KR102498790B1 - 2분절 쿼시 할박 전동기 회전자 - Google Patents

2분절 쿼시 할박 전동기 회전자 Download PDF

Info

Publication number
KR102498790B1
KR102498790B1 KR1020200157851A KR20200157851A KR102498790B1 KR 102498790 B1 KR102498790 B1 KR 102498790B1 KR 1020200157851 A KR1020200157851 A KR 1020200157851A KR 20200157851 A KR20200157851 A KR 20200157851A KR 102498790 B1 KR102498790 B1 KR 102498790B1
Authority
KR
South Korea
Prior art keywords
magnets
magnet
radial
circumferential
rotor
Prior art date
Application number
KR1020200157851A
Other languages
English (en)
Other versions
KR20220070855A (ko
Inventor
남광희
김재학
이상무
김명한
구본길
Original Assignee
포항공과대학교 산학협력단
주식회사 이피티
(주)케이엔알시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단, 주식회사 이피티, (주)케이엔알시스템 filed Critical 포항공과대학교 산학협력단
Priority to KR1020200157851A priority Critical patent/KR102498790B1/ko
Priority to JP2021189300A priority patent/JP7234333B2/ja
Priority to US17/533,029 priority patent/US11817746B2/en
Publication of KR20220070855A publication Critical patent/KR20220070855A/ko
Application granted granted Critical
Publication of KR102498790B1 publication Critical patent/KR102498790B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/2792Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2783Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 전동기 회전자에 관한 것으로, 보다 구체적으로는 방사방향 자석과 원주방향 자석이 할박 배열되고 자속 경로를 제공하는 백아이언이 구비되어 자석의 두께를 줄이고, 동시에 높은 공극자속 밀도를 가지는 2분절 쿼시 할박 전동기 회전자에 관한 것이다.

Description

2분절 쿼시 할박 전동기 회전자{2-segment quasi-Halbach rotor of motor}
본 발명은 전동기 회전자에 관한 것으로, 보다 구체적으로는 방사방향 자석과 원주방향 자석이 할박 배열되고 자속 경로를 제공하는 백아이언이 구비되어 자석의 두께를 줄이고, 동시에 높은 공극자속 밀도를 가지는 2분절 쿼시 할박 전동기 회전자에 관한 것이다.
전동기는 소형화 요구에 맞추어 점점 고속화되고 있으며, 그에 맞는 고속운전이 가능한 다이나모 시스템이 요구되고 있다. 고속운전과 동시에 고출력을 만족하기 위해서는 회전자의 무게를 경량화하여야 하며, 이를 위하여 할박 전동기가 이용되고 있다. 할박 전동기는 회전자에 구비되는 자석의 자화 방향이 정현파에 가깝게 자화된 전동기를 말한다.
도 1은 종래의 2분절 할박 전동기 회전자의 측면 절반을 나타낸 것으로, 도시된 바와 같이 할박 전동기의 회전자는 슬리브(10)와 자석(20)으로 이루어진다. 슬리브(10)는 회전자의 기계적 강성을 보완하기 위한 장치로, 항복응력이 높은 인코넬, 티타늄, 탄소섬유 같은 재질로 이루어져 자석(20)의 외주면 외측에 구비되어, 회전자의 고속회전시 자석(20)의 비산을 방지한다. 자석(20)은 자화된 방향에 따라 방사방향(radial direction)으로 자화된 방사방향 자석(21)과 원주방향(circumferential direction)으로 자화된 원주방향 자석(22)으로 구분될 수 있으며, 여기서 방사방향 자석(21)과 원주방향 자석(22)은 서로 교번하여 배열되되, 자화 방향이 정현파와 같이 주기적으로 순서를 이루도록 하여 배열된다.
할박 전동기 회전자는 방사방향 자석(21)에 의해 발생하는 방사형 자속이 원주방향 자석(22)을 통해 자속경로를 형성하게 되어, 자속경로를 위한 별도의 회전자 철심을 필요로 하지 않는 특징을 가지며, 이에 따라 회전자의 무게가 경량화되어 고속회전이 가능해진다. 이와 같은 종래의 할박 전동기(10)는, 방사방향 자석(21)의 외측 호의 길이 a'와 원주방향 자석(22)의 의측 호의 길이 b'를 같은 길이로 설계하여 최대의 공극자속 밀도를 획득하도록 하는 것이 일반적이다. 여기서, 방사방향 자석(21)이 생성하는 방사형 자속은 방사방향 자석(21)의 호의 길이 a'에 비례하고, 원주방향 자석(22)이 생성하는 원주형 자속은 원주방향 자석(22)의 두께 e'에 비례하므로, 방사형 자속 모두가 원주형 자속과 결합하여 경로를 형성하기 위해서는 방사형 자속의 절반의 크기가 원주형 자속의 크기와 같아져야 하므로, 자석의 두께 e'는 약 a'/2가 되어야 한다. 그러나, 이와 같은 종래의 할박 전동기는 다음과 같은 문제점을 가진다.
첫째, 회전자의 외반경 c'의 크기가 제한된다. 구체적으로, 회전자의 고속운전시 회전체 표면에서의 응력이 회전체 재질의 항복응력(yield stress)보다 크면 회전체의 변형이 발생되며, 이는 회전체의 이심률(eccentricity)을 증가시켜 결과적으로 회전체의 구조적 붕괴를 일으킬 수 있다. 여기서, 회전자의 외반경 c'는 회전자의 표면속도(surface speed)를 결정하게 되고, 회전자의 표면속도에 비례하여 표면에서의 응력이 커지게 되므로, 일반적으로 회전자의 표면속도가 100~250m/s 를 만족하기 위해서는, 회전체의 구조적 붕괴를 방지하기 위해 c'의 크기가 제한될 수 밖에 없다.
둘째, 자석의 두께 e'가 크다. 구체적으로, 회전자의 관성 증가는 회전자의 고속운전을 제한하기 때문에 회전자를 저관성으로 설계하는 것이 바람직하다. 그러나, 상술한 바와 같이 종래의 할박 전동기에 있어서 자석의 두께 e'는 자석의 외측 호의 길이 a와 b에 대응하여 대략 1/2 정도로 결정되는데, 고속운전을 위해 회전자가 저극(2분절)으로 설계되는 경우 a'와 b'가 상대적으로 길게 설계되고, 이에 따라 자석의 두께 e'도 자석의 외측 호의 길이 a'/2 정도로 길게 설계될 수 밖에 없다. 이는 회전자의 무게 증가를 가져와 회전자의 관성이 증가됨에 따라 고속운전을 어렵게 하며, 나아가 자석의 크기를 비교적 크게 설계해야 하는 점에서 비용적 측면에서도 바람직하지 못하다.
US 6906446 B2(2003.03.27.)
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 극간 누설자속이 다른 자석과 이어지도록 경로를 제공하는 백아이언을 구비함으로써 자석의 두께를 줄여 고속운전이 가능하게 하고, 동시에 전동기의 제조비용을 절감하고 제조를 용이하게 할 수 있는 할박 전동기 회전자를 제공하는 것에 목적이 있다.
본 발명의 일 예에 따른 2분절 쿼시 할박 전동기 회전자는, 원주방향을 따라 할박 배열(halbach array)되는 방사방향 자석과 원주방향 자석을 포함하는 복수의 자석; 및 상기 복수의 자석 일면과 면접하도록, 상기 복수의 자석 일측에 배치되는 백아이언;을 포함하고, 상기 백아이언은, 상기 복수의 자석 중 어느 하나의 내부 방사방향 자석으로부터 발생하는 극간 누설자속이, 상기 어느 하나의 내부 방사방향 자석 인근의 다른 외부 방사방향 자석과 이어지도록 경로를 제공할 수 있다.
상기 방사방향 자석의 외측 호의 길이는, 상기 원주방향 자석의 외측 호의 길이보다 길 수 있다.
상기 방사방향 자석의 외측 호의 길이(a), 상기 원주방향 자석의 외측 호의 길이(b), 상기 복수의 자석의 두께(e), 및 상기 백아이언의 두께(f)를 설계변수로 포함하여, 상기 a, b, e, f가 변경됨에 따라 회전자의 공극자속 밀도가 변경될 수 있다.
이때, 0.52 ≤ a/(a+b) ≤ 0.81 이고, 0.46 ≤ e/(e+f) ≤ 0.82 일 수 있다.
이때, 0.58 ≤ a/(a+b) ≤ 0.73 이고, 0.51 ≤ e/(e+f) ≤ 0.72 일 수 있다.
상기 a와 상기 f는 비선형 비례 관계를 이룰 수 있다.
상기 방사방향 자석은 서로 동일한 크기와 형상을 가지는 다수개의 단위 방사방향 자석으로 이루어지고, 상기 각 단위 방사방향 자석과 상기 원주방향 자석은 서로 동일한 크기와 형상으로 이루어질 수 있다.
이때, a/(a+b)=0.75 이고, 상기 방사방향 자석은 서로 동일한 크기와 형상을 가지는 3개의 단위 방사방향 자석으로 이루어지며, 상기 각 단위 방사방향 자석과 상기 원주방향 자석은 서로 동일한 크기와 형상으로 이루어질 수 있다.
이때, 0.46 ≤ e/(e+f) ≤ 0.63 일 수 있다.
상기 백아이언은, 상기 복수의 자석 내주면과 면접하도록 상기 복수의 자석 내측에 배치되고, 상기 백아이언의 외주면 상에는, 방사방향으로 소정 돌출되어 원주방향으로 서로 이격되는 다수개의 미끌림 방지턱이 구비될 수 있다.
상기 복수의 자석 각각의 내측면 양단에는 홈이 형성되고, 상기 홈에 상기 미끌림 방지턱이 삽입결합되어, 상기 다수개의 미끌림 방지턱 각각의 사이에 상기 복수의 자석 각각이 배치될 수 있다.
상기 복수의 자석 외측에 구비되어, 상기 복수의 자석을 감싸는 슬리브;를 더 포함할 수 있다.
상기 백아이언은, 상기 복수의 자석 외주면과 면접하도록 상기 복수의 자석 외측에 배치될 수 있다.
본 발명의 일 예에 따른 2분절 쿼시 할박 전동기 회전자의 제조방법은, 1) 자화되지 않은 자석 다수개를 준비하는 단계; 2) 상기 자화되지 않은 자석 다수개 중 일부만 원주방향으로 자화시키는 단계; 3) 상기 원주방향으로 자화된 자석을 백아이언에 설치하고, 상기 백아이언의 나머지 위치에 상기 자화되지 않은 나머지 자석을 설치하는 단계; 4) 상기 자화되지 않은 나머지 자석을 방사방향으로 자화시키는 단계;를 포함할 수 있다.
본 발명에 의하면 백아이언이 방사방향 자석으로부터 발생되는 극간 누설자속이 다른 방사방향 자석으로 이어지도록 하는 경로를 제공함에 따라, 방사방향 자석의 두께를 줄임과 동시에 방사방향 자석을 크게 구성하여 기본파 성분을 높일 수 있다. 이에 따라, 회전자가 저관성을 가지고 높은 공극자속 밀도를 가지게 된다.
또한, 미끌림 방지턱 구조를 통해, 자석의 미끄러짐이 방지되고 구조적 안전성이 증대되며, 회전자의 제작성이 향상될 수 있다.
도 1은 종래의 2분절 할박 전동기 회전자의 측면 절반을 나타낸다.
도 2는 본 발명의 일 예에 따른 2분절 쿼시 할박 전동기 회전자의 측면 절반을 나타낸다.
도 3은 방사방향 자석과 원주방향 자석의 경계면에서의 자속 방향에 대한 유한요소 해석 결과를 나타낸다.
도 4는 본 발명의 회전자에 있어서, α, δ를 변수로 한 자속 밀도 콘투어의 유한요소 해석 결과를 나타낸 그래프이다
도 5는 본 발명의 다른 예에 따른 2분절 쿼시 할박 전동기 회전자의 측면 절반을 나타낸다.
도 6은 도 4의 그래프에서 α=0.75일 때 δ의 범위를 나타낸다.
도 7은 본 발명의 일 예에 따른 회전자의 분해 사시도이다.
도 8은 본 발명에 따른 미끌림 방지턱의 형태를 설명하기 위한 회전자의 측단면도이다.
도 9는 본 발명의 일 예에 따른 회전자를 포함한 2분절 할박 전동기의 모식도이다.
도 10은 아우터 모터에 적용 가능한 회전자를 나타낸다.
도 11은 리니어 모터에 적용 가능한 회전자를 나타낸다.
도 12는 액시얼 모터에 적용 가능한 회전자를 나타낸다.
이하, 첨부된 도면을 통해 본 발명을 상세히 설명한다.
도 2는 본 발명의 일 예에 따른 2분절 쿼시 할박 전동기 회전자의 측면 절반을 나타낸 것으로, 도시된 바와 같이 본 발명의 회전자는 크게 복수의 자석(100)과 백아이언(200)을 포함하며, 나아가 슬리브(300)를 더 포함할 수 있다. 슬리브(300)는 복수의 자석(100)을 감싸도록 복수의 자석(100) 외측에 구비될 수 있다.
복수의 자석(100)은 영구자석으로서, 각 자석은 자화된 방향에 따라 방사방향으로 자화된 방사방향 자석(110)과 원주방향으로 자화된 원주방향 자석(120)으로 이루어지고, 방사방향 자석(110)과 원주방향 자석(120)은 원주방향을 따라 할박 배열(halbach array)된다.
복수의 자석(100)이 할박 배열되는 것에 대해 도 2를 통해 구체적으로 살펴보면, 도면상 좌측 아래 위치에는 시계반대방향으로 자화된 원주방향 자석(120)이 배치되고, 시계방향을 따라 다음 위치에는 내부 방사방향으로 자화된 방사방향 자석(110)이 배치되고, 다음 위치에는 시계방향으로 자화된 원주방향 자석(120)이 배치되고, 다음 위치에는 외부 방사방향으로 자화된 방사방향 자석(110)이 배치되며, 다음 위치인 도면상 우측 아래 위치에는 시계 반대방향으로 자화된 원주방향 자석(120)이 배치된다. 이와 같이, 방사방향 자석(110)과 원주방향 자석(120)이 서로 교번하여 배열되되, 각 자석(110, 120)의 자화된 방향이 정현파와 같이 주기적으로 순서를 이루도록 하여 배열될 수 있다. 도면상 회전자의 나머지 절반 부분은 도시하지 않았으나, 위와 같은 순서 규칙을 따라 각 자석(110, 120)이 배열될 수 있다.
백아이언(200)은 복수의 자석(100) 일면과 면접하도록 복수의 자석(100) 일측에 배치된다. 여기서 일면이란 도 2와 같이 복수의 자석(100) 내주면을 의미할 수 있으며, 후술하는 바와 같이 복수의 자석(100) 외주면 또는 측면을 의미할 수 있다. 백아이언(200)은 회전자 철심(rotor core)에 해당하는 것으로서, 복수의 자석(100) 중 어느 하나의 내부 방사방향 자석(110)으로부터 발생하는 극간 누설자속(inter-pole leakage)이, 해당 어느 하나의 내부 방사방향 자석(110) 인근의 다른 자석(110, 120)과 이어지도록 경로를 형성한다.
구체적으로, 도 1을 통해 설명한 바와 같이, 종래 할박 전동기 회전자는 일반적으로 방사방향 자석(21)의 외측 호의 길이 a'와 원주방향 자석(22)의 외측 호의 길이 b'를 동일하게 구성하고, 이때 각 자석(21, 22)의 두께 e'를 각 자석(21, 22)의 외측 호의 길이(a', b')의 절반 정도로 구성하여, 방사방향 자석(21)에서의 극간 누설자속을 최소화하는 구조로 이루어진다. 이에 반해, 본 발명은 도 2에 도시된 바와 같이, 방사방향 자석(110)의 외측 호의 길이 a를 원주방향 자석(120)의 외측 호의 길이 b에 비해 길게 구성하여 방사방향 자석(110)으로부터 극간 누설자속을 의도적으로 발생시키고, 방사방향 자석(110)으로부터 발생된 극간 누설자속을 백아이언(200)을 통해 다른 자석과 이어지도록 한다.
보다 구체적으로, 도 3은 방사방향 자석과 원주방향 자석의 경계면에서의 자속 방향에 대한 유한요소 해석(FEA, finite element analysis) 결과를 나타낸 것으로, 여기서 어느 하나의 제1 방사방향 자석(110-1)으로부터 발생되는 방사형 자속이 모두 원주방향 자석(120)으로 흐르지 않고 다른 곳으로 누설되는 자속이 극간 누설자속에 해당한다. 구체적으로, 어느 하나의 내부 방사방향 자석인 제1 방사방향 자석(110-1)에서 발생하는 자속 중 원주방향 자석(120)과의 경계면 근처의 자속은 직접 원주방향 자석(120)과 이어져 원주방향 자석(120)을 통해 다른 하나의 외부 방사방향 자석인 제2 방사방향 자석(110-2)과 이어지고, 제1 방사방향 자석(110-1)에서 발생하는 자속 중 중간 부근의 자속은 백아이언(200)과 이어져 백아이언(200)을 통해 방사방향 자석(110)을 거쳐 제2 방사방향 자석(110-2)과 이어지거나, 방사방향 자석(110)을 거치지 않고 백아이언(200)을 통해 바로 제2 방사방향 자석(110-2)으로 이어질 수 있다.
이와 같이 본 발명은, 각 자석의 경계면에서의 극간 누설자속량을 줄이는 것이 아니라, 구조적 제한상 어쩔 수 없이 생기는 극간 누설 자속량을 충분히 감당할 수 있는 백아이언을 구비시킴으로써 이를 해결한다. 즉, 본 발명에 의하면 방사방향 자석으로부터 의도적으로 발생시킨 극간 누설자속이 원주형 자속과 백아이언을 통한 자속으로 분배되어 경로가 형성됨에 따라, 방사방향 자석 및 원주방향 자석의 두께를 줄일 수 있다. 여기서, 방사방향 자석으로부터 발생한 극간 누설자속은 백아이언을 통해 다른 자석으로 이어지게 되므로, 방사방향 자석으로부터 발생되는 극간 누설자속은 회전자 전체 측면에서 보면 더 이상 누설되는 자속이 아니게 되어 자석의 효율이 증대된다. 또한, 백아이언이 구비됨으로써 회전자 전체 측면으로 보면 누설되어 낭비되는 자속을 보다 확실하게 감소시킬 수 있게 되어 자석의 효율이 더욱 증대될 수 있다.
나아가, 본 발명에 의하면, 백아이언을 구비함으로써, 자석의 두께와 호의 길이 등의 설계 범위를 넓힐 수 있다. 배경기술에서 상술한 바와 같이, 종래 할박 회전자는 회전자 외반경의 크기를 크게 할 수 없는 문제와, 자석의 두께를 줄이기 위해서는 많은 수의 자석을 필요로 하고, 이는 회전자 제작 비용이 증가되고 제작을 어렵게 하는 문제가 있으며, 이에 따라 자석의 수를 적게 하면 자석의 두께가 커지게 될 수 밖에 없는 구조적인 한계가 있다. 이에 반해, 본 발명에 의하면 백아이언이 자속이 이동하는 경로를 제공하여 방사방향 자석으로부터 발생되는 극간 누설자속이 회전자 외부로 완전히 누설되지 않고 다른 자석으로 이동되므로, 자석의 두께를 감소시킴과 동시에 자석의 수를 줄일 수 있으며, 이에 따라 고속운전을 가능케 할 수 있을 뿐 아니라 회전자 제작 비용을 줄일 수 있다.
구체적으로, 방사방향 자석(110)은 회전자의 토크에 기여하는 방사형 자속(radial flux)을 생성하고, 원주방향 자석(120)은 방사방향 자석(110)으로부터 발생하는 외부 방사형 자속과 내부 방사형 자속 간 경로를 이어준다. 이와 같이, 실제 회전자의 토크에 기여하는 공극자속은 방사방향 자석(110)에 의해 생성되는 방사형 자속이므로, 공극자속의 기본파 성분(fundamental component)을 증가시키기 위해서는 방사방향 자석(110)의 호의 길이 a를 길게 하는 것이 유리하다. 그리고, 방사방향 자석(110)의 호의 길이 a에 대응하여 백아이언(200)의 두께 f의 크기를 조절하여 회전자의 크기와 공극자속 간 최선의 효율을 도출할 수 있다. 즉, 방사방향 자석(110)의 호의 길이(a), 원주방향 자석(120)의 호의 길이(b), 방사방향 자석(110)과 원주방향 자석(120)의 두께(e), 및 백아이언(200)의 두께(f)를 설계변수로 하여, 공극자속을 최대로 하고 회전자 전체의 크기 및 회전관성 등을 최소로 할 수 있다. 이를 위해, 본 발명에서는 a/(a+b)=α와 e/(e+f)=δ를 파라미터로 하여 각 변수간 관계를 도출하였다.
도 4는 본 발명의 회전자에 있어서, α, δ를 변수로 한 자속 밀도 콘투어(flux density contours)의 유한요소 해석 결과를 나타낸 그래프이다. 그래프의 x축은 α를 변수로 하고 y축은 δ를 변수로 한다. 도시된 바와 같이, α가 약 0.52 이상 0.81 이하이고 동시에 δ가 약 0.46 이상 0.82 이하일 때 회전자의 자속 밀도가 0.7로서 높게 형성됨을 알 수 있다. 보다 바람직하게는 α가 약 0.58 이상 0.73 이하이고 동시에 δ가 약 0.51 이상 0.72 이하일 때 회전자의 공극자속 밀도가 0.71로서 가장 높게 형성됨을 알 수 있다. 따라서, 본 발명에 의하면 α, δ가 상술한 범위 내에 속하도록 회전자를 설계함으로써, 회전자의 공극자속 밀도를 최대로 높일 수 있다.
이때, α, δ 각각은 상술한 범위 내에 속하되, α와 δ는 서로 반비례 관계에 해당한다. 예를 들어, α가 0.52인 경우 δ는 0.82에 해당하고, α가 0.81인 경우 δ는 0.46에 해당할 수 있다. 이는 다시 말해, 방사방향 자석의 호의 길이 a와 백아이언의 두께 e가 비선형적으로 비례하는 관계에 해당하는 것으로서, 방사방향 자석의 호의 길이 a가 길어지면 방사형 자속이 증가하여 극간 누설자속이 증가하게 되고, 증가된 극간 누설자속이 회전자 외부로 완전히 누설되는 것을 방지하기 위해서는 백아이언의 두께 e가 증가되어야 하므로, 이에 의하면 a와 e가 대체로 비례하는 관계라는 점을 알 수 있다.
한편, 회전자 제작성을 증대시키기 위해, 본 발명에서는 복수의 자석을 구성하는 각 자석들이 모두 동일한 크기와 형태로 이루어지도록 할 수 있다. 이를 위해, 방사방향 자석(110)은 서로 동일한 크기와 형상을 가지는 다수개의 단위 방사방향 자석(110a)으로 이루어질 수 있고, 각각의 단위 방사방향 자석(110a)은 원주방향 자석(120)과 서로 동일한 크기와 형상으로 이루어짐으로써, 각 자석 모두가 동일하게 형성될 수 있다. 단, 본 발명에서 말하는 동일이란 물리적 동일을 의미하는 것이 아니라 오차범위를 허용하는 한도 내에서 실질적으로 동일한 것을 의미함은 물론이다.
구체적인 예로서, 본 발명에서는 특히 α=0.75로 설계하여, 방사방향 자석의 호의 길의 a와 원주방향 자석의 호의 길이 b 간 비가 a:b=3:1을 만족하도록 할 수 있고, 이때 방사방향 자석을 3분할 하여 방사방향 자석이 3개의 단위 방사방향 자석(110a)으로 이루어지도록 할 수 있다. 즉, 도 5는 본 발명의 다른 예에 따른 2분절 쿼시 할박 전동기 회전자의 측면 절반을 나타낸 것으로, 도 2에 도시된 회전자와 비교하여, 방사방향 자석(110)이 3개의 단위 단위 방사방향 자석(110a)으로 이루어지는 차이점이 있다. 이와 같이 a:b가 3:1을 만족하고, a가 3분할 됨에 따라, 원주방향 자석(120)의 크기 및 형태와 단위 방사방향 자석(110a) 각각의 크기 및 형태가 모두 동일하게 이루어질 수 있다. 이와 같이 복수의 자석을 구성하는 각자석들의 크기 및 형태가 모두 동일하게 구성되므로, 동일한 크기의 자석을 대량 생산하여 착자 방향만 달리하면 되어, 회전자의 제작 비용을 절감할 수 있고 제작성이 증대된다. 또한, 방사방향 자석에서 외측 호의 길이가 길어져 발생하는 와전류 손실이 감소되어 자석 효율 측면에서도 바람직하다.
이때, 즉 α=0.75를 만족할 시, δ는 0.46 이상 0.63 이하인 것이 바람직하며, 보다 바람직하게는 δ=0.46일 수 있다. 즉, 도 6에 도시된 바와 같이 α=0.75일 때 δ가 0.46 내지 0.63 사이의 값을 가지는 경우 자속 밀도가 0.7 이상이 되어 자석이 높은 효율을 가진다. 이때, 위의 범위에서 δ가 0.46으로 가장 작고, 이는 e, 즉 자석의 두께를 가장 작게 설계할 수 있는 값에 해당하므로, δ가 0.46인 것이 보다 바람직하다.
본 발명에서는 a:b가 3:1을 만족하는 것을 구체적인 예로서 설명하였으나, a:b가 2:1, 4:1, 5:1 등을 만족할 수 있으며, 이때, a:b가 2:1인 경우 a는 2개의 단위 방사방향 자석으로 이루어질 수 있고, a:b가 4:1인 경우 a는 4개의 단위 방사방향 자석으로 이루어질 수 있으며, a:b가 5:1인 경우 a는 5개의 단위 방사방향 자석으로 이루어질 수 있다. 다만, a:b가 5:1인 경우에는 a/(a+b)=0.83이 되어 회전자의 최적 공극 자속밀도 범위를 벗어나게 되므로, 최적 공극 자속밀도 범위를 만족하기 위해서는 a:b가 2:1, 3:1 또는 4:1 중 어느 하나인 것이 바람직하다. 동시에, 회전자의 제작성 측면과 크기 등의 측면에서 살펴보면, 자석의 수가 너무 많아지게 되면 그만큼 조립 공수가 증가되어 회전자 제작 효율이 저하되고, 자석의 수가 너무 적어지게 되면 방사방향 자석 외측 호의 길이 a가 증가하게 되어 백아이언의 두께 f가 같이 증가하게 된다. 따라서 종합적으로 고려해보면 상술한 바와 같이 a:b가 3:1을 만족하는 것이 가장 바람직한 실시예라고 할 수 있다.
나아가, 도시하지는 않았으나, 원주방향 자석 또한 서로 동일한 크기와 형상을 가지는 단위 원주방향 자석 다수개로 이루어질 수 있으며, 단위 방사방향 자석은 다시 더 작은 단위의 자석 다수개로 이루어질 수도 있음은 물론이다. 예를 들어 a:b가 3:1을 만족하는 경우, 원주방향 자석은 2개의 단위 자석으로 이루어지고, 이에 대응되도록 방사방향 자석은 6개의 단위 자석으로 이루어질 수 있으며, 이를 일반화하면 a:b가 n:1을 만족하는 경우 방사방향 자석의 단위 자석 총 개수는 원주방향 자석의 단위 자석 총 개수의 n배가 될 수 있다.
한편, 본 발명에 의한 회전자에 있어서, 백아이언(200)은 복수의 자석(100) 내주면과 면접하도록 복수의 자석(100) 내측에 배치되고, 백아이언(200)의 외주면 상에는, 방사방향으로 소정 돌출되어 원주방향으로 서로 이격되는 다수개의 미끌림 방지턱(250)이 구비될 수 있다. 도 7은 본 발명의 일 예에 따른 회전자의 분해 사시도로서, 도시된 바와 같이 백아이언(200)에는 백아이언(200)의 외주면 외측으로 돌출된 미끌림 방지턱(250)이 다수개 구비될 수 있다.
특히, 본 발명에 의하면 3분할 된 방사방향 자석(110)으로서 3개의 단위 방사방향 자석(110a)과 1개의 원주방향 자석(120)이 한 극을 이룰 수 있으며, 이때 4개의 자석(110a, 120)이 백아이언(200)의 표면에 접착되어 고정될 수 있다. 그러나, 백아이언(200)의 표면온도가 고온으로 올라갈 경우 접착력이 약해져 자석이 미끄러질 수 있고, 특히, 고속 운전시 순간적 부하로 인해 속도 맥동이 생기는 경우, 고속으로 가감속 하는 경우, 및 회전방향이 빠르게 바뀌는 경우 등에서 자석의 표면 미끄러짐이 발생할 수 있다. 이와 같은 표면 미끌림은 고정자와의 얼라인 틀어짐, 제어 각(control angle) 오차 등 모터 제어에 걸림돌로 작용한다. 본 발명은 이러한 자석의 표면 미끄러짐을 방지하기 위해, 미끌림 방지구조로서 백아이언 외주면 상에 미끌림 방지턱을 더 구비함으로써, 자석을 단순히 접착시켜 고정하는 구조에 비해 더욱 견고하게 자석을 회전자내에서 고정시킬 수 있다. 이에 따라 제어 각 오차를 줄여 제어 실패를 방지하고 제어 효율을 높일 수 있다. 동시에, 미끌림 방지턱은 자석 조립 과정에서 자석을 지지하여 조립을 용이하게 하도록 한다.
여기서, 각 자석(110, 120)의 내측면 양단에는 미끌림 방지턱(250)에 대응되는 홈(115, 125)이 형성되고, 해당 홈(115, 125)에 미끌림 방지턱(250)이 삽입결합되어 미끌림 방지턱(250) 각각의 사이에 각 자석(110, 120)이 배치될 수 있다. 이는 자석과 자석 사이의 공극을 줄이며, 공간 활용을 극대화 할 수 있다. 한편, 도7에서는 직사각 단면 형태의 미끌림 방지턱(250)과 그에 대응되는 형태의 자석 홈(115, 125)이 도시되어 있으나, 미끌림 방지턱(250)의 단면 형태는 도 8에 도시된 바와 같이 삼각형일 수 있으며, 도시하지는 않았으나 미끌림 방지턱(250)의 단면 형태가 원형, 둥근사각형 등 다양한 형태로 이루어질 수 있다. 미끌림 방지턱이 삼각형 형태를 가지는 경우에는 회전자 조립시 또는 회전자 회전시 자석이 깨지는 것을 방지할 수 있고, 자석 조립이 쉬워지며, 미끌림 방지턱에 의해 누설되는 자속의 양을 줄일 수 있다. 한편, 상술한 바와 반대 구조로서, 각 자석 내측면에 하나 이상의 돌출된 구조를 형성하고 백아이언의 외주면에 해당 돌출 구조에 대응되는 홈 구조를 형성하여, 양 구조를 결합하는 방식으로 결합 구조가 구성될 수도 있다.
도 9는 본 발명의 일 예에 따른 회전자를 포함한 2분절 할박 전동기의 모식도를 나타낸 것으로서, 고정자(stator) 내부에 회전자가 배치된 전동기를 나타낸다. 한편, 이상에서 설명한 본 발명의 회전자는, 백아이언(200) 외측에 복수의 자석(100)이 배치되고, 복수의 자석(100) 외측에 슬리브(300)가 배치되는 이너 모터에 적용 가능한 회전자를 예로 들어 설명하였으나, 본 발명은 아우터 모터, 리니어 모터, 액시얼 모터, 또는 더블 액시얼 모터로 응용 가능하다.
즉, 도 10은 아우터 모터에 적용 가능한 회전자로서, 복수의 자석(100) 외주면과 면접하도록 복수의 자석(100) 외측에 백아이언(200)이 배치될 수 있고, 도 11은 리니어 모터에 적용 가능한 회전자로서, 직선으로 배치되는 복수의 자석(100) 하부면과 면접하도록 복수의 자석(100) 하부에 백아이언(200)이 배치될 수 있으며, 아우터 모터 또는 리니어 모터에 적용되는 경우에는 자석 공극 쪽에 구조적 강성을 위한 슬리브가 필요 없다는 장점이 있다. 또한, 도 12는 액시얼 모터에 적용 가능한 회전자로서, 도 12(a)는 싱글 액시얼 모터를 나타내고 도 12(b)는 더블 액시얼 모터를 나타낸다. 액시얼 모터의 경우 복수의 자석(100) 일측면과 면접하도록 복수의 자석(100) 일측에 백아이언(200)이 배치될 수 있다.
한편, 본 발명에 있어서, 자석은 사마륨 코발트(SmCo) 재질의 고온자석일 수 있다. 할박 전동기의 경우 고정자의 권선에 흐르는 전류에 의해 발생되는 자속이 자석에 영향을 미쳐 자속의 철손을 증가시키고, 이에 따라 자석의 온도가 증가되어 자석이 감자될 수 있다. 따라서, 할박 전동기에서는 일반적으로 고온자석을 이용하여 자석의 감자를 방지한다. 본 발명에서는 백아이언 내측에 냉각시스템을 구비하여, 백아이언을 통해 자석의 열교환을 수행함에 따라 자석의 감자를 방지하는 것이 가능하다. 이 경우, 자석이 열교환을 통해 고온이 되는 것이 방지되기 때문에, 자석으로서 고가의 SmCo 고온자석이 아닌 저가의 네오듐 자석을 사용할 수도 있다.
이하에서는, 본 발명의 회전자를 제조하는 방법에 대하여 살펴보기로 한다. 일반적인 방법으로, 각 자석을 먼저 자화시키고, 자화된 자석 각각을 백아이언 외주면에 부착하여 회전자를 제조할 수 있다. 이러한 방법에 있어서는, 각 자석이 선자화되어 있기 때문에 각 자석을 백아이언 외주면에 부착할 시 자석끼리 작용하는 인력/척력에 의해 자석을 부착하는 것에 어려운 점이 있다.
이러한 문제를 해결하기 위해, 본 발명은, 원주방향 자석만을 선자화시켜 백아이언 외주면에 부착하고, 나머지 자석은 자화시키지 않은 자성체 상태로 백아이언 외주면에 부착한 이후, 자화기를 통해 나머지 자석을 방사방향으로 자화시킬 수 있다. 즉, 자화되지 않은 자석 다수개를 준비하고, 자석들 중 일부만 원주방향으로 자화시켜 백아이언에 설치하고, 나머지 자화되지 않은 자석을 백아이언의 나머지 부분에 설치한 이후, 자화되지 않은 자석을 방사방향으로 자화시켜 회전자를 제조할 수 있으며, 이후 자화된 복수의 자석을 감싸도록 복수의 자석 외측에 슬리브를 더 구비할 수 있다. 여기서 설치란 접착부재를 이용하여 자석을 백아이언 상에 고정 부착하는 것을 의미하며, 백아이언 상에 미끌림 방지턱이 구비되는 경우에는 미끌림 방지턱에 자석의 홈이 삽입되도록 함과 동시에 접착부재를 이용하여 자석을 백아이언 상에 고정 부착하는 것을 의미할 수 있다. 이와 같은 방법에 의하면, 모든 자석을 선자화한 이후 자화된 각 자석을 백아이언에 설치하는 것에 비해 조립성이 향상될 수 있다. 한편, 자화되지 않은 자석을 방사방향으로 자화시키기 위한 예로서, 자석이 부착된 백아이언을 자화기에 투입하여 자화기를 통해 자화시킬 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.
100: 복수의 자석
110: 방사방향 자석
110a: 단위 방사방향 자석
115: 방사방향 자석의 홈
120: 원주방향 자석
125: 원주방향 자석의 홈
200: 백아이언
250: 미끌림 방지턱
300: 슬리브
a: 방사방향 자석의 외측 호의 길이
b: 원주방향 자석의 외측 호의 길이
c: 회전자의 외반경
d: 슬리브의 두께
e: 자석의 두께
f: 백아이언의 두께

Claims (14)

  1. 원주방향을 따라 할박 배열(halbach array)되는 방사방향 자석과 원주방향 자석을 포함하는 복수의 자석; 및
    상기 복수의 자석의 일면과 면접하도록, 상기 복수의 자석의 일측에 배치되는 백아이언;을 포함하고,
    상기 백아이언은, 상기 복수의 자석 중 어느 하나의 내부 방사방향 자석으로부터 발생하는 극간 누설자속이, 상기 어느 하나의 내부 방사방향 자석 인근의 다른 외부 방사방향 자석과 이어지도록 경로를 제공하고,
    상기 방사방향 자석의 외측 호의 길이는, 상기 원주방향 자석의 외측 호의 길이보다 길고,
    상기 방사방향 자석의 외측 호의 길이를 a라 하고, 상기 원주방향 자석의 외측 호의 길이를 b라 하고, 상기 복수의 자석의 두께를 e라 하고, 상기 백아이언의 두께를 f라 하면, 상기 a, b, e, 및 f를 설계변수로 포함하며,
    0.52 ≤ a/(a+b) ≤ 0.81 이고,
    0.46 ≤ e/(e+f) ≤ 0.82 인,
    2분절 쿼시 할박 전동기 회전자.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제1항에 있어서,
    상기 a와 상기 f는 비선형 비례 관계를 이루는 것을 특징으로 하는, 2분절 쿼시 할박 전동기 회전자.
  7. 제1항에 있어서,
    상기 백아이언은, 상기 복수의 자석의 내주면과 면접하도록 상기 복수의 자석의 내측에 배치되고,
    상기 백아이언의 외주면 상에는, 방사방향으로 소정 돌출되어 원주방향으로 서로 이격되는 다수개의 미끌림 방지턱이 구비되는 것을 특징으로 하는, 2분절 쿼시 할박 전동기 회전자.
  8. 제7항에 있어서,
    상기 복수의 자석 각각의 내측면 양단에는 홈이 형성되고,
    상기 홈에 상기 미끌림 방지턱이 삽입결합되어, 상기 다수개의 미끌림 방지턱 각각의 사이에 상기 복수의 자석 각각이 배치되는 것을 특징으로 하는, 2분절 쿼시 할박 전동기 회전자.
  9. 제7항에 있어서,
    상기 복수의 자석의 외측에 구비되어, 상기 복수의 자석을 감싸는 슬리브;를 더 포함하는, 2분절 쿼시 할박 전동기 회전자.
  10. 제1항에 있어서,
    상기 백아이언은,
    상기 복수의 자석의 외주면과 면접하도록 상기 복수의 자석의 외측에 배치되는 것을 특징으로 하는, 2분절 쿼시 할박 전동기 회전자.
  11. 원주방향을 따라 할박 배열(halbach array)되는 방사방향 자석과 원주방향 자석을 포함하는 복수의 자석; 및
    상기 복수의 자석의 일면과 면접하도록, 상기 복수의 자석의 일측에 배치되는 백아이언;을 포함하고,
    상기 백아이언은, 상기 복수의 자석 중 어느 하나의 내부 방사방향 자석으로부터 발생하는 극간 누설자속이, 상기 어느 하나의 내부 방사방향 자석 인근의 다른 외부 방사방향 자석과 이어지도록 경로를 제공하고,
    상기 방사방향 자석의 외측 호의 길이는, 상기 원주방향 자석의 외측 호의 길이보다 길고,
    상기 방사방향 자석의 외측 호의 길이를 a라 하고, 상기 원주방향 자석의 외측 호의 길이를 b라 하고, 상기 복수의 자석의 두께를 e라 하고, 상기 백아이언의 두께를 f라 하면, 상기 a, b, e, 및 f를 설계변수로 포함하며,
    a/(a+b)=0.75 이고,
    상기 방사방향 자석은 서로 동일한 크기와 형상을 가지는 3개의 단위 방사방향 자석으로 이루어지고, 상기 각 단위 방사방향 자석과 상기 원주방향 자석은 서로 동일한 크기와 형상으로 이루어지며,
    0.46 ≤ e/(e+f) ≤ 0.63 인,
    2분절 쿼시 할박 전동기 회전자.
  12. 삭제
  13. 삭제
  14. 삭제
KR1020200157851A 2020-11-23 2020-11-23 2분절 쿼시 할박 전동기 회전자 KR102498790B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200157851A KR102498790B1 (ko) 2020-11-23 2020-11-23 2분절 쿼시 할박 전동기 회전자
JP2021189300A JP7234333B2 (ja) 2020-11-23 2021-11-22 2分節擬似ハルバッハモータの回転子
US17/533,029 US11817746B2 (en) 2020-11-23 2021-11-22 2-segment quasi-Halbach rotor of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200157851A KR102498790B1 (ko) 2020-11-23 2020-11-23 2분절 쿼시 할박 전동기 회전자

Publications (2)

Publication Number Publication Date
KR20220070855A KR20220070855A (ko) 2022-05-31
KR102498790B1 true KR102498790B1 (ko) 2023-02-13

Family

ID=81657333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200157851A KR102498790B1 (ko) 2020-11-23 2020-11-23 2분절 쿼시 할박 전동기 회전자

Country Status (3)

Country Link
US (1) US11817746B2 (ko)
JP (1) JP7234333B2 (ko)
KR (1) KR102498790B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4376196A1 (en) 2022-06-10 2024-05-29 LG Energy Solution, Ltd. Battery pack and vehicle comprising same
KR20240071562A (ko) 2022-11-16 2024-05-23 주식회사 오투마 할박배열구조 모터의 자석 설치구조 및 설치방법
CN115833513B (zh) * 2023-01-09 2023-07-11 中山大洋电机股份有限公司 一种带交替极结构的高转矩密度的盘式电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228072A (ja) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp 永久磁石型回転電機およびその製造方法
WO2013008284A1 (ja) 2011-07-08 2013-01-17 三菱電機株式会社 永久磁石型回転電機およびその製造方法
WO2014115655A1 (ja) * 2013-01-23 2014-07-31 三菱電機株式会社 回転子およびその回転子を備えた回転電機
JP2020054175A (ja) 2018-09-28 2020-04-02 日本電産株式会社 モータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122468A (ja) 1985-11-22 1987-06-03 Fuji Photo Film Co Ltd Ccdの信号読出し回路
JPS62122468U (ko) * 1986-01-27 1987-08-04
BR9601756A (pt) * 1996-05-29 1998-09-29 Brasil Compressores Sa Capa para rotor de motor elétrico
JPH11308793A (ja) * 1998-04-24 1999-11-05 Matsushita Electric Ind Co Ltd アウタロータ型永久磁石モータ
US6906446B2 (en) 2001-09-05 2005-06-14 The Regents Of The University Of California Halbach array generator/motor having mechanically regulated output voltage and mechanical power output
US10447110B2 (en) * 2016-06-01 2019-10-15 Lawrence Livermore National Security, Llc Halbach-array radial stabilizer for a passive magnetic bearing
US20190080829A1 (en) * 2017-09-12 2019-03-14 Dexter Magnetic Technologies, Inc. Magnet array with near sinusoidal field output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228072A (ja) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp 永久磁石型回転電機およびその製造方法
WO2013008284A1 (ja) 2011-07-08 2013-01-17 三菱電機株式会社 永久磁石型回転電機およびその製造方法
WO2014115655A1 (ja) * 2013-01-23 2014-07-31 三菱電機株式会社 回転子およびその回転子を備えた回転電機
JP2020054175A (ja) 2018-09-28 2020-04-02 日本電産株式会社 モータ

Also Published As

Publication number Publication date
JP2022082518A (ja) 2022-06-02
JP7234333B2 (ja) 2023-03-07
US20220166273A1 (en) 2022-05-26
US11817746B2 (en) 2023-11-14
KR20220070855A (ko) 2022-05-31

Similar Documents

Publication Publication Date Title
KR102498790B1 (ko) 2분절 쿼시 할박 전동기 회전자
CN109638995B (zh) 用于旋转电机的转子及其制造方法
US10630122B2 (en) Motor
US8937417B2 (en) Rotating electric machine and wind power generation system
US20180041080A1 (en) Rotor, rotary electric machine, and method for manufacturing rotor
JP5501660B2 (ja) 電動モータ及びそのロータ
US20140117802A1 (en) Rotor having projections for positioning permanent magnets and electric motor including such rotor
JP4678321B2 (ja) ロータの製造方法及び電動パワーステアリング用モータ
US20220337129A1 (en) Motor
JP4002451B2 (ja) 回転電機
JP4704883B2 (ja) 永久磁石式回転電機および円筒型リニアモータ
JP2018137948A (ja) ロータ
JP4232329B2 (ja) ステッピングモータ
WO2023042639A1 (ja) ロータの製造装置
WO2022219896A1 (ja) 回転電機のロータ、回転電機及び電動駆動システム
JP7488468B2 (ja) 電磁装置
KR102065267B1 (ko) 3d 프린팅을 이용하여 제조된 코어리스 전동기용 고정자 및 이를 포함하는 코어리스 전동기
JP7429441B2 (ja) 磁石列ユニットおよび電磁装置
JP7217205B2 (ja) 外転型表面磁石回転電機
WO2023053604A1 (ja) ロータおよび回転電機
EP4387057A1 (en) Rotor for an axial flux motor
US20220216742A1 (en) Stator and motor
KR20220157987A (ko) 축방향 자속 전자기 머신용 회전자
JP4714512B2 (ja) モータの回転子及び回転子の製造方法
WO2019150499A1 (ja) 回転子部材、回転子及び回転電機

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant