KR102461535B1 - 기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 방법들, 장치들 및 시스템들 - Google Patents

기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 방법들, 장치들 및 시스템들 Download PDF

Info

Publication number
KR102461535B1
KR102461535B1 KR1020167030280A KR20167030280A KR102461535B1 KR 102461535 B1 KR102461535 B1 KR 102461535B1 KR 1020167030280 A KR1020167030280 A KR 1020167030280A KR 20167030280 A KR20167030280 A KR 20167030280A KR 102461535 B1 KR102461535 B1 KR 102461535B1
Authority
KR
South Korea
Prior art keywords
bacteria
ultrasonic
electromagnetic energy
energy
light
Prior art date
Application number
KR1020167030280A
Other languages
English (en)
Other versions
KR20160141789A (ko
Inventor
마크 이 세퍼
테시에 브라운 맥닐리
Original Assignee
포토소닉스 메디컬, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포토소닉스 메디컬, 인크. filed Critical 포토소닉스 메디컬, 인크.
Publication of KR20160141789A publication Critical patent/KR20160141789A/ko
Application granted granted Critical
Publication of KR102461535B1 publication Critical patent/KR102461535B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0624Apparatus adapted for a specific treatment for eliminating microbes, germs, bacteria on or in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/20Power-driven cleaning or polishing devices using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0047Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0052Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/025Ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/084Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0606Mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0644Handheld applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0034Skin treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers

Abstract

박테리아(24a)를 처리하기 위한 처리 장치(12a)의 부분(54a)은 직접 또는 간접 접촉을 통해서 박테리아(24a)와 결합될 수 있다. 기계적인 스트레스 에너지 및 전자기 에너지는 처리 장치(12a)로 생성되고, 결합하는 동안 처리 장치(12a)로부터 박테리아(24a)에 전달된다. 박테리아(24a)는 박테리아(24a)에 대한 킬링 효과를 생산하기 위해서 기계적인 스트레스 에너지 및 전자기 에너지 모두로 처리된다. 처리 장치(12a)는 기계적인 스트레스 에너지 방사 부분(40), 전자기 에너지 방사 부분(42), 및 박테리아(24a)와 직접 또는 간접 접촉으로 결합하여 결합하는 동안 기계적인 스트레스 에너지를 박테리아(24a)에 전달하기 위한 접촉하는 부분(54a)을 포함할 수 있다. 기계적인 스트레스 에너지 방사 부분(40) 및 전자기 에너지 방사 부분(42)은 박테리아(24a)에 대한 킬링 효과를 생산하기 위해서 기계적인 스트레스 에너지 및 전자기 에너지의 조합으로 박테리아(24a)를 처리하도록 동작 가능하다.

Description

기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 방법들, 장치들 및 시스템들{METHODS, DEVICES AND SYSTEMS FOR TREATING BACTERIA WITH MECHANICAL STRESS ENERGY AND ELECTROMAGNETIC ENERGY}
본 발명은 일반적으로 박테리아의 처리 및, 특히 박테리아를 처리하기 위한 방법들, 장치들, 및 시스템들에 관한 것이다.
박테리아 생물막을 포함하는 박테리아는, 휴먼 피부, 보철의 임플란트들, 메디컬 카테터들, 샤워 드레인들, 파이핑, 워터크래프트 선체들, 및 미생물들이 일반적으로 존재하는 수성의 환경에 노출되는 소정의 다른 표면을 포함해서, 유사한 살아있는 및 살아있지 않은 표면상에 널리 존재한다. 박테리아 생물막 포메이션은 플랑크톤 세포들로 언급된 자유 부유 박테리아 세포들이 수화된 표면에 부착될 때 시작한다. 착생 세포들로서 언급된 앵커된 박테리아 세포들은, 표면상에서 숙성 및 이식하고, 분산을 통해서 추가적인 표면에 퍼질 수 있고, 이에 의해 생물막을 성장시킨다.
휴먼 조직 또는 주변에서의 박테리아 성장은 피부 질병과 같은 다양한 건강상의 위험을 내포할 수 있다. 이에 관해서, 휴먼 조직 자체를 손상하지 않고, 박테리아를 방지 및 이에 의해 박멸하는데 효과적인 방식으로 이러한 박테리아를 처리하는 것이 바람직할 수 있다. 그런데, 박테리아가, 예를 들어 생물막 내로 성장 및 숙성함에 따라, 통상적인 항생제의 처리들에 크게 저항하게 될 것이다. 초음파는 박테리아를 처리하기 위한 가능한 대안적인 수단으로 고려된다. 고강도의 초음파가 박테리아 생물막을 포함하는 박테리아에 대항하는데 효과적인 것이 이를 증명하는 테스트를 통해 밝혀졌지만, 이러한 강도들은 일반적으로 휴먼 조직에 유해하고, 따라서 환자에 대한 임상 처리를 위해서는 비현실적이다.
따라서, 통상적인 항생제를 넘어 박테리아에 대항하는 효과적이고, 또한 휴먼 조직상에서 사용하기 위해 안전한, 처리에 대한 요구가 있다.
예시의 박테리아를 처리하기 위한 방법은, 직접 또는 간접 접촉을 통해서 처리 장치의 부분과 박테리아를 결합시키고; 처리 장치로 기계적인 스트레스 에너지를 생성하며; 처리 장치로 전자기 에너지를 생성하는 것을 포함할 수 있다. 박테리아와 결합하는 동안 처리 장치로부터 박테리아로 기계적인 스트레스 에너지 및 전자기 에너지를 전달할 수 있다. 박테리아에 대한 킬링 효과를 생산하기 위해서 처리 장치에 의해 생성된 기계적인 스트레스 에너지 및 전자기 에너지 모두로 박테리아를 처리할 수 있다.
예시의 박테리아를 처리하기 위한 처리 장치는, 기계적인 스트레스 에너지를 생성하도록 동작 가능한 기계적인 스트레스 에너지 방사 부분과; 전자기 에너지를 생성하도록 동작 가능한 전자기 에너지 방사 부분을 포함할 수 있다. 처리 장치는, 박테리아와 직접 또는 간접 접촉으로 결합하여 결합하는 동안 적어도 기계적인 스트레스 에너지를 박테리아에 전달하도록 구성된 접촉하는 부분을 더 포함할 수 있다.
기계적인 스트레스 에너지 방사 부분 및 전자기 에너지 방사 부분이 박테리아에 대한 킬링 효과를 생산하기 위해서 기계적인 스트레스 에너지 및 전자기 에너지의 조합으로 박테리아를 처리하도록 동작 가능하게 될 수 있다.
상기와 같은 구성에 의하면, 통상적인 항생제를 넘어 박테리아에 대항하는 효과적이고, 또한 휴먼 조직상에서 사용하기 위해 안전한 처리가 제공된다.
본 명세서의 일부에 통합되어 본 명세서를 구성하는 첨부 도면은, 상기 주어진 본 발명의 일반적인 설명 및 이하의 본 발명의 원리를 설명하기 위해 사용되는 실시형태의 상세한 설명과 함께 본 발명의 실시형태를 도시한다.
도 1A는 본 발명의 실시형태에 따른 광-음향 처리 장치로 박테리아를 처리하기 위한, 부분적으로 분해된 구성의, 실험적인 셋업을 나타내는 개략적인 도면이다.
도 1B는 조립된 구성으로 도 1A의 실험적인 셋업을 나타내는 개략적인 도면이다.
도 2는 본 발명의 다른 실시형태에 따른 광-음향 처리 장치를 포함하는 실험적인 셋업을 나타내는 개략적인 도면이다.
도 3A는 처리에 앞서 제1박테리아 생물막을 나타내는 확대된 화상이다.
도 3B는 본 발명의 실시형태에 따른 처리에 후속하는 도 3A의 생물막을 나타내는 확대된 화상이다.
도 3C는 처리에 앞서 제2박테리아 생물막을 나타내는 확대된 화상이다.
도 3D는 본 발명의 실시형태에 따른 처리에 후속하는 도 3C의 생물막을 나타내는 확대된 화상이다.
도 4A는 본 발명의 실시형태에 따른 박테리아 생물막을 처리를 위해 사용된 장치에 의해 출력된 초음파 에너지에 대응하는 사운드 강도 데이터의 선형 스케일상에서의 3차원 그래픽 표현이다.
도 4B는 대수적인 스케일상에서 플롯된 도 4A의 사운드 강도 데이터의 3차원 그래픽 표현이다.
도 4C는 대수적인 스케일상에서 도 4A의 플롯된 사운드 강도 데이터의 2차원 그래픽 표현이다.
도 5A는 처리되지 않은 상태로 제3박테리아 생물막을 나타내는 화상이다.
도 5B는 도 5A에 대응하는 확대된 화상이다.
도 5C는 본 발명의 실시형태에 따른 처리 30분 후 제4박테리아 생물막을 나타내는 화상이다.
도 5D는 도 5C에 대응하는 확대된 화상이다.
도 5E는 본 발명의 실시형태에 따른 처리 60분 후 제5박테리아 생물막을 나타내는 화상이다.
도 5F는 도 5E에 대응하는 확대된 화상이다.
도 6은 한 영역에서 광으로만 및 다른 영역에서 본 발명의 실시형태에 따른 결합된 광 및 초음파로 처리된 생물막의 화상이다.
도 7A는 광으로만(예를 들어, 단지 전자기 에너지) 및 본 발명의 실시형태에 따른 결합된 광 및 초음파로(예를 들어, 전자기 에너지 및 기계적인 스트레스 에너지)의 플랑크톤의 박테리아의 처리에 대응하는 데이터의 그래픽 표현이다.
도 7B는 대수적인 손실 함수에 따라 플롯된 도 7A의 데이터의 그래픽 표현이다.
도 8은 박테리아들이 처리된 광의 파장의 함수로서 박테리아 내에서 화학 약품의 광역학(photodynamic) 활성화의 그래픽 표현이다.
도 9는 본 발명의 실시형태에 따라 박테리아를 처리하기 위해 방사된 에너지의 연속적인 파형의 그래픽 표현이다.
도 10은 본 발명의 실시형태에 따라 박테리아를 처리하기 위해 방사된 에너지의 펄스화 파형의 단순화된 그래픽 표현이다.
도 11은 본 발명의 실시형태에 따른 박테리아를 처리하기 위한 시간적으로 교대하는 및 인터리브된 방식으로 방사된 펄스화된 초음파 및 광의 단순화된 그래픽 표현이다.
도 12는 본 발명의 실시형태에 따른 박테리아를 처리하기 위한 시간적으로 겹치는 방식으로 방사된 펄스화된 초음파 및 광의 단순화된 그래픽 표현이다.
도 13은 본 발명의 실시형태에 따른 결합된 초음파 및 광 에너지로의 박테리아의 처리에 대응하는 실험적인 파라미터들 및 결과들을 나타내는 테이블이다.
도 14는 본 발명의 다른 실시형태에 따른 광-음향 처리 장치의 개략적인 도면이다.
도 15는 본 발명의 다른 실시형태에 따른 광-음향 처리 장치의 개략적인 도면이다.
도 16은 본 발명의 다른 실시형태에 따른 광-음향 처리 장치의 개략적인 도면이다.
도 17은 본 발명의 다른 실시형태에 따른 광-음향 처리 장치의 개략적인 도면이다.
도 18은 본 발명의 실시형태에 따른 광 및 초음파에 박테리아를 노출하기 위해서 광-음향 처리 장치를 제어하기 위한 제어 시스템의 도식적인 도면이다.
도면을 참조해서, 결합된 초음파와 같은 기계적인 스트레스 에너지 및 광과 같은 전자기 에너지로 박테리아(예를 들어, 이하의 상세한 설명에서 한 예로서 사용된 박테리아 생물막들)를 처리하기 위한 다양한 실시형태들이 이하 기술된다. 다른 타입들의 기계적인 스트레스 에너지 및 전자기 에너지가 이 개시 내용과 일치하는 다른 처리 셋팅들 및 실시형태들에서 사용될 수 있지만, 예시의 실시형태들은 단순화를 위해서 이하 일반적으로 초음파 및 광으로 언급하는 것으로 이해될 것이다.
도 1A를 참조해서, 결합된 초음파 및 광으로 박테리아를 처리하기 위한 실험적인 셋업(10)이 부분적으로 분해된 구성으로 보여진다. 셋업(10)은 본 발명의 실시형태에 따른 광-음향 처리 장치(12), 세포 배양 인서트(14), 및 처리 챔버(18) 및 흡수 챔버(20)를 갖는 콘테이너 어셈블리(16)를 포함할 수 있다. 셋업(10)은 박테리아 생물막을 처리하는 문맥으로 여기서 기술된다. 그런데, 광-음향 처리 장치(12)는, 이하 더 상세히 기술되는 바와 같이, 유사한 또는 다른 동작 파라미터들을 사용하는 플랑크톤 상태의 박테리아의 처리를 위해 사용될 수도 있다.
세포 배양 인서트(14)는 박테리아 생물막을 성장 및 수확하기 위해 적합한 소정 타입의 구조가 될 수 있다. 인서트(14)는 생물막(24)이 성장할 수 있는 삼투성 멤브레인 형태의 베이스 표면(22)을 포함할 수 있다. 예를 들어, 베이스 표면(22)은 세포 배양 인서트를 매다는 Millicell®에서 찾을 수 있는 종류의 폴리에틸렌 테레프탈레이트("PET(polyethylene terephthalate)")의 얇은, 삼투성 층으로 형성될 수 있다. 인서트(14)는, 도 2에 나타낸 바와 같이, 처리 챔버(18) 내에서 인서트(14)를 지지하기 위해서 반경으로 연장하는 플랜지(26)를 더 포함할 수 있다.
콘테이너 어셈블리(16)의 처리 챔버(18)는 인산 완충 식염수("PBS(phosphate buffered saline)")와 같은 살균 유체(30)의 양을 유지하기 위해서 구성되고, 세포 배양 인서트(14)의 베이스 표면(22)이 그것 내에 수취될 수 있는 사이즈로 될 수 있다. 처리 챔버(18)는 외부 벽(32)에 의해 규정되는데, 이는, 나타낸 바와 같이, 축으로 연장하는 중공 원통 형태로 될 수 있다. 외부 벽(32)의 바닥 부분은 흡수 챔버(20)의 바닥 벽(34)에 관해서 각도로 형성될 수 있는데, 이는 이하 기술된 장점을 제공한다. 처리 챔버(18)의 바닥 부분은 처리 챔버(18)와 흡수 챔버(20) 사이의 유체 교환을 방지하기 위해서, 유체-불투성 멤브레인(36)으로 밀봉될 수 있다. 멤브레인(36)은, 예를 들어 얇은 플라스틱 웹으로 형성될 수 있다.
콘테이너 어셈블리(16)의 흡수 챔버(20)는 피마자유(castor oil)와 같은 점성의 유체(38)의 양을 유지하도록 구성된다. 점성의 유체(38)는, 이하 기술된 바와 같이, 점성의 유체(38)에 전달된 초음파 에너지를 흡수하기에 충분한 점도를 가질 수 있다. 나타낸 바와 같이, 처리 챔버(18)는 흡수 챔버(20) 내로 연장할 수 있어서, 처리 챔버(18)의 각도를 갖는 바닥 부분이 점성의 유체(38) 내에 잠기고, 바닥 벽(34) 위에 부유되도록 한다. 처리 챔버(18)는 소정의 적합한 타입의 잠금 또는 연결로 흡수 챔버(20)에 결합될 수 있다.
광-음향 처리 장치(12)는 방사하는 표면을 갖는 초음파 변환기(40), 하나 이상의 광 소스(42)들, 및 결합된 초음파 변환기(40) 및 광 소스(42)들와 세포 배양 인서트(14) 사이에 배열된 광-음향 엘리먼트(46)를 포함할 수 있다. 일 실시형태에 있어서, 광-음향 엘리먼트(46)는 일반적으로 원뿔 형상이고, 축으로 연장하는 원통형 상부 연장부(48) 및 상부 연장부(48)의 베이스에 규정된 환형 숄더(50)를 포함한다. 나타낸 바와 같이, 환형 숄더(50)는 광-음향 엘리먼트(46)의 축 A에 관해서 각도를 가질 수 있거나, 또는 대안적으로 숄더(50)는 축 A를 실질적으로 횡단할 수 있다. 광-음향 엘리먼트(46)는 이를 통해 광 및 초음파 에너지를 동시에 전달하고, 최소 손실 및 감쇠로 그 내부에 광 및 초음파 에너지를 한정하도록 구성된 반투명, 광-음향 재료로 형성된 솔리드 구조가 될 수 있다. 예를 들어, 광-음향 엘리먼트(46)는 아크릴 수지와 같은 서모플라스틱 또는 서모셋팅 폴리머로 구성될 수 있다.
광 소스(42)들은, 예를 들어 Bivar, Inc. of Irvine, California에 의해 이용할 수 있는 UV5TZ-405015 LED들인, 광 방사 다이오드들("LED들")의 형태로 될 수 있다. 2개의 광 소스(42)만이 보이지만, 소정의 적합한 수의 광 소스들이 사용될 수 있다. 예를 들어, 8개 이상의 광 소스가 사용될 수 있거나 또는 단일의 광 소스가 사용될 수 있다. 나타낸 바와 같이, 광 소스(42)는 상부 연장부(48)에 관해서 원주형으로 배열될 수 있고, 광-음향 엘리먼트(46)에 동축으로 탑재될 수 있는 구조(도시 생략)에 의해 지지될 수 있어서, 광 소스들이 상부 연장부(48)를 에워싸고 환형 숄더(50)에 인접하게 위치되도록 한다. 광 소스(42)들은 광-음향 엘리먼트(46)의 축 A에 관해서 각도를 가지며 위치될 수 있고, 광을 아래로 엘리먼트(46)를 통해서 안내하도록 동작할 수 있어서, 도 1A 및 1B에서 볼 수 있는 기다란 화살표로 가리켜진 바와 같이, 광이 엘리먼트(46)를 통해 반사하여 엘리먼트(46)의 방사하는 단부(54)를 통해서 방사되도록 한다.
초음파 변환기(40)는 변환기 엘리먼트(56) 및 변환기 엘리먼트(56)에 직접적으로 또는 간접적으로 결합되어 변환기 엘리먼트(56)의 폭에 걸치는 페이스플레이트(58: faceplate)를 포함할 수 있다. 변환기 엘리먼트(56)는 압전식 세라믹 디스크를 포함할 수 있고, 페이스플레이트(58)는, 예를 들어 알루미늄과 같은 소정의 적합한 금속으로 형성될 수 있다. 대안적으로, 초음파 변환기(40)는, 예를 들어 여기에 그 개시 내용 전체가 참조로 통합된, U.S. 특허 번호 제8,206,326호에 일반적으로 나타낸 및 기술된 바와 같이 구성될 수 있다. 특히, 변환기 엘리먼트(56)는 폴리머 매트릭스 재료 내에 매립되거나 또는 그렇지 않으면 이에 의해 둘러싸인 복수의 더 작은 개별 변환기 엘리먼트들(여기서 도시 생략)을 포함할 수 있어서, 압전 복합 재료 구조를 형성한다. 다수의 전극들이 압전 복합 재료 구조의 각각의 대향하는 페이스들 상에 제공될 수 있고, 이격될 수 있어서, 광이 압전 복합 재료 구조 및 전극들을 통과하도록 허용한다. 전극들은, 예를 들어 기다란 바(bar)들 또는 동심의 링(ring)들이 될 수 있다.
일반적으로, 변환기 엘리먼트(56)는 교대하는 전류가 그 전극들에 인가될 때 초음파의 파들을 방사할 수 있다. 초음파의 파들은, 예를 들어 종파들, 횡파들, 비틀림(torsional) 파들, S(shear) 파들, 표면 파들, 레이라이트(Raleigh) 파들, 또는 램브(Lamb) 파들을 포함할 수 있다. 도 1A 및 1B의 실시형태에 나타낸 바와 같이, 변환기(40)는 광-음향 엘리먼트(46)와 동축으로 탑재될 수 있어서, 페이스플레이트(58)가 상부 연장부(48)의 탑 표면에 인접하도록 한다. 이 방식으로, 페이스플레이트(58)는, 일반적으로 도 1A 및 1B에서 볼 수 있는 아치형 라인으로 나타낸 바와 같이, 엘리먼트(46)를 통해서 아래로 및 방사하는 단부(54)를 통해서 외부로, 초음파 에너지의 전달을 위한 광-음향 엘리먼트(46)에 음향으로 결합될 수 있다.
도 1B는 동작 가능한 구성의 실험적인 셋업(10)을 나타내는데, 그 컴포넌트들이 도 1에서 방향의 어셈블리 화살표에 의해 가리켜진 것과 같은 방식으로 조립된다. 나타낸 바와 같이, 세포 배양 인서트(14)는 처리 챔버(18) 내에 수취될 수 있어서, 플랜지(26)가 외부 벽(32)에 의해 지지되도록 한다. 이에 의해, 인서트(14)의 삼투성 베이스 표면(22) 및 그것 상에서 성장하는 박테리아 생물막(24)은 처리 챔버(18) 내에서 부유하고, 살균 유체(30) 내에 잠길 수 있다. 이 방식으로, 생물막(24)은, 점성의 유체(38)로부터 기원하는 오염을 포함해서, 오염물이 없는 살균 환경에서 유지될 수 있다. .
광-음향 처리 장치(12)의 바닥 부분은 세포 배양 인서트(14) 내에 수취될 수 있고, 광-음향 엘리먼트(46)의 방사하는 단부(54)가 세포 배양 인서트(14)의 베이스 표면(22) 위의 고정된 높이 h에 부유하도록 위치될 수 있다. 옵션으로, 소정의 적합한 사이즈 또는 형상의 지지 구조(60)가 세포 배양 인서트(14)에 관해서 처리 장치(12)를 적합하게 정렬하기 위해서 및 요구된 고정된 높이 h에서 방사하는 단부(54)를 부유시키기 위해서 사용될 수 있다. 대안적인 실시형태들에 있어서, 방사하는 단부(54)는 베이스 표면(22) 및 생물막(24)과 직접 접촉으로 위치될 수 있다. 방사하는 단부(54)가 도 1B에 나타낸 바와 같이 생물막(24)으로부터 이격되면, 방사하는 단부(54)는 살균 유체(30) 내에 잠기므로, 살균 유체(30)는 광-음향 엘리먼트(46)와의 음향 결합을 형성한다. 이 방식으로, 광-음향 엘리먼트(46)는 살균 유체(30)를 사용하는 간접 접촉으로 생물막(24)과 결합된다. 변환기(40)에 의해 생성된 초음파 에너지는, 광-음향 엘리먼트(46)를 통해서 축으로 안내될 수 있고, 방사하는 단부(54)를 통해서 방사되어, 방사하는 단부(54)와 베이스 표면(22) 사이의 갭 내에 존재하는 살균 유체(30)를 통과해서, 박테리아 생물막(24)을 침해한다. 더욱이, 초음파 변환기(40)는 광-음향 엘리먼트(46) 및 살균 유체(30)를 통해 수립된 간접 접촉으로 생물막(24)에 결합되도록 고려될 수 있다.
세포 배양 인서트(14)의 베이스 표면(22)은 초음파 에너지가 이를 통해 전달되게 허용한다. 따라서, 몇몇 초음파 에너지는 베이스 표면(22)을 통과하고, 멤브레인(36)을 통해서 및 흡수 챔버(20) 내로 계속된다. 흡수 챔버(20) 내의 점성의 유체(38)는 이러한 초음파 에너지를 흡수하고, 이에 의해 반사를 완화하도록 동작할 수 있다. 더욱이, 처리 챔버(18)의 각도를 갖는 바닥 부분 및 그것 상에 배치된 멤브레인(36)은, 세포 배양 인서트(14)의 베이스 표면(22)를 향한 뒤로의 초음파 에너지의 반사를 완화하도록 동작할 수 있다. 이 방식으로, 초음파만이 생물막을 통해 단방향으로 통과함에 따라, 생물막(24)은 잘 특징화될 수 있는 초음파 에너지에 노출될 수 있다.
도 2를 참조해서, 본 발명의 다른 실시형태에 따른 실험적인 셋업(10a)을 나타낸다. 도 2에 나타낸 유사한 참조 번호로 가리켜진 바와 같이, 셋업(10a)의 형태들는 셋업(10)의 형태들과 유사하다. 추가적으로, 광-음향 처리 장치(12 및 12a)들을 포함하는 실험적인 셋업(10 및 10)들의 기능이 실질적으로 유사하고, 처리 장치(12, 12a)들이 유사한 적용들에서 사용될 수 있는 것으로 이해될 것이다. 나타낸 바와 같이, 처리 장치(12a)의 광-음향 엘리먼트(46a)는 처리 장치(12)의 광-음향 엘리먼트(46)와 비교해서 길이가 줄고, 이에 의해 방사하는 단부(54)의 것보다 큰 직경 및 단면 영역을 갖는 방사하는 단부(54a)를 규정한다. 유리하게는, 실험적인 셋업(10a)의 문맥에서, 방사하는 단부(54a)는 생물막(24a)을 함유하는 베이스 표면(22a)의 전체 직경을 실질적으로 가로질러 걸치기 위한 충분한 사이즈로 되어, 이에 의해 처리 장치(12a)가 생물막(24a)의 전체 부분에 대한 처리를 제공할 수 있다. 방사하는 단부(54a)는 인서트(14a)의 플랜지(26a) 위에 지지될 수 있어서, 이에 의해 거리 h로 베이스 표면(22a) 위에 방사하는 단부(54a)를 이격시킨다. 베이스 표면(22a) 위의 소정의 적합한 거리 h에서 또는 베이스 표면(22a)과 직접 접촉으로 방사하는 단부(54a)를 이격시키는 것이 요구됨에 따라, 실험적인 셋업(10a)의 컴포넌트들이 수정될 수 있는 것으로 이해될 것이다. 또한, 처리 장치(12a)의 더 큰 방사하는 단부(54a)가, 예를 들어, 환자의 등 또는 얼굴과 같은 큰 표면 영역을 처리하기 위한 임상의 적용들에 바람직한 것을 증명할 수 있다.
처리 장치(12, 12a)들의 초음파 변환기(40)는 기능 생성기(도시 생략) 및 파워 증폭기(도시 생략)를 사용해서 초음파 에너지를 생성하도록 제어될 수 있다. 기능 생성기 및 파워 증폭기는, 소정의 적합한 타입들이 될 수 있는데, 예를 들어 Agilent Technologies of Santa Clara, California에 의해 이용할 수 있는 Agilent 33220A 기능 생성기 및 Electronics & Innovation of Rochester, New York에 의해 이용할 수 있는 ENI 325LA 파워 증폭기가 될 수 있다. 초음파 변환기(40)에 출력된 음향 에너지는, 예를 들어 Teledyne Reson of Slangerup, Denmark에 의해 이용할 수 있는 Reson TC4038 하이드로폰 및 Acertara Acoustic Laboratories of Longmount, colorado에 의해 이용할 수 있는 모델 804 이판(bilaminar)의 멤브레인 하이드로폰과 같은 소정의 적합한 센서를 사용해서 측정될 수 있다.
처리 장치(12, 12a)들의 복수의 광 소스(42)들은, 예를 들어 소정의 적합한 컴퓨터, USB 제어된 인터페이스 모듈, 및 4-채널 펄스-폭-변조("PWM") 광 제어 유닛(도시 생략)을 사용해서 광 에너지를 생성하기 위해서 디지털적으로 제어될 수 있다. 인터페이스 모듈은, 예를 들어 Velleman, Inc. of Fort Worth, Texas에 의해 이용할 수 있는 VM116 모델이 될 수 있고, 광 제어 유닛은 Digital Lighting Sysems of Miami, Florida에 의해 이용할 수 있는 CD45 모델이 될 수 있다. 광 소스(42)들에 의해 출력된 광 에너지는, 예를 들어 International Light Technologies of Peabody, Massachusetts에 의해 이용할 수 있는 ILT400 라디오미터 및 SEL033/W 검출기와 같은 적합한 센서를 사용해서 측정될 수 있다. 일 실시형태에 있어서, 초음파 변환기(40) 및 광 소스(42)들은, 예를 들어 공통 제어기(62)에 의해 제어될 수 있다. 대안적으로, 변환기(40) 및 광 소스(42)들은 독립 제어기에 의해 제어될 수 있다.
이하 더 상세히 기술되는 바와 같이, 처리 장치(12, 12a)들은 공간적으로 겹치는(예를 들어, 방사된 에너지가 공간적으로 일치하는) 결합된 초음파 및 광 에너지를 제공하도록 구성될 수 있다. 더욱이, 처리 장치(12, 12a)들은 완전한 시간적인 겹침, 부분적인 시간적인 겹침, 또는 시간적인 겹침이 없이(예를 들어, 방사된 광 및 초음파가 시간적으로 교대 및 인터리브된) 연속적인 모드로 또는 펄스화 모드로 초음파 및 광 에너지를 제공하도록 제어될 수 있다.
변환기(40)에 의해 방사된 초음파 에너지는 타깃의 박테리아 생물막 세포들을 물리적으로 붕괴시키도록 동작할 수 있다. 광 소스(42)들에 의해 방사된 광 에너지(예를 들어, 블루 광)는 타깃의 생물막 세포(24)들 내의 하나 이상의 광 감수성 화학 약품을 활성화하기 위한 살균제로서 동작할 수 있다. 광역학 작용은 반응성 산소 종들을 생산하고, 이에 의해 생물막 세포(24)들의 세포의 구조를 붕괴시키고, 생물막 세포(24)들을 죽이거나 또는 그렇지 않으면 비활성화시킨다. 광 에너지의 살균 효과는, 타깃의 박테리아(24) 상에 방사된 광과 공간적으로 겹치는 초음파 에너지에 의해 부여된 세포의 붕괴에 의해 개선되는 것으로 믿어진다. 따라서, 단독의 초음파 에너지 또는 단독의 광 에너지가 박테리아 생물막(24)과 같은 타깃의 박테리아를 효과적으로 박멸하는데 불충분한 반면, 본 발명의 실시형태들에 따른 초음파 에너지 및 광 에너지의 조합은 박테리아에 대한 효과적인 및 상당한 킬링 또는 살균, 효과를 달성하는데 충분하게 될 수 있다. 더욱이, 박테리아 생물막들은 통상적인 항생제의 토픽컬스(topicals) 및 오랄 처리들에 대한 저항이 성장할 수 있는 반면, 그들의 구조적인 매트릭스들이 공간적으로 겹치는 초음파 및 광 에너지에 대항해서 실질적으로 무방비로 될 수 있고, 더욱이 이러한 결합된 처리에 대한 저항성이 발전할 수 없는 것으로 믿어진다.
임상의 적용들에 있어서, 본 발명의 실시형태들에 따른 결합된 초음파 및 광 처리는 박테리아 생물막의 것들과 같은 타깃의 박테리아 세포들을 붕괴시키는데 효과적인 레벨에서 적용될 수 있는 한편, 휴먼 조직상에서 사용하기 위해 안전하게 된다. 이 목적을 위해서, 효과적이지만 안전 레벨의 초음파 및 광 에너지를 특징화하는 다양한 파라미터들의 범위가, 이제 본 발명의 실시형태에 따라 기술될 것이다. 뒤따르는 양들은, 사용되는 광-음향 장치의 에너지 방사 표면(예를 들어, 처리 장치(12, 12a)의 방사하는 단부(54, 54a))에서, 또는 처리되는 박테리아의 기대 위치를 대표하는 에너지 방사 표면으로부터의 소정의 거리에서, 측정될 수 있다. 예를 들어, 도 14 및 16을 참조로 이하 더 상세히 기술되는 바와 같이, 처리되는 박테리아는 개재하는 조직 및/또는 다른 구조의 층에 의해 처리 장치의 초음파 방사 부분으로부터 이격될 수 있다. 더욱이, 뒤따르는 에너지 특성들이 여기서 기술된 소정의 광-음향 처리 장치들의 사용에서 채용될 수 있는 것으로 이해될 것이다.
본 발명의 실시형태에 따른 초음파 특성들에 관해서, 초음파 에너지는 50kPa 이상 및 1MPa 이하인 음향 출력 레벨에서 광-음향 처리 장치(12, 12a)에 의해 방사될 수 있다. 바람직하지 않게는, 1MPa보다 큰 레벨에서의 음향 출력은, 타깃의 박테리아가 상주하는 휴먼 조직과 같은 수성의 기재(aqueous substrate) 내에서 파괴적인 캐비테이션들을 일으킨다. 초음파 에너지는 20kHz 이상 및 5MHz 이하의 주파수에서 방사될 수 있다. 일 실시형태에 있어서, 주파수는 25kHz 이상 및 1.5MHz 이하가 될 수 있다. 다른 실시형태에 있어서, 주파수는 25kHz 이상 및 1MHz 이하가 될 수 있다.
더욱이, 초음파 변환기(40)는 5%의 듀티 사이클에서 초음파를 생성하도록 동작될 수 있다. 예를 들어, 단일의 반복 가능한 시간 주기 동안, 변환기(40)는 0.5 ms의 존속 기간 동안 전원 공급되고, 9.5ms의 존속 기간 동안 전원 단절된다. 다른 실시형태들에 있어서, 변환기(40)는 10%까지의 듀티 사이클에서 동작될 수 있다. 이에 관해서, 초음파 에너지는 10mW/cm2 이상 및 1W/cm2 이하가 될 수 있는 시간-평균된 사운드 강도로 방사될 수 있다. 따라서, 광-음향 처리 장치(12, 12a)는 타깃의 박테리아에 대한 의도한 살균 효과를 일으키기에 일반적으로 충분히 높은 순시 사운드 강도로 및 박테리아에 의해 덮인 휴먼 조직상에서의 사용을 위한 안전 처리(예를 들어, 최소 조직 가열로)를 유지하는데 일반적으로 충분히 낮은 시간-평균된 사운드 강도로 초음파 에너지를 방사할 수 있다. 방사된 초음파는 낮은 에너지가 될 수 있고, 초점이 맞춰진 또는 초점이 맞춰지지 않게 될 수 있다. 예를 들어, 초점이 맞춰지지 않은 초음파는 환자의 얼굴 또는 등과 같은 큰 표면 영역을 덮는 박테리아를 처리하기 위한 적용들에 더 효율적이 될 수 있다. 초점이 맞춰진 초음파는 작은 처리 영역을 타깃으로 한 둘러싸인 영역들의 원하지 않는 처리를 경감하는데 유익할 수 있다.
본 발명의 실시형태에 따른 광 특성들에 관해서, 광 에너지가 400nm 이상 및 450nm 이하인(예를 들어, 바이롤렛/블루) 전자기의 스펙트럼의 가시 부분 내의 파장으로 광-음향 처리 장치(12, 12a)에 의해 방사될 수 있다. 일 실시형태에 있어서, 광 에너지는 400nm 이상 및 427nm 이하인 파장으로 방사될 수 있다. 다른 실시형태에 있어서, 광 에너지는 405nm의 파장으로 방사될 수 있다. 다른 실시형태에 있어서, 광 에너지는 408nm의 파장으로 방사될 수 있다. 다른 실시형태들에 있어서, 이하 기술된 바와 같이, 예를 들어 660nm와 같은 더 긴 파장들의 광 에너지가 박테리아를 처리하기 위해 방사될 수 있다.
본 기술 분야의 당업자는, 광 파장 및 광 에너지가 역으로 관련된 것으로 이해할 것이다. 이를 위해서, 400nm 미만의 파장의 광(예를 들어, 자외선 광)이 휴먼 조직에 유해한 에너지 레벨을 반송할 수 있다. 더욱이, 450nm보다 큰 파장의 광은, 몇몇 적용들에서 박테리아 생물막과 같은 타깃의 박테리아를 효과적으로 처리하는데 불충분하게 될 수 있는 에너지 레벨을 반송한다. 광 에너지는 5mW/cm2 이상 및 500mW/cm2 이하가 될 수 있는 평균된 광 강도로 광-음향 처리 장치(12, 12a)로부터 방사될 수 있다. 일 실시형태에 있어서, 광 에너지는 30mW/cm2 이상 및 500mW/cm2 이하의 광 강도로 방사될 수 있다.
이제, 도 3A-3D로 돌아가면, 공통으로 휴먼에 잠재적으로 위험한 박테리아를 일으키는 표피포도상구균(Staphylococcu epidermidis)("Staphy . epi" 또는 "S. epidermidis"으로 형성된 생물막을, 상기된 바와 같이, 광-음향 처리 장치(12)를 사용하는 본 발명의 실시형태에 따른, 결합된 및 동시의 초음파 및 광 처리를 받기 전후에, 나타낸다. 도 3A-3D에 표시된 화상들은 대략 4x 배율로 나타낸다. 도 3A는 일반적으로 영양분이 풍부한(nutrient-rich) 트립신 소이 스프("TSB(Tryptic Soy Broth)") 매체상에서 성장한 제1Staph . epi. 생물막(70)을 나타낸다. 제1생물막(70)은 대략 72시간의 주기 동안 영양분이 풍부한 환경에서 숙성되게 허용되었으므로, 가시 생물막 콜로니(72)들이 형성될 수 있었다. 도 3C는 일반적으로 영양분이 부족한 RPMI(Roswell Park Memorial Institute) 매체상에서 성장한 제2Staph . epi. 생물막(80)을 나타낸다. 제2생물막(80)은 대략 24시간의 주기 동안 영양분이 부족한 환경에서 숙성되게 허용되었고, 따라서 가시 성장은 덜 명백하다. 제1 및 제2생물막(70, 80)들은, 실험적인 셋업(10)을 사용하는 및 상기된 바와 같은 조건들하에서, 대략 30분의 주기 동안 결합된 초음파 및 광 처리에 각각 노출되었다. 이에 관해서, 도 2에 나타낸 바와 같이 고정된 높이 h는 대략 3mm로 설정되었다. 처리 후, 생물막(70, 80)들이 성장했던 세포 배양 인서트들은 살균 염으로 씻어 냈고, 크리스탈 바이롤렛을 사용해서 착색했다. 그런데, 크리스탈 바이롤렛과 같은 소정의 적합한 착색제 또는 염료가 처리의 효과를 시각적으로 개선하기 위해 사용될 수 있는 것으로 이해될 것이다. 처리들의 결과들이 각각 도 3B 및 3D에 보인다.
도 3B에 나타낸 바와 같이, 제1생물막(70)의 가시적인 콜로니(72)들은 실질적으로 방지되었고, 죽은 생물막 세포들은 염으로 씻어 낸 후 버려졌다. 도 3D에 나타낸 바와 같이, 덜 숙성된 제2생물막(80)의 붕괴(disruption)는 염으로 씻어 낸 후 죽은 생물막 세포들이 버려진 후 생물막(80) 내에 형성된 크랭크-같은 패턴들(82)에 의해 명백하다. 상기된 실험이 생물막(70, 80)들의 표면으로부터 3mm의 고정된 거리에 위치된 광-음향 엘리먼트(46)의 방사하는 단부(54)로 수행되었지만, 방사하는 단부(54)는 생물막으로부터 소정의 요구된 거리에 또는 생물막과의 직접 접촉으로 위치될 수 있고, 광 및 초음파 방출 파라미터들은 따라서 조정될 수 있다.
도 4A-4C는 처리 동안 제1 및 제2생물막(70, 80)들이 노출되었던 것과 유사한 사운드 강도를 측정 및 특징화하기 위해서 광-음향 처리 장치(12)에서 수행된 음향 스캐닝 테스트의 결과들을 나타낸다. 플롯된 사운드 강도가 광-음향 엘리먼트(46)의 방사하는 단부(54)로부터 대략 3mm의 축의 거리에서, 예를 들어 처리 동안 제1 및 제2생물막(70, 80)들의 대략적인 위치에서 측정되었다. 더욱이, 음향 스캐닝이, 스캐닝 평면을 규정하는 제1 및 제2직교 축들을 따른 1mm 증분들에서 기록되는 사운드 강도 측정치들로, 방사하는 단부(54)에 실질적으로 평행한 스캐닝 평면 내의 16mm 대 16mm의 필드 내에서 수행되었다.
도 4A는 선형 스케일상에서 플롯된 측정된 사운드 강도의 3차원 그래픽 표현이다. 도 4B는 대수적인 스케일상에서 플롯된 측정된 사운드 강도의 3차원 그래픽 표현이다. 도 4C는 대수적인 스케일상에서 플롯된 측정된 사운드 강도의 2차원 그래픽 표현이다. 도 4A-4C에 나타낸 플롯들의 XY 기원은 광-음향 엘리먼트(46)의 방사하는 단부(54)의 방사상의 중심에 대응하고, X 및 Y 축들에 할당된 단위는 스캐닝 평면 내의 1mm 증분에 대응한다. 도 4A 및 4B에 나타낸 플롯들의 Z 축들은 방사하는 단부(54)의 방사상의 중심으로부터의 거리의 함수로서, 측정된 사운드 강도에 대응한다. 유사하게, 도 4C에 나타낸 플롯의 명암은 방사하는 단부(54)의 방사상의 중심으로부터의 거리의 함수로서 측정된 사운드 강도에 대응한다. 따라서, 도 4A-4C 각각에 나타낸 플롯들은, 광-음향 처리 장치(12)에 의해 방사된 초음파가 가장 큰 사운드 강도를 나타내고, 따라서 방사하는 단부(54)의 방사상의 중심에서 대략 4mm 대 4mm의 영역에서 생물막을 붕괴시키기 위해 가장 효과적인 것을 입증한다. 이것이 더 큰 영역 생물막을 처리하기 위해 요구되면, 처리 장치(예를 들어, 장치(12))는 처리 동안 이동하게 될 수 있거나, 또는 대안적으로 재설계되므로, 더 효과적인 처리 영역이 동작으로부터 귀결된다.
도 5A는 48시간의 주기 동안 TSB 매체 내에서 성장한 및 숙성하게 허용된 제3Staph. epi. 생물막(90)을 나타낸다. 도 5B는 도 5A에 대응하는 확대된 화상을 나타낸다. 도 5C는 48시간의 주기 동안 TSB 매체 내에서 성장한 및 숙성하게 허용된 다음, 30분의 주기 동안 결합된 초음파 및 광으로 처리된 제4Staph . epi. 생물막(100)을 나타낸다. 도 5D는 제4생물막(100)의 처리의 존(zone) 상에 초점을 맞춘 확대된 화상을 나타낸다. 도 5C 및 5D에 나타낸 바와 같이, 제4생물막(100)은 죽은 생물막 세포들에 기인해서 처리 후 퇴색 및 크랭크-같은 패턴(102)들을 나타낸다. 도 5E는 48시간의 주기 동안 TSB 매체 내에서 성장한 및 숙성하게 허용된 다음, 60분의 주기 동안 결합된 초음파 및 광으로 처리된 제5Staph . epi. 생물막(110)을 나타낸다. 도 5F는 제5생물막(110)의 처리의 존 상에 초점을 맞춘 확대된 화상을 나타낸다. 도 5E 및 5F에 나타낸 바와 같이, 제5생물막(110)은, 염으로 씻어 낸 후 버려졌던 죽은 생물막 세포들에 기인해서, 처리 후 붕괴(112)들을 나타낸다. 제3, 제4, 및 제5생물막(90, 100, 110)들은 실험적인 셋업(10)을 사용해서 및 상기된 바와 같은 특성들을 갖는 초음파 및 광으로 처리되었다.
테스팅 동안 및 치료상의 처리들에서, 처리 장치(12)의 방사하는 단부(54)(또는 처리 장치(12a)의 방사하는 단부(54a))로부터 방사된 광 프로파일은 적어도 부분적으로 생물막(70, 80, 90, 100, 110)들의 위치에서 음향적인 프로파일과 공간적으로 겹칠 수 있다. 광 에너지와 초음파 에너지 사이의 공간적인 겹침 영역은 공동성의(synergistic), 치료상의 효과를 제공하여, 생물막 또는 타깃의 다른 박테리아의 더 효과적인 및 상당한 붕괴로 귀결될 것이다. 더욱이, 광 및 초음파 에너지는, 이하 더 상세히 기술되는 바와 같이 완전한 시간적인 겹침, 부분적인 시간적인 겹침, 또는 시간적인 겹침이 없는(예를 들어, 교대하는 및 인터리빙 광 및 초음파) 것을 포함하는, 시간적인 겹침의 변하는 정도로 연속적인 방식으로 또는 펄스화 방식으로 전달될 것이다.
본 발명의 실시형태들에 따른 광 및 초음파의 결합된 전달과 함께 생물막을 처리하는 방법이, Staph. epi . 생물막들의 처리를 주로 참조해서 여기서 나타내고 기술된다. 그런데, 본 발명의 파라미터들은, 흔히 많은 휴먼 피부 질병들의 근본 원인이 되는, 다른 박테리아 생물막들의 처리에 대해서 역시 적용될 수 있다. 예를 들어, 여드름(acne vulgaris) 및 아토피성 피부염들은 가장 일반적인 아동기 질병들 중 2개이고, 각각 박테리아 생물막의 존재에 의해 발생하며, 본 발명의 실시형태들에 따른 결합된 초음파 및 광 치료법을 사용해서 처리될 수 있다. 이들 조건들에 대한 통상적인 처리들은 토픽컬 및 오랄 항생제 및 스테로이드, 토픽컬 연화제, 및 칼시뉴린 억제제를 포함하는데, 이들 각각은 안전상의 우려를 나타낸다. 본 발명의 실시형태들에 따른 결합된 초음파 및 광으로 이러한 박테리아 생물막을 처리하는 것은, 의사들에 의한 임상의 사용을 위해 및/또는 환자들에 의한 가정 사용을 위해 설계된 다양한 장치들 및 시스템들을 통해서 달성될 수 있다. 예를 들어, 결합된 초음파 및 광 처리는 손 휴대 장치로 전달될 수 있고, 초음파 전달을 위한 다양한 토픽컬 겔들 및 무균성 조건들을 유지하기 위한 다양한 1회용 도구 커버들의 조합에서 사용될 수 있다. 더욱이, 본 발명의 실시형태들에 따른 결합된 초음파 및 광 처리들은 추가적인 상피의(epidermal) 이득들을 제공하는 것으로 믿어진다. 예를 들어, 이러한 이득들은 감소된 염증, 피부 매트릭스 포메이션의 유도, 및 병변들의 개선된 치유의 촉진을 포함할 수 있다. 더욱이, 여기서 나타내고 기술된 결합된 기계적인 스트레스 및 전자기 에너지를 사용하는 처리의 광-음향 처리 장치들 및 방법은, 균류 감염들의 임상의 처리들과 연결해서 사용될 수 있다.
도 6을 참조해서, 염료로 착색된 여드름(acne) 박테리아 생물막(114)은, 개략적인 라인(115)의 어느 측면 상에서 2개의 다른 타입들의 처리에 노출한 후 나타낸다. 특히, 라인(115)의 좌측면 상의 생물막(114)의 제1지역(116)은 광에만 노출되었고, 그 더 밝은 컬러는 처리 후 살아있는 생물막 세포들의 우세한 존재를 가리킨다. 라인(115)의 우측면 상의 생물막(114)의 제2지역(118)은 결합된 초음파 및 광에 노출되었고, 그 더 어두운 컬러는 처리 후 죽은 생물막 세포들의 우세한 존재를 가리킨다. 따라서, 도 6에 나타낸 실험적인 결과들은, 결합된 초음파 및 광 처리가 박테리아 생물막 세포들을 손상 및/또는 죽이기 위해 단독의 광 처리보다 더 효과적인 것을 입증한다.
또한, 본 발명의 실시형태들에 따른 결합된 초음파 및 광 치료법 처리들은, 자유 부유 플랑크톤의 상태 내에 또는, 즉 사전-생물막 또는 비-생물막 상태 내에 상주하는 박테리아를 죽이기 위해 사용될 수 있다. 도 7A 및 7B를 참조해서, 도시된 바 그래프들은 RCM(Reinforced Chlamydial Medium)상에서 성장 및 3일 동안 숙성된 프로피오니박테리움 아치네(Propionibacterium acnes)("P. acnes") 박테리아의 처리에 대응하는 실험적인 데이터를 나타내는데, 각 포인트에서 박테리아는 정적인 국면에 있었다. 그 다음, 박테리아는 정상 염 용액 내에 부유되었고, 광 단독 또는 결합된 광 및 초점이 맞춰지지 않은 초음파 에너지(CLENS) 중 어느 하나로 처리되었다. 광 단독 처리는 405nm의 파장(예를 들어, 블루 광) 및 30mW/cm2의 강도가 인가되었다. 초음파 에너지는, 456kHz의 주파수, 250kPa의 압력, 및 5% 듀티 사이클에서 인가되었다. 처리 후, 박테리아 샘플들은 직렬로 희석되었고, RCA(Reinforced Chlamydial Agar) 플레이트 상에서 플레이트되었다. RCA 플레이트들은 7일 동안 혐기성 조건들하에서 37℃에서 배양되었고, 그 다음 콜로니 형성 유닛들이 카운트되었다.
20분 또는 60분의 주기 동안 적용된, 2개의 다른 형성의 처리에 대한 노출의 결과로서 실험 동안 죽은 플랑크톤의 박테리아의 양을 도 7A 및 7B에 그래픽으로 나타낸다. 도 7A는 죽은 박테리아의 퍼센테이지로 실험적인 결과들을 도시한다. 도 7B는 도 7A에 나타낸 동일한 실험적인 결과을, 대수적인 손실(또는 "log 손실") 함수에 따라 플롯으로 도시한다. 도 7A를 참조해서, 60분의 주기 동안의 광 단독에 대한 노출은 94%의 샘플 박테리아를 죽였다. 결합된 광 및 초점이 맞춰지지 않은 초음파(CLENS)에 대한 노출은 97%의 샘플 박테리아를 죽였다. 20분의 주기 동안의 광 단독에 대한 노출은 65%의 샘플 박테리아를 죽였다. 20분의 주기 동안의 결합된 광 및 초점이 맞춰지지 않은 초음파에 대한 노출은 85%의 샘플 박테리아를 죽였다. 그래프의 결과들은, 특히 20분의 더 짧은 노출 주기 동안, 초음파 에너지의 추가가 광의 살균 효과의 상당한 개선을 발생시키는 것을 나타낸다.
도 8을 참조해서, 도시된 도면은 나노미터로 측정된 다양한 파들의 광에 대한 노출의 함수로서 박테리아 내의 화학 약품의 상대적인 광역학 활성화를 나타낸다. 상기된 바와 같이, 광에 대한 노출은 박테리아 내의 특정 화학 약품을 활성화시켜서, 반응성 산소 종들의 방출로 귀결되고, 이에 의해 박테리아의 세포 붕괴 및 사망을 일으킨다. 이러한 화학 약품은, 프로토포르피린(Protoporphyrin) IX(PpIX)를 포함할 수 있는데, 이는 P. acnes, S. epidermidis, 및 Staphylococcus aureus("S. aureus")를 포함하는 다수의 박테리아 내에서 발견된다.
도 8에서 일반적으로 120으로 가리켜진 광의 소렛 밴드(Soret Band)는, 가시 광 스펙트럼을 따른 가장 높은 광역학 활동의 영역이고, 400nm의 파장 상에 중심이 있다. 405nm의 파장(예를 들어, 블루 광)은 도 8에서 수직으로 연장하는 대쉬 라인(121)으로 가리켜지고, 일반적으로 소렛 밴드(120) 내에 속하며, 유리하게는 122로 가리켜진 자외선 영역("UV") 외측이다. 자외선 영역 내의 광은 DNA에서 변화를 일으키기에 충분한 에너지를 갖는데, 이는 피부 암으로 귀결될 수 있고, 따라서 일반적으로 휴먼 환자들의 치료 동안 사용하기 위해 바람직하지 않을 수 있는 것으로 이해될 것이다. 더욱이, 본 발명의 실시형태들에 따른 다양한 처리 방법과 관련해서 상기된 바와 같이, 대략 405nm의 파장을 갖는 광은, 특히 광의 살균 효과가 초음파 에너지의 결합된 적용에 의해 개선될 때, 박테리아를 죽이기 위한 효과가 높다.
또한, 광의 항균 작용(Antibacterial effect)이 소렛 밴드(120)의 파장보다 큰 따라서 더 낮은 광 에너지에 대응하는 파장들에서 발견되었다. 예를 들어, 도 8에서 124로 일반적으로 가리켜진 Q 밴드들(예를 들어, 대략 500nm 내지 660nm)로서 언급된 전자기의 스펙트럼의 영역의 더 긴 파장들이 또한 항균 작용을 생산하기 위해 발견된다. 더 긴 파장들의 광이 타깃의 박테리아에서 반응성 산소를 생성하는데 덜 효율적이 될 수 있는 반면, 유리하게는 더 긴 파장들의 광이 더 짧은 파장들의 광보다 조직 내에서 흡수, 감쇠, 및 스캐터링에 덜 종속될 수 있다. 따라서, 더 긴 파장 광의 이득들은 몇몇 적용들에서 자체의 더 낮은 에너지 레벨에 대해서 보상할 수 있다. 적용에 의존해서, 본 기술 분야의 당업자는 다양한 광 파장 옵션들 중에서 선택할 수 있고, 단일의 처리 장치에서 다수의 다른 파장들을 결합할 수 있다. 일 실시형태에 있어서, 대략 660nm의 파장을 갖는 광이 이 처리를 위해 사용될 수 있다.
상기된 바와 같이, 결합된 광 및 초음파 에너지를 사용하는 본 발명의 실시형태들에 따른 박테리아를 처리하는 것은, 2개의 에너지를 공간적으로 겹치는 것을 포함할 수 있어서, 처리되는 조직 영역이 에너지의 양쪽 타입들에 종속되도록 한다. 더욱이, 이하 더 상세히 기술되는 바와 같이, 광 및 초음파 에너지는 완전한 시간적인 겹침, 부분적인 시간적인 겹침, 또는 시간적인 겹침이 없는(예를 들어, 교대하는 및 인터리빙 광 및 초음파) 것으로 연속적인 방식으로 또는 펄스화 방식으로 전달될 수 있다. 더욱이, 상기된 바와 같이, 이러한 결합된 처리는 장치(12, 12a)들과 같은 완전히 통합된 처리 장치로 제공될 수 있는데, 이는 장치가 플랑크톤의 박테리아 및/또는 박테리아 생물막을 형성하는 박테리아와 같은 상주하는 박테리아를 박멸하기 위해서 환자의 피부와 접촉하는, 피부과 적용들을 위해서 사용될 수 있다. 박테리아를 죽이기 위한 다른 적용들은, 예를 들어 상처들, 만성의 축농증, 감염된 카테터들, 감염된 임플란트들(예를 들어, 가슴 임플란트들, 힙 임플란트들, 및 다른 보철의 관절), 심내막염, 만성의 중이염, 및 만성의 비뇨기 관 감염의 처리를 포함할 수 있다.
결합된 초음파 및 광으로 표면, 예를 들어 메디컬 또는 코즈메틱 적용들에서의 조직을 치료할 때, 충분한 처리에 효과적이기 위해서 초음파의 압력 또는 광 진폭의 문턱 레벨에 도달하는 것이 흔히 필요하다. 이러한 초음파 압력은, 예를 들어 대략 100kPa, 200kPa, 또는 500kPa이 될 수 있고, 이러한 광 강도는, 예를 들어 대략 30mW/cm2, 50mW/cm2, 또는 100mW/cm2이 될 수 있다. 초음파 에너지가 연속적인 방식으로(예를 들어, 국제 표준에 의해 규정된 바와 같은 및 엔지니어링 기술에서 공지된 바와 같은 연속적인, 인터럽트되지 않은 진폭으로) 전달되면, 전달된 전체 파워는 온도 상승을 일으키고 잠재적으로 조직 손상을 일으키는데 충분히 높게 될 수 있다. 그러므로, 초음파 에너지를 펄스화 모드로 전달하는 것이 바람직할 수 있는데, 여기서 유한 존속 기간의 초음파 에너지의 제1의 더 높은 진폭 버스트에는 동등한, 더 작은, 또는 더 긴 존속 기간의 에너지의 제2의 더 낮은 진폭(또는 제로 진폭) 버스트가 뒤따른다. 이 패턴은 처리 주기의 전체 범위 동안 반복될 것이다. 유리하게는, 초음파 에너지를 펄스화함으로써, 더 높은 압력 진폭의 인스턴스들을 전달하는 한편, 더 낮은 압력의 연속적인 적용에서 동일한 전체 파워 레벨을 유지하는 것이 가능하다. 다양한 실시형태들에 있어서, 광 에너지는 유사한 방식으로 펄스화될 수 있다.
도 9-12를 참조해서, 연속적인 및 펄스화 에너지 적용의 다수의 실시형태들을 그래프로 나타낸다. 연속적인 또는 펄스화 에너지 적용, 또는 그 조합이, 여기서 기술된 광-음향 처리 장치(12, 12a, 130, 150, 170, 및 220)들 중 소정의 하나에 의한 초음파 및 광 에너지의 전달과 관련해서 채용될 수 있는데, 이들 장치들 중 후자는 이하 상세히 기술되는 것으로 이해될 것이다.
도 9의 그래프에 나타낸 바와 같이, 초음파 및/또는 광은, 연속적인 파(CW) 또는 연속적인 모드 처리로서 언급된 에너지의 연속적인 파으로서 전달될 수 있다. 연속적인 파 처리와 함께, 처리의 존속 기간을 통한 에너지 증착의 시간적인 인터럽션은 없다. 도 9의 그래프의 수직 축에 의해 표시된 "진폭"은, 예를 들어 초음파의 압력 파장의 진폭 또는 광의 진폭으로 언급할 수 있다. 수평 축은, 에너지 방사하는 엘리먼트(예를 들어, 초음파 변환기 또는 광 소스)에 전원 공급되어 처리 동안 에너지를 방사하는 주기 동안, 및 에너지의 방사된 파장이, 그래프의 파장의 확대된 부분으로 가리켜진 바와 같이, 사인 곡선적 방식에서, 연속적으로 상승 및 하강하는 그 주기 동안, 시간의 진행을 나타낸다. 상기된 바와 같이, 바람직하지 않게는, 초음파 에너지의 연속적인 파 적용은, 몇몇 높은 에너지 또는 파워 레벨에서 조직을 호스트(host)하는데 파괴적인 것을 증명하고, 따라서, 에너지의 펄스화 적용은, 이하 기술된 바와 같이 몇몇 적용들에서 선호될 수 있다.
처리의 다른 실시형태에 있어서, 예를 들어 여기서 기술된 광-음향 처리 장치(12, 12a, 130, 150, 170, 또는 220)들 중 하나로 박테리아에 안내된 초음파 에너지 및/또는 광 에너지는, 처리 주기의 전체 또는 부분적인 부분 동안 펄스화 모드로 전달될 수 있다. 도 10을 참조해서, (예를 들어, 광 또는 초음파) 에너지의 펄스화 파형은 단순화된 형태로 나타낸다. 펄스화 파형이, 포지티브 및 네거티브 에너지 밸브들(예를 들어 사운드 파형의 압력, 또는 광 파형의 진폭) 모두를 포함하는, 사인 곡선적 또는 유사한 형상이 될 수 있는 것으로 이해될 것이다. 나타낸 바와 같이, 에너지가 턴 "온"(예를 들어, 방사된)되는 시간 주기는 펄스 존속 기간(PD), 또는 펄스 길이로서 언급된다. 펄스가 반복하는 시간 주기는 펄스 반복 인터벌(PRI)로서 언급된다. 펄스 반복 인터벌의 역은 펄스 반복 주파수(PRF)로서 언급된다. 듀티 사이클(DC), 또는 듀티 팩터(DF)는, 펄스 반복 인터벌(PD/PRI)에 대한 펄스 존속 기간의 비율이고, 에너지가 온(on)인 주어진 시간 주기의 퍼센테이지를 가리킨다. 이와 같이, 펄스 존속 기간이 펄스 반복 인터벌과 동등한 100%의 듀티 사이클은, 연속적인 파 동작을 가리킨다. 또한, 듀티 사이클은 주어진 파 진폭에 대한 최대 가능 에너지 전달의 퍼센테이지를 나타낸다.
초음파 및 광 모두를 타깃에 전달할 때, 생물학적인(예를 들어 조직) 또는 비-생물학적인(예를 들어, 쉽 선체(ship hull), 메디컬 카테터, 또는 생물학적인 재료로 덮인 다른 구조)이던지, 2개의 에너지는 공간적으로 일치될 수 있는데, 이는 양쪽 에너지가 공간 내의 동일한 위치로 안내될 수 있는 것을 의미한다. 즉, 에너지의 빔들은 공간적으로 겹칠 수 있다. 상기된 바와 같이, 초음파 에너지 및 광 에너지 전달 프로세스들의 본성 및 생물학적인 재료들에 충돌하는 이들 에너지에 대한 생물학적인 재료들의 잠재적인 포지티브 및/또는 네거티브 반응에 기인해서, 연속적인 모드보다 펄스화 모드로 결합된 에너지(예를 들어, 초음파 에너지 및 광 에너지 중 한쪽 또는 양쪽)을 전달하는 것이 바람직할 수 있다. 더욱이, 예를 들어 전체 시간적인 겹침, 부분적인 시간적인 겹침, 또는 시간적인 겹침이 없는 것을 포함하는, 시간적인 겹침의 변하는 정도로 펄스화 초음파 및/또는 광 에너지를 전달하는 것이 바람직할 수 있다.
본 기술 분야의 당업자가 연속적인 방식보다 펄스화 방식으로 초음파 및 광 에너지를 전달하도록 선택하게 되는 다수의 이유들이 있다. 상기된 바와 같이, 주어진 적용에서 충분한 처리에 효과적이기 위해서 소정 레벨의 압력 또는 광 에너지를 생성하는 것이 필요하게 될 수 있다. 일반적으로, 조직을 통한 사운드 및 광 모두의 감쇠는, 각각의 타입의 에너지의 관통의 깊이를 제한한다. 에너지의 진폭을 증가시킴으로써, 에너지는 더 큰 깊이에 도달할 수 있다. 연속적인 파 적용에서 증가된 진폭은, 상기된 바와 같이 에너지 방사하는 기구(예를 들어, 피에조세라믹 변환기 또는 LED 광 소스)의 원하지 않는 가열 및 저하 또는, 타깃 조직의 원하지 않는 가열 및 저하를 일으킬 수 있다. 방사된 에너지를 펄스화함으로써, 평균 에너지 레벨이 안전한 정도에서 유지될 수 있는 한편, 피크 에너지가 요구된 처리에 영향을 주도록 증가될 수 있다.
펄스화 모드로 초음파를 사용하기 위한 추가적인 이유는, 정상파들의 발행과 관련된다. 초음파가 제1매체로부터 제1매체와 다른 음향 임피던스를 갖는 제2매체로 진행할 때(예를 들어, 조직으로부터 뼈로, 물로부터 플라스틱으로, 또는 물로부터 스틸로), 몇몇 양의 초음파 에너지는 초음파 전송기를 향해 뒤로 반사될 수 있다. 이 반사된 에너지는 전달된 에너지와 상호 작용할 수 있어서, 공간 내에 고정된 및 정상파 패턴들로서 공지된 더 높은 및 더 낮은 압력 진폭의 영역들을 생성한다. 특히, 정상파 패턴들은 환자들을 처리할 때 문제가 될 수 있다. 예를 들어, 정상파들은 조직 내에서 바람직하지 않은 과잉 열 생성을 일으킬 수 있다. 펄스화 모드에서의 초음파 사용은 이러한 과잉 열 생성의 공산을 감소시킨다.
도 11은 2개의 에너지의 시간적인 겹침이 없는 펄스화된 초음파 및 광의 예시의 처리를 나타내는데, 2개의 에너지의 전달이 교대하는 및 인터리브되도록 한다. 추가적으로, 나타낸 바와 같이, 각각 에너지에 대한 펄스 반복 인터벌은 동일하게 될 수 있고, 2개의 에너지는 효과적으로 동기화될 수 있다. 물론, 대안적인 실시형태들에 있어서 펄스 반복 인터벌은 양쪽 에너지에 대해서 동일하지 않게 될 수 있어, 몇몇 겹친 펄스들 및 다른 비-겹친 펄스들을 이끈다.
도 11에 나타낸 바와 같이 에너지가 교대 및 인터리브되도록 시간적인 겹침이 없이 펄스화된 초음파 및 광 에너지를 전달하는 유익한 결과는, 에너지 생성 장비 상에 밸런스된 에너지 부하를 유지하는 것이다. 이에 관해서, 파워 서플라이는 특별한 평균 파워 소비로 동작하도록 제한될 수 있다. 방사된 에너지 펄스들이 시간적으로 겹칠 때, 이들은 에너지 중 어느 하나에 대응하는 개별 파워 소비보다 더 높은 결합된 파워 소비를 생성하는데, 이 결합된 파워 소비는 특별한 파워 서플라이의 동작 제한들을 넘어 바람직하지 않게 늘어날 수도 있다.
도 12는 2개의 에너지가 전체 펄스 반복 인터벌의 부분 동안 시간적으로 완전히 겹치는 펄스화된 초음파 및 광의 다른 예시의 처리를 나타내는데, 각각의 에너지는 동일한 펄스 반복 레이트를 갖는다. 도 11 및 12에 나타낸 바와 같이, 광 에너지의 펄스 존속 기간은 초음파 에너지의 펄스 존속 기간보다 큰 또는 미만으로(및 다른 실시형태들에 있어서 동등한) 될 수 있어서, 초음파 에너지의 듀티 사이클보다 큰 또는 미만인(및 다른 실시형태들에 있어서 동등한) 듀티 사이클로 광 에너지를 전달한다. 추가적으로, 초음파 및 광 에너지가 시간적으로 완전히 겹치는 곳에서, 이들은 동기되어, 각각의 에너지의 각각의 펄스가 동일한 시간에서 스타트하도록 한다.
추가적으로, 광-음향 처리 장치의 광 소스(예를 들어, LED)에 대해서, 광의 최대 진폭은 광 소스를 통해서 최대 전류를 제어함으로써 설정될 수 있다. 평균 광 출력은 듀티 팩터를 조정함으로써 설정될 수 있다. 예를 들어, 디지털 라이팅 시스템들에 의해 이용할 수 있게 만들어진 CD400-DMX 제어기와 같은 소정의 적합한 제어기가 이들 기능들을 수행하기 위해서 사용될 수 있다. 제어기는 100Hz(10밀리초의 PRI)의 고정된 펄스 반복 주파수로 동작할 수 있고, 그 듀티 팩터는, 예를 들어 0% 내지 100%의 듀티 팩터에 대응하는 0 내지 255의 범위에 걸쳐서 디지털적으로 조정될 수 있다.
일 실시형태에 있어서, 및 사용자의 금융 부담을 완화하는 관심에서, 2개의 에너지 소스들 사이의 동기화가 없도록, 독립 파워 소스들로 각각의 초음파 및 광 에너지 소스들을 구동하는 것이 바람직할 수 있다. 예를 들어, 초음파 소스는 광 소스의 것보다 더 높은 또는 더 낮은 펄스 반복 주파수를 가질 수 있는데, 이 경우 2개의 에너지 소스들 사이의 동기화는 없게 된다. 각각 에너지의 정확한 듀티 팩터에 의존해서, 광 및 초음파 에너지의 겹침의 퍼센테이지는 거의 제로로부터 거의 100%로 변화할 수 있고, 예를 들어 시간의 함수로서 변화할 수 있다.
실험을 통해서, 펄스 존속 기간들 및 펄스 반복 인터벌들의 소정 범위가 박테리아 생물막을 죽이기 위해서 효과적이 될 수 있는 것이 발견되었다. 예시의 실험은 P. acnes , S. epidermidis ,S. aureus에 대해서 수행되었다. 실험을 통해서, 박테리아 생물막을 처리하기 위해서 효과적인 것으로 증명된 동작 파라미터들은, 1ms 내지 100ms의 펄스 반복 인터벌들(예를 들어, 10Hz 내지 1000Hz의 펄스 반복 주파수들), 100밀리초 내지 2밀리초의 펄스 존속 기간들, 1.1% 내지 11%의 초음파 듀티 팩터들, 및 2% 내지 100%의 광 듀티 팩터들(예를 들어, 몇몇 경우에 있어서 연속적인 광 노출)을 포함한다. 초음파만의, 그 다음 광만의 분리 노출 또는 역의 분리 노출은 박테리아를 죽이기 위해서 효과적이지 않은 것으로 발견되었다. 예를 들어, 박테리아에 대한 초음파 효과는, 광으로 처리하기 위해서 박테리아의 감수성을 개선할 수 있는데, 상대적으로 짧은 수명을 갖는다(예를 들어, 단지 수 초). 따라서, 일 실시형태에 있어서, 소정의 공간적으로 일치하는 초음파 및 광 처리가 서로의 대략 1초 미만에서 박테리아에 인가될 수 있다. 예를 들어, 초음파 에너지 전달은 다른 초마다(1초마다) 적어도 1회 반복될 수 있다. 이 방식에 있어서는, 에너지의 수집적인 및/또는 결합된 살균 효과를 감소시키기 위한 펄스들 사이의 충분한 시간이 없기 때문에, 에너지의 누적 도스(dose)가 박테리아에 전달될 수 있다.
따라서, 에너지 노출의 펄스화 모드는 개선된 처리에 영향을 주기 위한 잠재적으로 더 높은 피크 진폭들과 함께만, 에너지 노출의 연속적인 파 모드와 동일한 효과가 있게 될 수 있다. 이에 관해서, 타깃의 박테리아(예를 들어, 조직상의)는 연속적인 여기와 신속하게 펄싱(맥동)하는 여기(예를 들어, 10회/초 또는 초과) 사이의 차이를 감지하기 위해서 충분히 신속하게 응답하지 않는다. 추가적으로, 초음파의 작용의 메커니즘이 음향 방사력(예를 들어, 기계적인 스트레스 힘들)을 통해서 박테리아에 인가된 힘을 통해서인 곳에서, 에너지 맥동은 연속적인 여기보다 박테리아에 대한 더 큰 효과를 가질 수 있는데, 이는 박테리아에 대한 일정한 힘을 생산한다. 이에 관해서, 박테리아 세포들은 일정한 힘들에 적응할 수 있고, 따라서 일정한 힘에 의해 제공된 효과가 시간에 따라 신속하게 감소할 수 있다. 에너지를 펄스화함으로써, 박테리아는 변하는 조건들에 적응할 수 없고, 에너지의 장점이 되는 결합된 효과를 처리 시간을 통해서 계속할 수 있다.
다른 예시의 실험 동안, 도 13에서 요약된 결과들, 서브젝트들은, 방사하는 단부(54a)에서, 방사하는 단부(54a)에서 각각의 서브젝트의 피부와, 직접 접촉으로 유지된 처리 장치(12a)를 사용해서 결합된 초음파 및 광에 노출되었는데, 이는 대략 29mm의 직경으로 형성되었다. 이 방식으로, 피부의 최외부 표면 아래(예를 들어, 피부의 최외부 표면 아래 0.1 내지 0.9mm)의 레벨에서 피부 상에 상주하는 박테리아는 피부의 개재하는(예를 들어, 위에 가로놓이는) 층을 통해서 수립된 간접 접촉으로 광-음향 엘리먼트(46a)에 결합되었다. 이에 관해서, 박테리아와 박테리아를 처리하는 광-음향 처리 장치 사이의 간접 접촉을 통한 커플링이 박테리아와 처리 장치의 에너지 방사 표면 사이에 위치된 신체의 조직(예를 들어, 피부) 위에 가로놓이는 하나 이상의 층을 통해서 수립될 수 있는 것으로 이해될 것이다. 더욱이, 상기 및 이하 기술된 바와 같이, 박테리아와 광-음향 처리 장치 사이의 간접 접촉을 통한 커플링이 박테리아와 처리 장치의 에너지 방사 표면 사이에 위치된 음향 결합 액체와 같은 음향 결합 매체를 통해서 수립될 수 있다. 따라서, 박테리아와의 "직접 접촉"이 테스트 셋업에 의해 또는 신체상의 박테리아의 물리적인 위치에 의해 불가능하게 될 때라도, 접촉은 박테리아와 광-음향 처리 장치 사이에 항상 제공된다.
처리 장치(12a)는 200Hz의 초음파 펄스 반복 주파수 및 275밀리초의 초음파 펄스 존속 기간, 또는 100Hz의 펄스 반복 주파수 및 550밀리초의 펄스 존속 기간을 제공하도록 제어되었다. 양쪽 조합은 동일한 강도 및 파워 레벨을 생산한다. 처리 장치는 100Hz의 광 펄스 반복 주파수 및 95%의 광 듀티 사이클을 제공하도록 더 제어되었다. 서브젝트들은 20분과 60분 사이의 변하는 주기 동안 결합된 펄스화된 초음파 및 광에 노출되었다. 그 다음, 피부 표본들이 취해졌고 수집된 박테리아는 7일 동안 성장 매체 내에서 배양되었다. 그 다음, P. acnes 박테리아의 결과의 콜로니 형성 유닛들이 카운트되었다. 각각의 서브젝트 상에서, 2개의 영역이 생플링되었다: 처리되었던 영역 및 인근의 다른 처리되지 않은 제어 영역(예를 들어, 서브젝트의 페이스 상의 반대쪽의 위치에서 처리되지 않은 제어 영역). 상기 언급된 단계는 각각의 서브젝트에 대한 박테리아 레벨에서의 본성 변동의 측정을 제공했다. 처리 전 취해진 샘플과 처리 후 24시간의 샘플의 차이가, 처리되지 않은 제어 영역들에 기반해서 만든 교정들과 함께 주시되었다. 각각의 환자에 대한 상기-기술된 동작 파라미터들 및 대응하는 실험적인 결과들이 도 13에 나타낸 테이블에 요약된다. 도 13의 실험적인 결과들 요약에 나타낸 바와 같이, 박테리아의 감소 레이트들은 결합된, 펄스화 광 및 초음파 에너지로 72% 내지 98%의 모두 중 하나의 서브젝트에서의 범위로 된다. 테스트 서브젝트(4)를 위해 사용된 샘플 플레이트들은 P. acnes을 넘은 다른 타입들의 박테리아를 포함하는 것으로 보이는데, 이는 결과들에 부정적인 영향을 준다. 도 13의 테이블에 나타내지 않았지만, 광 단독에 대한 노출은 25%의 평균 박테리아의 감소를 발생시켰고, 초음파 단독에 대한 노출은 측정가능한 박테리아의 감소가 없는 것을 발생시켰다. 이들 결과들은, 결합된 광 및 초음파 에너지의 펄스화, 공간적으로 겹치는 적용이 박테리아를 죽이기 위한 효과적인 및 상당한 처리를 제공하는 것을 가리킨다.
상기된 본 발명의 원리에 따라서 결합된 초음파 및 광 처리를 사용하는 다양한 적용들에 있어서, 광 방사 부분으로부터 초음파 방사 부분을 분리하는, 또는 그렇지 않으면 2개의 에너지가 분리 장치 표면들로부터 방사될 수 있도록 서로에 관해서 이들 2개의 에너지 방사하는 컴포넌트들의 위치 조정을 재구성하는 것이 바람직할 수 있다(예를 들어, 2개의 에너지가 공통 장치 표면(54, 54a)으로부터 방사된 처리 장치(12, 12a)들에 대한). 이러한 대안적인 광-음향 처리 장치들의 예시의 실시형태들이 도 14-16과 관련해서 이하 더 상세히 기술된다. 이러한 실시형태들의 처리 장치들의 사용에 있어서, 광 방사 부분은 박테리아에 안내될 수 있는 한편 분리 초음파 방사 부분은 동일한 박테리아에 독립적으로 안내될 수 있다. 이 방식으로, 광 방사 부분에 의해 방사된 광 프로파일 및 분리 초음파 방사 부분에 의해 방사된 음향 프로파일은 박테리아의 타깃의 영역에서 공간적으로 겹칠 수 있어서 이에 의해 타깃의 박테리아를 붕괴시킨다. 분리 광 및 초음파 방사 부분들은, 처리되는 박테리아가 처리 장치(12, 12a)들과 같은 통합된 처리 장치와 용이하게 액세스되지 않는 표면상에 배치될 때, 특히 유용하게 될 수 있다.
도 14를 참조해서, 환자(134)의 부비동(132)의 내부 신체의 표면에 부비강염(sinusitis)과 같은 박테리아를 처리하기 위한 다른 예시의 실시형태에 따른 광-음향 처리 장치(130)를 나타낸다. 처리 장치(130)는 일반적으로 원통형으로 형성된 광 방사 프로브(138)를 갖는 카테터-같은 광 방사 부분(136) 및 초음파 변환기(142)를 갖는 분리해서 형성된 초음파 방사 부분(140)을 포함할 수 있는데, 이는 상기된 내지 변환기(40)의 구성과 유사하게 될 수 있다. 나타낸 바와 같이, 광 방사 프로브(138)는 부비동(132)의 감염된 표면상에 직접적으로 광을 안내(지향)하기 위해서, 환자의 비강(143)을 통해서 삽입 및 부비동(132) 내로 안내될 수 있다. 더욱이, 광 방사 프로브(138)는 그 외부 환경의 완전한 또는 부분적인 부분으로부터 광을 방사할 수 있다. 예를 들어, 광 방사 프로브(138)는 처리 적용의 요구 조건들에 의존해서 그 외부 환경의 전체 360°로부터, 또는 그 외부 환경의 360° 미만으로부터 균일하게 광을 방사할 수 있다.
도 14에 나타낸 바와 같이, 초음파 변환기(142)는 처리되는 부비동(132)의 감염된 내부 표면들 위에 가로놓이는 외부의 안면 조직과 음향으로 결합하는 관계로 체외에 위치될 수 있다. 예를 들어, 초음파 변환기(142)는 안면 조직과 직접 접촉으로 위치될 수 있거나 또는 개재하는 솔리드 구조 또는 음향 결합 유체가 될 수 있는 음향 결합 매체(144)를 통해서 간접 접촉으로 결합될 수 있다. 따라서, 초음파 에너지는 부비동(132)의 감염된 내부 표면을 향해 안면 조직을 통해 내부로 전달될 수 있다. 이 방식으로, 초음파 변환기(142)는 안면 조직들 및 음향 결합 매체(144)를 통해서 수립된 간접 접촉으로 감염된 내부 표면들에 결합되는 것으로 고려될 수 있다. 광 방사 부분(136) 및 초음파 방사 부분(140)은 공통 제어기(146)에 결합될 수 있는데, 이는 광 방사 프로브(138) 및 초음파 변환기(142)를 제어할 수 있어서, 그들의 에너지 분포 패턴들이 처리되는 부비동(132)의 감염된 표면상의 공간에서 적어도 부분적으로 겹치도록 공간적으로 일치하는 방식으로 광 및 초음파 에너지를 전달한다. 다른 실시형태에 있어서, 광 방사 부분(136)은 부비강 감염을 브레이크업 및 방지하기 위한 부비강 성형(sinuplasty)을 위해 추가적인 장치(도시 생략)와 결합될 수 있다.
광-음향 처리 장치(130), 또는 실질적으로 유사한 구성을 갖는 처리 장치는, 박테리아의 감염을 갖는 다른 내부 신체의 표면들을 처리를 위해 또한 사용될 수 있다. 이러한 처리 적용들에 있어서, 초음파 변환기(142)는 감염된 내부 표면들 위에 가로놓이는 외부의 피부와 결합하는 관계로 체외에 위치될 수 있고, 광 방사 프로브(138)는 신체 오리피스 또는 다른 신체 개구를 통해서 삽입될 수 있고, 감염된 내부 표면들에 근접해서 위치된다. 초음파 변환기(142)는 위에 가로놓이는 피부 및 내부 신체의 조직들을 통해서 감염된 표면들을 향해서 기계적인 스트레스 에너지를 전달하도록 동작될 수 있는 한편, 광 방사 프로브(138)는 감염된 표면상에 전자기 에너지를 직접적으로 방사하도록 동작될 수 있다. 이 방식으로, 방사된 에너지는 감염된 표면상에서 공간적으로 겹칠 수 있어서, 이에 의해 박테리아가 내부 감염을 일으키는 것을 방지한다. 추가적으로, 초음파 변환기(142)는 신체의 조직들 및 예를 들어, 혈액과 같은 소정의 개재하는 신체의 유체를 통해서 수립된 간접 접촉으로 감염된 내부 표면들에 결합되는 것으로 고려될 수 있다. 상기된 바와 같이, 한쪽 또는 양쪽의 방사된 에너지는 연속적인, 펄스화, 또는 이들의 소정의 적합한 조합이 될 수 있다.
처리되는 표면이 휴먼 조직과 같은 살아있는 조직인 처리 적용들에 있어서, 광 에너지(또는 다른 적합한 형태의 전자기 에너지) 및 초음파 에너지(또는 다른 적합한 형태의 기계적인 스트레스 에너지)는 타깃의 박테리아에 의해 전체적으로 또는 부분적으로 각각 흡수된다. 과잉 방사된 에너지는 살아있는 호스트의 조직에 의해 흡수될 수 있다. 이에 관해서, 초음파 에너지는 광 에너지보다 더 깊은 깊이로 조직을 관통할 수 있고, 이에 의해 소정 적용들에 있어서 처리 장치의 초음파 방사 부분을 대응하는 광 방사 부분보다 처리 표면으로부터 더 원격에 위치시키는 것이 바람직할 수 있는 것으로 이해될 것이다.
도 15를 참조해서, 다른 예시의 실시형태에 따른 광-음향 처리 장치(150)는 환자의 치아 상에 상주하는 생물막을 포함하는 박테리아의 처리에 대해서 나타낸다. 처리 장치(150)는 마우스 가드(mouth guard) 같은 형상을 가질 수 있는 장치 바디(152) 및 사용자의 치과용 아치의 상부 또는 하부를 수취하기 위한 아치 채널(154)을 포함한다. 장치 바디(152)는 광 방사 부분(156)을 포함할 수 있는데, 이는, 예를 들어 치과용 아치의 크라운 부분에 인접해서 위치될 수 있다. 장치 바디(152)는, 방사하는 부분 158a 및 158b로 여기서 나타내는, 하나 이상의 초음파 방사 부분들을 더 포함할 수 있는데, 이는, 예를 들어 치과용 아치의 대향하는 외부 순음 부분에 인접해서 위치될 수 있다. 일 실시형태에 있어서, 분리 초음파 변환기(도시 생략)는 각각의 초음파 방사 부분(158a, 158b)의 위치에서 장치 바디(152)의 표면과 직접 또는 간접 접촉으로 위치될 수 있고, 또는 그렇지 않으면 장치 바디(152) 내에 통합해서 제공될 수 있다. 유사하게, 광 소스(도시 생략)는 광 방사 부분(156)의 위치에서 장치 바디(152)의 표면에 인접해서 위치될 수 있고, 또는 그렇지 않으면 장치 바디(152) 내에 통합해서 제공될 수 있다.
높은 점도 겔이 처리 동안 초음파 방사 부분(158a, 158b)과 서브젝트 치아 사이의 간접 접촉을 수립하고 음향 결합을 유지하기 위해서 아치 채널(154) 내에 제공될 수 있다. 광 방사 부분(156) 및 초음파 방사 부분(158a, 158b)은 공간적으로 겹치는 방식으로 및 상기된 것들과 유사한 에너지 특성들로 결합된 초음파 및 광 에너지의 적용을 제어하도록 적응된 공통 제어기(160)에 결합될 수 있다.
다른 실시형태들에 있어서, 처리 장치(150)는 요구된 처리 효과를 달성하도록 광 방사 부분(156) 및 초음파 방사 부분(158a, 158b)의 다양한 대안적인 구성 및 양들을 포함할 수 있다. 추가적으로, 장치 바디(152)는 치아의 만곡을 밀접하게 따르도록 적합하게 형성될 수 있고, 이에 의해 처리되는 치아와 실질적으로 직접적으로 접촉한다. 이러한 실시형태들에 있어서, 물 또는 다른 유체의 얇은 층이 채널(154) 내에 제공될 수 있어서, 치아와 직접적으로 접촉하지 않을 수 있는 초음파 방사 부분(158a, 158b)의 영역들에서 음향 결합을 보장한다. 일 실시형태에 있어서, 장치 바디(152) 및 소정의 음향 결합 매체를 형성하기 위해 선택된 재료들은 투명, 반투명으로 될 수 있고, 또는 그렇지 않으면 광 전달을 과도하게 금지하지 않게 될 수 있다.
도 16을 참조해서, 다른 예시의 실시형태에 따른 광-음향 처리 장치(170)는, 메디컬 카테터(172)의 내부 및 외부의 표면들 상에 상주하는 생물막을 포함하는 박테리아의 처리에 대해서 나타낸다. 카테터(172)는, 예를 들어 소변 배출(예를 들어, 폴리(Foley) 카테터)를 위한 또는 영양분 및 약물 투여(예를 들어, PICC 라인)를 위해 사용된 타입이 될 수 있다. 처리 장치(170)는 기다란, 카테터-같은 또는 스트랜드(strand)-같은 형상을 갖는 및 메디컬 카테터(172)의 루멘(176)을 통한 삽입을 위해 플렉서블한 장치 바디(174)를 포함할 수 있다. 장치 바디(174)는 광을 방사하기 위해 동작 가능한 복수의 축으로 이격된 광 방사 엘리먼트(180)들을 갖는 광 방사 부분(178)을 포함할 수 있다. 장치 바디(174)는 장치 바디(174)의 길이를 따른 광 방사 엘리먼트(180)들 사이에 교대해서 위치된 및 초음파를 방사하도록 동작 가능한 복수의 축으로 이격된 초음파 방사 엘리먼트(184)들을 갖는 초음파 방사 부분(182)을 더 포함할 수 있다. 각각의 초음파 방사 엘리먼트(184)들은, 루멘(176)을 규정하는 카테터(172)의 반경으로 내부 표면에 직접적으로 접촉하기 위해 충분히 큰 외부 직경으로 형성될 수 있고, 이에 의해 루멘(176)을 규정하는 카테터(172)의 반경으로 내부 표면에 음향으로 결합된다. 대안적으로, 초음파 방사 엘리먼트(184)들은 카테터(172)의 반경으로 내부 표면의 직경보다 더 작은 직경으로 형성될 수 있고, 음향 결합이, 예를 들어 점성의 결합 유체와 같은 음향 결합 매체를 사용하는 간접 접촉을 통해서 수립될 수 있다.
일 실시형태에 있어서, 초음파 방사 엘리먼트(184)들은 중공 원통 또는 튜브를 포함할 수 있는데, 각각은 대응하는 초음파 변환기를 수용한다. 광 방사 부분(178)은 광 방사 엘리먼트(180)들을 형성하는 복수의 적합하게 이격된 반사 엘리먼트들를 갖는 옵티컬 파이버(도시 생략)를 포함할 수 있다. 각각의 광 방사 엘리먼트(180)들 및 초음파 방사 엘리먼트(184)들은 그 외부 환경의 전체 부분(예를 들어, 360°)으로부터 각각의 에너지를 방사하도록 구성될 수 있다. 장치 바디(174)의 근위 단부는 에너지 방사 부분(178, 182)으로부터 광 및 초음파 방출을 제어하기 위한 제어기(186)에 결합될 수 있다.
사용 시, 장치 바디(174)는 카테터 루멘(176) 내에 느리게 삽입 및 이로부터 퇴피되는 한편, 제어기(186)는 광 방사 엘리먼트(180)들 및 초음파 방사 엘리먼트(184)들을 제어해서 연속적인 방식, 펄스화 방식, 또는 이들의 조합으로 그들의 각각의 에너지를 방사한다. 이에 의해, 루멘(176)을 규정하는 메디컬 카테터(172)의 내부 표면의 전체 길이가 상주하는 박테리아를 죽이기 위해 결합된 광 및 초음파 치료법에 노출될 수 있다. 카테터(172)가 광 전달을 과도하게 금지하지 않는 재료로 형성된 실시형태들에 있어서, 광 및 초음파는 카테터(172)의 벽을 통해서 반경으로 외부로 통과할 수 있어서, 이에 의해 카테터(172)의 외부의 표면들 상에 상주하는 박테리아를 역시 처리한다. 이 방식으로, 초음파 방사 엘리먼트(184)들은 카테터(172)의 벽을 통해서 및 벽과 초음파 방사 엘리먼트(184)들 사이에 제공된 소정의 음향 결합 유체를 통해서 수립된 간접 접촉으로 박테리아에 결합되는 것으로 고려될 수 있다.
나타낸 바와 같이, 장치 바디(174)는 광 방사 부분(178) 및 초음파 방사 부분(182) 모두를 포함하는 필수적인, 통합 구조가 될 수 있어서, 이에 의해 반경으로 외부 방향에서 내부로의 광 및 초음파 에너지 모두의 전달을 가능하게 한다. 대안적인 실시형태에 있어서, 광 방사 부분(178)은 초음파 방사 부분(182)으로부터 분리해서 형성될 수 있다. 따라서, 광 방사 부분(178)은 내부에 위치될 수 있고, 및 반경으로 외부 방향으로 광을 전달하는 한편, 초음파 방사 부분(182)은 외부에 위치될 수 있고, 예를 들어 도 14의 실시형태와 관련해서 상기된 것과 유사한 방식으로 반경으로 내부 방향으로 초음파를 전달할 수 있다.
독립적으로 형성된 광 및 초음파 방사 부분을 갖는 상기된 구성의 처리 장치는, 나머지가 환자 내에 외과적으로 위치된 카테터(172)의 부분의 처리를 위해 사용될 수 있다. 특히, 광 방사 부분은 루멘(176)의 반경으로 내부 표면상에 광을 방사하기 위해서 카테터 루멘(176) 내에 삽입될 수 있다. 독립적으로 형성된 초음파 방사 부분은 일반적으로 처리되는 카테터(172)의 부분 위에 가로놓이는 위치에서 환자의 외부 피부와 결합하는 관계로 체외에 위치될 수 있다. 그 다음, 초음파 방사 부분은 처리되는 카테터(172)의 부분을 향한 방향으로 외부 피부 및 개재하는 신체의 조직들을 통해서 및 카테터 벽을 통해서 광을 수취하는 반경으로 내부 표면에 도달하게 초음파 에너지를 전달할 수 있다(예를 들어, 도 14에 나타낸 것과 유사한 방식으로). 이 방식으로, 카테터(172)의 반경으로 내부 표면상에 상주하는 박테리아는 결합된 광 및 초음파로 에너지로 처리될 수 있다. 캐뉼라(cannula) 벽이 광 전달에 도움이 되는 재료로 형성될 때, 또한, 광 방사 부분에 의해 방사된 광은, 분리 초음파 방사 부분에 의해 체외에서 전달된 초음파와 함께 카테터(172)의 반경으로 외부 표면들 상에 상주하는 박테리아에 도달할 수 있다. 이에 관해서, 처리 장치의 초음파 방사 부분은 카테터(172)와 초음파 방사 부분 사이에 위치된 피부 및 다른 개재하는 신체의 조직들을 통해서 수립된 간접 접촉으로 카테터(172) 상의 박테리아에 결합된다. 카테터(172)의 반경으로 내부 표면들의 처리가 달성되는 곳에서, 간접 접촉이 카테터(172)의 벽을 통해서 더 수립된다.
결합된 기계적인 스트레스 에너지 및 전자기 에너지로 카테터들을 처리하는 다른 실시형태에 있어서, 초음파 방사 부분(182)은 처리 장치로부터 생략될 수 있다. 광 방사 부분(178)을 포함하는 장치 바디(174)가 카테터 루멘(176) 내에 삽입되어, 장치 바디(174)가 장치 바디(174)의 길이를 따라 반경으로 외부로 진동 에너지를 방출하도록 진동되도록 한다. 이러한 실시형태는, 그렇지 않으면 초음파 방사 부분(182)으로부터 연장하는 와이어의 제거에 기인해서, 특히 장점이 될 수 있다. 장치 바디(174)에 전달된 진동 에너지는, 예를 들어 종방향, 횡방향, 및/또는 회전/비틀림 운동을 포함할 수 있다. 유사한 대안적인 실시형태에 있어서, 장치 바디(174)는 카테터 루멘(176) 내에 정적으로 유지될 수 있는 한편, 카테터(172)는 장치 바디(174)에 관해서 진동한다.
메디컬 카테터를 처리하기 위한 상기된 방법의 진전에 있어서, 여기에 개시된 박테리아 처리 방법이 또한 다른 살아있지 않은 표면들을 처리하기 위해 적합한 것으로서 적응될 수 있는 것으로 이해될 것이다. 상기된 바와 같이, 박테리아 생물막들은 산업의 또는 해양의 환경에서 흔히 살아있지 않은 표면들 상에서, 예를 들어 보트 선체들 또는 파이핑 상에서 성장한다. 이 경우, 처리에는, 살아있는 조직의 손상을 고려하지 않고 일반적으로 더 높은 강도의 초음파 및 광이 전달될 것으로 여겨진다. 추가적으로, 여기에 개시된 결합된 기계적인 스트레스 에너지 및 전자기 에너지 처리 방법은 비-박테리아 생물막을 처리하기 위해 적응될 것이다.
더욱이, 여기에 개시된 박테리아를 처리하기 위한 방법이 결합된 초음파 및 광 에너지의 적용을 기술하지만, 기계적인 스트레스 에너지 및 전자기 에너지의 소정의 적합한 조합이 사용될 수 있다. 기계적인 스트레스 에너지는, 예를 들어 기계적인 스트레스를 경험하는 결과의 구조로서 생성된 사운드 에너지 또는 다른 형태의 진동 에너지를 포함할 수 있다. 전자기 에너지는, 예를 들어 가시 광 및 X 레이를 포함하는 전자기의 스펙트럼을 따른 모든 공지된 형태의 전자기의 방사를 포함할 수 있다.
도 17을 참조해서, 결합된 기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 다른 예시의 실시형태에 따른 광-음향 처리 장치(220)를 나타낸다. 처리 장치(220)는 광-음향 롤링 엘리먼트(224)를 적어도 부분적으로 수용하는 장치 바디(222)를 포함할 수 있다. 사용자에 의해 인가된 횡단하는 힘 아래서, 예를 들어 처리 장치(220)가 처리 표면(232)을 횡단할 때, 롤링 엘리먼트(224)가 처리 표면(232)(예를 들어, 환자의 피부)을 가로질러 접촉(예를 들어, 탄젠트로) 및 롤링함에 따라, 광-음향 롤링 엘리먼트(224)는 장치 바디(222)에 관해서 회전할 수 있다. 일 실시형태에 있어서, 광-음향 롤링 엘리먼트(224)는, 도 1 및 2와 관련해서 상기된 광-음향 엘리먼트(46)와 유사한, 원통형으로 형성 및 아크릴 재료로 형성될 수 있다. 다른 실시형태들에 있어서, 광-음향 롤링 엘리먼트(224)는 소정의 다른 적합한 형상으로 될 수 있고, 초음파 및 광 전달에 도움이 되는 재료로 형성될 수 있다. 예를 들어, 일 실시형태에 있어서, 롤링 엘리먼트(224)는 처리 표면(232)에 의해 규정된 평면상에서 2개의 분리 축들(예를 들어, X 및 Y)을 따른 처리 장치(220)의 운동을 가능하게 할 수 있는 구(sphere) 형태로 될 수 있다.
처리 장치(220)는 초음파 변환기(226) 및 하나 이상의 광 소스(228)들을 더 포함하는데, 이들은 장치 바디(222)에 결합될 수 있고, 광-음향 롤링 엘리먼트(224) 위에 지지될 수 있다. 초음파 변환기(226)는, 예를 들어 초음파 에너지의 전달을 위한 음향 결합 유체를 통해서, 직접적으로 또는 간접적으로 롤링 엘리먼트(224)에 접촉될 수 있다. 도 1A-2의 처리 장치(12, 12a)들과 관련해서 상기된 것과 유사한 방식으로, 처리 장치(220)가 처리 표면(232)을 가로질러 횡단함에 따라, 초음파 변환기(226) 및 광 소스(228)들에 의해 방사된 초음파 및 광 에너지가 롤링 엘리먼트(224)를 통해서 처리 표면(232) 상에 전달될 수 있다. 예를 들어, 도 17에 나타낸 바와 같이, 롤링 엘리먼트(224)가 중심 축에 관해서 회전함에 따라 초음파 에너지는 롤링 엘리먼트(224)를 통해서 정반대로 전달될 수 있고, 광 에너지는 롤링 엘리먼트(224)를 통해서 처리 표면(232) 상에 각도로 전달될 수 있다. 롤링 엘리먼트(224)의 적어도 부분은 처리 표면(232)과의 접촉을 위해 장치 바디(222)로부터 돌출할 수 있다.
장치 바디(222)는 회전 동안 롤링 엘리먼트(224)의 외부 표면상으로의 음향 결합 유체의 흐름을 제공하기 위한 하나 이상의 유체 덕트(230)를 포함할 수 있다. 음향 결합 유체는 초음파 변환기(226)와 롤링 엘리먼트(224) 사이의, 및 롤링 엘리먼트(224)와 처리 표면(232) 사이의 음향 결합을 유지하는데 도움을 줄 수 있다. 따라서, 롤링 엘리먼트(224)는 탄젠트 영역에서 처리 표면(232)과 직접적으로 접촉할 수 있고, 탄젠트 영역으로부터 원주형으로 이격된 탄젠트 영역의 어느 측면 상의 쌍의 대향하는 영역들에서, 음향 결합 유체를 통해서, 처리 표면(232)과 더 간접적으로 접촉할 수 있다. 초음파 변환기(226)는 롤링 엘리먼트(224)를 통해서 및 변환기(226)와 롤링 엘리먼트(224) 사이 및 롤링 엘리먼트(224)와 처리 표면(232) 사이의 소정의 음향 결합 유체를 통해서 수립된 간접 접촉으로 처리 표면(232)상의 박테리아에 결합되는 것으로 고려될 수 있다. 초음파 변환기(226) 및 광 소스(228)들은, 일반적으로 상기된 바와 같은 방식들 및 방출 파라미터들로 처리 표면(232) 상의 박테리아에 결합된 초음파 및 광 에너지를 제공하도록 제어기(234)에 의해 제어될 수 있다.
도 18을 참조해서, 소정의 하나 또는 다수의 광-음향 처리 장치(12, 12a, 130, 150, 170, 및 220)들은, 컴퓨터(192)와 같은 하나 이상의 컴퓨팅 장치들 또는 시스템들(총괄적으로 컴퓨터로 여기서 언급된) 상에서 실행된 제어기를 포함하는, 처리 시스템(190)의 부분을 포함할 수 있다. 컴퓨터(192)는 적어도 하나의 프로세서(194), 메모리(196), 매스 스토리지 메모리 장치(198), 입/출력(I/O) 인터페이스(200), 및 휴먼 머신 인터페이스(HMI)(202)를 포함할 수 있다. 또한, 컴퓨터(192)는, 네트워크 및/또는 I/O 인터페이스(200)를 통해서 하나 이상의 외부의 리소스들에 동작적으로 결합될 수 있다. 외부의 리소스들은, 이에 제한되지 않지만, 서버들, 데이터베이스들, 매스 스토리지 장치들, 주변 장치들, 클라우드-기반 네트워크 서비스들, 또는 컴퓨터(192)에 의해 사용될 수 있는 소정의 다른 적합한 컴퓨팅 리소스를 포함할 수 있다.
프로세서(194)는 마이크로프로세서들, 마이크로-제어기들, 디지털 시그널 프로세서들, 마이크로컴퓨터들, 중앙 처리 유닛들, 필드 프로그래머블 게이트 어레이, 프로그래머블 로직 장치들, 상태 머신들, 로직 회로들, 아날로그 회로들, 디지털 회로들, 또는 메모리(196) 내에 기억된 동작적인 명령들에 기반해서 시그널들(아날로그 또는 디지털)을 조작하는 소정의 다른 장치로부터 선택된 하나 이상의 장치들을 포함할 수 있다. 메모리(196)는, 이에 제하되지는 않지만, 리드-온리 메모리(ROM), 랜덤 액세스 메모리(RAM), 휘발성 메모리, 비-휘발성 메모리, 스태틱 랜덤 액세스 메모리(SRAM), 다이나믹 랜덤 액세스 메모리(DRAM), 플래시 메모리, 캐시 메모리, 또는 데이터를 기억할 수 있는 소정의 다른 장치를 포함하는, 단일의 메모리 장치 또는 복수의 메모리 장치들을 포함할 수 있다. 매스 스토리지 메모리 장치(198)는 하드 드라이브, 옵티컬 드라이브, 테이프 드라이브, 비-휘발성 솔리드 상태 장치, 또는 데이터를 기억할 수 있는 소정의 다른 장치와 같은 데이터 스토리지 장치들을 포함할 수 있다.
프로세서(194)는 메모리(196) 내에 상주하는 오퍼레이팅 시스템(208)의 제어하에서 동작할 수 있다. 오퍼레이팅 시스템(208)은 컴퓨팅 리소스들을 관리할 수 있으므로, 메모리(196) 내에 상주하는 애플리케이션(210)과 같은 하나 이상의 컴퓨터 소프트웨어 애플리케이션들로서 매립된 컴퓨터 프로그램 코드가 프로세서(194)에 의해 실행되는 자체의 명령을 가질 수 있다. 대안적으로, 프로세서(194)는 애플리케이션(210)을 실행 직접 실행할 수 있는데, 이 환경에서는 오퍼레이팅 시스템(208)이 생략될 수 있다. 또한, 하나 이상의 데이터 구조(204)가 메모리(196) 내에 상주할 수 있고, 데이터를 기억 또는 조작하기 위해서 프로세서(194), 오퍼레이팅 시스템(208), 또는 애플리케이션(210)에 의해 사용될 수 있다.
I/O 인터페이스(200)는 광-음향 처리 장치(12, 12a, 130, 150, 170, 220)에 프로세서(194)를 동작적으로 결합하는 머신 인터페이스를 제공할 수 있다. 이에 의해, 본 발명의 실시형태들을 포함하는 다양한 형태들, 기능들, 또는 프로세스들을 제공하기 위해서, 애플리케이션(210)은 I/O 인터페이스(200)에 걸쳐서 공급된 통신들 및/또는 시그널들에 의해 광-음향 처리 장치(12, 12a, 130, 150, 170, 220)와 협동해서 작업할 수 있다. 또한, 애플리케이션(210)은 하나 이상의 외부의 리소스들에 의해 실행되는 또는 그렇지 않으면 컴퓨터(192)에 외부인 다른 시스템 또는 네트워크 컴포넌트들에 의해 제공된 기능들 또는 시그널들에 의존하는 프로그램 코드를 가질 수 있다. 확실히, 가능한 거의 무한 하드웨어 및 소프트웨어 구성이 주어지면, 본 기술 분야의 당업자는, 애플리케이션들 및 데이터베이스들이, 다수의 컴퓨터들 또는 디른 외부 리소스들 중에 분산된 또는 클라우드 컴퓨팅 서비스와 같은, 네트워크에 걸친 서비스로서 제공되는 리소스들(하드웨어 및 소프트웨어)을 계산함으로써 제공된, 외부에 위치될 것으로 이해하게 될 것이다.
HMI(202)는 유저가 컴퓨터(192)와 직접 상호 작용하도록 허용하는 공지된 방법으로 컴퓨터(192)의 프로세서(194)에 동작적으로 결합될 수 있다. HMI(202)는 비디오 또는 알파벳의 디스플레이들, 터치 스크린, 스피커, 및 사용자에게 데이터를 제공할 수 있는 소정의 다른 적합한 오디오 및 비주얼 인디케이터들을 포함할 수 있다. HMI(202)는 또한 입력 장치들을 포함하고, 사용자로부터의 커멘드들 또는 입력들을 받아들일 수 있고, 프로세서(194)에 입력한 입력을 전달할 수 있는, 알파벳의 키보드, 포인팅 장치, 키패드들, 푸시버튼들, 제어 노브들, 마이크로폰들 등을 제어할 수 있다.
데이터베이스(206)는 매스 스토리지 메모리 장치(198)상에 상주할 수 있고, 생물막을 광 및 사운드에 노출시키기 위한 과정을 위한 프로시저를 위한 레서피를 제공하는 데이터와 같은, 처리 시스템에 의해 사용된 데이터를 수집 및 편성하기 위해 사용될 수 있다. 데이터베이스(206)는 데이터 및 데이터를 기억 및 조직화하는 지지하는 데이터 구조를 포함할 수 있다. 특히, 데이터베이스(206)는, 이에 제하되지는 않지만, 관련 데이터베이스, 계층적인 데이터베이스, 네트워크 데이터베이스, 또는 그 조합을 포함하는, 소정의 데이터베이스 편성 또는 구조로 배열될 수 있다. 프로세서(194) 상의 명령들로서 실행하는 컴퓨터 소프트웨어 애플리케이션 형태의 데이터베이스 관리 시스템은, 생물막을 광 및 사운드에 노출하는 프로시저의 개시에 응답해서 데이터베이스(206)의 기록들에 기억된 정보 또는 데이터에 액세스하기 위해서 사용될 수 있다.
일반적으로, 오퍼레이팅 시스템 또는 특정 애플리케이션, 컴포넌트, 프로그램, 오브젝트, 모듈 또는 명령들의 시퀀스, 또는 심지어 그 서브세트의 부분으로서 실행된 본 발명의 실시형태들을 수행하기 위해 실행된 루틴들은, 여기서 "컴퓨터 프로그램 코드" 또는 간단히 "프로그램 코드"로 언급될 것이다. 전형적으로, 프로그램 코드는 컴퓨터 내의 다양한 메모리 및 스토리지 장치들 내에 다양한 시간들에 상주하는 하나 이상의 명령들을 포함하고, 컴퓨터 내의 하나 이상의 프로세서에 의해 판독 및 실행될 때, 그 컴퓨터가 본 발명의 다양한 측면들을 구현하는 단계들 또는 엘리먼트들을 실행하기 위해서 필요한 단계들을 수행하게 한다. 더욱이, 본 발명이 완전히 기능적인 컴퓨터들 및 컴퓨터 시스템들의 문맥으로 기술되었고, 이하 기술될 것이지만, 본 기술 분야의 당업자는, 본 발명의 다양한 실시형태들이 다양한 형태들의 프로그램 프로덕트로 분배될 수 있고, 본 발명이 실제로 분배를 수행하기 위해 사용된 특별한 타입의 컴퓨터 판독 가능한 매체에 관계없이 동등하게 적용되는 것으로 이해할 것이다.
여기서 기술된 소정의 애플리케이션들/모듈들에서 구현된 프로그램 코드는 다양한 다른 형태로 개별적으로 또는 총괄적으로 분배될 수 있다. 특히, 프로그램 코드는 컴퓨터 판독 가능한 스토리지 매체 및 통신 매체를 포함하는 컴퓨터 판독 가능한 매체를 사용해서 분배될 수 있다. 고유하게 넌-트랜지터리인 컴퓨터 판독 가능한 스토리지 매체는, 컴퓨터-판독 가능한 명령들, 데이터 구조들, 프로그램 모듈들, 또는 다른 데이터와 같은, 정보의 스토리지를 위한 소정의 방법 또는 기술에서 실행되는 휘발성 및 비-휘발성, 및 제거 가능한 및 비-제거 가능한 유형의 매체를 포함할 수 있다. 컴퓨터 판독 가능한 스토리지 매체는, RAM, ROM, 지울 수 있는 프로그래머블 리드-온리 메모리(EPROM), 전자적으로 지울 수 있는 프로그래머블 리드-온리 메모리(EEPROM), 플래시 메모리 또는 다른 솔리드 상태 메모리 기술, 포터블 콤팩트 디스크 리드-온리 메모리(CD-ROM), 또는 다른 옵티컬 스토리지, 마그네틱 카세트들, 마그네틱 테이프, 마그네틱 디스크 스토리지 또는 다른 마그네틱 스토리지 장치들, 또는 요구된 정보를 기억하기 위해 사용될 수 있는 및 컴퓨터에 의해 판독될 수 있는 소정의 다른 매체를 포함할 수 있다. 통신 매체는 컴퓨터 판독 가능한 명령들, 데이터 구조들 또는 다른 프로그램 모듈들을 구현할 수 있다. 비제한적인 예로서, 통신 매체는 와이어드 네트워크 또는 직접-와이어드 연결과 같은 와이어드 매체, 및 음향, RF, 인프라레드 및 다른 와이어리스 매체를 포함할 수 있다. 상기 소정의 조합은 또한 컴퓨터 판독 가능한 매체의 범위 내에 포함될 수 있다.
또한, 이들 컴퓨터 프로그램 명령들은, 컴퓨터, 다른 타입들의 프로그래머블 데이터 처리 장치들, 또는 다른 장치들을 특별한 방식으로 기능하게 안내하는 컴퓨터 판독 가능한 매체 내에 기억된 명령들이 특별한 기능 또는 행동을 수행할 수 있게 하는 컴퓨터 판독 가능한 매체 내에 기억될 수 있다.
또한, 컴퓨터 프로그램 명령들은, 일련의 계산이 컴퓨터, 다른 처리 장치들, 또는 다른 장치상에서 수행되게 하여, 컴퓨터 실행된 프로세스를 생성하여, 실행된 명령들이 특별한 기능 또는 행동을 실행하기 위한 하나 이상의 프로세스를 제공하기 위해서, 컴퓨터, 다른 프로그래머블 데이터 처리 장치들, 또는 다른 장치상에 로딩될 수 있다.
여기서 사용된 용어는 특별한 실시형태들만을 기술하기 위한 목적이고, 본 발명의 실시형태들을 제한하는 의도는 없다. 여기서 사용된 바와 같이, 단수 형태들 "a," "an" 및 "the"는 문맥이 다른 것을 달리 명확히 가리키지 않는 한 복수 형태들도 역시 포함하는 것을 의도한다. 더욱이, 용어 "포함하는" 및/또는 "포함하는"은, 본 명세서에서 사용될 때, 하나 이상의 다른 형태들, 정수들, 단계들, 동작들, 엘리먼트들, 컴포넌트들, 및/또는 이들의 그룹들의 존재 또는 추가를 배제하지 않고, 언급된 형태들, 정수들, 단계들, 동작들, 엘리먼트들, 및/또는 컴포넌트들을 명기하는 것으로 이해될 것이다. 더욱이, 용어 "포함한다", "갖고 있는", "갖는", "함께", "을 포함하는" 또는 그 변형이 상세한 설명 또는 청구항들에서 사용되는 범위에 대해서, 이러한 용어는, 용어 "포함하는"과 유사한 방식으로 포괄적이 되는 것을 의도한다.
본 발명은 다양한 실시형태들의 설명으로 예시했고, 이들 실시형태들이 상당히 상세히 기술되었지만, 출원인이 이러한 상세한 설명에 첨부된 청구항들의 범위를 한정 또는 소정 방식으로 제한하는 것을 의도하지 않는다. 추가적인 장점들 및 수정들이 본 기술 분야의 당업자에게 명백할 것이다. 그러므로, 그 넓은 측면들에서의 본 발명은, 특정 세부 사항들, 대표하는 장치들 및 방법에 제한되지 않고, 예시의 예들을 나타내고 기술했다. 따라서, 출발이 출원인의 일반적인 발명의 개념의 정신 또는 범위로부터 벗어남이 없이 만들어질 수 있다.

Claims (32)

  1. 박테리아를 처리하기 위한 처리 장치로서, 처리 장치는:
    초음파를 생성하도록 동작 가능한 초음파 방사 부분과;
    전자기 에너지를 생성하도록 동작 가능한 전자기 에너지 방사 부분과;
    박테리아와 직접 또는 간접 접촉으로 결합하여 결합하는 동안 적어도 초음파를 박테리아에 전달하도록 구성된 접촉하는 부분을 포함하고,
    초음파 방사 부분 및 전자기 에너지 방사 부분이 박테리아에 대한 킬링 효과를 생산하기 위해서 초음파 및 전자기 에너지의 조합으로 박테리아를 처리하도록 동작 가능하며, 초음파가 박테리아에 50kPa 이상 및 1MPa 이하의 압력으로 전달되는 것을 특징으로 하는 박테리아를 처리하기 위한 처리 장치.
  2. 제1항에 있어서,
    킬링 효과를 개선하기 위해서 처리되는 박테리아의 위치에서 초음파 및 전자기 에너지를 공간적으로 겹치도록 처리 장치가 구성되도록 초음파 방사 부분 및 전자기 에너지 방사 부분이 서로에 관해서 위치되는 것을 특징으로 하는 처리 장치.
  3. 제1항에 있어서,
    펄스화된 초음파를 방사하기 위해서 초음파 방사 부분 또는 펄스화된 전자기 에너지 방사 부분을 제어하도록 구성된 제어기를 더 포함하는 것을 특징으로 하는 처리 장치.
  4. 제3항에 있어서,
    상기 초음파 또는 전자기 에너지가 펄스 반복 인터벌 1ms 이상 및 100ms 이하로 펄스화되는 것을 특징으로 하는 처리 장치.
  5. 제3항에 있어서,
    상기 초음파 또는 전자기 에너지가 펄스 존속 기간 100㎲ 이상 및 2ms 이하로 펄스화되는 것을 특징으로 하는 처리 장치.
  6. 제1항에 있어서,
    상기 접촉하는 부분은 제1단부 및 제2단부를 갖는 솔리드 광-음향 엘리먼트를 포함하고, 제1단부는 초음파 방사 부분 및 전자기 방사 부분에 결합되며, 제2단부는 박테리아와 직접 또는 간접 접촉으로 결합하여 결합하는 동안 박테리아에 초음파 및 전자기 에너지를 전달하도록 구성되는 것을 특징으로 하는 처리 장치.
  7. 제6항에 있어서,
    상기 광-음향 엘리먼트는 아크릴 재료를 포함해서 구성되는 것을 특징으로 하는 처리 장치.
  8. 제1항에 있어서,
    상기 접촉하는 부분은 광-음향 롤링 엘리먼트를 포함하는 것을 특징으로 하는 처리 장치.
  9. 제1항에 있어서,
    상기 전자기 에너지 방사 부분은 상기 초음파 방사 부분과 별개로 형성되는 것을 특징으로 하는 처리 장치.
  10. 제1항에 있어서,
    장치 바디, 초음파 방사 부분 및 전자기 에너지 방사 부분이 장치 바디 상에 제공되는 것을 특징으로 하는 처리 장치.
  11. 제10항에 있어서,
    상기 장치 바디는 치과용 아치의 하나 이상의 치아 상에 배치된 박테리아의 처리를 위해 사용자의 치과용 아치를 수취하도록 적응된 채널을 포함하는 것을 특징으로 하는 처리 장치.
  12. 제10항에 있어서,
    상기 초음파 방사 부분은 복수의 이격된 초음파 방사 엘리먼트를 포함하고, 상기 전자기 에너지 방사 부분은 상기 장치 바디에 초음파 방사 엘리먼트와 교대로 배열된 방식으로 복수의 이격된 전자기 에너지 방사 엘리먼트를 포함하는 것을 특징을 하는 처리 장치.
  13. 삭제
  14. 제1항에 있어서,
    초음파가 20kHz 이상 및 5MHz 이하의 주파수로 전달되는 것을 특징으로 하는 처리 장치.
  15. 제1항에 있어서,
    초음파가 1.1퍼센트 이상 및 11퍼센트 이하의 듀티 사이클로 전달되는 것을 특징으로 하는 처리 장치.
  16. 제1항에 있어서,
    초음파가 10mW/cm2 이상 및 1W/cm2 이하의 평균된 사운드 강도로 전달되는 것을 특징으로 하는 처리 장치.
  17. 제1항에 있어서,
    상기 전자기 에너지 방사 부분은 400nm 이상 및 450nm 이하의 파장을 갖는 전자기 에너지를 발생하도록 구성되는 것을 특징으로 하는 처리 장치.
  18. 제1항에 있어서,
    상기 전자기 에너지 방사 부분은 500nm 이상 및 660nm 이하 파장을 갖는 전자기 에너지를 발생하도록 구성되는 것을 특징으로 하는 처리 장치.
  19. 제1항에 있어서,
    상기 전자기 에너지 방사 부분은 2퍼센트 이상 및 100퍼센트 이하의 듀티 사이클의 전자기 에너지를 발생하는 것을 특징으로 하는 처리 장치.
  20. 제1항에 있어서,
    상기 전자기 에너지 방사 부분은 5mW/cm2 이상 및 500mW/cm2 이하의 평균된 강도의 전자기 에너지를 발생하는 것을 특징으로 하는 처리 장치.
  21. 제1항에 있어서,
    박테리아는 생물막을 포함하는 것을 특징으로 하는 처리 장치.
  22. 제1항에 있어서,
    박테리아는 플랑크톤의 박테리아를 포함하는 것을 포함하는 것을 특징으로 하는 처리 장치.
  23. 제1항에 있어서,
    펄스화된 초음파를 방사하는 초음파 방사 부분과 펄스화된 전자기 에너지를 방사하는 전자기 에너지 방사 부분을 제어하는 제어기를 더 포함하는 것을 특징으로 하는 처리 장치.
  24. 제23항에 있어서,
    상기 초음파 및 전자기 에너지는 박테리아를 처리하기 위해서 시간적으로 교대로 하는 것을 특징으로 하는 처리 장치.
  25. 제23항에 있어서,
    상기 초음파 및 전자기 에너지는 박테리아를 처리하기 위해서 부분적으로 시간적으로 중복되는 것을 특징으로 하는 처리 장치.
  26. 제1항에 있어서,
    상기 초음파 방사 부분은 집속(focused)초음파를 발생하도록 구성되는 것을 특징으로 하는 처리 장치.
  27. 제1항에 있어서,
    상기 초음파 방사 부분은 비집속 초음파를 발생하도록 구성되는 것을 특징으로 하는 처리 장치.
  28. 기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 시스템으로서, 시스템은:
    1항에 따른 처리 장치와;
    하나 이상의 프로세서와;
    하나 이상의 프로세서에 결합된 메모리를 포함하고,
    상기 메모리는 하나 이상의 프로세서에 의해 실행될 때, 시스템이 초음파 및 전자기 에너지로 박테리아를 처리하게 하는 명령들을 포함하는 것을 특징으로 하는 시스템.
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
KR1020167030280A 2014-04-04 2015-03-23 기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 방법들, 장치들 및 시스템들 KR102461535B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461975341P 2014-04-04 2014-04-04
US61/975,341 2014-04-04
PCT/US2015/021998 WO2015153172A1 (en) 2014-04-04 2015-03-23 Methods, devices and systems for treating bacteria with mechanical stress energy and electromagnetic energy

Publications (2)

Publication Number Publication Date
KR20160141789A KR20160141789A (ko) 2016-12-09
KR102461535B1 true KR102461535B1 (ko) 2022-10-31

Family

ID=52829349

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167030280A KR102461535B1 (ko) 2014-04-04 2015-03-23 기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 방법들, 장치들 및 시스템들

Country Status (8)

Country Link
US (4) US9649396B2 (ko)
EP (1) EP3126002B1 (ko)
JP (1) JP6576431B2 (ko)
KR (1) KR102461535B1 (ko)
CA (1) CA2944495A1 (ko)
IL (1) IL248157B (ko)
PL (1) PL3126002T3 (ko)
WO (1) WO2015153172A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835355B2 (en) 2006-04-20 2020-11-17 Sonendo, Inc. Apparatus and methods for treating root canals of teeth
SI3311770T1 (sl) 2006-04-20 2023-11-30 Sonendo, Inc. Naprava za obdelavo zobnih koreninskih kanalov
US7980854B2 (en) 2006-08-24 2011-07-19 Medical Dental Advanced Technologies Group, L.L.C. Dental and medical treatments and procedures
US20150217142A1 (en) * 2008-03-04 2015-08-06 Photosonix Medical, Inc. Method and device for treatment with combination ultrasound-phototherapy transducer
US8206326B2 (en) * 2008-03-04 2012-06-26 Sound Surgical Technologies, Llc Combination ultrasound-phototherapy transducer
CN102724929B (zh) 2009-11-13 2016-04-13 索南多股份有限公司 用于牙科治疗的液体射流设备和方法
CN107115154B (zh) 2010-10-21 2021-06-15 索南多股份有限公司 用于牙髓治疗的设备、方法和组合
IN2014DN08727A (ko) 2012-03-22 2015-05-22 Sonendo Inc
US10631962B2 (en) 2012-04-13 2020-04-28 Sonendo, Inc. Apparatus and methods for cleaning teeth and gingival pockets
EP3943042B1 (en) 2012-12-20 2024-03-13 Sonendo, Inc. Apparatus for cleaning teeth and root canals
US10363120B2 (en) 2012-12-20 2019-07-30 Sonendo, Inc. Apparatus and methods for cleaning teeth and root canals
WO2014121293A1 (en) 2013-02-04 2014-08-07 Sonendo, Inc. Dental treatment system
EP4218658A3 (en) 2013-05-01 2023-08-09 Sonendo, Inc. Appareil et système pour traiter des dents
CA2911415A1 (en) 2013-06-26 2014-12-31 Sonendo, Inc. Apparatus and methods for filling teeth and root canals
US9649396B2 (en) * 2014-04-04 2017-05-16 Photosonix Medical, Inc. Methods, devices, and systems for treating bacteria with mechanical stress energy and electromagnetic energy
US10806544B2 (en) 2016-04-04 2020-10-20 Sonendo, Inc. Systems and methods for removing foreign objects from root canals
US11511138B2 (en) * 2016-05-02 2022-11-29 University Of Kansas Method and apparatus for removing microvessels
WO2018067876A2 (en) * 2016-10-05 2018-04-12 Board Of Regents, The University Of Texas System Nanopulse light therapy
IT201700043757A1 (it) * 2017-04-20 2018-10-20 Rodolfo Pomar Dispositivo per il trattamento della pelle
CN109223224A (zh) * 2018-08-13 2019-01-18 中国医学科学院生物医学工程研究所 一种超声波光疗牙套及使用方法
CN110897855A (zh) * 2019-09-27 2020-03-24 山东卡蕾兰健康科技有限公司 一种减脂美体仪
MX2020004121A (es) * 2020-04-21 2022-01-14 Herman Diaz Arias "equipo para la destruccion de viruses mediante radiacion complementaria".
US20230173070A1 (en) * 2020-06-01 2023-06-08 The University Of North Carolina At Chapel Hill Methods and systems for enhancing delivery of therapeutic agents to biofilms using low boiling point phase change contrast agents
USD997355S1 (en) 2020-10-07 2023-08-29 Sonendo, Inc. Dental treatment instrument
MX2020014241A (es) * 2020-12-18 2022-06-20 Herman Diaz Arias Equipo de sanitizacion opto-sonico.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137656A1 (en) * 2003-12-23 2005-06-23 American Environmental Systems, Inc. Acoustic-optical therapeutical devices and methods

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB527562A (en) 1938-05-25 1940-10-11 Reimar Pohlman Improvements in or relating to massage apparatus
US2830578A (en) 1957-01-31 1958-04-15 Mark E Degroff Electro-sonic apparatus
US3358677A (en) 1964-10-23 1967-12-19 Sheldon Edward Emanuel Supersonic therapeutic device with means for introducing fluid into a body cavity
US3602577A (en) 1970-03-17 1971-08-31 George W Byram Optical tunneling acoustic surface wave light modulator
US3828769A (en) 1973-02-28 1974-08-13 H Mettler Method and apparatus for ultrasonic treatment of lower tissues simultaneous with heating of subcutaneous, outer muscle and lower tissues
US4412148A (en) 1981-04-24 1983-10-25 The United States Of America As Represented By The Secretary Of The Navy PZT Composite and a fabrication method thereof
BR8107560A (pt) 1981-11-19 1983-07-05 Luiz Romariz Duarte Estimulacao ultra-sonica da consolidacao de fraturas osseas
DE3437862A1 (de) 1983-10-17 1985-05-23 Hitachi Medical Corp., Tokio/Tokyo Ultraschallwandler und verfahren zu seiner herstellung
US4658176A (en) 1984-07-25 1987-04-14 Hitachi, Ltd. Ultrasonic transducer using piezoelectric composite
US5259380A (en) 1987-11-04 1993-11-09 Amcor Electronics, Ltd. Light therapy system
US4930504A (en) 1987-11-13 1990-06-05 Diamantopoulos Costas A Device for biostimulation of tissue and method for treatment of tissue
US5316000A (en) 1991-03-05 1994-05-31 Technomed International (Societe Anonyme) Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
GB9204021D0 (en) 1992-02-25 1992-04-08 Young Michael J R Method and apparatus for ultrasonic therapeutic treatment of humans and animals
US5690608A (en) 1992-04-08 1997-11-25 Asec Co., Ltd. Ultrasonic apparatus for health and beauty
US5358503A (en) 1994-01-25 1994-10-25 Bertwell Dale E Photo-thermal therapeutic device and method
US5520612A (en) 1994-12-30 1996-05-28 Exogen, Inc. Acoustic system for bone-fracture therapy
DE19520749C1 (de) 1995-06-07 1996-08-08 Siemens Ag Therapiegerät mit einer Quelle akustischer Wellen
US5913883A (en) 1996-08-06 1999-06-22 Alexander; Dane Therapeutic facial mask
US5904659A (en) 1997-02-14 1999-05-18 Exogen, Inc. Ultrasonic treatment for wounds
US6398753B2 (en) 1998-04-03 2002-06-04 Mcdaniel David H. Ultrasound enhancement of percutaneous drug absorption
RU2145247C1 (ru) 1998-04-10 2000-02-10 Жаров Владимир Павлович Фотоматричное терапевтическое устройство для лечения протяженных патологий
DE19859553C1 (de) 1998-12-22 2000-03-09 Siemens Ag Therapiegerät mit einer Quelle akustischer Wellen
CA2268415A1 (en) 1999-04-09 2000-10-09 Igor A. Sherman Single element ultrasonic collimating transducers and a method and apparatus utilizing ultrasonic transducers in 3d tomography
US6290713B1 (en) 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US6533803B2 (en) 2000-12-22 2003-03-18 Advanced Medical Applications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US6761729B2 (en) * 2000-12-22 2004-07-13 Advanced Medicalapplications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
JP3937755B2 (ja) 2001-05-28 2007-06-27 松下電工株式会社 超音波美容器
ITFI20010133A1 (it) 2001-07-13 2003-01-13 El En Spa Apparecchiatura anti cellulite a tecniche composite
US6702749B2 (en) 2001-07-24 2004-03-09 Siemens Corporate Research, Inc. Optical needle guide for ultrasound guided needle biopsy
US20030032900A1 (en) * 2001-08-08 2003-02-13 Engii (2001) Ltd. System and method for facial treatment
US7195603B2 (en) 2001-09-21 2007-03-27 Ya-Man Ltd. Ultrasonic beauty treatment probe
DE60307529T2 (de) 2002-02-23 2007-03-08 Hwajin Cosmetics Co., Ltd. Ganzheitliches Hautmanagementsystem und Verfahren mit dessen Verwendung
CA2484515A1 (en) 2002-05-30 2003-12-11 University Of Washington Solid hydrogel coupling for ultrasound imaging and therapy
US7250047B2 (en) * 2002-08-16 2007-07-31 Lumenis Ltd. System and method for treating tissue
EP1608267A4 (en) 2003-03-31 2007-04-25 Liposonix Inc VORTEX TRANSDUCER
IL157229A (en) * 2003-08-04 2006-08-20 Zamir Tribelsky Method for energy coupling especially useful for disinfecting and various systems using it
US7282036B2 (en) 2003-10-24 2007-10-16 Masatoshi Masuda Cosmetic device having vibrator
US7044737B2 (en) * 2004-03-05 2006-05-16 Liang Fu Ultrasound oral hygiene and therapeutic device
BRPI0512502A (pt) * 2004-06-23 2008-03-11 Ashland Licensing & Intellectu aparelho para reduzir a presença de microorganismos vivos em um fluido de eletro-revestimento, e, método para tratar fluido de eletro-revestimento, aparelho
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US20110015549A1 (en) * 2005-01-13 2011-01-20 Shimon Eckhouse Method and apparatus for treating a diseased nail
KR100518620B1 (ko) * 2005-05-12 2005-10-04 조영만 침구용 살균장치
GB0515550D0 (en) * 2005-07-29 2005-09-07 Univ Strathclyde Inactivation of staphylococcus species
WO2007050144A1 (en) 2005-10-28 2007-05-03 United Laboratories & Manufacturing, Llc Hygienic-therapeutic multiplex devices
US20090163964A1 (en) 2007-08-17 2009-06-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods including sterilizing excitation delivery implants with general controllers and onboard power
US8206326B2 (en) 2008-03-04 2012-06-26 Sound Surgical Technologies, Llc Combination ultrasound-phototherapy transducer
US8679103B2 (en) * 2008-12-22 2014-03-25 Valam Corporation Two step mammalian biofilm treatment processes and systems
EP2448636B1 (en) * 2009-07-03 2014-06-18 Ekos Corporation Power parameters for ultrasonic catheter
US8523791B2 (en) 2009-08-11 2013-09-03 Laboratoire Naturel Paris, Llc Multi-modal drug delivery system
US20110184499A1 (en) 2010-01-27 2011-07-28 Robert Radi Skin treatment device and system
US20120029394A1 (en) 2010-02-05 2012-02-02 Bacoustics, Llc Ultrasound Assisted Laser Skin and Tissue Treatment
US9492645B2 (en) 2010-10-12 2016-11-15 La Pierres, Inc. Skin treatment device with an integrated specimen dispenser
WO2014153257A2 (en) 2013-03-14 2014-09-25 Dragan Nebrigic Treating and detecting biologic targets such as infectious diseases
KR101975635B1 (ko) 2013-03-15 2019-05-07 케어웨어 코프. 광 및 초음파 트랜스듀서 장치
WO2014209955A1 (en) * 2013-06-24 2014-12-31 Chernomorsky Ary S Methods, devices and systems for increasing the effectiveness of ultrasound and other tissue treatment modalities
US9320995B2 (en) * 2013-09-17 2016-04-26 Covaris, Inc. Method and apparatus for processing sample material
KR101384008B1 (ko) 2013-10-07 2014-04-10 최소영 피부미용 복합 기능을 갖는 스킨 케어
CA2936453A1 (en) 2014-01-09 2015-07-16 Axiosonic, Llc Systems and methods using ultrasound for treatment
US9649396B2 (en) 2014-04-04 2017-05-16 Photosonix Medical, Inc. Methods, devices, and systems for treating bacteria with mechanical stress energy and electromagnetic energy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137656A1 (en) * 2003-12-23 2005-06-23 American Environmental Systems, Inc. Acoustic-optical therapeutical devices and methods

Also Published As

Publication number Publication date
IL248157A0 (en) 2016-11-30
PL3126002T3 (pl) 2020-11-16
US10792510B2 (en) 2020-10-06
US10207125B2 (en) 2019-02-19
KR20160141789A (ko) 2016-12-09
US20190134422A1 (en) 2019-05-09
IL248157B (en) 2021-05-31
US20150283277A1 (en) 2015-10-08
WO2015153172A1 (en) 2015-10-08
EP3126002A1 (en) 2017-02-08
JP6576431B2 (ja) 2019-09-18
EP3126002B1 (en) 2020-07-15
JP2017517356A (ja) 2017-06-29
CA2944495A1 (en) 2015-10-08
US20170209711A1 (en) 2017-07-27
US9649396B2 (en) 2017-05-16
US20170209710A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
KR102461535B1 (ko) 기계적인 스트레스 에너지 및 전자기 에너지로 박테리아를 처리하기 위한 방법들, 장치들 및 시스템들
US11020503B1 (en) Systems and methods for disinfection
US11260165B2 (en) Methods, systems, and apparatuses for delivery of electrolysis products
KR101686783B1 (ko) 저온 플라즈마를 이용한 휴대용 피부 미용기
US20150217142A1 (en) Method and device for treatment with combination ultrasound-phototherapy transducer
AU2007206054B2 (en) System and method for treating a wound using ultrasonic debridement
CN101505706A (zh) 超声伤口护理设备和方法
WO2016168385A2 (en) Method and device for treatment with combination ultrasound-phototherapy transducer
EP4108196A1 (en) Device for removal of microbial contaminants
Wollina et al. The use of biophysical technologies in chronic wound management
WO2023114011A1 (en) Reversal of senescence by ultrasound irradiation
Menyaev et al. A technique for surgical treatment of infected wounds based on photodynamic and ultrasound therapy
US20150105704A1 (en) Medical device
Ennis et al. Incorporating advanced wound therapies into the surgical wound management strategy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant