WO2022219896A1 - 回転電機のロータ、回転電機及び電動駆動システム - Google Patents

回転電機のロータ、回転電機及び電動駆動システム Download PDF

Info

Publication number
WO2022219896A1
WO2022219896A1 PCT/JP2022/004675 JP2022004675W WO2022219896A1 WO 2022219896 A1 WO2022219896 A1 WO 2022219896A1 JP 2022004675 W JP2022004675 W JP 2022004675W WO 2022219896 A1 WO2022219896 A1 WO 2022219896A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
electric machine
magnetic pole
axis
Prior art date
Application number
PCT/JP2022/004675
Other languages
English (en)
French (fr)
Inventor
雅寛 堀
隆樹 板谷
英明 後藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022219896A1 publication Critical patent/WO2022219896A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotor of a rotating electrical machine, a rotating electrical machine, and an electric drive system.
  • An object of the present invention is to provide a rotor for a rotary electric machine that can increase the magnet torque and reduce the demagnetization factor.
  • the present invention includes a magnet and a rotor core having a storage space for the magnet, wherein the magnet includes a radially outer first magnetic pole surface through which a main magnetic flux passes and the first magnetic pole surface. and a q-axis side surface connecting the first magnetic pole surface and the second magnetic pole surface.
  • the magnetization direction of the magnet is perpendicular to the first magnetic pole surface.
  • the q-axis side surface is composed of a plurality of side surfaces, and of the q-axis side surfaces, one radially outer surface is formed at an angle closer to the magnetization direction than the other surfaces.
  • the magnet torque can be increased and the demagnetization rate can be reduced.
  • FIG. 3 is a cross-sectional view of the rotor of the present embodiment, showing magnetization directions of magnets and a shape on the q-axis outer peripheral side;
  • FIG. 4 is a cross-sectional view of the rotor of the present embodiment, showing the shape of magnets on the inner peripheral side of the d-axis.
  • FIG. 4 is a cross-sectional view of the rotor of the present embodiment, showing the shape of the magnet on the inner peripheral side of the q-axis.
  • FIG. 4 is a cross-sectional view of a rotor showing an example using bonded magnets;
  • FIG. 4 is a cross-sectional view of a rotor showing an example in which surfaces of magnets and a storage space are curved;
  • FIG. 4 is a cross-sectional view of a rotor showing an example in which corners of magnets and a storage space are curved;
  • FIG. 4 is a cross-sectional view of a rotor showing an example in which magnets are arranged radially outward;
  • FIG. 4 is a cross-sectional view of a rotor showing an example in which corners of a storage space are filled with a non-magnetic material;
  • FIG. 4 is a cross-sectional view of a rotor showing an example in which recesses are provided on the outer circumference of the rotor core;
  • 1 is a configuration diagram of a motor including a rotor of the present embodiment and an electric drive system including the motor as driving power;
  • FIG. 5 is a diagram showing the demagnetization rate of a comparative example in which a magnet insertion hole (storage space) is filled with magnets; It is a figure which shows the demagnetization factor of the magnet of an example to which this invention is applied.
  • the rotor 10 mainly includes a rotor core 11 and magnets 12 as components.
  • the rotor core 11 is configured by laminating electromagnetic steel plates (thin plates).
  • the magnet 12 is, for example, a sintered magnet, a bonded magnet, or the like, and is made of a material that generates magnetic flux.
  • a magnet storage space 13 (hole) is formed in the rotor core 11 .
  • the magnet 12 is stored in the storage space 13 with a certain clearance.
  • the two magnets 12 are arranged in a V shape with the d-axis as an axis of symmetry, but they may be arranged in a straight line.
  • the rotor 10 includes magnets 12 and a rotor core 11 forming a storage space 13 for the magnets 12 .
  • the magnet 12 has a first magnetic pole surface 12A and a second magnetic pole surface 12B that are opposed to each other and through which the main magnetic flux passes, and connects the first magnetic pole surface 12A and the second magnetic pole surface 12B in a cross section that traverses the axial direction. It has close q-axis flanks.
  • the direction of magnetization forming the main magnetic flux of the magnet 12 is inclined toward the d-axis from the angle perpendicular to the first magnetic pole face 12A.
  • the q-axis side surface is formed of a plurality of side surfaces, and one side of the q-axis side surface is formed at an angle closer to the magnetization direction forming the main magnetic flux than the other surfaces.
  • the main magnetic flux is the magnetic flux produced by the magnet, and the magnetization direction is the direction (angle) of the main magnetic flux.
  • the first magnetic pole surface 12A is the surface of the magnet 12 on the outer peripheral side
  • the second magnetic pole surface 12B is the surface of the magnet 12 on the inner peripheral side.
  • the d-axis and q-axis indicate the position of the rotor 10 in the circumferential direction.
  • the d-axis is located at the center of the magnetic poles of the rotor 10 in the circumferential direction, and the q-axis is located between the magnetic poles.
  • a rotor 10 of a rotary electric machine includes magnets 12 and a rotor core 11 having a storage space 13 for the magnets 12.
  • the magnet 12 includes a radially outer first magnetic pole surface 12A through which the main magnetic flux passes, a second magnetic pole surface 12B facing the first magnetic pole surface 12A, and a q-axis side connecting the first magnetic pole surface 12A and the second magnetic pole surface 12B.
  • the q-axis side surface is composed of a plurality of side surfaces, and of the q-axis side surfaces, one radially outer surface is formed at an angle closer to the magnetization direction than the other surfaces.
  • one radially outer surface is preferably parallel to the magnetization direction, but may be formed substantially parallel to the magnetization direction or along the magnetization direction.
  • the output surface of the magnet magnetic flux is increased by the radially outer d-axis side surface 12C, so that the magnet magnetic flux can be increased and the magnet torque can be increased.
  • the magnet 12 becomes thicker in the magnetization direction at the magnet end on the q-axis-periphery side of the magnet 12, and the demagnetization resistance is improved. That is, the demagnetization factor of the magnet 12 can be reduced.
  • the demagnetization resistance is an index of the difficulty of demagnetization against an external magnetic field, and is approximately proportional to the thickness of the magnet.
  • the demagnetization rate indicates the rate at which the magnetic flux of the magnet has decreased due to irreversible demagnetization.
  • two or more magnets 12 are provided in one pole in the circumferential direction, and have a d-axis side surface that connects the first magnetic pole surface 12A and the second magnetic pole surface 12B and is close to the d-axis side.
  • the d-axis side surface is formed by a plurality of side surfaces, and one surface of the d-axis side surface is formed at an angle closer to the magnetization direction forming the main magnetic flux than the other surfaces.
  • two or more magnets 12 are provided per pole, and have d-axis side surfaces connecting the first magnetic pole surface 12A and the second magnetic pole surface 12B.
  • the d-axis side surface is composed of a plurality of side surfaces, and of the d-axis side surfaces, one radially inner surface is formed at an angle closer to the magnetization direction than the other surfaces.
  • one radially inner surface is preferably parallel to the magnetization direction, but may be formed substantially parallel to the magnetization direction or along the magnetization direction.
  • the magnet becomes thicker with respect to the magnetization direction at the magnet end on the d-axis-inner circumference side of the magnet 12, and the demagnetization resistance is improved. That is, by eliminating the portion thin with respect to the magnetization direction of the magnet 12, the demagnetization resistance can be improved and the demagnetization rate of the magnet 12 can be reduced.
  • two magnets 12 are arranged per pole. That is, the magnet is divided into two. By dividing the magnet into two and providing a rib between them, the centrifugal force resistance performance of the rotor core 11 that supports the magnet can be improved.
  • one q-axis side surface of the magnet 12 is formed at an angle closer to the q-axis forming the main magnetic flux than the other surfaces.
  • one of the q-axis side surfaces on the radially inner side is formed at an angle closer to the q-axis than the other surfaces.
  • one radially inner surface is preferably parallel to the q-axis, but may be formed substantially parallel to the q-axis or along the q-axis.
  • the reluctance torque due to the attraction between the external magnetic field and the rotor core 11 is increased by widening the path of the q-axis magnetic flux entering the rotor core 11 from the q-axis. Therefore, by setting the q-axis-inner peripheral side end of the magnet 12 at an angle close to the q-axis, the path of the q-axis magnetic flux is widened, making it easier for the q-axis magnetic flux to pass through. Thereby, the reluctance torque can be increased.
  • the q-axis magnetic flux is an external magnetic flux (stator magnetic flux) entering the rotor core 11 from the q-axis.
  • magnet 12 is a bonded magnet.
  • a bond magnet is molded from a magnetic material and a binding material (for example, resin).
  • Types of bond magnets include, for example, the SmFeN system and the SmCoN system.
  • the bonded magnet Since the bonded magnet is made by injection molding, it has a large degree of freedom in shape, and can be relatively easily made into the complicated shape and magnetization direction shown in this embodiment.
  • a sintered magnet needs to be formed (for example, cut) from a rectangular shape in post-processing, which increases man-hours and costs.
  • curvature As shown in FIG. 5, some of the surfaces of the magnet 12 and the storage space 13 may be curved. By giving each surface a curvature, the magnet can be thickened while ensuring the passage of the q-axis magnetic flux, so that the demagnetization resistance can be improved.
  • some of the corners of the magnet 12 and the storage space 13 may be curved.
  • curvature By giving curvature to the corners of the insertion space (accommodation space 13), stress concentration during rotation of the rotor 10 can be alleviated and strength can be improved.
  • point contact between the magnet 12 and the storage space 13 can be prevented, and chipping and cracking of the magnet 12 can be prevented.
  • the curvature of the magnet 12 must be selected according to the curvature of the storage space 13 so that the magnet 12 can be inserted into the storage space 13 .
  • Magnetization is the process of applying a large magnetic field to a magnet that does not have magnetization or has little magnetization relative to the maximum performance of the magnet, thereby making it magnetized.
  • the magnets 12 Since it is difficult for the magnetizing magnetic field to reach the inner diameter side of the rotor core 11, it is desirable to arrange the magnets 12 on the outer diameter side. In particular, bond magnets have lower magnetization performance than sintered magnets, so they need to be arranged closer to the outer diameter side. Of course, part of the magnets 12 may be arranged on the inner diameter side of the radial center of the rotor core 11 .
  • Non-magnetic material In the example of FIG. 8, a non-magnetic material 14 is filled between the magnets 12 and the inner wall 13A of the rotor core 11 forming the storage space 13.
  • the rotor 10 includes the non-magnetic material 14 between the inner wall 13A of the rotor core 11 forming the storage space 13 and one of the q-axis side surfaces of the magnets 12 on the radially outer side.
  • the non-magnetic material 14 is a non-magnetic material such as air or resin.
  • the magnetic flux can be blocked, so the leakage magnetic flux can be reduced and the torque can be improved.
  • magnetic flux can be prevented from entering the corners of the magnet at an angle away from the magnetization direction, and the demagnetization rate can be improved.
  • a recess 15 is provided on the outer circumference of the rotor core 11 .
  • the depression 15 is a structure that provides a depression on the surface of the rotor core 11 .
  • Torque ripple is a phenomenon in which torque is not constant but pulsates due to spatial or temporal pulsation of magnetic flux.
  • FIG. 10 is a configuration diagram of a motor 100 (rotating electric machine) including the rotor 10 according to the present embodiment and an electric drive system 200 including the motor 100 as driving power.
  • the motor 100 is mainly composed of a rotor 10 and a stator 20.
  • the stator 20 has a stator core 21 and teeth 23 .
  • a coil 22 is wound around the teeth 23 .
  • a shaft 17 is attached to the rotor 10 .
  • the electric drive system 200 is composed of a motor 100 and a gear 18. A gear 18 is attached to the shaft 17 .
  • Electric drive system 200 may include an inverter that powers motor 100 .
  • the inverter may be integrated with the motor 100 or the gear 18 housing.
  • the magnetization direction is tilted toward the d-axis and the magnetic flux output surface increases, thereby increasing the amount of magnetic flux.
  • the peak value of the gap magnetic flux density can be increased. can be done.
  • FIG. 12A shows a comparative example in which the magnet insertion hole (storage space 13) is filled with the magnet 12. Since the demagnetization resistance of the magnet is proportional to the thickness of the magnet, the magnet is thin in the magnetization direction. The demagnetization rate of the part increases.
  • the shape of the q-axis-outer peripheral side end and the d-axis inner peripheral side end is formed at an angle close to the magnetization direction. can be eliminated and the demagnetization rate of the entire magnet can be reduced.
  • the magnet torque can be increased and the demagnetization rate can be reduced.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • a magnet and a rotor core forming a storage space for the magnet, the magnet having a first magnetic pole surface and a second magnetic pole surface facing each other in a cross section transverse to the axial direction and through which the main magnetic flux passes, and the first magnetic pole surface It has a q-axis side surface that connects the magnetic pole surface and the second magnetic pole surface and is close to the q-axis side, and the magnetization direction that forms the main magnetic flux of the magnet is inclined from the angle perpendicular to the first magnetic pole surface to the d-axis side,
  • a rotor for a rotary electric machine wherein a q-axis side surface is formed by a plurality of side surfaces, and one surface of the q-axis surface is formed at an angle closer to a magnetization direction forming the main magnetic flux than other surfaces.
  • two or more of the magnets are provided in one pole in the circumferential direction, connect the first magnetic pole surface and the second magnetic pole surface, and are close to the d-axis side. It has an axial side surface, the d-axis side surface is formed of a plurality of side surfaces, and one surface of the d-axis side surface is formed at an angle closer to the magnetization direction forming the main magnetic flux than the other surfaces.
  • a rotor for a rotary electric machine according to any one of (1) to (6), wherein most of the area of the magnet is arranged on the outer diameter side from the radial center position of the rotor core. rotor.
  • a rotor for a rotary electric machine according to any one of (1) to (8), wherein the rotor core is provided with a recess on the outer circumference thereof.
  • An electric drive system comprising the rotor of the rotary electric machine described in any one of (1) to (9) as power for driving.

Abstract

回転電機(モータ(100))のロータ(10)は、磁石(12)と、磁石(12)の収納空間(13)を有するロータコア(11)と、を備える。磁石(12)は、主磁束が通る径方向外側の第1磁極面(12A)と、第1磁極面(12A)に対向する第2磁極面(12B)と、第1磁極面(12A)と第2磁極面(12B)を繋ぐq軸側の側面を示すq軸側面を有する。磁石(12)の磁化方向は第1磁極面(12A)に垂直な角度からd軸側に傾いている。q軸側面は複数の側面で構成され、q軸側面のうち径方向外側の一面は他の面よりも磁化方向に近い角度で形成される。

Description

回転電機のロータ、回転電機及び電動駆動システム
 本発明は、回転電機のロータ、回転電機及び電動駆動システムに関する。
 回転電機のロータに、熱間加工プロセスを用いた成形により形成されたリング状磁石を径方向に切断した円弧磁石を用いることが知られている(例えば、特許文献1参照)。
国際公開第2020/067349号
 近年、コスト削減のため回転電機のロータに低コスト磁石を用いるようになってきている。低コスト磁石適用の課題として、低い磁束密度に対応した磁石配置を考案する必要がある。トルク増加のためには、磁石トルク増加、リラクタンストルク増加が必要となる。磁石トルクの増加のためには、磁石の磁束出力面を増加させる必要がある。リラクタンストルクの増加のためには、q軸磁束を通りやすい磁石配置とする必要がある。
 加えて、低コスト磁石は耐減磁性能も低いため、不可逆減磁しにくい磁石形状が必要となる。不可逆減磁が発生すると磁石磁束が低下するため、トルク指令に対して、出力トルクが低下し、要求されるトルク精度を達成できない可能性がある。しかし、特許文献1に開示されるような円弧磁石では、このような課題は考慮されていない。
 本発明の目的は、磁石トルクを増加し、減磁率を低減することができる回転電機のロータを提供することにある。
 上記目的を達成するために、本発明は、磁石と、前記磁石の収納空間を有するロータコアと、を備え、前記磁石は、主磁束が通る径方向外側の第1磁極面と、前記第1磁極面に対向する第2磁極面と、前記第1磁極面と前記第2磁極面を繋ぐq軸側の側面を示すq軸側面を有し、前記磁石の磁化方向は前記第1磁極面に垂直な角度からd軸側に傾き、前記q軸側面は複数の側面で構成され、前記q軸側面のうち径方向外側の一面は他の面よりも前記磁化方向に近い角度で形成される。
 本発明によれば、磁石トルクを増加し、減磁率を低減することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
磁石の磁化方向とq軸外周側の形状を示す本実施形態のロータの断面図である。 磁石のd軸内周側の形状を示す本実施形態のロータの断面図である。 磁石のq軸内周側の形状を示す本実施形態のロータの断面図である。 ボンド磁石を用いた例を示すロータの断面図である。 磁石および収納空間の面に曲率を持たせた例を示すロータの断面図である。 磁石および収納空間の角部に曲率を持たせた例を示すロータの断面図である。 磁石を径方向の外側に配置した例を示すロータの断面図である。 収納空間の角部に非磁性体を充填した例を示すロータの断面図である。 ロータコアの外周にくぼみを設けた例を示すロータの断面図である。 本実施形態のロータを含むモータと、それを駆動用の動力として含む電動駆動システムの構成図である。 本実施形態のロータのギャップ磁束密度を示す図である。 磁石挿入孔(収納空間)に磁石が充填された比較例の減磁率を示す図である。 本発明を適用した一例の磁石の減磁率を示す図である。
 以下、図面を用いて、本発明の実施形態によるモータ(回転電機)のロータの構成について説明する。なお、各図において、同一符号は同一部分を示す。
 (ロータの概略構成)
 図1に示すように、ロータ10は、主として、ロータコア11と磁石12を構成部品として備える。ロータコア11は、電磁鋼板(薄板)を積層して構成される。磁石12は、例えば、焼結磁石、ボンド磁石等であり、磁束を発生させる材料で構成される。
 ロータコア11には、磁石の収納空間13(孔)が成形されている。磁石12は、一定のクリアランスをもって収納空間13に収納される。なお、図1の例では、d軸を対称軸として2個の磁石12がV字状に配置されているが、直線状に配置されていてもよい。
 (磁石の磁化方向とq軸外周側)
 図1を用いて、ロータ10の構成を詳細に説明する。ロータ10は、磁石12と、磁石12の収納空間13を形成するロータコア11と、を備える。磁石12は、軸方向を横切る断面において、互いに対向しかつ主磁束が通る第1磁極面12A及び第2磁極面12Bと、第1磁極面12Aと第2磁極面12Bを繋ぎかつq軸側に近いq軸側面を有する。
 磁石12の主磁束を形成する磁化方向は第1磁極面12Aに垂直な角度から、d軸側に傾いている。q軸側面は、複数の側面で形成され、q軸側面の一面は他の面よりも主磁束を形成する磁化方向に近い角度で形成される。
 なお、主磁束は、磁石が作る磁束であり、磁化方向はその主磁束の向き(角度)である。第1磁極面12Aは、磁石12の外周側の面であり、第2磁極面12Bは、磁石12の内周側の面である。d軸、q軸は、ロータ10の周方向の位置を示す。d軸はロータ10の磁極の周方向中心に位置し、q軸は磁極間に位置する。
 上記の特徴は次のようにまとめることもできる。
 回転電機(モータ100)のロータ10は、磁石12と、磁石12の収納空間13を有するロータコア11と、を備える。磁石12は、主磁束が通る径方向外側の第1磁極面12Aと、第1磁極面12Aに対向する第2磁極面12Bと、第1磁極面12Aと第2磁極面12Bを繋ぐq軸側の側面を示すq軸側面を有する。磁石12の磁化方向は第1磁極面12Aに垂直な角度からd軸側に傾いている。q軸側面は複数の側面で構成され、q軸側面のうち径方向外側の一面は他の面よりも磁化方向に近い角度で形成される。
 q軸側面のうち径方向外側の一面は、磁化方向と平行であることが好ましいが、磁化方向と略平行あるいは磁化方向に沿って形成されていればよい。
 これにより、磁石磁束の出力面が径方向外側のd軸側面12Cの分だけ増加するため、磁石磁束を増加でき、磁石トルクを増加できる。また、磁石12のq軸-外周側の磁石端部において、磁化方向に対して磁石12が厚くなり、減磁耐力が向上する。すなわち、磁石12の減磁率を低減することができる。なお、減磁耐力は、外部磁界に対する減磁のしにくさの指標であり、磁石の厚さにほぼ比例する。減磁率は、不可逆減磁により磁石の磁束が低下した割合を示す。
 (磁石のd軸内周側)
 図2に示すように、磁石12は、1極中に周方向に2つ以上設けられ、第1磁極面12Aと第2磁極面12Bを繋ぎかつd軸側に近いd軸側面を有する。d軸側面は複数の側面で形成され、d軸側面の一面は、他の面よりも主磁束を形成する磁化方向に近い角度で形成される。
 換言すれば、磁石12は、1極につき2つ以上設けられ、第1磁極面12Aと第2磁極面12Bを繋ぐd軸側の側面を示すd軸側面を有する。d軸側面は複数の側面で構成され、d軸側面のうち径方向内側の一面は他の面よりも磁化方向に近い角度で形成される。
 d軸側面のうち径方向内側の一面は、磁化方向と平行であることが好ましいが、磁化方向と略平行あるいは磁化方向に沿って形成されていればよい。
 これにより、磁石12のd軸-内周側の磁石端部において、磁化方向に対して磁石が厚くなり、減磁耐力が向上する。すなわち、磁石12の磁化方向に対して薄い部位をなくすことで減磁耐力を向上し、磁石12の減磁率を低減することができる。
 図2の例では、1極につき2つの磁石12を配置している。つまり、磁石を2分割している。磁石を2分割し、それらの間にリブを設けることで、磁石を支えるロータコア11の耐遠心力性能を向上できる。
 (磁石のq軸内周側)
 図3に示すように、磁石12のq軸側面の一面は、他の面よりも主磁束を形成するq軸に近い角度で形成される。換言すれば、q軸側面のうち径方向内側の一面は他の面よりもq軸に近い角度で形成される。q軸側面のうち径方向内側の一面は、q軸と平行であることが好ましいが、q軸と略平行あるいはq軸に沿って形成されていればよい。
 外部磁界とロータコア11との引き付けによるリラクタンストルクは、q軸からロータコア11に侵入するq軸磁束の経路を広い形状とすることで増加する。そこで、磁石12のq軸-内周側端部をq軸に近い角度にすることで、q軸磁束の経路が広がり、q軸磁束を通りやすくする。これにより、リラクタンストルクを増加することができる。なお、q軸磁束は、q軸からロータコア11に侵入する外部磁束(ステータの磁束)である。
 (ボンド磁石)
 図4の例では、磁石12は、ボンド磁石である。ボンド磁石は磁性体とバインド材(例えば、樹脂)によって成形される。ボンド磁石の種類には、例えば、SmFeN系やSmCoN系などがある。
 ボンド磁石は、射出成型により作られるため、形状自由度が大きく、本実施形態で示した複雑な形状や磁化方向を比較的容易に作ることができる。一方、焼結磁石では、矩形形状から後加工で成形(例えば、切削)する必要があり、工数増加やコスト増加が発生する。
 (曲率)
 図5に示すように、磁石12および収納空間13の面のいくつかに曲率を持たせてもよい。各面に曲率を持たせることで、q軸磁束の通路を確保しつつ磁石を厚くできるため、減磁耐力の向上が可能となる。
 また、図6に示すように、磁石12および収納空間13の角部のいくつかに曲率を持たせてもよい。挿入空間(収納空間13)の角部に曲率を持たせることで、ロータ10の回転時の応力集中を緩和し、強度を向上できる。また、磁石12の角部に曲率を持たせることで、磁石12と収納空間13が点接触することを防ぎ、磁石12の欠け、割れを防ぐことができる。磁石12を収納空間13に挿入できるよう、磁石12の曲率は、収納空間13の曲率に合わせて選定する必要がある。
 なお、上記の特徴は、磁石12及び収納空間13の面もしくは角部のいくつかに曲率が設けられるということもできる。
 (磁石の径方向の位置)
 図7に示すように、磁石12の多くの面積はロータコア11の径方向中心の位置から外径側に配置される。換言すれば、磁石12の過半の軸方向断面はロータコア11の径方向中心から径方向外側に位置する。
 モータの量産性を考慮すると、ロータ10の制作時には未着磁の磁石を用いて、ロータ10の作成後に着磁することが望ましい。着磁は、磁化を持たない、または磁石の最大性能に対して磁化が少ない磁石に対して、大きな磁場を加えることで、磁化を持たせる工程である。
 着磁の磁場はロータコア11の内径側に到達させることが困難であるため、磁石12は外径側に配置されることが望ましい。特に、ボンド磁石は焼結磁石に対して、着磁性能が低いため、より外径側に配置することが必要となる。もちろん、磁石12の一部がロータコア11の径方向中心より内径側に配置されてもよい。
 (非磁性体)
 図8の例では、収納空間13を形成するロータコア11の内壁13Aと磁石12との間に、非磁性体14が充填されている。換言すれば、ロータ10は、収納空間13を形成するロータコア11の内壁13Aと、磁石12のq軸側面のうち径方向外側の一面との間に非磁性体14を備える。非磁性体14は、磁性を持たない物質であり、例えば、空気や樹脂などである。
 収納空間13のq軸外周側の角部に非磁性体14が充填されることで、磁束を遮断できるため、漏れ磁束が低減し、トルクを向上できる。また、磁石角部に磁化方向と離れた角度から磁束が侵入することを防ぎ減磁率を向上できる。
 (くぼみ)
 図9の例では、ロータコア11の外周にくぼみ15が設けられている。くぼみ15は、ロータコア11の表面にへこみを設ける構造である。
 くぼみ15をロータコア11の外周の適切な位置に設けることで、ギャップに発生する磁石の磁束の分布を正弦波化し、トルク脈動を低減できる。また、ロータ10のN極とS極でくぼみの大きさや位置を変えることで、トルクリプルの位相をずらし、トータルのトルクリプルを低減することも可能となる。なお、トルクリプルは、空間的、または時間的な磁束の脈動によりトルクが一定ではなく脈動する現象である。
 (モータと電動駆動システム)
 図10は、本実施形態によるロータ10を備えたモータ100(回転電機)と、モータ100を駆動用の動力として含む電動駆動システム200の構成図である。
 モータ100は、主として、ロータ10、ステータ20から構成される。ステータ20は、ステータコア21、ティース23を備える。ティース23には、コイル22が巻回される。ロータ10には、シャフト17が取り付けられる。
 電動駆動システム200は、モータ100、ギア18から構成される。ギア18は、シャフト17に取り付けられる。電動駆動システム200は、モータ100に電力を供給するインバータを含んでもよい。なお、インバータは、モータ100又はギア18のハウジングに一体化して設けてもよい。
 本実施形態の回転電機のロータ10をモータ100(電動駆動システム200)に用いることで、トルク、および出力を向上できる。
 (磁石トルクと減磁率)
 図11、図12A、12Bを用いて、本実施形態のロータ10の特性を説明する。
 本実施形態のロータ10によれば、磁化方向をd軸側に傾け、磁束出力面が増加することで磁束量が増加でき、図11に示すように、ギャップ磁束密度のピーク値を増加することができる。また、磁石トルク=(磁石磁束)*(電流値)であるから、磁石トルクも増加することができる。なお、*は乗算の演算子を示す。
 さらに、本実施形態のロータ10によれば、図12Bに示すように、減磁率を低減することができる。図12Aは、磁石挿入孔(収納空間13)に磁石12が充填された比較例を示しているが、磁石の減磁耐力は磁石の厚みに比例するため、磁化方向に対して、磁石が薄い部位は減磁率が増加する。本実施形態のロータ10によれば、q軸-外周側端部とd軸内周側端部の形状を磁化方向に近い角度に成型することで、図12Bに示すように、磁石の薄い部位をなくし磁石全体の減磁率を低減できる。
 以上説明したように、本実施形態によれば、磁石トルクを増加し、減磁率を低減することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 なお、本発明の実施形態は、以下の態様であってもよい。
 (1).磁石と、前記磁石の収納空間を形成するロータコアと、を備え、前記磁石は、軸方向を横切る断面において、互いに対向しかつ主磁束が通る第1磁極面と第2磁極面と、当該第1磁極面と第2磁極面を繋ぎかつq軸側に近いq軸側面を有し、磁石の主磁束を形成する磁化方向は前記第1磁極面に垂直な角度から、d軸側に傾き、前記q軸側面は複数の側面で形成され、前記q軸側面の一面は他の面よりも前記主磁束を形成する磁化方向に近い角度で形成される回転電機のロータ。
 (2).(1)に記載の回転電機のロータであって、前記磁石は、1極中に周方向に2つ以上設けられ、当該第1磁極面と第2磁極面を繋ぎかつd軸側に近いd軸側面を有し、前記d軸側面は複数の側面で形成され、前記d軸側面の一面は、他の面よりも前記主磁束を形成する磁化方向に近い角度で形成される。
 (3).(1)又は(2)に記載の回転電機のロータであって、前記q軸側面の一面は他の面よりも前記主磁束を形成するq軸に近い角度で形成される回転電機のロータ。
 (4).(1)-(3)のいずれかに記載の回転電機のロータであって、前記磁石は、ボンド磁石にて構成されることを特徴とする回転電機のロータ。
 (5).(1)-(4)のいずれかに記載の回転電機のロータであって、前記磁石および前記収納空間の面のいくつかに曲率を持たせたことを特徴とする回転電機のロータ。
 (6).(1)-(5)のいずれかに記載の回転電機のロータであって、前記磁石および前記収納空間の角部のいくつかに曲率を持たせたことを特徴とする回転電機のロータ。
 (7).(1)-(6)のいずれかに記載の回転電機のロータであって、前記磁石の多くの面積はロータコアの径方向中心位置から外径側に配置されることを特徴とする回転電機のロータ。
 (8).(1)-(7)のいずれかに記載の回転電機のロータであって、前記収納空間と前記磁石との間に、非磁性体が充填されていることを特徴とする回転電機のロータ。
 (9).(1)-(8)のいずれかに記載の回転電機のロータであって、前記ロータコアの外周にくぼみを設けたことを特徴とする回転電機のロータ。
 (10).駆動用の動力として、(1)-(9)にいずれかに記載された回転電機のロータを備えたことを特徴とする電動駆動システム。
10…ロータ
11…ロータコア
12…磁石
12A…第1磁極面
12B…第2磁極面
12C…径方向外側のd軸側面
13…磁石の収納空間
14…非磁性体
15…くぼみ
16…ロータ端盤
17…シャフト
18…ギア
20…ステータ
21…ステータコア
22…コイル
22A…コイルエンド
23…ティース
100…モータ
200…電動駆動システム

Claims (10)

  1.  磁石と、前記磁石の収納空間を有するロータコアと、を備え、
     前記磁石は、主磁束が通る径方向外側の第1磁極面と、前記第1磁極面に対向する第2磁極面と、前記第1磁極面と前記第2磁極面を繋ぐq軸側の側面を示すq軸側面を有し、
     前記磁石の磁化方向は前記第1磁極面に垂直な角度からd軸側に傾き、
     前記q軸側面は複数の側面で構成され、前記q軸側面のうち径方向外側の一面は他の面よりも前記磁化方向に近い角度で形成される回転電機のロータ。
  2.  請求項1に記載の回転電機のロータであって、
     前記磁石は、1極につき2つ以上設けられ、第1磁極面と第2磁極面を繋ぐd軸側の側面を示すd軸側面を有し、
     前記d軸側面は複数の側面で構成され、前記d軸側面のうち径方向内側の一面は他の面よりも前記磁化方向に近い角度で形成される
     ことを特徴とする回転電機のロータ。
  3.  請求項2に記載の回転電機のロータであって、
     前記q軸側面のうち径方向内側の一面は他の面よりもq軸に近い角度で形成される
     ことを特徴とする回転電機のロータ。
  4.  請求項1に記載の回転電機のロータであって、
     前記磁石は、ボンド磁石である
     ことを特徴とする回転電機のロータ。
  5.  請求項1に記載の回転電機のロータであって、
     前記磁石及び前記収納空間の面もしくは角部のいくつかに曲率が設けられる
     ことを特徴とする回転電機のロータ。
  6.  請求項1に記載の回転電機のロータであって、
     前記磁石の過半の軸方向断面は前記ロータコアの径方向中心から径方向外側に位置する
     ことを特徴とする回転電機のロータ。
  7.  請求項1に記載の回転電機のロータであって、
     前記収納空間を形成する前記ロータコアの内壁と、前記q軸側面のうち径方向外側の前記一面との間に非磁性体を備える
     ことを特徴とする回転電機のロータ。
  8.  請求項1に記載の回転電機のロータであって、
     前記ロータコアの外周にくぼみが設けられる
     ことを特徴とする回転電機のロータ。
  9.  請求項1に記載のロータを備えた回転電機。
  10.  請求項9に記載の回転電機を駆動用の動力として含む電動駆動システム。
PCT/JP2022/004675 2021-04-12 2022-02-07 回転電機のロータ、回転電機及び電動駆動システム WO2022219896A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067349A JP2022162470A (ja) 2021-04-12 2021-04-12 回転電機のロータ、回転電機及び電動駆動システム
JP2021-067349 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022219896A1 true WO2022219896A1 (ja) 2022-10-20

Family

ID=83639566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004675 WO2022219896A1 (ja) 2021-04-12 2022-02-07 回転電機のロータ、回転電機及び電動駆動システム

Country Status (2)

Country Link
JP (1) JP2022162470A (ja)
WO (1) WO2022219896A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206308A (ja) * 2007-02-20 2008-09-04 Toyota Industries Corp 永久磁石式回転電機
WO2010058609A1 (ja) * 2008-11-19 2010-05-27 三菱電機株式会社 電動機の回転子及び電動機及び送風機及び圧縮機
JP2019140893A (ja) * 2017-08-01 2019-08-22 株式会社デンソー 回転電機及び回転電機駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206308A (ja) * 2007-02-20 2008-09-04 Toyota Industries Corp 永久磁石式回転電機
WO2010058609A1 (ja) * 2008-11-19 2010-05-27 三菱電機株式会社 電動機の回転子及び電動機及び送風機及び圧縮機
JP2019140893A (ja) * 2017-08-01 2019-08-22 株式会社デンソー 回転電機及び回転電機駆動システム

Also Published As

Publication number Publication date
JP2022162470A (ja) 2022-10-24

Similar Documents

Publication Publication Date Title
CN108075585B (zh) 旋转电机
CN112838693B (zh) 旋转电机
US9515539B2 (en) Three-phase electric motor with a low detent torque
WO2017085814A1 (ja) 電動機および空気調和機
JP5722301B2 (ja) 埋込磁石型同期電動機の回転子および埋込磁石型同期電動機
WO2014050154A1 (ja) ロータおよび回転電気機械
JP2012161227A (ja) 回転電機用回転子
JP2012161228A (ja) 回転電機用回転子
JP5347588B2 (ja) 埋め込み磁石式モータ
JP2007330025A (ja) モータ
JP6196864B2 (ja) 永久磁石回転電機
US10447099B2 (en) Rotary electric machine
US20230253843A1 (en) Adhesive mixture including hard magnetic material for e-machine rotor
KR20180090476A (ko) 모터
JP2018011466A (ja) 永久磁石埋込同期機
JP6507956B2 (ja) 永久磁石式回転電機
JP7166066B2 (ja) 回転電機
JP7299531B2 (ja) 回転子、モータ
CN111466066B (zh) 旋转电机
WO2022219896A1 (ja) 回転電機のロータ、回転電機及び電動駆動システム
JP6357859B2 (ja) 永久磁石埋め込み式回転電機
JP2018042371A (ja) ブラシレスモータ
JP6987318B1 (ja) 永久磁石同期モータ
JP5944267B2 (ja) 回転子および電動機
CN109997290B (zh) 同步磁阻型旋转电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787824

Country of ref document: EP

Kind code of ref document: A1