KR102566019B1 - 리튬 이차전지 - Google Patents

리튬 이차전지 Download PDF

Info

Publication number
KR102566019B1
KR102566019B1 KR1020210182299A KR20210182299A KR102566019B1 KR 102566019 B1 KR102566019 B1 KR 102566019B1 KR 1020210182299 A KR1020210182299 A KR 1020210182299A KR 20210182299 A KR20210182299 A KR 20210182299A KR 102566019 B1 KR102566019 B1 KR 102566019B1
Authority
KR
South Korea
Prior art keywords
formula
secondary battery
lithium secondary
additive
lithium
Prior art date
Application number
KR1020210182299A
Other languages
English (en)
Other versions
KR20230093558A (ko
Inventor
안유하
오정우
이철행
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020210182299A priority Critical patent/KR102566019B1/ko
Priority to PCT/KR2022/018569 priority patent/WO2023121014A1/ko
Priority to US18/071,992 priority patent/US20230198019A1/en
Publication of KR20230093558A publication Critical patent/KR20230093558A/ko
Application granted granted Critical
Publication of KR102566019B1 publication Critical patent/KR102566019B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염, 유기용매, 화학식 1로 표시되는 제1 첨가제 및 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액; 리튬 인산철계 복합 산화물을 포함하는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 상기 양극 및 음극 사이에 개재되는 분리막을 포함하는 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지 {LITHIUM SECONDARY BATTERY}
본 발명은 특정 첨가제 조합을 포함하는 전해액 및 리튬 인산철계 양극재를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 일반적으로 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극 활물질을 포함하는 양극과, 리튬 이온을 저장할 수 있는 음극 활물질을 포함하는 음극 사이에 분리막을 개재하여 전극 조립체를 형성하고, 상기 전극 조립체를 전지 케이스에 삽입한 후, 리튬 이온을 전달하는 매개체가 되는 전해질을 주입한 다음, 밀봉하는 방법으로 제조된다.
리튬 이차전지는 소형화가 가능하고 에너지 밀도 및 사용 전압이 높아 모바일 기기, 전자 제품, 전기 자동차 등 다양한 분야에 적용되고 있다. 리튬 이차전지의 적용 분야가 다양해짐에 따라 요구되는 물성 조건도 점차 높아지고 있으며, 특히 고온 조건에서도 안정적으로 구동될 수 있는 리튬 이차전지의 개발이 요구되고 있다.
고온에서는 전해질에 포함되는 LiPF6 등의 리튬염으로부터 PF6 - 음이온이 열분해되어 PF5 등의 루이스산이 발생될 수 있으며, 이는 수분과 반응하여 HF를 생성시킨다. 이러한 PF5, HF 등의 분해산물, 그리고 충-방전에 따른 양극의 불안정한 구조 변화 등으로 인해 양극재의 전이금속들이 전해질 내부로 용출될 수 있다. 특히 LFP(lithium iron phosphate) 양극을 포함하는 경우 양극의 구조 안정성은 높일 수 있지만, 철의 용출로 인한 전해질 분해 및 전지의 성능 저하가 심화되므로 이에 대한 개선이 필요하다.
KR 10-2018-0006054 A
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 2종의 특정 첨가제 조합을 포함하는 비수 전해액을 도입함으로써 LFP계 양극 활물질을 포함하는 리튬 이차전지의 고온 성능을 개선하고자 한다.
일 구현예에 따르면, 본 발명은,
리튬염, 유기용매, 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액;
리튬 인산철계 복합 산화물을 포함하는 양극 활물질을 포함하는 양극;
음극 활물질을 포함하는 음극; 및
상기 양극 및 음극 사이에 개재되는 분리막을 포함하는 리튬 이차전지를 제공한다.
[화학식 1]
Figure 112021146927264-pat00001
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소; 또는 탄소수 1 내지 5의 알킬기이며,
[화학식 2]
Figure 112021146927264-pat00002
상기 화학식 2에서,
A는 탄소수 3 내지 5의 헤테로고리기 또는 탄소수 3 내지 5의 헤테로아릴기이며,
R3는 탄소수 1 내지 3의 알킬렌기이다.
본 발명에 따른 리튬 이차전지는 특정 첨가제 조합을 포함하는 비수 전해액을 포함함으로써 리튬 인산철계 양극 활물질을 포함하는 리튬 이차전지의 고온 수명 및 저항 특성을 개선할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
일반적으로, 리튬 이차전지용 전해액에 널리 사용되는 LiPF6 등의 리튬염에 포함된 음이온은 열분해 또는 수분 등에 의해 불화수소(HF) 및 PF5와 같은 분해산물을 형성하며 고온 조건에서 구동 시 이러한 현상이 심화된다. 분해산물은 산(acid)의 성질을 가지고 있으므로 전지 내에서 전극 표면 특성을 악화시킨다.
이와 같이 생성된 분해산물과 반복된 충방전에 따른 양극의 구조 변화로 인하여 양극 내 전이금속들은 쉽게 전해액 내부로 용출되며, 용출된 전이금속은 양극에 다시 재증착(Re-deposition)되어 양극의 저항을 증가시킨다. 뿐만 아니라 용출된 전이금속이 전해액을 통해 음극으로 이동할 경우, 음극에 전착되어 SEI(solid electrolyte interphase) 막의 파괴 및 추가적인 전해액 분해반응을 일으키며, 이로 인해 리튬 이온의 소모 및 저항 증가 등의 문제가 발생한다.
특히 방전 전위가 낮고 수분 흡착이 심한 특성의 리튬 인산철(lithium iron phosphate; LFP)계 양극재를 포함하는 전지의 경우, 초기 충방전시 전극 및 전해액 내 수분에 의한 분해산물이 전지 성능에 크게 영향을 끼칠 수 있다. 또한, LFP계 양극재에서는 충방전 시 리튬 이온의 확산에 의한 상경계 이동에 의해 용량이 발현되기 때문에, 철의 용출로 인해 리튬 이동 채널이 방해받게 되면, 그 만큼 비가역적 용량 손실이 발생할 수 있다.
이와 같은 문제를 해결하기 위하여, 본 발명자들은 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 비수 전해액에 포함시켰으며, 이를 통해 철 이온의 용출을 억제하고 강화된 SEI 막을 형성함으로써 전지의 성능을 개선하는 효과가 있음을 알아내었다.
이하에서는 본 발명을 이루는 각 구성에 대해 보다 상세히 설명한다.
비수 전해액
본 발명에 따른 리튬 이차전지는 리튬염, 유기용매, 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액을 포함한다.
이하에서, 비수 전해액의 각 성분을 구체적으로 설명한다.
(1) 제1 첨가제 및 제2 첨가제
본 발명의 비수 전해액은 하기 화학식 1로 표시되는 제1 첨가제를 포함한다.
[화학식 1]
Figure 112021146927264-pat00003
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소; 또는 탄소수 1 내지 5의 알킬기이다.
본 발명의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 수소이며, 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1A로 표시될 수 있다.
[화학식 1A]
Figure 112021146927264-pat00004
상기 제1 첨가제는 구조 내에 1차 아민 및 2차 아민을 포함하므로 전해액의 루이스 산도(Lewis acidity)를 보다 효과적으로 중화할 수 있기 때문에, 제1 첨가제의 투입을 통해 전해질 분해반응 및 전이금속의 용출을 저감시킬 수 있다. 또한, 전극 상에 상기 제1 첨가제의 아미노기에 기인한 질소 원자 기반의 SEI(solid electrolyte interface) 막 및 CEI(cathode electrolyte interface) 막이 형성되므로 열 안정성에 기여할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제1 첨가제의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 2 중량%, 바람직하게는 0.1 중량% 내지 1 중량%, 더욱 바람직하게는 0.2 중량% 내지 0.5 중량%일 수 있다. 제1 첨가제가 과도하게 첨가될 경우 전극과 전해액 사이 계면에서의 분해 반응에 과도하게 참여하며 피막 저항이 지나치게 커져 전지의 저항을 증가시키는 문제점이 발생할 수 있는 점을 고려하였을 때, 제1 첨가제의 함량은 2 중량% 이하인 것이 바람직하다.
또한, 본 발명의 비수 전해액은 하기 화학식 2로 표시되는 제2 첨가제를 포함한다.
[화학식 2]
Figure 112021146927264-pat00005
상기 화학식 2에서,
A는 탄소수 3 내지 5의 헤테로고리기 또는 탄소수 3 내지 5의 헤테로아릴기이며,
R3는 탄소수 1 내지 3의 알킬렌기이다.
상기 화학식 2로 표시되는 제2 첨가제는 프로파질(Propargyl) 작용기를 포함하므로, 이러한 작용기가 환원 분해되면서 음극 표면에 부동태 능력이 높은 SEI 막을 형성하여 음극 자체의 고온 내구성을 개선할 수 있을 뿐만 아니라, 음극 표면에서 전이금속의 전착을 방지할 수 있다. 더불어, 전해액의 분해산물인 PF5와 결합하여 HF의 생성을 억제함으로써 제1 첨가제로 인해 양극 표면에 형성되는 CEI(cathode electrolyte interphase) 막의 파괴를 방지하고 추가적인 전해액의 분해를 억제할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 화학식 2의 A는 탄소수 3 내지 5의 함질소 헤테로아릴기일 수 있으며, 바람직하게는 하기 화학식 2-1로 표시될 수 있다.
[화학식 2-1]
Figure 112021146927264-pat00006
상기 화학식 2-1에서,
R3는 상기 화학식 2에서 정의한 바와 같다.
본 발명의 일 실시상태에 있어서, 상기 화학식 2의 R3는 탄소수 1 내지 3의 직쇄 또는 분지쇄의 알킬렌기일 수 있으며, 바람직하게는 탄소수 1 내지 3의 직쇄의 알킬렌기, 더욱 바람직하게는 메틸렌기일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제2 첨가제는 하기 화학식 2A로 표시되는 것일 수 있다.
[화학식 2A]
Figure 112021146927264-pat00007
본 발명의 일 실시상태에 있어서, 상기 제2 첨가제의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 2 중량%, 바람직하게는 0.1 중량% 내지 1 중량%, 더욱 바람직하게는 0.3 중량% 내지 0.5 중량%일 수 있다. 제2 첨가제의 함량이 과도할 경우 전극과 전해액 사이 계면에서의 분해 반응에 과도하게 참여하며 피막 저항이 지나치게 커져 전지의 저항을 증가시키는 문제점이 발생할 수 있는 점을 고려하였을 때, 제2 첨가제의 함량은 2 중량% 이하인 것이 바람직하다.
본 발명에 따른 비수 전해액에 있어서, 상기 제1 첨가제 및 제2 첨가제를 함께 사용할 경우 제1 첨가제를 단독으로 사용하는 경우에 비해 저항이 낮은 음극 피막을 형성하는 데 보다 유리하다. 즉, 초기 저항 개선 및 음극 피막 강화를 통한 고온 성능 개선의 효과가 있다. 또한, 상기 제1 첨가제는 상기 제2 첨가제에 비해 PF5와의 결합 에너지가 더 높아 HF 생성 억제에 더욱 효과적이기 때문에, 두 첨가제의 조합으로 인해 LFP 양극으로부터 철 이온의 용출을 억제하는 효과가 더욱 증대될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 비수 전해액 내 제1 첨가제와 제2 첨가제의 중량비는 1:0.5 내지 1:2.5일 수 있으며, 바람직하게는 1:1 내지 1:2.5일 수 있다. 상기 중량비 범위에 포함되는 것이 초기 저항 증가를 최소화하면서 전지의 고온 성능을 개선하는 효과를 극대화 할 수 있는 점에서 바람직하다.
(2) 제3 첨가제
본 발명의 일 실시상태에 있어서, 상기 비수 전해액은 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 니트릴계 화합물, 아민계 화합물, 실란계 화합물, 벤젠계 화합물 및 리튬염계 화합물 중 선택된 1종 이상의 화합물을 제3 첨가제로서 포함할 수 있다.
상기 카보네이트계 화합물은 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC) 및 플루오로에틸렌 카보네이트(FEC) 중 1종 이상일 수 있으며, 바람직하게는 비닐렌 카보네이트(VC)일 수 있다.
상기 설톤계 화합물은 음극 표면에서 환원반응에 의한 안정한 SEI 막을 형성할 수 있는 물질로서, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤 중 선택된 1종 이상일 수 있으며, 바람직하게는 1,3-프로판 설톤(PS)일 수 있다.
상기 설페이트계 화합물은 음극 표면에서 전기적으로 분해되어 고온 저장 시에도 균열되지 않는 안정적인 SEI 막을 형성할 수 물질로서, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS) 및 메틸 트리메틸렌 설페이트 (Methyl trimethylene sulfate; MTMS) 중 선택된 1종 이상일 수 있으며, 바람직하게는 에틸렌 설페이트(Esa)일 수 있다.
상기 포스페이트계 또는 포스파이트계 화합물은 리튬 다이플루오로(비스옥살레이토)포스페이트, 리튬 다이플루오로포스페이트, 트리스(트리메틸 실릴)포스페이트, 트리스(트리메틸 실릴)포스파이트, 트리스(2,2,2-트리플루오로에틸)포스페이트 및 트리스(트리플루오로에틸) 포스파이트 중 선택된 1종 이상일 수 있다.
상기 니트릴계 화합물은 숙시노니트릴(SN), 아디포니트릴(ADN), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴, 에틸렌글리콜 비스(2-시아노에틸) 에테르(ASA3), 1,3,6-헥산 트리카보니트릴(HTCN), 1,4-다이시아노 2-부텐(DCB) 및 1,2,3-트리스(2-시아노에틸)프로판(TCEP) 중 선택된 1종 이상일 수 있다.
상기 아민계 화합물은 트리에탄올아민 및 에틸렌디아민 중 선택된 1종 이상일 수 있으며, 상기 실란계 화합물은 테트라비닐실란일 수 있다.
상기 벤젠계 화합물은 모노플루오로벤젠, 디플루오로벤젠, 트리플루오로벤젠 및 테트라플루오로벤젠 중 선택된 1종 이상일 수 있다.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬염과 상이한 화합물로서, 리튬 다이플루오로 포스페이트(LiDFP; LiPO2F2), 리튬 비스옥살레이토보레이트(LiBOB; LiB(C2O4)2), 리튬 테트라플루오로보레이트(LiBF4), 리튬 테트라페닐보레이트 및 리튬 다이플루오로(비스옥살레이토) 포스페이트(LiDFOP) 중 선택된 1종 이상의 화합물일 수 있다.
바람직하게는, 본 발명의 비수 전해액은 비닐렌 카보네이트(VC), 1,3-프로판 설톤(PS) 및 에틸렌 설페이트(Esa)로 이루어진 군에서 선택된 1종 이상의 제3 첨가제를 더 포함할 수 있다. 이 경우음극에 안정적인 피막을 형성하므로 전지의 고온 성능을 개선시키는 이점이 있다.
본 발명의 일 실시상태에 있어서, 상기 제3 첨가제의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 5 중량%, 바람직하게는 0.1 중량% 내지 3 중량일 수 있다. 제3 첨가제의 함량이 5 중량% 이하인 것이 초기 저항을 낮추는 측면에서 바람직하다.
(3) 유기용매
본 발명의 비수 전해액은 유기용매를 포함한다.
상기 유기용매로는, 리튬 전해질에 통상적으로 사용되는 다양한 유기용매들이 제한 없이 사용될 수 있다. 예를 들어, 상기 유기용매는 환형 카보네이트계 용매, 선형 카보네이트계 용매, 선형 에스테르계 용매, 환형 에스테르계 용매, 니트릴계 용매 또는 이들의 혼합물일 수 있으며, 바람직하게는 환형 카보네이트계 용매 및 선형 카보네이트계 용매의 혼합물을 포함할 수 있다.
상기 환형 카보네이트계 용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있으며, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는, 에틸렌 카보네이트(EC)를 포함할 수 있다.
또한, 상기 선형 카보네이트계 용매는 저점도 및 저유전율을 가지는 유기용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 디메틸 카보네이트(DMC) 및 에틸메틸 카보네이트(EMC)를 포함할 수 있다. DMC를 단독으로 사용하는 경우 이온전도도가 상승되어 상온에서 저항개선 효과가 있지만 고온에서 불안정하여 환원반응에 의한 가스 형성이 많고, 어는점이 높아 저온 성능이 크게 떨어지는 단점이 있다. 따라서, EMC를 함께 사용함으로써 가스발생을 억제하고 저온 성능을 개선할 수 있다.
상기 유기용매는 높은 이온 전도율을 갖는 전해액을 제조하기 위하여, 환형 카보네이트계 용매와 선형 카보네이트계 용매의 혼합물을 사용하는 것이 바람직하다.
상기 선형 에스테르계 용매는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 중 선택된 1종 이상일 수 있으며, 바람직하게는 메틸 프로피오네이트, 에틸 프로피오네이트 또는 프로필 프로피오네이트일 수 있다.
상기 환형 에스테르계 용매는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤 중 선택된 1종 이상일 수 있다.
상기 니트릴계 용매는 숙시노니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴 및 4-플루오로페닐아세토니트릴 중 선택된 1종 이상일 수 있으며, 바람직하게는 숙시노니트릴일 수 있다.
상기 비수 전해액 전체 중량 중 유기용매를 제외한 타 구성성분, 예컨대 제1 내지 제3 첨가제 및 리튬염의 함량을 제외한 잔부는 별도의 언급이 없는 한 모두 유기용매일 수 있다.
(4) 리튬염
본 발명의 비수 전해액은 리튬염을 포함한다.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 구체적으로 상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, B10Cl10 -, AlCl4 -, AlO4 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, CH3SO3 -, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4 -, BC4O8 -, BF2C2O4CHF-, PF4C2O4 -, PF2C4O8 -, PO2F2 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 - 및 SCN-로 중 선택된 어느 하나 이상을 포함할 수 있다.
구체적으로, 상기 리튬염은 LiPF6, LiClO4, LiBF4, LiN(FSO2)2(LiFSI), LiTFSI, 리튬 비스(펜타플루오로에탄술포닐)이미드(Lithium bis(pentafluoroethanesulfonyl)imide, LiBETI), LiSO3CF3, LiPO2F2, 리튬 비스(옥살레이트)보레이트(Lithium bis(oxalate)borate, LiBOB), 리튬 다이플루오로(옥살레이트)보레이트(Lithium difluoro(oxalate)borate, LiFOB), 리튬 다이플루오로(비스옥살레이토)포스페이트(Lithium difluoro(bisoxalato) phosphate, LiDFOP), 리튬 테트라플루오로(옥살레이트)포스페이트(Lithium tetrafluoro(oxalate) phosphate, LiTFOP), 및 리튬 플루오로말로나토(다이플루오로)보레이트(Lithium fluoromalonato(difluoro) borate, LiFMDFB) 중 선택된 1종 이상일 수 있으며, 바람직하게는 LiPF6 일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 리튬염 및 유기용매를 포함하는 비수성 유기용액 내 리튬염의 농도는 0.5M 내지 4.0M, 구체적으로 0.5M 내지 3.0M, 더욱 구체적으로 0.8M 내지 2.0M일 수 있다. 리튬염의 농도가 상기 범위에 있을 때 저온 출력 개선 및 사이클 특성 개선 효과를 충분히 확보하면서, 점도 및 표면장력이 과도하게 높아지는 것을 방지하여 적절한 전해액 함침성을 얻을 수 있다.
양극
본 발명에 따른 양극은 리튬 인산철(LFP)계 복합 산화물을 포함한다. 구체적으로 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층에 포함된 양극 활물질은 상기 리튬 인산철계 복합 산화물을 포함할 수 있다.
LFP계 양극은 올리빈 구조로서, NCM계 양극 등 구조 붕괴의 리스크가 있는 층상(layered) 구조의 양극에 비해 구조적 안정성 및 장기 수명이 우수하다. 다만, LFP계 양극은 수분 민감도 및 전압 의존성이 높으며 금속 이온의 용출 문제에 취약하므로 본 발명의 첨가제 조합을 통해 이러한 문제점이 해소될 경우 NCM계 양극에 비해 안정성 및 수명 면에서 우수한 전지를 얻을 수 있다.
상기 양극 활물질층은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 또는 알루미늄 또는 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 리튬 인산철계 복합 산화물은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
LiFe1-xMxPO4
상기 화학식 3에서,
M은 Ni, Co, Mn, Al, Mg, Y, Zn, In, Ru, Sn, Sb, Ti, Te, Nb, Mo, Cr, Zr, W, Ir 및 V 중 선택된 1종 이상이고,
0≤x<1이다.
본 발명의 일 실시상태에 있어서, 상기 리튬 인산철계 복합 산화물은 LiFePO4일 수 있다.
본 발명에 따른 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 또는 알루미늄이나 스테인리스 스틸의 표면을 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 99 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 중량% 내지 30 중량%의 함량으로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 설폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체일 수 있다.
또한, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 부여하는 물질로서, 양극 슬러리 중 고형분의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 첨가될 수 있다. 
상기 도전재는 예를 들어, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 및 서멀 블랙 등의 카본 블랙; 천연 흑연, 인조흑연, 탄소 나노 튜브 및 그라파이트 등의 흑연 분말; 탄소 섬유 및 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말 및 니켈 분말 등의 도전성 분말; 산화아연 및 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재; 또는 이들의 조합이 선택될 수 있다.
또한, 상기 양극 슬러리의 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 바인더 및 도전재를 포함하는 양극 슬러리 중의 고형분 농도가 40 중량% 내지 90 중량%, 바람직하게는 50 중량% 내지 80 중량%가 되도록 포함될 수 있다.
음극
본 발명에 따른 리튬 이차전지는 음극 활물질을 포함하는 음극을 포함하며, 상기 음극은 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리; 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 구리 또는 스테인리스 스틸의 표면을 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 또는 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극 활물질은 탄소계 물질; 금속 또는 이들 금속과 리튬의 합금; 금속 복합 산화물; 리튬을 도프 및 탈도프할 수 있는 물질; 리튬 금속; 및 전이 금속 산화물 중 선택된 하나 이상을 포함할 수 있으며, 바람직하게는 탄소계 물질을 포함할 수 있다.
상기 탄소계 물질로는, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 및 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소), 하드 카본(hard carbon), 메조페이스 피치 탄화물 및 소성된 코크스 등을 들 수 있다. 바람직하게는 천연 흑연과 인조 흑연의 혼합물을 사용할 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8)로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x<2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db(dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물의 예로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 60 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 중량% 내지 30 중량%의 함량으로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 술폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 또는 서멀 블랙 등의 카본 블랙; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 탄소 나노 튜브 또는 그라파이트 등의 흑연 분말; 탄소 섬유 또는 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말 또는 니켈 분말 등의 도전성 분말; 산화아연 또는 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재; 또는 이들의 조합이 사용될 수 있다.
상기 음극 슬러리의 용매는 물; 또는 NMP 및 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 30 중량% 내지 80 중량%, 바람직하게 40 중량% 내지 70 중량%가 되도록 포함될 수 있다.
분리막
본 발명에 따른 리튬 이차 전지는, 상기 양극 및 음극 사이에 분리막을 포함한다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함침 능력이 우수하고 안전성이 뛰어난 것이 바람직하다.
구체적으로는 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름; 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 단층 또는 다층 구조로 사용될 수 있다.
상기와 같은 본 발명에 따른 리튬 이차 전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기; 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 및 전력 저장용 시스템 중 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차 전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
<실시예>
실시예 1.
(비수 전해액의 제조)
에틸렌 카보네이트(EC):디메틸 카보네이트(DMC):에틸메틸 카보네이트(EMC)를 30:40:30의 부피비로 혼합한 후, LiPF6가 1.0M이 되도록 용해시켜 비수성 유기용액을 제조하였다. 상기 화학식 1A로 표시되는 화합물 0.2wt%, 상기 화학식 2A로 표시되는 화합물 0.3wt%, 비닐렌 카보네이트(VC) 2.5wt% 1,3-프로판 설톤(PS) 0.5wt%, 에틸렌 설페이트(Esa) 0.7wt% 및 잔부의 상기 비수성 유기용액을 혼합하여 비수 전해액 100wt%을 제조하였다.
(리튬 이차전지의 제조)
양극 활물질로서 LiFePO4, 도전재로서 카본 블랙, 바인더로서 폴리비닐리덴플루오라이드 및 니트릴-부타디엔 고무를 95.86:0.8:2.2:1.14의 중량비로 용제인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리(고형분 함량 67.5중량%)를 제조하였다. 상기 양극 슬러리를 두께가 15㎛인 양극 집전체(Al 박막)에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
용제인 증류수에 음극 활물질로서 흑연(인조흑연:천연흑연(중량비 8:2)), 바인더로서 스티렌-부타디엔 고무-카르복시메틸셀룰로우즈(SBR-CMC), 도전재로서 카본블랙, 및 증점제로서 카르복시메틸셀룰로스나트륨(CMC)을 96.0:2.3:0.7:1의 중량비로 혼합한 뒤, 증류수를 용제로서 혼합하여 고형분 함량이 47.0 중량%인 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 8㎛인 음극 집전체(Cu 박막)에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 분리막 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
파우치형 전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 제조된 비수전해액을 주액하여 리튬 이차전지를 제조하였다.
실시예 2.
비수 전해액 제조 시 상기 화학식 2A로 표시되는 화합물의 함량을 0.5wt%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 3.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물의 함량을 0.5wt%로, 상기 화학식 2A로 표시되는 화합물의 함량을 0.5wt%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1.
비수 전해액 제조 시 상기 화학식 2A로 표시되는 화합물을 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물을 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 3.
양극 활물질 슬러리로서 상기 실시예 1에 기재된 슬러리 대신 양극 활물질로서 Li[Ni0.8Co0.1Mn0.1]O2, 도전재로 카본 블랙(carbon black), 바인더로 폴리비닐리덴플루오라이드(PVDF)를 94:3:3 중량비로 혼합한 후 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 제조한 양극 활물질 슬러리(고형분 함량 67.5중량%)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 하기 화학식 B1로 표시되는 화합물(이미다졸)을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
[화학식 B1]
비교예 5.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 하기 화학식 B2로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
[화학식 B2]
<실험예>
실험예 1: 고온(60℃) 저장 특성 평가
상기 실시예 및 비교예에서 제조된 각각의 리튬 이차 전지를 25℃에서 CC/CV, 0.33C 조건으로 4.2V(0.05C cut off)로 SOC 100%까지 만충전하였다. 이 후, 상기 만충전된 리튬 이차 전지를 고온(60℃)에서 12주 동안 저장한 다음, 용량 유지율 및 저항 증가율을 측정하여 그 결과를 하기 표 1에 나타내었다.
이때, 용량 유지율은 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 고온 저장 전 측정된 리튬 이차 전지의 방전 용량과 고온 저장 후 측정된 리튬 이차 전지의 방전 용량을 하기 식 (1)에 대입하여 계산하였고,
저항 증가율은 고온 저장 전에 측정한 초기 저항 값 및 고온 저장 후에 측정한 저항 값을 하기 식 (2)에 대입하여 계산하였다.
식 (1): 용량 유지율(%) = (고온 저장 후 방전용량/고온 저장 전 방전용량) ×100
식 (2): 저항 증가율 (%) = {(고온 저장 후의 저항 값-초기 저항 값)/초기 저항 값}×100
실험예 2: 고온(45℃) 수명 특성 평가
실시예 및 비교예에서 제조된 리튬 이차전지를 각각 0.1C CC로 활성화한 후, 디가스를 진행하였다.
이후, 25℃에서 정전류-정전압(CC-CV) 충전 조건으로 3.6V까지 0.33C CC으로 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전을 하였다. 다음으로, 45℃에서 정전류-정전압(CC-CV) 충전 조건으로 3.6V까지 0.33C CC으로 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전하였다.
상기 충방전을 1 사이클로 하여, 고온(45℃)에서 충방전을 실시하면서, 충방전기(5V, 6A)를 사용하여 1 사이클 후 및 400 사이클 후의 방전 용량 및 저항을 각각 측정하였다.
측정된 방전 용량 및 저항을 각각 하기 식 (3) 및 식 (4)에 대입하여 용량 유지율(capacity retention) 및 저항 증가율을 계산하여, 그 결과를 하기 표 1에 나타내었다.
식 (3): 용량 유지율(%) = (400 사이클 후 방전 용량/1 사이클 후 방전 용량)×100
식 (4): 저항 증가율 (%) = {(400 사이클 후 저항 - 1 사이클 후 저항)/1 사이클 후 저항}×100
양극 활물질 제1 첨가제 제2 첨가제 실험예 1 실험예 2
화학식 함량
(wt%)
화학식 함량
(wt%)
용량 유지율 (%) 저항 증가율
(%)
용량 유지율 (%) 저항 증가율
(%)
실시예 1 LFP 1A 0.2 2A 0.3 78 9.9 89.1 17.8
실시예 2 LFP 1A 0.2 2A 0.5 79.4 9 89.1 15.1
실시예 3 LFP 1A 0.5 2A 0.5 79.6 8.5 88.9 14.6
비교예 1 LFP 1A 0.2 - - 73.9 42.2 87.8 40.3
비교예 2 LFP - - 2A 0.3 74.2 31.3 87.4 44.7
비교예 3 NCM 1A 0.2 2A 0.3 75.5 46.3 87 33.3
비교예 4 LFP B1 0.2 2A 0.3 68.3 47.1 84.6 45.4
비교예 5 LFP B2 0.2 2A 0.3 70 42.9 85.7 43.3
상기 표 1의 결과를 통해, 본원 제1 첨가제 및 제2 첨가제를 전해액 첨가제로서 동시에 포함하는 경우 고온 수명 및 저장 특성이 모두 우수한 것 확인할 수 있다.
구체적으로, 실시예 1 내지 3의 경우, 제1 첨가제 및 제2 첨가제 중 하나만 포함하는 전해액을 적용한 비교예 1 및 2 뿐만 아니라, 일반적으로 LFP 양극재에 비해 용량 특성이 우수한 것으로 알려진 NCM 양극재를 적용한 비교예 3에 비해서도 고온 수명 및 저장 특성이 우수한 것을 확인할 수 있다.
또한, 제2 첨가제를 사용하더라도 화학식 1로 표시되는 화합물 대신 아미노기가 치환되지 않은 이미다졸 구조의 화학식 B1을 사용한 경우(비교예 4) 및 페닐이미다졸 구조의 화학식 B2를 사용한 경우(비교예 5)에 비해서도 실시예 1 내지 3의 고온 수명 및 저장 특성이 우수한 것을 확인할 수 있다.
이로써 본 발명에 따른 상기 제1 첨가제 및 제2 첨가제를 모두 포함하는 경우에 한해 본 발명의 효과가 달성될 수 있음이 확인된 것이다.

Claims (10)

  1. 리튬염, 유기용매, 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액;
    리튬 인산철계 복합 산화물을 포함하는 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    상기 양극 및 음극 사이에 개재되는 분리막을 포함하는 리튬 이차전지:
    [화학식 1]
    Figure 112021146927264-pat00010

    상기 화학식 1에서,
    R1 및 R2는 각각 독립적으로 수소; 또는 탄소수 1 내지 5의 알킬기이며,
    [화학식 2]

    상기 화학식 2에서,
    A는 탄소수 3 내지 5의 헤테로고리기 또는 탄소수 3 내지 5의 헤테로아릴기이며,
    R3는 탄소수 1 내지 3의 알킬렌기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1의 R1 및 R2는 각각 수소인 리튬 이차전지.
  3. 청구항 1에 있어서,
    상기 화학식 2의 A는 탄소수 3 내지 5의 함질소 헤테로고리기 또는 탄소수 3 내지 5의 함질소 헤테로아릴기인 리튬 이차전지.
  4. 청구항 1에 있어서,
    상기 비수 전해액은 비닐렌 카보네이트, 1,3-프로판 설톤 및 에틸렌 설페이트로 이루어진 군에서 선택된 1종 이상의 제3 첨가제를 더 포함하는 것인 리튬 이차전지.
  5. 청구항 1에 있어서,
    상기 제1 첨가제의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 2 중량%인 리튬 이차전지.
  6. 청구항 1에 있어서,
    상기 제2 첨가제의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 2 중량%인 리튬 이차전지.
  7. 청구항 1에 있어서,
    상기 비수 전해액 내 제1 첨가제와 제2 첨가제의 중량비는 1:0.5 내지 1:2.5인 리튬 이차전지.
  8. 청구항 1에 있어서,
    상기 유기용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매의 혼합물을 포함하는 것인 리튬 이차전지.
  9. 청구항 1에 있어서,
    상기 리튬 인산철계 복합 산화물은 하기 화학식 3으로 표시되는 것인 리튬 이차전지:
    [화학식 3]
    LiFe1-xMxPO4
    상기 화학식 3에서,
    M은 Ni, Co, Mn, Al, Mg, Y, Zn, In, Ru, Sn, Sb, Ti, Te, Nb, Mo, Cr, Zr, W, Ir 및 V 중 선택된 1종 이상이고,
    0≤x<1이다.
  10. 청구항 1에 있어서,
    상기 음극 활물질은 탄소계 물질을 포함하는 것인 리튬 이차전지.
KR1020210182299A 2021-12-20 2021-12-20 리튬 이차전지 KR102566019B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210182299A KR102566019B1 (ko) 2021-12-20 2021-12-20 리튬 이차전지
PCT/KR2022/018569 WO2023121014A1 (ko) 2021-12-20 2022-11-23 리튬 이차전지
US18/071,992 US20230198019A1 (en) 2021-12-20 2022-11-30 Lithium Secondary Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210182299A KR102566019B1 (ko) 2021-12-20 2021-12-20 리튬 이차전지

Publications (2)

Publication Number Publication Date
KR20230093558A KR20230093558A (ko) 2023-06-27
KR102566019B1 true KR102566019B1 (ko) 2023-08-10

Family

ID=86769061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210182299A KR102566019B1 (ko) 2021-12-20 2021-12-20 리튬 이차전지

Country Status (3)

Country Link
US (1) US20230198019A1 (ko)
KR (1) KR102566019B1 (ko)
WO (1) WO2023121014A1 (ko)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012067102A1 (ja) * 2010-11-16 2014-05-12 日立マクセル株式会社 非水二次電池
US20120171576A1 (en) * 2010-12-29 2012-07-05 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
KR102161591B1 (ko) 2016-07-08 2020-10-05 주식회사 엘지화학 용량 및 안전성이 개선된 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR102270869B1 (ko) * 2017-07-14 2021-07-01 주식회사 엘지에너지솔루션 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
CN112778205A (zh) * 2019-11-06 2021-05-11 石家庄圣泰化工有限公司 咪唑类添加剂的合成方法
KR20210138937A (ko) * 2020-05-13 2021-11-22 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
US20230198019A1 (en) 2023-06-22
KR20230093558A (ko) 2023-06-27
WO2023121014A1 (ko) 2023-06-29

Similar Documents

Publication Publication Date Title
EP4322275A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
KR102626832B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20230021371A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20220065686A (ko) 리튬 이차 전지
KR20220129492A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20220031290A (ko) 리튬 이차 전지
KR102566019B1 (ko) 리튬 이차전지
KR102552706B1 (ko) 리튬 이차전지
KR102660938B1 (ko) 리튬 이차전지
KR102622344B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR102668579B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR102633506B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR102664714B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
US12027668B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20240009876A (ko) 리튬 이차전지
KR20230048938A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20230093850A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20240020658A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬이차전지
KR20220133135A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20230141627A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20220120202A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20230059757A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20240047147A (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
KR20240034596A (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
US20230105288A1 (en) Non-Aqueous Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Comprising Same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant