심화되는 결과를 가져온다.
본 발명의 일 태양에 따라 해결하고자 하는 과제는, 서로 상이한 평균 입경을 갖는 양극 활물질 대입자와 양극 활물질 소입자를 포함하며, 압연 과정에서의 깨짐 현상과 수명 특성이 개선됨과 동시에 이들 상이한 평균 입경을 갖는 혼합 양극 활물질 간의 저항 차이를 줄여 퇴화 현상을 개선할 수 있는 리튬 이차전지용 양극 활물질을 제공하는데 있다.
본 발명의 다른 태양에 따라 해결하고자 하는 과제는 전술한 특성을 갖는 리튬 이차전지용 양극 활물질을 포함하는 양극 합재, 양극 및 리튬 이차전지를 제공하는데 있다.
본 발명의 일 측면에서는 하기 구현 예에 따른 리튬 이차 전지용 양극 활물질을 제공한다.
제1 구현예는,
소정 평균 입경(D50)을 갖는 소입자와 상기 소입자보다 큰 평균 입경(D50)을 갖는 대입자가 혼합된 양극 활물질에 있어서,
상기 소입자는 평균 입경(D50)이 1 내지 10 ㎛로서, 평균 입경(D50)이 1㎛ 이상인 거대 1차 입자의 표면 일부 또는 전부에 탄소재 코팅층이 형성된 입자, 상기 거대 1차 입자가 응집되어 형성된 2차 입자의 표면의 일부 또는 전부에 탄소재 코팅층이 형성된 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상이고,
상기 대입자는 평균 입경(D50)이 5 내지 20 ㎛로서, 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 2차 입자이고,
상기 거대 1차 입자 및 미세 1차 입자는 니켈계 리튬 전이금속 산화물인, 리튬 이차전지용 양극 활물질에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 거대 1차 입자의 평균 입경(D50)이 1 내지 3㎛, 상기 소입자의 평균 입경(D50)이 3 내지 8 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제3 구현예는, 제1 또는 제2 구현예에 있어서,
상기 거대 1차 입자의 평균 결정 크기는 150 nm 이상인 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제4 구현예는, 제1 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 미세 1차 입자의 평균 입경(D50)이 100 내지 900 nm인 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제5 구현예는, 제1 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 대입자의 평균입경(D50):상기 소입자의 평균입경(D50)은 5:1 내지 2:1인 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제6 구현예는, 제1 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 소입자의 함량은 상기 대입자 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제7 구현예는, 제1 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 탄소재 코팅층의 함량은 거대 1차 입자 100 중량부를 기준으로 0.05 내지 10 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제8 구현예는, 제1 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 니켈계 리튬 전이금속 산화물은 상기 니켈계 리튬 전이금속 산화물은 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0<b+c+d≤0.5, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질에 관한 것이다.
제9 구현예는, 전술한 양극 활물질 및 도전재를 포함하는 리튬 이차 전지용 양극 합재를 제공한다.
제10 구현예는 제9 구현예에 있어서,
상기 도전재의 함량은 양극 합재 총 중량을 기준으로 1 내지 30 중량%인 것을 특징으로 하는 리튬 이차전지용 양극 합재에 관한 것이다.
제11 구현예는, 전술한 양극 합재을 포함하는 리튬 이차 전지용 양극을 제공한다.
제12 구현예는, 전술한 양극을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 일 실시예에 따른 양극 활물질은 대입자와 소입자를 동시에 포함하여 압연밀도가 양호하다. 또한, 거대 1차 입자를 포함하며 표면에 탄소재 코팅층이 형성된 소입자는 압연시 2차 입자인 대입자가 깨지기 전에 소입자의 거대 1차 입자의 일부가 떨어져 분리되거나 표면에 코팅된 탄소재 코팅층이 입자간 접촉 면에서의 마찰을 감소시키는 역할을 함으로써, 대입자의 깨짐 현상을 개선한다. 이에 따라 본 발명의 양극 활물질을 구비한 리튬 이차전지의 수명 특성이 개선된다.
또한, 소입자의 표면에 형성된 탄소재 코팅층으로 인해 소입자의 전기 전도도가 개선되므로, 소입자가 필요로 하는 도전재의 적정 함량을 낮출 수 있다. 즉, 소입자가 필요로 하는 도전재의 적정 함량을 대입자가 필요로 하는 도전재의 적정 함량과 동일, 유사하게 낮출 수 있다. 이에 따라 서로 상이한 평균 입경을 갖는 대입자와 소입자 사이의 저항 차이를 줄일 수 있어 양극재의 퇴화 현상을 개선할 수 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 비교예 1의 양극 활물질을 적용하여 형성한 양극 전극의 단면에 대한 주사형 확산 저항 분석 (SSRM, SCANNING SPREADING RESISTANCE MEASUREMENT) 이미지이다.
도 2은 실시예 1의 양극 활물질을 적용하여 형성한 양극 전극의 단면에 대한 주사형 확산 저항 분석 (SSRM, SCANNING SPREADING RESISTANCE MEASUREMENT) 이미지이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 및 청구범위에 있어서, "다수의 결정립을 포함한다" 함은 특정 범위의 평균 결정 크기를 갖는 둘 이상의 결정 입자가 모여서 이루어지는 결정체를 의미한다. 이때 상기 결정립의 결정 크기는 Cu Kα X선(Xrα)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 결정립의 평균 결정 크기를 정량적으로 분석 할 수 있다.
명세서 및 청구범위에 있어서, D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정될 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
본 발명에 있어서 '1차 입자'란 주사형 전자 현미경을 이용하여 5000배 내지 20000배의 시야에서 관찰하였을 때 외관상 입계가 존재하지 않는 입자를 의미한다.
본 발명에서 '2차 입자'란 상기 1차 입자가 응집되어 형성된 입자이다.
본 발명에서, '단입자'란 상기 2차 입자와는 독립적으로 존재하는 것으로, 외관상에 입계가 존재하지 않는 입자로서, 예를 들어, 입자 지름이 0.5 ㎛ 이상의 입자를 의미한다.
본 발명에 있어서, '입자'라고 기재하는 경우에는 단입자, 2차 입자, 1차 입자 중 어느 하나 또는 모두가 포함되는 의미일 수 있다.
본 발명에 있어서, '양극 합재'라고 기재하는 경우에는 양극 활물질층을 형성하기 위한 재료로서 양극 활물질 입자 및 도전재가 혼합되며, 추가적으로 바인더 등이 더 혼합된 혼합물을 의미일 수 있다.
본 발명의 일 측면에 따르면,
소정 평균 입경(D50)을 갖는 소입자와 상기 소입자보다 큰 평균 입경(D50)을 갖는 대입자가 혼합된 양극 활물질에 있어서,
상기 소입자는 평균 입경(D50)이 1 내지 10 ㎛로서, 평균 입경(D50)이 1㎛ 이상인 거대 1차 입자의 표면 일부 또는 전부에 탄소재 코팅층이 형성된 입자, 상기 거대 1차 입자가 응집되어 형성된 2차 입자의 표면의 일부 또는 전부에 탄소재 코팅층이 형성된 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상이고,
상기 대입자는 평균 입경(D50)이 5 내지 20 ㎛로서, 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 2차 입자이고,
상기 거대 1차 입자 및 미세 1차 입자는 니켈계 리튬 전이금속 산화물인, 리튬 이차전지용 양극 활물질을 제공한다.
소입자
본 발명의 양극 활물질은 평균 입경(D50)이 1 내지 10 ㎛인 소입자로서, 평균 입경(D50)이 1㎛ 이상인 거대 1차 입자의 표면 일부 또는 전부에 탄소재 코팅층이 형성된 입자, 상기 거대 1차 입자가 응집되어 형성된 2차 입자의 표면의 일부 또는 전부에 탄소재 코팅층이 형성된 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상을 포함한다.
거대 1차 입자는 니켈계 리튬 전이금속 산화물로서, 구체적으로는 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0<b+c+d≤0.5, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 양극 활물질이다.
양극 활물질은 후술하는 대입자와 함께 소입자를 동시에 포함함으로써 압연밀도가 개선된다.
본 발명의 일 측면에 따른 소입자에 있어서, 구체적으로는 상기 거대 1차 입자의 평균 입경(D50)이 1 내지 3 ㎛이고, 상기 소입자의 평균 입경(D50)이 3 내지 8 ㎛일 수 있다.
거대 1차 입자는 후술하는 종래 2차 입자인 대입자를 구성하는 미세(micro) 1차 입자와 비교할 때, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장한 것이다.
크랙(crack) 관점에서 보자면 기존의 단입자와 같이 외관상 입계가 존재하지 않으면서도 평균 입경이 큰 것이 유리하다. 과소성 등에 의해 1차 입자의 평균 입경(D50)만을 늘리는 경우에는 1차 입자의 표면에 rock salt가 형성되고 최초(initial)저항이 높아지는 문제가 있는다. 1차 입자의 결정 크기도 함께 성장시키면 저항이 낮아지게 된다. 이에 따라, 본 발명에서 일 태양에 따른 거대 1차 입자는, 평균 입경뿐만 아니라 평균 결정 크기도 크며, 외관상의 입계가 존재하지 않는 입자이다.
이와 같이, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장하는 경우, 고온에서의 소성으로 인해 표면에 rock salt 가 생겨 저항 증가가 큰 기존의 단입자에 비해, 저항이 낮아지며 장수명 측면에서도 유리하다.
이와 같이, 기존의 단입자에 비해, 본 발명의 일 측면에서 사용된 “거대 1차 입자” 나 이 응집체 또는 이들의 혼합물로 구성된 소입자의 경우, 1차 입자 자체의 크기 증가 및 rock salt의 형성이 감소되어 저항이 낮아진다는 측면에서 유리하다.
이 때, 거대 1차 입자의 평균 결정 크기(crystal size)는 Cu Kα X선(X-ray)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 거대 1차 입자의 평균 결정 크기를 정량적으로 분석할 수 있다. 거대 1차 입자의 평균 결정 크기는, 150 nm 이상, 구체적으로는 200 nm 이상, 더욱 구체적으로는 250 nm 이상 일 수 있다.
한편, 소입자가 거대 1차 입자로 된 입자를 이용할 경우 거대 1차 입자는 그 표면에 탄소재 코팅층이 형성되는데, 탄소재 코팅층은 거대 1차 입자 표면의 일부 또는 전부에 형성된다. 또한 소입자가 거대 1차 입자의 응집체인 2차 입자로 된 입자를 이용할 경우, 탄소재 코팅층은 2차 입자의 표면의 일부 또는 전부에 형성되며, 탄소재 코팅층이 서로 연결되어 거대 1차 입자 사이의 간극을 모두 채우도록 형성되는 형태 역시 탄소재 코팅층의 일 형태로 포함된다.
소입자의 표면에 형성된 탄소재 코팅층으로 인해 소입자의 전기 전도도가 개선되므로, 소입자가 필요로 하는 도전재의 적정 함량을 낮출 수 있다. 즉, 소입자가 필요로 하는 도전재의 적정 함량을 후술하는 대입자가 필요로 하는 도전재의 적정 함량과 동일, 유사하게 낮출 수 있다. 이에 따라 서로 상이한 평균 입경을 갖는 양극 활물질 대입자와 양극 활물질 소입자 사이의 저항 차이를 줄일 수 있어 양극재의 퇴화 현상을 개선할 수 있다.
한편, 탄소재 코팅층이 형성된 거대 1차 입자의 응집체 입자는 거대 1차 입자 사이의 응집력이 2차 입자인 대입자를 깨지게 하는 힘보다 약하다. 따라서, 압연시 대입자가 깨지기 전에 거대 1차 입자의 응집체가 먼저 분리됨으로서 대입자의 깨짐 현상을 개선한다. 또한, 표면에 코팅된 탄소층이 입자간 접촉 면에서의 마찰을 감소시키는 역할을 함으로써 대입자와 소입자의 깨짐 현상을 개선한다. 분리된 거대 1차 입자 자체는 강도가 높아 잘 깨지지 않으며, 노출된 표면은 대입자를 구성하는 미세 1차 입자와는 달리 탄소재 코팅층이 형성되어 있으므로 수명 특성의 저하 현상도 저감된다.
탄소재 코팅층은 전자 전도성을 갖는 탄소재라면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질로 형성될 수 있으며, 이에 한정되지 않는다.
또한, 탄소재 코팅층의 함량은 거대 1차 입자 100 중량부를 기준으로 0.05 내지 10 중량부일 수 있으나, 이에 한정되지 않으며, 대입자가 필요로 하는 도전재의 적정 함량과 동일, 유사하게 낮출 수 있도록 탄소재의 코팅층 함량을 조절할 수 있다.
대입자
본 발명의 양극 활물질은 전술한 소입자와 함께, 평균 입경(D50)이 상기 소입자를 구성하는 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 2차 입자로서, 평균 입경(D50)이 5 내지 20 ㎛인 대입자를 포함한다.
미세 1차 입자는 니켈계 리튬 전이금속 산화물로서, LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0<b+c+d≤0.5, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 양극 활물질이다.
미세 1차 입자들의 평균 입경(D50)은 소입자를 구성하는 거대 1차 입자의 평균 입경(D50)보다 작은데, 통상적으로 수백 nm 수준, 예를 들어 100~900 nm의 평균 입경(D50)을 가지며, 특히 300~700 nm의 평균 입경(D50)을 갖는다. 한편, 대입자의 평균 입경(D50)은 5 내지 20 ㎛으로서, 전술한 소입자의 평균 입경(D50)보다 크다.
이러한 크기를 갖는 대입자는 일반적으로 바이모달 양극 활물질의 대입자로 이용되는 입자로서, 후술하는 통상적인 제조방법에 따라 제조된다.
전술한 바와 같이 미세 1차 입자가 응집된 이러한 대입자들은 비표면적이 크고, 입자 강도가 낮다. 따라서, 미세 1차 입자가 응집되어 형성되며 대입자보다 평균 입경이 작은 소입자와 혼용한 종래의 양극 활물질을 이용하여 전극을 제조한 후 압연하는 경우, 대입자 깨짐이 심해 셀 구동 시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있다. 또한, 대입자는 소입자가 필요로 하는 도전재의 적정 함량이 다르다.
본 발명자들은 이러한 문제점을 전술한 형태의 소입자를 혼용함으로서 해결하였다.
대입자와 소입자를 포함하는 양극 활물질
본 발명에 따라 전술한 특성을 갖는 대입자와 소입자 및 도전재를 동시에 포함하는 양극 활물질에 있어서, 대입자의 평균입경(D50):소입자의 평균입경(D50)은 5:1 내지 2:1일 수 있다. 또한, 소입자의 함량은 대입자 100 중량부를 기준으로 10 내지 100 중량부일 수 있다.
양극 활물질은 전술한 특성을 갖는 대입자와 소입자 외에, 본 발명의 목적을 저해하지 않는 한도 내에서 다른 평균 입경을 갖는 양극 활물질 입자를 더 포함할 수 있음은 물론이다.
양극 합재
본 발명에 따른 양극 합재는 도전재를 포함한다.
도전재는 양극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 합재 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
한편, 양극 합재는 바인더를 포함할 수 있다.
바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있으나 이에 한정되지 않는다. 상기 바인더는 양극 합재 총 중량에 대하여 예를 들어 1 내지 30 중량%로 포함될 수 있다.
양극 활물질, 양극 합재 및 양극의 제조방법
본 발명의 일 측면에 따른 니켈계 리튬 전이금속 산화물로 된 양극 활물질 소입자, 특히 거대 1차 입자의 응집체로 된 소입자는 다음과 같은 방법으로 제조될 수 있다. 다만, 이에 제한되는 것은 아니다.
니켈계 리튬 전이금속 산화물로서 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0<b+c+d≤0.5, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 화합물로 된 양극 활물질의 제조방법을 예를 들어 설명한다.
니켈, 코발트, 망간 및 Q (Q은 Al, Mg, V, Ti 및 Zr로 이루어진 군에서 선택된 1종 이상의 금속 원소임)을 소정 몰비로 포함하는 전이금속 함유 용액, 암모늄 양이온 함유 착물 형성제 및 염기성 수용액을 혼합하여 공침 반응을 통해 전이금속 수산화물 전구체 입자를 형성하고, 이를 분리하여 건조시킨 다음, 소정 평균 입경(D50)을 갖도록 상기 전이금속 수산화물 전구체 입자를 분쇄한다(S1 단계).
Q는 선택적인 성분이므로, Q를 포함하지 않는 경우를 들어 보다 구체적으로 설명한다.
상기 전이금속 함유 용액은 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료물질의 수용액, 코발트 함유 원료물질의 수용액 및 망간 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 니켈 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 염기성 화합물로서 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합의 수용액일 수 있다. 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 전체 용액의 pH가 7 내지 9이 되는 양으로 첨가될 수 있다.
공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 25 ℃ 내지 60 ℃의 온도에서 수행될 수 있다.
이어서, 상기 분쇄된 전이금속 수산화물 전구체 입자를 리튬 원료 물질과 혼합하고 산소 분위기에서 소성하여, LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0<b+c+d≤0.5, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 1 ㎛ 이상인 거대 1차 입자가 응집된 코어 소입자를 제조한다(S2 단계).
이와 같이 (S1)~(S2) 단계에 따라 전구체 입자를 제조-분쇄-소성함으로써, 소정 평균입경을 갖는 거대 1차 입자가 응집된 코어 소입자를 제조할 수 있다.
상기 (S2) 단계에 있어서, 리튬 원료물질로는 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 원료물질은 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
소성시 니켈(Ni)의 함량이 80몰% 이상인 고함량 니켈(High-Ni) NCM계 리튬 복합 전이금속 산화물의 경우, 790 내지 950℃로 소성할 수 있으며, 산소 분위기 하에서 5 내지 35시간 동안 수행할 수 있다. 본 명세서에 있어서, 산소 분위기란, 대기 분위기를 포함하여 소성에 충분한 정도의 산소를 포함하는 분위기를 의미한다. 특히, 산소 분압이 대기 분위기보다 더 높은 분위기에서 수행하는 것이 바람직하다.
다음으로, 상기 코어 소입자와 탄소재 화합물을 혼합한 후 밀링하여 탄소재 화합물을 코어 소입자의 표면에 코팅한다(S3 단계). 상기 (S3) 단계는 상온에서 수행될 수 있으며 간단한 공정만으로 본 발명의 일 측면에 따른 양극 활물질 소입자를 제조할 수 있다.
전술한 (S1)~(S3) 단계에 따라 전술한 성상의 소입자를 제조할 수 있다.
이렇게 제조된 소입자는 전술한 성상의 대입자와 혼합함으로써 양극 활물질 혼합물로 제조된다.
대입자는 시판되는 것을 구입하여 사용할 수 있고, 공지의 공침법을 이용하여 직접 제조하여 사용할 수도 있다. 보다 구체적으로, 일반적으로 당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 제조할 수 있다. 여기서, 공침법을 이용하여 전구체 조성을 제어하는 방법, 리튬 소스의 종류 등은, 당 업계에 널리 알려진 기술 상식에 따를 수 있다.
이와 같이 준비된 양극 활물질들은 전술한 양극 합재의 구성 성분인 도전재 등과 함께 양극 합재를 구성하고 이를 통상의 방법에 따라 양극 집전체 위에 위치시켜 양극을 제조할 수 있다.
구체적으로, 상기한 양극 활물질들과 도전재를 포함하는 양극 합재를 용매에 분산시켜 양극 활물질층 형성용 조성물을 제조한 후 이를 양극 집전체 상에 도포, 건조 및 압연함으로써 제조될 수 있다. 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
리튬 이차 전지
본 발명의 또 다른 일 실시예에 따르면 상기 양극을 포함하는 리튬 이차전지를 제공한다.
리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 이차전지는 양극재의 퇴화 현상이 개선되므로, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<실시예 1>
대입자의 제조
당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 LiNi0.8Co0.1Mn0.1O2로 이루어지며, 평균 입경(D50)이 500 nm인 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 15 ㎛인 2차 입자로 된 대입자들을 준비하였다.
소입자의 제조
공침 반응기(용량 20L)에 증류수 4리터를 넣은 뒤 50 ℃ 도를 유지시키며, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 0.8:0.1:0.1이 되도록 혼합된 3.2mol/L 농도의 전이금속 용액을 300mL/hr, 28중량%의 암모니아 수용액을 42mL/hr로 반응기에 연속적으로 투입하였다. 임펠러의 속도는 400rpm으로 교반하였고, pH 유지를 위해 40중량%의 수산화나트륨 용액을 이용하여 pH 9가 유지되도록 투입하였다. 10시간 공침 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 세척 후 130 ℃ 오븐에서 건조하여 전구체를 제조하였다.
공침 반응으로 합성된 Ni0.8Co0.1Mn0.1(OH)2 전구체를 믹서기에 넣어 1 ㎛ 정도 크기로 분쇄한 후 분쇄된 전구체를 LiOH와 몰비가 1.05가 되도록 되도록 혼합하고, 산소 분위기 850 ℃에서 15시간 열처리하여 LiNi0.8Co0.1Mn0.1O2 리튬 복합 전이금속 산화물인 2차 입자로 된 코어 소입자를 제조하였다.
얻어진 코어 소입자와, 케첸 블랙(ketjen black)을 99 : 1의 중량비로 혼합한 뒤 노빌타(Nobilta) 믹서에 투입하고 10분간 3000 rpm 회전 속도로 밀링하여 코어 소입자의 표면에 케첸 블랙 탄소재(거대 1차 입자 100 중량부를 기준으로 1 중량부 코팅)가 코팅된 양극 활물질 소입자를 제조하였다.
얻어진 소입자는 평균 결정 크기가 250 nm이며 평균 입경(D50)이 1 ㎛인 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 4 ㎛인 입자에 탄소재 코팅층이 형성된 입자이다.
양극 활물질, 양극 및 이차전지의 제조
전술한 방법으로 얻은 대입자와 소입자를 7:3의 중량비로 혼합한 양극 활물질98 중량부, 도전재로서 케첸 블랙 1 중량부 및 바인더로서 PVDF를 1 중량부를 용매(종류 기재 요망)에 분산시켜 양극 활물질 형성용 조성물을 제조한 후 이를 알루미늄 포일 집전체에 도포, 건조 및 압연하여 양극을 제조하였다.
음극 활물질로서 인조흑연과 천연흑연이 5:5로 혼합된 혼합물, 도전재로서 super C, 바인더로서 SBR/CMC를 96:1:3의 중량비로 혼합하여 음극 슬러리를 제작하고 이를 구리 집전체의 일면에 도포, 건조 및 압연하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지 풀셀을 제조하였다.
이때 전해액은 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트/ (EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
<실시예 2>
실시예 1의 소입자 제조를 위한 전구체 입자 형성시, 공침 반응 시간을 15시간으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지 풀셀을 제조하였다.
<비교예 1>
실시예 1의 소입자로서 탄소재 코팅층을 형성하지 않은 소입자를 사용하고, 도전재의 함량을 양극 합재 총 중량을 기준으로 1.3 중량%로 변경한 것을 제외하고는 동일한 방법으로 리튬 이차전지 풀셀을 제조하였다.
[실험예 1: 평균 입경]
D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정하였다.
[실험예 2: 1차 입자의 평균 결정 크기]
LynxEye XE-T potision sensitive detector가 장착된 Bruker Endeavor (Cu Kα, λ=1.54 )를 이용, FDS 0.5 °, 2-theta 15 °에서 90 ° 영역에 대한 step size 0.02 °로 전체 스캔 시간(total scan time)이 20분이 되도록 시료를 측정하였다.
측정된 데이터에 대해 각 위치(site)에서 전위(charge) (transition metal site에서의 metal들은 +3, Li site의 Ni은 +2)와 cation mixing을 고려하여 Rietveld refinement를 수행하였다. 결정 크기(crystallite size 분석시 instrumental bradening 은 Bruker TOPAS program에 implement 되어 있는 Fundemental Parameter Approach (FPA)를 이용하여 고려되었고, 피팅시 측정 범위의 전체 피크가 사용되었다. 피트 형태(peak shate)은 TOPAS에서 사용 가능한 피크 타입 중 FP(First Principle)로 Lorenzian contribution만 사용되어 피팅하였고, 이 때 strain은 고려하지 않았다.
[실험예 3. 수명 특성 측정]
실시예 및 비교예에 따라 제조한 리튬 이차전지 풀셀에 대하여 다음과 같은 방법으로 400 사이클 후의 용량 유지율 및 저항 증가율을 측정하였다
제조된 리튬 이차전지 풀셀 (full cell)에 대해, 45 ℃에서 CC-CV모드로 0.5C 로 4.2V가 될 때까지 충전하고, 1C의 정전류로 3.0V까지 방전하여 400회 충방전 실험을 진행하였을 시의 용량 유지율과 저항 증가율을 측정하여 수명 특성 평가를 진행하였다.
단위 비교예 1 실시예 1 실시예 2
용량 유지율
(400 CYCLE)
% 90 94 92
저항 증가율
(400 CYCLE)
% 100 35 55
표 1에서 알 수 있는 바와 같이, 실시예 1 및 2의 경우 비교예 1에 비해 용량 유지율 및 저항 증가율이 모두 우위인 것을 확인할 수 있다.
[실험예 4. 양극 내부 전기 전도도 분포 비교]
실시예 및 비교예에 따라 제조한 리튬 이차전지 양극에 대하여 단면 처리 후 주사형 확산 저항 분석 (SSRM, SCANNING SPREADING RESISTANCE MEASUREMENT) 분석을 진행하였다.
도 1은 비교예 1에 대한 분석 결과로, 대입자가 소입자 보다 밝은 색상을 나타내어 소입자 대비 많은 전류가 흐르고 있는 것을 알 수 있고, 대입자의 저항이 소입자보다 낮아 대입자와 소입자의 저항 차이가 큰 상태임을 알 수 있다.
도 2는 실시예 1에 대한 분석 결과로, 도 1 대비 대입자의 밝기가 어두워져 대입자와 소입자의 밝기 차이가 줄어든 것을 확인할 수 있으며 이는 대입자와 소입자에 흐르는 전류 차이 또는 대입자와 소입자의 저항 차이가 줄어들어 있는 상태임을 알 수 있다.

Claims (12)

  1. 소정 평균 입경(D50)을 갖는 소입자와 상기 소입자보다 큰 평균 입경(D50)을 갖는 대입자가 혼합된 양극 활물질에 있어서,
    상기 소입자는 평균 입경(D50)이 1 내지 10 ㎛로서, 평균 입경(D50)이 1㎛ 이상인 거대 1차 입자가 응집되어 형성된 2차 입자의 표면의 일부 또는 전부에 탄소재 코팅층이 형성된 입자, 또는 상기 탄소재 코팅층이 형성된 2차 입자와 평균 입경(D50)이 1㎛ 이상인 거대 1차 입자의 표면 일부 또는 전부에 탄소재 코팅층이 형성된 입자와의 혼합물이고,
    상기 대입자는 평균 입경(D50)이 5 내지 20 ㎛로서, 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 2차 입자이고,
    상기 거대 1차 입자 및 미세 1차 입자는 니켈계 리튬 전이금속 산화물인, 리튬 이차전지용 양극 활물질.
  2. 제1항에 있어서,
    상기 거대 1차 입자의 평균 입경(D50)이 1 내지 3 ㎛이고, 상기 소입자의 평균 입경(D50)이 3 내지 8 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  3. 제1항에 있어서,
    상기 거대 1차 입자의 평균 결정 크기는 150 nm 이상인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  4. 제1항에 있어서,
    상기 미세 1차 입자의 평균 입경(D50)이 100 내지 900 nm인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  5. 제1항에 있어서,
    상기 대입자의 평균입경(D50):상기 소입자의 평균입경(D50)은 5:1 내지 2:1인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  6. 제1항에 있어서,
    상기 소입자의 함량은 상기 대입자 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  7. 제1항에 있어서,
    상기 탄소재 코팅층의 함량은 거대 1차 입자 100 중량부를 기준으로 0.05 내지 10 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  8. 제1항에 있어서,
    상기 니켈계 리튬 전이금속 산화물은 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0<b+c+d≤0.5, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 리튬 이차전지용 양극 활물질 및 도전재를 포함하는 리튬 이차전지용 양극 합재.
  10. 제9항에 있어서,
    상기 도전재의 함량은 양극 합재 총 중량을 기준으로 1 내지 30 중량%인 것을 특징으로 하는 리튬 이차전지용 양극 합재.
  11. 제10항의 양극 합재를 포함하는 리튬 이차 전지용 양극.
  12. 제11항의 양극을 포함하는 리튬 이차 전지.
KR1020220070084A 2021-06-17 2022-06-09 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지 KR102630744B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210079001 2021-06-17
KR1020210079001 2021-06-17

Publications (2)

Publication Number Publication Date
KR20220168979A KR20220168979A (ko) 2022-12-26
KR102630744B1 true KR102630744B1 (ko) 2024-01-29

Family

ID=84527207

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220070084A KR102630744B1 (ko) 2021-06-17 2022-06-09 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20240105934A1 (ko)
EP (1) EP4261943A1 (ko)
JP (1) JP2024501688A (ko)
KR (1) KR102630744B1 (ko)
CN (1) CN116686112A (ko)
WO (1) WO2022265296A1 (ko)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972624B2 (ja) * 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2013246936A (ja) * 2012-05-24 2013-12-09 Hitachi Ltd 非水系二次電池用正極活物質
KR102325727B1 (ko) * 2017-10-13 2021-11-12 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190059249A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
EP3780176A4 (en) * 2018-03-30 2021-05-26 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
KR102553570B1 (ko) * 2018-06-27 2023-07-10 삼성전자 주식회사 리튬 이온 전지용 양극 활물질 및 이를 포함하는 리튬 이온 전지
KR20210079001A (ko) 2019-12-19 2021-06-29 한국철도기술연구원 데이터베이스를 기반으로 기업의 문제를 해결하는 장치 및 방법

Also Published As

Publication number Publication date
EP4261943A1 (en) 2023-10-18
JP2024501688A (ja) 2024-01-15
KR20220168979A (ko) 2022-12-26
US20240105934A1 (en) 2024-03-28
WO2022265296A1 (ko) 2022-12-22
CN116686112A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
KR102657451B1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
KR20200047117A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102660455B1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20220092450A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
EP3984960B1 (en) Preparation method for positive electrode active material for secondary battery
KR20210047755A (ko) 이차전지용 양극 활물질의 제조방법
EP4250398A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
KR20220074790A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
KR20220081312A (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
KR20220061035A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
CN116057733A (zh) 锂二次电池用正极活性材料、制备该正极活性材料的方法和包含其的锂二次电池
KR102630744B1 (ko) 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지
KR102667603B1 (ko) 리튬 이차 전지용 양극 활물질의 제조방법
KR102615312B1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
KR102667604B1 (ko) 리튬 이차 전지용 양극 활물질의 제조방법
US20240030428A1 (en) Positive Electrode for Lithium Secondary Battery and Positive Electrode and Lithium Secondary Battery Comprising the Same
EP4287302A1 (en) Cathode for lithium secondary battery, and cathode and lithium secondary battery including same
KR20220061036A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
KR20220059931A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
KR20220113196A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20230076480A (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 양극 활물질
JP2023551244A (ja) リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池
KR20220013166A (ko) 양극 활물질 전구체 및 이의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant