KR102430343B1 - 건설 기계 - Google Patents

건설 기계 Download PDF

Info

Publication number
KR102430343B1
KR102430343B1 KR1020207012913A KR20207012913A KR102430343B1 KR 102430343 B1 KR102430343 B1 KR 102430343B1 KR 1020207012913 A KR1020207012913 A KR 1020207012913A KR 20207012913 A KR20207012913 A KR 20207012913A KR 102430343 B1 KR102430343 B1 KR 102430343B1
Authority
KR
South Korea
Prior art keywords
bucket
speed
boom
arm
target
Prior art date
Application number
KR1020207012913A
Other languages
English (en)
Other versions
KR20200065040A (ko
Inventor
신지 이시하라
히로시 사카모토
히데카즈 모리키
류 나리카와
Original Assignee
히다찌 겐끼 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다찌 겐끼 가부시키가이샤 filed Critical 히다찌 겐끼 가부시키가이샤
Publication of KR20200065040A publication Critical patent/KR20200065040A/ko
Application granted granted Critical
Publication of KR102430343B1 publication Critical patent/KR102430343B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Abstract

오퍼레이터에게 복잡한 조작을 요구하지 않고, 롤링 압박 작업 시의 버킷의 가압력을 균일하게 할 수 있는 건설 기계를 제공한다. 제어 장치(18)는, 롤링 압박 작업인지 여부를 판단하여, 붐(4)의 회동 지지점으로부터 버킷(6)의 배면 소정 위치 B까지의 거리인 프론트 거리 R을 연산하고, 상기 프론트 거리가 커짐에 따라 상기 버킷이 정지 목표면에 근접하는 속도가 작아지도록 상기 버킷의 목표 속도를 결정하고, 롤링 압박 작업 시에, 상기 버킷의 목표 속도를 달성하기 위한 조작 장치(9a, 9b)의 조작 내용을 오퍼레이터에게 통지하거나, 또는 상기 버킷의 목표 속도를 달성하도록 유압 액추에이터(4a 내지 6a)를 제어한다.

Description

건설 기계
본 발명은, 유압 셔블 등의 건설 기계에 관한 것이다.
근년, 정보화 시공에 대한 대응에 수반하여, 유압 셔블 등의 건설 기계에는, 붐, 암, 버킷 등의 작업 기구의 위치나 자세를 오퍼레이터에게 표시하는 머신 가이던스나, 작업 기구의 위치를 목표 시공면을 따라 움직이도록 제어하는 머신 컨트롤의 기능을 갖는 것이 있다. 그 대표적인 것으로서는, 유압 셔블의 버킷 선단 위치와 버킷 각도를 모니터에 표시하거나, 버킷 선단이 목표 시공면에 근접하면, 그 이상 진행되지 않도록 동작에 제한을 가하거나 하는 것이 알려져 있다.
그런데, 토목·시공 작업에 있어서는, 정지 작업 후의 마무리 공정으로서, 버킷 배면으로 지면을 두드려 눌러 굳히는 롤링 압박 작업(「흙 다지기」라고도 불림)이 행해진다. 롤링 압박 작업을 지원하는 기술로서, 예를 들어 특허문헌 1, 2를 들 수 있다.
특허문헌 1에는, 작업기를 조작하기 위한 조작 부재(조작 레버 등)로부터의 조작 신호에 기초하여, 정지 작업 시와 롤링 압박 작업 시의 제어를 전환, 또한 롤링 압박 작업 시에는 작업기와 설계 지형 사이의 거리에 따라 설계 지형을 향하는 작업기의 속도를 제한하는 기술이 개시되어 있다.
또한, 특허문헌 2에는, 프론트 작업기의 리치를 검출하고, 리치의 대소에 따라, 펌프 유량, 혹은 컨트롤 밸브의 개방도를 조정하는 제어를 행함으로써, 레버 조작량과 버킷(어태치먼트) 이동량의 관계를 리치의 변화에 관계없이 일정하게 하는 기술이 개시되어 있다.
WO2016/125916호 공보 일본 특허 공개 제2012-225084호 공보
롤링 압박 작업에서는, 버킷 배면을 지면에 부딪치게 할 때의 강도(가압력)가 마무리면의 완성도의 좋고 나쁨을 정하는 요인으로 된다. 이것은, 버킷 배면에 의한 가압력의 강약의 변동이, 마무리면의 요철로서 나타나기 때문이다. 이 때문에, 고품질의 마무리면을 만드는 데에는, 어떻게 하여 가압력을 균일하게 유지할지가 과제로 된다. 여기서, 가압력은 버킷 속도와 프론트 작업기의 관성(프론트 관성)의 곱으로 정의되고, 프론트 관성은 프론트 작업기의 자세에 따라 변화된다.
이에 비해, 특허문헌 1의 기술에서는, 롤링 압박 작업 시에 작업기와 설계 지형 사이의 거리에 따라 버킷 속도가 일정 이하로 제한되지만, 프론트 작업기의 자세에 따라 프론트 관성이 변화됨으로써 가압력이 변동된다. 한편, 특허문헌 2의 기술에서는, 프론트 작업기의 리치에 의하지 않고 붐 조작량에 대한 버킷 속도가 일정해지지만, 가압력을 일정하게 하기 위해서는, 프론트 작업기의 자세에 따라 붐 조작량을 오퍼레이터가 조정해야 하기 때문에, 가압력의 균일화에는 높은 숙련도가 요구된다.
본 발명은, 상기 과제를 감안하여 이루어진 것이고, 그 목적은, 오퍼레이터에게 복잡한 조작을 요구하지 않고, 롤링 압박 작업 시의 버킷의 가압력을 균일하게 할 수 있는 건설 기계를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은, 차체와, 상기 차체의 전방에 설치되어, 붐, 암 및 버킷을 갖는 다관절형의 프론트 작업기와, 상기 붐을 구동하는 붐 실린더, 상기 암을 구동하는 암 실린더 및 상기 버킷을 구동하는 버킷 실린더를 포함하는 복수의 유압 액추에이터와, 오퍼레이터에 의해 조작되어, 상기 붐, 상기 암 및 상기 버킷의 각 동작을 지시하는 조작 장치와, 상기 붐의 자세를 검출하는 붐 자세 검출 장치와, 상기 암의 자세를 검출하는 암 자세 검출 장치와, 상기 버킷의 자세를 검출하는 버킷 자세 검출 장치와, 상기 조작 장치의 조작에 따라 상기 복수의 유압 액추에이터의 구동을 제어하는 제어 장치를 구비하고, 상기 제어 장치는, 정지 목표면을 설정하고, 상기 버킷이 상기 정지 목표면보다도 하방으로 침입하지 않는 상기 붐, 상기 암 및 상기 버킷의 목표 속도를 결정하고, 정지 작업 시에, 상기 암 및 상기 버킷의 목표 속도를 달성하기 위한 상기 조작 장치의 조작 내용을 상기 오퍼레이터에게 통지하거나, 또는 상기 암 및 상기 버킷의 목표 속도를 달성하도록 상기 복수의 유압 액추에이터의 구동을 제어하는 건설 기계에 있어서, 상기 제어 장치는, 롤링 압박 작업인지 여부를 판단하고, 상기 붐의 회동 지지점으로부터 상기 버킷의 배면 소정 위치까지의 거리인 프론트 거리를 연산하고, 상기 프론트 거리가 커짐에 따라 상기 버킷이 상기 정지 목표면에 근접하는 속도가 작아지도록 상기 버킷의 목표 속도를 결정하고, 롤링 압박 작업 시에, 상기 버킷의 목표 속도를 달성하기 위한 상기 조작 장치의 조작 내용을 상기 오퍼레이터에게 통지하거나, 또는 상기 버킷의 목표 속도를 달성하도록 상기 복수의 유압 액추에이터를 제어하는 것으로 한다.
이상과 같이 구성한 본 발명에 따르면, 롤링 압박 작업 시에, 프론트 거리가 커짐에 따라 버킷이 정지 목표면에 근접하는 속도가 작아지도록 버킷 목표 속도가 결정되어, 당해 버킷 목표 속도를 달성하기 위한 조작 장치의 조작 내용이 오퍼레이터에게 통지되거나, 또는 당해 버킷 목표 속도를 달성하도록 복수의 유압 액추에이터가 제어된다. 이로써, 오퍼레이터는, 복잡한 조작을 행하지 않고, 롤링 압박 작업 시의 버킷의 가압력을 균일하게 할 수 있다.
본 발명에 따르면, 오퍼레이터에게 복잡한 조작을 요구하지 않고, 롤링 압박 작업 시의 버킷의 가압력을 균일하게 할 수 있다.
도 1은 본 발명의 실시 형태에 관한 유압 셔블의 외관을 모식적으로 도시하는 도면이다.
도 2는 본 발명의 실시 형태에 관한 컨트롤러의 처리 기능의 일부를 개략적으로 도시하는 기능 블록도이다.
도 3은 제1 실시예에 관한 컨트롤러의 상세한 기능 블록도이다.
도 4는 버킷의 배면 소정 위치 및 프론트 거리(리치)의 연산 방법을 도시하는 도면이다.
도 5는 차체 접지면과 정지 목표면이 동일 평면 상에 없는 경우의 프론트 거리를 도시하는 도면이다.
도 6은 제1 실시예에 관한 버킷 목표 속도 결정부의 연산 결과의 일례를 도시하는 도면이다.
도 7은 제1 실시예에 관한 조작 지시 결정부의 연산 결과의 일례를 도시하는 도면이다.
도 8은 종래 기술을 적용한 경우의 프론트 거리에 대한 가압력의 변화를 도시하는 도면이다.
도 9는 유압 셔블의 차체가 피치 방향으로 진동하고 있는 상태에서 롤링 압박 작업을 행한 경우의 가압력의 변화의 일례를 도시한 도면이다.
도 10은 제2 및 제3 실시예에 관한 컨트롤러의 상세한 기능 블록도이다.
도 11은 제2 실시예에 관한 버킷 목표 속도 결정부의 연산 결과의 일례를 도시하는 도면이다.
도 12는 제3 실시예에 관한 버킷 목표 속도 결정부의 연산 결과의 일례를 도시하는 도면이다.
도 13은 차체 피치 속도와 버킷 속도를 동기시킨 경우의 프론트 거리에 대한 버킷 목표 속도 및 가압력의 변화를 도시하는 도면이다.
도 14는 제3 실시예에 관한 컨트롤러의 제어 연산 플로를 도시하는 도면이다.
도 15는 차체 접지면과 정지 목표면이 동일 평면 상에 없는 경우의 목표면 각도를 도시하는 도면이다.
도 16은 제4 실시예에 관한 컨트롤러의 상세한 기능 블록도이다.
도 17은 제4 실시예에 관한 버킷 목표 속도 결정부의 연산 결과의 일례를 도시하는 도면이다.
도 18은 제4 실시예에 있어서의 프론트 거리에 대한 버킷 목표 속도의 변화를 도시하는 도면이다.
이하, 본 발명의 실시 형태에 관한 건설 기계로서, 프론트 장치(프론트 작업기)의 선단에 작업구로서 버킷을 구비하는 유압 셔블을 예로 들고, 도면을 참조하여 설명한다. 또한, 각 도면 중, 동등한 부재에는 동일한 부호를 붙여, 중복된 설명은 적절히 생략한다.
도 1은, 본 실시 형태에 관한 유압 셔블의 외관을 모식적으로 도시하는 도면이다.
도 1에 있어서, 유압 셔블(100)은, 수직 방향으로 각각 회동하는 복수의 피구동 부재(붐(4), 암(5), 버킷(작업구)(6))를 연결하여 구성된 다관절형의 프론트 장치(프론트 작업기)(1)와, 차체를 구성하는 상부 선회체(2) 및 하부 주행체(3)를 구비하고, 상부 선회체(2)는 하부 주행체(3)에 대하여 선회 가능하게 마련되어 있다. 또한, 프론트 장치(1)의 붐(4)의 기단은 상부 선회체(2)의 전방부에 수직 방향으로 회동 가능하게 지지되어 있고, 암(5)의 일단은 붐(4)의 기단과는 다른 단부(선단)에 수직 방향으로 회동 가능하게 지지되어 있고, 암(5)의 타단에는 버킷(6)이 수직 방향으로 회동 가능하게 지지되어 있다. 붐(4), 암(5), 버킷(6), 상부 선회체(2) 및 하부 주행체(3)는, 유압 액추에이터인 붐 실린더(4a), 암 실린더(5a), 버킷 실린더(6a), 선회 모터(2a) 및 좌우의 주행 모터(3a)(한쪽의 주행 모터만 도시)에 의해 각각 구동된다.
붐(4), 암(5) 및 버킷(6)은, 단일의 평면(이하, 동작 평면) 상에서 동작한다. 동작 평면은, 붐(4), 암(5) 및 버킷(6)의 회동축에 직교하는 평면이고, 붐(4), 암(5) 및 버킷(6)의 폭 방향의 중심을 지나도록 설정할 수 있다.
오퍼레이터가 탑승하는 운전실(9)에는, 유압 액추에이터(2a 내지 6a)를 조작하기 위한 조작 신호를 출력하는 좌우의 조작 레버 장치(조작 장치)(9a, 9b)가 마련되어 있다. 좌우의 조작 레버 장치(9a, 9b)는, 각각, 전후 좌우로 경도 가능한 조작 레버와, 이 조작 레버의 경도량(레버 조작량)에 상당하는 조작 신호를 전기적으로 검출하는 검출 장치를 포함하고, 이 검출 장치가 검출한 레버 조작량을 제어 장치인 컨트롤러(18)(도 2에 도시함)에 전기 배선을 통해 출력한다. 즉, 좌우의 조작 레버 장치(9a, 9b)의 각 조작 레버의 전후 방향 또는 좌우 방향으로, 유압 액추에이터(2a 내지 6a)의 조작이 각각 할당되어 있다.
붐 실린더(4a), 암 실린더(5a), 버킷 실린더(6a), 선회 모터(2a) 및 좌우의 주행 모터(3a)의 동작 제어는, 도시하지 않은 엔진이나 전동 모터 등의 원동기에 의해 구동되는 유압 펌프 장치(7)로부터 각 유압 액추에이터(2a 내지 6a)로 공급되는 작동유의 방향 및 유량을 컨트롤 밸브(8)로 제어함으로써 행한다. 컨트롤 밸브(8)의 제어는, 도시하지 않은 파일럿 펌프로부터 전자 비례 밸브를 통해 출력되는 구동 신호(파일럿압)에 의해 행해진다. 좌우의 조작 레버 장치(9a, 9b)로부터의 조작 신호에 기초하여 컨트롤러(18)로 전자 비례 밸브를 제어함으로써, 각 유압 액추에이터(2a 내지 6a)의 동작이 제어된다.
또한, 좌우의 조작 레버 장치(9a, 9b)는 유압 파일럿 방식이어도 되고, 각각 오퍼레이터에 의해 조작되는 조작 레버의 조작 방향 및 조작량에 따른 파일럿압을 컨트롤 밸브(8)에 구동 신호로서 공급하고, 각 유압 액추에이터(2a 내지 6a)를 구동하도록 구성해도 된다.
상부 선회체(2), 붐(4), 암(5) 및 버킷(6)에는, 각각, 자세 센서로서 관성 계측 장치(IMU: Inertial Measurement Unit)(12, 14 내지 16)가 배치되어 있다. 이후, 이들 관성 계측 장치를 구별할 필요가 있는 경우는, 각각, 차체 관성 계측 장치(12), 붐 관성 계측 장치(14), 암 관성 계측 장치(15) 및 버킷 관성 계측 장치(16)라고 칭한다.
관성 계측 장치(12, 14 내지 16)는, 각속도 및 가속도를 계측하는 것이다. 관성 계측 장치(12, 14 내지 16)가 배치된 상부 선회체(2)나 각 피구동 부재(4 내지 6)가 정지되어 있는 경우를 고려하면, 각 관성 계측 장치(12, 14 내지 16)에 설정된 IMU 좌표계에 있어서의 중력 가속도의 방향(즉, 연직 하향 방향)과, 각 관성 계측 장치(12, 14 내지 16)의 설치 상태(즉, 각 관성 계측 장치(12, 14 내지 16)와 상부 선회체(2)나 각 피구동 부재(4 내지 6)의 상대적인 위치 관계)에 기초하여, 상부 선회체(2)나 각 피구동 부재(4 내지 6)의 방향(자세: 후술하는 자세 각도 θ)을 검출할 수 있다. 여기서, 붐 관성 계측 장치(14)는 붐(4)의 자세에 관한 정보(이하, 자세 정보라고 칭함)를 검출하는 붐 자세 검출 장치를 구성하고, 암 관성 계측 장치(15)는 암(5)의 자세 정보를 검출하는 암 자세 검출 장치를 구성하고, 버킷 관성 계측 장치(16)는 버킷(6)의 자세 정보를 검출하는 버킷 자세 검출 장치를 구성하고 있다.
또한, 자세 정보 검출 장치는 관성 계측 장치에 한정되는 것은 아니고, 예를 들어 경사각 센서를 사용해도 된다. 또한, 각 피구동 부재(4 내지 6)의 연결 부분에 포텐시오미터를 배치하여, 상부 선회체(2)나 각 피구동 부재(4 내지 6)의 상대적인 방향(자세 정보)을 검출하고, 검출 결과로부터 각 피구동 부재(4 내지 6)의 자세를 구해도 된다. 또한, 붐 실린더(4a), 암 실린더(5a) 및 버킷 실린더(6a)에 각각 스트로크 센서를 배치하여, 스트로크 변화량으로부터 상부 선회체(2)나 각 피구동 부재(4 내지 6)의 각 접속 부분에 있어서의 상대적인 방향(자세 정보)을 산출하고, 그 결과로부터 각 피구동 부재(4 내지 6)의 자세(자세 각도 θ)를 구하도록 구성해도 된다.
도 2는, 유압 셔블(100)에 탑재되는 컨트롤러의 처리 기능의 일부를 모식적으로 도시하는 도면이다.
도 2에 있어서, 컨트롤러(18)는, 유압 셔블(100)의 동작을 제어하기 위한 다양한 기능을 갖는 것이고, 그 일부로서 롤링 압박 작업 지원 제어부(18a), 조작 지시 표시 제어부(18b), 유압 시스템 제어부(18c) 및 정지 목표면 설정부(18d)의 각 기능부를 갖고 있다.
롤링 압박 작업 지원 제어부(18a)는, 관성 계측 장치(12, 14 내지 16)로부터의 검출 결과 및 정지 목표면 설정부(18d)(후술)로부터의 입력에 기초하여, 붐(4)의 회전 중심이 되는, 붐 풋핀으로부터 버킷(6)의 배면 소정 위치까지 거리인 프론트 거리(리치)나, 차체 좌표계에 있어서의 버킷 위치의 연산을 행한다. 또한, 상기한 프론트 거리와 버킷 위치 등의 차체 정보에 기초하여, 롤링 압박 작업 시의 버킷(6)의 목표 속도를 연산한다. 상세한 연산 내용은 후술한다.
조작 지시 표시 제어부(18b)는, 운전실(9)에 마련된 도시하지 않은 모니터의 표시나, 도시하지 않은 스피커의 음성을 제어하는 것이고, 롤링 압박 작업 지원 제어부(18a)에서 연산된 프론트 장치(1)의 자세 정보나 버킷 목표 속도에 기초하여, 오퍼레이터에 대한 조작 지원의 지시 내용을 연산하고, 운전실(9)의 모니터에 표시, 혹은 음성에 의한 통지를 행한다.
즉, 조작 지시 표시 제어부(18b)는, 예를 들어 붐(4), 암(5), 버킷(6) 등의 피구동 부재를 갖는 프론트 장치(1)의 자세나, 버킷(6)의 선단 위치, 각도, 속도 등을 모니터에 표시하여 오퍼레이터의 조작을 지원하는 머신 가이던스 시스템으로서의 기능의 일부를 담당하고 있다.
유압 시스템 제어부(18c)는, 유압 펌프 장치(7)나 컨트롤 밸브(8), 각 유압 액추에이터(2a 내지 6a) 등으로 이루어지는 유압 셔블(100)의 유압 시스템을 제어하는 것이고, 롤링 압박 작업 지원 제어부(18a)에서 연산된 프론트 장치(1)의 자세 정보나 버킷 목표 속도에 기초하여, 프론트 장치(1)의 동작을 연산하고, 그 동작을 실현하도록 유압 셔블(100)의 유압 시스템을 제어한다. 즉, 유압 시스템 제어부(18c)는, 예를 들어 버킷(6)의 배면이 정지 목표면을 과대한 힘으로 두드리지 않도록, 혹은 버킷(6)의 배면 이외가 정지 목표면에 접촉하지 않도록 프론트 작업기(1)의 동작을 제한하는 제어를 행하는 머신 컨트롤 시스템으로서의 기능의 일부를 담당하고 있다.
정지 목표면 설정부(18d)는, 도시하지 않은 기억 장치 등에 시공 관리자에 의해 미리 기억되어 있는 3차원 시공 도면 등의 설계 지형 데이터(17)에 기초하여, 정지 대상의 목표 형상을 정의하는 정지 목표면을 연산한다.
실시예 1
본 발명의 제1 실시예에 관한 유압 셔블(100)에 대하여, 도 3 내지 도 7을 사용하여 설명한다.
도 3은, 본 실시예에 관한 컨트롤러(18)의 상세한 기능 블록도이다. 또한, 도 3에 있어서, 도 2와 마찬가지로 본 발명에 직접 관계되지 않는 기능은 생략하고 있다.
도 3에 있어서, 롤링 압박 작업 지원 제어부(18a)는, 버킷 위치 연산부(18a1)와, 버킷 목표 속도 결정부(18a2)와, 제어 전환부(18a3)를 구비하고 있다.
버킷 위치 연산부(18a1)는, 붐(4), 암(5), 버킷(6)의 각 자세 검출 장치(각 관성 계측 장치(14 내지 16)에 상당함)의 출력에 따라, 버킷(6)의 배면 소정 위치의 좌표와 프론트 거리(리치)를 계산한다.
버킷(6)의 배면 소정 위치 및 프론트 거리의 연산 방법을 도 4를 사용하여 설명한다.
버킷 위치 연산부(18a1)는, 붐(4)의 회동 지지점인 붐 풋핀의 위치 O를 좌표 원점으로 하여, 버킷(6)의 배면 소정 위치 B의 좌표를 계산한다. 여기서, 배면 소정 위치 B는, 롤링 압박 작업 시에 정지 목표면과 접촉하는 버킷 배면 상의 어느 위치에 설정해도 된다.
붐 풋핀의 위치 O와 암(5)의 회동 지지점(붐(4)과 암(5)의 연결부)의 거리를 붐 길이 Lbm, 암(5)의 회동 지지점과 버킷(6)의 회동 지지점(암(5)과 버킷(6)의 연결부)의 거리를 암 길이 Lam, 버킷(6)의 회동 지지점과 버킷(6)의 배면 소정 위치 B의 거리를 버킷 길이 Lbk라고 하면, 버킷(6)의 배면 소정 위치 B의 프론트 좌표계에 있어서의 좌표값(x, y)은, 붐(4), 암(5), 버킷(6)(정확하게는, 붐 길이 Lbm, 암 길이 Lam 및 버킷 길이 Lbk의 방향)의 수평 방향과의 이루는 각(자세 각도)을 각각 θbm, θam, θbk라고 하여 하기의 식(1) 및 식(2)로부터 구할 수 있다.
Figure 112020045542095-pct00001
Figure 112020045542095-pct00002
프론트 거리 R은, 붐 풋핀의 위치 O로부터 버킷(6)의 배면 소정 위치 B까지의 거리이고, 하기의 식(3)으로부터 구할 수 있다.
Figure 112020045542095-pct00003
또한, 도 4에 도시한 바와 같이, 유압 셔블(100)의 차체 접지면과 정지 목표면이 동일 평면 상에 있는 경우는, 프론트 거리 R을 배면 소정 위치 B의 x좌표에서 근사해도 된다. 한편, 도 5에 도시한 바와 같이, 차체 접지면과 정지 목표면이 동일 평면 상에 없고, 프론트 거리 R과 배면 소정 위치 B의 x좌표가 크게 다른 경우는, 원칙대로, 좌표 원점 O로부터 배면 소정 위치 B까지의 거리를 프론트 거리 R이라고 하는 것이 바람직하다.
버킷 목표 속도 결정부(18a2)는, 버킷 위치 연산부(18a1)에서 산출한 프론트 거리 R에 기초하여, 롤링 압박 작업 시의 버킷(6)의 목표 속도를 연산한다. 버킷 목표 속도는, 정지 목표면에 버킷(6)이 근접할 때에 양의 값을 취하도록 정의한다.
버킷 목표 속도 결정부(18a2)의 연산 내용의 일례를 도 6을 사용하여 설명한다.
도 6의 (a)는 프론트 거리 R에 대응하는 프론트 관성을 도시하고, 도 6의 (b)는 버킷 목표 속도 결정부(18a2)에서 연산되는 버킷 목표 속도를 도시하고 있다. 도 6의 (c)는, 도 6의 (a)의 프론트 관성에 대하여, 버킷(6)의 속도를 도 6의 (b)의 버킷 목표 속도와 일치시킨 경우에 발생하는 가압력을 도시하고 있다.
도 6의 (a)에 도시한 프론트 관성과 프론트 거리 R의 관계는, 붐(4), 암(5), 버킷(6)의 각도에 따라 다르지만, 프론트 거리 R이 커질수록 프론트 관성이 커진다는 경향은 유지된다.
버킷 목표 속도 결정부(18a2)는, 프론트 거리 R이 커질수록, 즉, 프론트 관성이 커질수록, 버킷 목표 속도를 작게 함으로써, 프론트 관성과 버킷 속도의 곱의 차원으로 나타나는 가압력을 프론트 거리 R에 의하지 않고 일정하게 하는 데 특징이 있다.
제어 전환부(18a3)는, 롤링 압박 작업인지 여부를 판단하는 롤링 압박 작업 판단부(18f)의 출력에 따라, 본 제어의 유효, 무효를 전환한다. 롤링 압박 작업 판단부(18f)는 오퍼레이터의 조작에 의해, 임의의 타이밍에서 전환을 유효하게 해도 되고, 특정한 작업 조건으로부터 자동적으로 전환을 판단해도 된다. 또한, 롤링 압박 작업 지원을 정지할(제어 전환부(18a3)를 무효측으로 할) 때에, 정지 작업 지원 제어부(18e)의 신호가 유효해지는 구성으로 해도 된다.
정지 작업 지원 제어부(18e)는, 버킷 위치 연산부(18a1)에서 구한 버킷(6)의 소정 위치(예를 들어, 클로 끝 위치)가 정지 목표면 설정부(18d)로 구한 정지 목표면보다도 하방으로 침입하지 않도록, 붐(4), 암(5), 버킷(6)의 각 목표 속도를 결정하는 프론트 목표 속도 결정부(18e1)를 구비하고 있다. 또한, 프론트 목표 속도 결정부(18e1)의 상세는 본 발명의 범위 외로 되기 때문에, 설명은 생략한다.
조작 지시 표시 제어부(18b)는, 조작 지시 결정부(18b1)와, 조작 지시 표시 장치(18b2)를 구비하고 있다.
조작 지시 결정부(18b1)는, 정지 작업 시에는, 프론트 목표 속도 결정부(18e1)에서 결정한 붐(4), 암(5), 버킷(6)의 각 목표 속도를 실현하는 레버 조작을 연산한다. 한편, 롤링 압박 작업 시에는, 버킷 목표 속도 결정부(18a2)에서 연산된 버킷 목표 속도를 실현하는 레버 조작을 연산한다.
붐 하강 조작만으로 버킷(6)을 정지면에 내리치는 롤링 압박 작업 시의 조작 지시 결정부(18b1)의 연산 내용의 일례를 도 7에 도시한다. 도 7의 (a) 및 도 7의 (b)는 도 6의 (a) 및 도 6의 (b)와 동일하게, 프론트 거리 R에 따른 프론트 관성과 버킷 목표 속도의 변화를 나타낸 그래프이다. 조작 지시 결정부(18b1)는 도 7의 (b)의 버킷 목표 속도를 실현하도록 붐 하강 조작량(예를 들어, 레버의 기울기량)을 도 7의 (c)와 같이 결정한다.
조작 지시 표시 장치(18b2)는, 조작 지시 결정부(18b1)에서 결정한 작업 내용(레버 조작량 등)을 운전실(9) 내의 모니터에 표시하거나, 동일하게 운전실(9) 내의 스피커로부터 음성으로 지시를 전달하거나 하기 위한 정보 처리를 행한다.
유압 시스템 제어부(18c)는, 제어량 결정부(18c1)와, 작업기 속도 조정 장치(18c2)를 구비하고 있다.
제어량 결정부(18c1)는, 정지 작업 시에는, 프론트 목표 속도 결정부(18e1)에서 결정한 붐(4), 암(5), 버킷(6)의 각 목표 속도를 실현하도록 각 실린더(4a 내지 6a)의 목표 속도나, 그 실린더 목표 속도를 실현하기 위해 각 실린더(4a 내지)에 공급해야 하는 작동유량의 목표값을 연산한다. 한편, 롤링 압박 작업 시에는, 버킷 목표 속도 결정부(18a2)에서 연산된 버킷 목표 속도를 실현하도록 각 실린더(4a 내지 6a)의 목표 속도나, 그 실린더 목표 속도를 실현하기 위해 각 실린더에 공급해야 하는 작동유량의 목표값을 연산한다.
작업기 속도 조정 장치(18c2)는, 유압 펌프 장치(7) 및 컨트롤 밸브(8)를 제어함으로써, 제어량 결정부(18c1)에서 연산된 각 실린더(4a 내지 6a)에 공급하는 작동유량의 목표값을 실현한다.
유압 시스템 제어부(18c)에 의하면, 오퍼레이터의 레버 조작량에 의하지 않고, 원하는 버킷 목표 속도가 실현된다.
이상과 같이 구성한 본 실시예에 관한 유압 셔블(100)에 의해 달성되는 효과를 종래 기술과 비교하여 설명한다.
도 8은, 프론트 작업기의 리치(프론트 거리 R)에 의하지 않고 붐 조작량에 대한 버킷 속도를 일정하게 하는 종래 기술(특허문헌 2에 기재)의 제어를 적용한 경우의 프론트 거리 R에 대한 가압력의 변화를 도시하는 도면이다. 도 8은, 프론트 거리 R에 의하지 않고 일정한 레버 조작량(예를 들어, 레버 스트로크 50%)으로 붐 하강 조작을 행한 경우에, 프론트 거리 R에 따라 버킷 하강 속도, 프론트 관성 및 가압력이 어떻게 변화되는지를 나타내고 있다.
특허문헌 2의 기술에 의하면, 레버 조작량을 일정하게 함으로써, 프론트 거리 R에 의하지 않고 버킷 하강 속도를 일정하게 할 수 있다. 여기서, 가압력은 버킷 하강 속도와 프론트 관성의 곱으로 정의되고, 프론트 관성은 프론트 거리 R에 따라 증가하기 때문에, 버킷 하강 속도가 일정한 경우, 프론트 거리 R이 커질수록 가압력이 증가해 버린다. 따라서, 특허문헌 2의 기술에서는, 가압력을 일정하게 하기 위해, 프론트 거리 R에 따라 레버 조작량을 오퍼레이터가 조정해야 하기 때문에, 가압력의 균일화에는 높은 숙련도가 요구된다.
이에 비해, 본 실시예에 관한 유압 셔블(100)에서는, 롤링 압박 작업 시에, 프론트 거리 R이 커짐에 따라 버킷(6)이 정지 목표면에 근접하는 속도가 작아지도록 버킷 목표 속도가 결정되고, 당해 버킷 목표 속도를 달성하기 위한 조작 레버 장치(9a, 9b)의 조작 내용이 오퍼레이터에게 통지되거나, 또는 당해 버킷 목표 속도를 달성하도록 유압 액추에이터(4a 내지 6a)의 구동이 제어된다. 이로써, 오퍼레이터는, 복잡한 조작을 행하지 않고, 롤링 압박 작업 시의 버킷(6)의 가압력을 균일하게 할 수 있다.
실시예 2
본 발명의 제2 실시예에 관한 유압 셔블(100)에 대하여, 도 9 내지 도 11을 사용하여 설명한다.
연토 위 등의 불안정한 장소에서 프론트 작업기(1)를 급격하게 움직이게 한 경우에는, 유압 셔블(100)의 차체(하부 주행체(3) 및 상부 선회체(2))가 프론트 작업기(1)의 회동에 맞추어 피치 방향으로 진동해 버린다.
이와 같이 차체가 피치 방향으로 진동하고 있는 경우의 가압력의 변화를 도 9를 사용하여 설명한다.
도 9의 (a)는 차체의 피치 속도를 나타내고 있고, 차체 피치 속도가 정일 때는 차체 전방이 지면으로부터 이격되는 방향의 속도를 갖고 있는 것을 도시하고 있다. 도 9의 (b)는 프론트 작업기(1)에 의한 가압력을 도시하고 있다. 여기서, 프론트 작업기(1)에 대해서는 제1 실시예와 동일한 제어가 실행되어 있고, 프론트 작업기(1)에 의한 가압력은 균일한 것으로 한다. 그러나, 정지면에 작용하는 최종적인 가압력은, 도 9의 (c)에 도시한 바와 같이, 프론트 작업기(1)에 의한 가압력에, 차체의 피치 진동에 의한 차체 중량의 영향을 가미한 것으로 된다. 또한, 도 9의 (c)에 있어서, 도 9의 (b)에 도시한 프론트 작업기(1)에 의한 가압력을 파선으로 나타내고 있다.
시각 A에서는 차체 전방이 지면으로부터 부상하는 방향의 속도를 갖고 있기 때문에, 최종적인 가압력은 프론트 작업기(1)에 의한 가압력보다도 작아진다. 시각 B에서는 차체가 정지되어 있기 때문에, 프론트 작업기(1)에 의한 가압력이 그대로 최종적인 가압력으로 된다. 그리고, 시각 C에서는 차체 전방이 지면에 근접하는 방향의 속도를 갖고 있기 때문에, 최종적인 가압력은 프론트 작업기(1)에 의한 가압력보다도 커진다.
이상과 같이, 제1 실시예에서는, 차체가 피치 방향으로 진동하고 있는 상태에서 롤링 압박 작업을 행한 경우에, 버킷(6)의 가압력이 불균일해질 우려가 있다. 본 실시예는, 이상의 과제를 해소하는 수단을 제공하는 것이다.
도 10은, 본 실시예에 관한 컨트롤러(18)의 처리 기능을 상세하게 도시하는 기능 블록도이다. 본 실시예는, 버킷 목표 속도 결정부(18a2)에서, 차체 속도 검출 장치(차체 관성 계측 장치)(12)에서 검출한 차체의 피치 방향의 속도 정보를 이용하는 점이 제1 실시예(도 3에 도시함)와 상이하다.
본 실시예에 관한 버킷 목표 속도 결정부(18a2)의 연산 내용의 일례를 도 11을 사용하여 설명한다.
도 11의 (a)는, 각 시각에 있어서의 프론트 관성을 도시하고 있다. 시각 t1 내지 t3에 있어서 프론트 작업기(1)는 동일 자세를 유지하고, 시각 t3과 시각 t4 사이에 자세를 변화시키고, 시각 t4 내지 t6에서 다시 동일 자세를 유지하는 것을 나타내고 있다.
도 11의 (b)는, 각 시각에 있어서의 차체의 피치 속도를 도시하고 있다. 시각 t1, t4는 차체가 정지되어 있는 상태, 시각 t2, t5는 차체 전방이 지면으로부터 부상하는 상태, 시각 t3, t6은 차체 전방이 지면에 근접하는 상태를 도시하고 있다.
도 11의 (c)는, 각 시각에 있어서 버킷 목표 속도 결정부(18a2)에서 연산되는 버킷 목표 속도이다.
시각 t1은 프론트 관성이 작고, 또한 차체가 정지하고 있는 상태이고, 이때에 연산된 버킷 목표 속도를 vb1이라고 하고, 각 시각의 버킷 목표 속도의 비교를 행한다.
시각 t2는 프론트 관성이 시각 t1과 동일하지만, 차체 전방이 지면으로부터 부상하는 방향의 속도를 갖고 있기 때문에, 버킷 목표 속도를 vb1보다도 크게 함으로써 가압력을 유지한다.
시각 t3은 프론트 관성이 시각 t1과 동일하지만, 차체 전방이 지면에 근접하는 방향의 속도를 갖고 있기 때문에, 버킷 목표 속도를 vb1보다도 작게 함으로써 가압력을 유지한다.
시각 t4는 프론트 관성이 시각 t1보다 크지만, 차체가 정지 상태이기 때문에, 버킷 목표 속도를 vb1보다도 작은 vb2로 함으로써 가압력을 유지한다.
시각 t5는 프론트 관성이 시각 t4와 동일하지만, 차체 전방이 지면으로부터 부상하는 방향의 속도를 갖고 있기 때문에, 버킷 목표 속도를 vb2보다도 크게 함으로써 가압력을 유지한다. 또한, 도 11의 (c)에서 시각 t5의 버킷 목표 속도는 vb1보다 작은 값으로 되어 있지만, 프론트 관성 및 차체 피치 속도의 크기에 따라서는, 시각 t5의 버킷 목표 속도는 vb1보다도 커지는 경우가 있다.
시각 t6은 프론트 관성이 시각 t4와 동일하지만, 차체 전방이 지면에 근접하는 방향의 속도를 갖고 있기 때문에, 버킷 목표 속도를 vb2보다도 작게 함으로써 가압력을 유지한다. 시각 t6의 조합에 있어서 버킷 목표 속도는 최소로 된다.
도 11에서는, 설명을 간략화하기 위해, 각 시각 t1 내지 t6에 있어서의 이산적인 거동을 취급하고 있지만, 연속적으로 작업을 행하고 있는 경우에도 동일한 사고로 제어를 실시할 수 있다.
특히, 차체 피치 속도의 주기와 버킷 속도를 동기시키면 큰 가압력이 발생하기 때문에, 프론트 관성이 작은 자세일 때에 가압력을 확보하는 데 유효하다.
단, 프론트 관성이 큰 자세로 차체 피치 속도의 주기와 버킷 속도를 동기시키면, 과잉의 가압력이 발생하여, 프론트 관성이 작은 자세일 때에 버킷 속도를 최대로 하더라도, 동등한 가압력을 발생시킬 수 없을 우려가 있다. 이 때문에, 프론트 거리 R이 클 때는, 차체 피치 속도의 주기와 버킷 속도를 동기시키지 않도록 버킷 목표 속도를 결정하는 것이 바람직하다.
또한, 차체 피치 속도의 주기는 차체 속도 검출 장치(12)의 검출값을 일정 시간 기억하고, 그 기록 데이터를 분석함으로써 결정할 수 있다.
이상과 같이 구성한 본 실시예에 관한 유압 셔블(100)에 있어서도, 제1 실시예와 동일한 효과가 얻어진다.
또한, 프론트 거리 R에 따라 결정한 버킷(6)의 목표 속도가 차체 피치 속도에 따라 보정되기 때문에, 차체가 피치 방향으로 진동하고 있는 상태에서 롤링 압박 작업을 행한 경우라도, 버킷(6)의 가압력을 균일하게 할 수 있다.
실시예 3
본 발명의 제3 실시예에 관한 유압 셔블(100)에 대하여, 도 12 내지 도 14를 사용하여 설명한다.
유압 셔블(100)의 각 실린더(4a 내지 6a)의 신축 속도에는 상한이 있기 때문에, 버킷 속도에는 물리적으로 상한이 존재한다. 제2 실시예에서는, 버킷 목표 속도의 연산에 이 상한값을 감안하고 있지 않았다. 본 실시예는, 버킷 속도의 상한값을 고려한 효율적인 롤링 압박 작업의 지원을 가능하게 하는 것이다.
본 실시예에 관한 컨트롤러(18)의 구성은 제2 실시예(도 10에 도시함)와 마찬가지이다. 단, 버킷 목표 속도 결정부(18a2)의 연산 내용에 차이가 있다.
본 실시예에 관한 버킷 목표 속도 결정부(18a2)의 연산 내용의 일례를 도 12를 사용하여 설명한다.
시각 t7은, 프론트 관성이 최대 Imax이고 또한 차체 전방이 지면에 근접하는 속도가 최대 Mmin(부의 값이므로 "min")일 때의 거동을 나타내고 있다. 이때에 실현되는 가압력을 F1이라고 한다.
시각 t8은, 프론트 관성이 최소 Imin이고 또한 차체 전방이 지면에 근접하는 속도가 최대 Mmin일 때의 거동을 나타내고 있다. 이 조건에 있어서는, 버킷 속도를 시각 t7보다도 크게 하지 않으면 가압력 F1을 유지할 수는 없다. 그래서, 시각 t8의 버킷 목표 속도를 프론트 작업기(1)가 실현할 수 있는 버킷 속도의 최댓값 vmax로 함으로써, 가압력 F1을 유지하고 있다.
시각 t9, t10에서는, 프론트 관성이 최소 Imin이고, 차체가 정지되어 있거나, 차체 전방이 지면으로부터 부상하는 방향의 속도를 갖고 있기 때문에, 가압력 F1을 확보하기 위해 필요한 버킷 목표 속도는 최댓값 vmax보다도 커진다. 그러나, 프론트 작업기(1)는 최댓값 vmax보다도 큰 버킷 속도를 실현할 수 없기 때문에, 시각 t9, t10에서는 가압력 F1을 확보할 수 없다.
이와 같이 가압력 F1을 확보하기 위해 필요한 버킷 목표 속도가 프론트 작업기(1)가 달성할 수 있는 버킷 속도의 최댓값 vmax보다도 큰 경우는, 조작 지시 표시 제어부(18b)에 의해, 오퍼레이터에게 가압력이 부족한 것을 통지하거나, 지면을 두드리는 횟수를 증가시키도록 촉구하는 것이 바람직하다.
혹은, 시각 t7과 동일한 프론트 관성, 차체 피치 속도인 시각 t11과 같이, 최소의 가압력 F2까지밖에 나오지 않도록 버킷 목표 속도를 vmin으로 설정해도 된다. 단, 이 경우에는 마무리면의 완성도는 양호하지만 가압력이 부족하기 때문에, 내리침을 행하는 횟수가 증가하는 것에 주의가 필요하다.
도 12의 제어 내용을 연속적으로 취하기 위해, 횡축을 프론트 거리 R이라고 하고, 차체 피치 속도가 0일 때(차체의 피치각이 정지면에 대하여 변화되어 있지 않을 때)와, 프론트 거리 R이 R1인 자세에 있어서, 차체 피치 속도와 버킷 속도를 동기시킨 경우의 프론트 거리 R에 대한 버킷 목표 속도 및 가압력의 변화를 도 13에 도시한다.
도 13의 (a)는, 프론트 거리 R에 대한 버킷 목표 속도의 변화를 도시하는 도면이다. 차체 피치 속도가 0일 때는, 제1 실시예(도 6의 (b)에 도시함)와 마찬가지로, 프론트 거리 R의 증가에 따라 버킷 목표 속도가 감소하는 「피치 속도 없음 l0」의 제어 특성을 갖는 것으로 한다. 한편, 차체 피치 속도와 버킷 속도가 동기 한 경우, 차체 중량분의 가압력이 가산되기 때문에, 피치 속도 없음의 경우에 비해, 이것을 보상하도록 버킷 목표 속도를 Δv만큼 증가시킨다. 이때의 버킷 목표 속도를 「동기 보상 l1」이라고 한다.
도 13의 (b)는, 피치 속도 없음 l0과 동기 보상 l1에 의해 얻어지는 가압력의 변화를 도시하는 도면이다. 프론트 거리 R이 R0보다도 크면, 피치 속도 없음 l0의 특성에 Δv를 추가한 버킷 목표 속도를 부여함으로써, 가압력 F1을 유지할 수 있다. 그러나, 프론트 거리 R이 R0보다도 작아지면 유압 액추에이터(4a 내지 6a)를 실현할 수 있는 최대 속도 vmax보다도 버킷 목표 속도를 높이지 않으면 가압력 F1을 유지할 수 없는 것을 알 수 있다. 이와 같은 상황에 있어서는 일정한 가압력 F1을 유지할 수 없기 때문에, 고품질의 마무리면을 작성할 수 없게 된다.
이상의 상황을 회피하기 위한 제어 연산 플로를 도 14에 도시한다.
먼저, 스텝 FC1에서 차체 피치 속도가 0일 때의 가압력 F2를 설정한다. 도 14에서는, 이 F2의 설정을 흐름도의 초기에 매회 실행하는 표기로 되어 있지만, 사전에 F2를 설정해 두고, 이것을 호출하는 형태로 해도 된다.
스텝 FC2에서, 버킷 위치 연산부(18a1)에서 연산한 프론트 거리와 차체 속도 검출 장치(12)에서 계측한 차체 피치 속도를 이용하여, 버킷 속도와 차체 피치 속도가 동기한 경우에 발생하는 가압력 F1을 연산한다.
스텝 FC3에서는, 스텝 FC1, FC2에서 연산한 가압력 F1, F2의 차를 취하고, 이 차를 보상하기 위해 필요한 버킷 속도의 증분 Δv를 연산한다.
스텝 FC4에서는, 차체 피치 속도가 0, 즉, F2의 가압력을 발생시키는 특성에 있어서, 프론트 자세가 최소 거리일 때, 즉, 프론트 관성이 Imin일 때에, 연산되는 버킷 목표 속도 v2에, 스텝 FC3에서 연산한 속도 증가 Δv를 가산한 값(v2+Δv)과 최대 속도 vmax의 대소 관계를 비교한다.
「v2+Δv≤vmax」이면, 가압력 F1을 실현할 수 있기 때문에, 스텝 FC5로 이행하여, 버킷 근접 속도와 차체 피치 속도의 동기를 허가한다.
한편, 「v2+Δv>vmax」이면, 속도 상한에 의해, 가압력 F1을 실현할 수 없기 때문에, 스텝 FC6으로 이행하여, 버킷 근접 속도와 차체 피치 속도의 동기를 허가하지 않는다.
이상의 제어 플로를 컨트롤러(18)의 연산 주기별로 실행한다.
이상과 같이 구성한 본 실시예에 관한 유압 셔블(100)에 있어서도, 제2 실시예와 동일한 효과가 얻어진다.
또한, 프론트 거리 R의 전체 범위에서 균일한 가압력 F1을 실현할 수 있는 경우에 한하여 버킷 근접 속도와 차체 피치 속도의 동기가 허가되기 때문에, 프론트 거리 R을 최소 거리로부터 최대 거리까지 변화시켜 롤링 압박 작업을 행하는 경우라도 버킷의 가압력을 균일하게 할 수 있다.
실시예 4
본 발명의 제4 실시예에 관한 유압 셔블에 대하여, 도 15 내지 도 18을 사용하여 설명한다.
도 15에 도시한 바와 같이, 유압 셔블(100)의 차체 접지면과 정지 목표면이 다른 경우는, 암(5)을 감아 넣은 자세로 롤링 압박 작업을 행하는 경우가 많다. 이 경우, 암(5)의 길이 방향과 정지면의 법선 방향이 이루는 각도(이하, 목표면 각도라고 칭함) θsurf가 작아지는 것에 의해, 버킷(6)을 통해 정지 목표면에 작용하는 암 하중이 커진다. 예를 들어, 도 15의 (b)의 자세는, 도 15의 (a)의 자세보다도 프론트 거리 R이 작지만, 목표면 각도 θsurf가 작아지는 것에 의해 큰 가압력이 얻어진다. 따라서, 제1 실시예와 같이 프론트 거리 R에만 기초하여 버킷 목표 속도를 결정한 경우, 목표면 각도 θsurf를 크게 변화시키면서 롤링 압박 작업을 행한 경우에, 가압력이 불균일해질 우려가 있다. 본 실시예는, 이상의 과제를 해소하는 수단을 제공하는 것이다.
도 16은, 본 실시예에 있어서의 컨트롤러(18)의 처리 기능을 상세하게 도시하는 기능 블록도이다. 도 15에 있어서, 제2, 제3 실시예에 있어서의 컨트롤러(18)(도 10에 도시함)의 구성에 차체 각도 검출 장치가 추가되어 있지만, 자세 센서에 관성 계측 장치를 이용하는 경우, 정지 시의 가속도로부터 각도 정보를 검출할 수 있기 때문에, 차체 각도 검출 장치와 차체 속도 검출 장치를 차체 관성 계측 장치(12)로 통합할 수 있다.
본 실시예에 있어서의 버킷 위치 연산부(18a1)는, 차체 각도 검출 장치에서 검출된 차체의 기울기를 포함하여, 버킷(6)의 배면 소정 위치 B의 좌표를 계산한다. 구체적으로는 (1), (2)식으로 계산한 좌표에 차체 각도 θbody를 고려한 회전 행렬을 곱하면 된다.
또한, 버킷 위치 연산부(18a1)에서, 붐(4)과 암(5)의 회동 지지점과 암(5)과 버킷(6)의 회전 지지점을 연결하는 직선(암(5)의 길이 방향)과 정지 목표면에 대한 법선이 이루는 각도 θsurf(이후, 목표면 각도라고 칭함)의 연산도 실시한다. 목표면 각도 θsurf는 도 15에 도시한 바와 같고, 목표면 각도 θsurf는 절댓값으로 정의한다.
본 실시예에 있어서의 버킷 목표 속도 결정부(18a2)는, 버킷 목표 속도의 연산에 목표면 각도 θsurf를 이용하는 데 특징이 있다.
먼저, 도 16을 사용하여, 목표면 각도 θsurf에 의한 가압력의 변화를 설명한다. 도 16의 (a)에서는, 버킷 위치 연산부(18a1)에서 계산되는 프론트 거리 R이 크기 때문에, 프론트 관성은 커진다. 단, 목표면 각도 θsurf도 크기 때문에, 정지 시에 암 하중을 효율적으로 지면으로 전할 수 없다. 한편, 도 16의 (b)에서는, 프론트 거리 R이 작기 때문에 프론트 관성은 작지만, 목표면 각도 θsurf가 0이기 때문에, 암 하중과 버킷 하중으로 정지면을 효율적으로 가압할 수 있다.
이상을 근거로 하여, 본 실시예에 관한 버킷 목표 속도 결정부(18a2)의 연산 내용을 도 17을 사용하여 설명한다. 또한, 설명의 간략화를 위해, 도 17에서는 차체 피치 속도가 0이라고 가정하지만, 차체 피치 속도가 발생하는 경우는, 제2 또는 제3 실시예의 연산과 조합해도 된다.
시각 t12는 프론트 관성이 작고, 또한 목표면 각도가 큰 경우이다. 이때의 버킷 목표 속도 vb3을 기준으로 하여, 시각 t13 내지 t17에서 버킷 목표 속도가 어떻게 변화되는지를 설명한다.
시각 t13은 프론트 관성이 시각 t12와 동일하지만, 목표면 각도의 절댓값이 시각 t12보다도 작기 때문에, 버킷 목표 속도는 vb3보다도 작아진다. 시각 t14는 목표면 각도가 시각 t13보다도 더 작아지기 때문에, 버킷 목표 속도도 목표면 각도가 시각 t13보다도 작아진다.
시각 t15는 목표면 각도가 시각 t12와 동일하지만, 프론트 관성이 시각 t12보다도 큰 경우이다. 이 경우는, 제1 실시 형태의 제어에 따라, 프론트 관성의 증분에 따라, 버킷 목표 속도가 작아진다.
시각 t16, t17은, 시각 t15와 프론트 관성이 동일하고, 목표면 각도만이 변화된 경우이다. 프론트 관성이 큰 경우도, 목표면 각도가 작아질수록, 버킷 목표 속도가 커진다.
도 17의 제어 내용을 연속적으로 취하기 위해, 도 13에 도시한 정지 목표면의 롤링 압박 작업을 예로 들어, 횡축을 프론트 거리 R이라고 한 때의 버킷 목표 속도의 변화를 도 18을 사용하여 설명한다. 또한, 도 18에서는, 설명을 간략화하기 위해, 암(5)을 감아 넣은 자세(풀 클라우드)로부터 신장 자세(풀 덤프) 자세로 변화시킨 경우만을 취급하고 있다.
도 18의 (a)는 프론트 거리 R에 따른 프론트 관성의 변화를 도시하고 있다. 관성 모멘트는 회전축(유압 셔블(100)의 경우는 붐 풋핀)에 대하여, 거리의 2승에 비례하기 때문에 곡선으로 되는 것에 주의해야 한다(도 6 내지 도 8에서는, 설명을 간략화하기 위해, 1차 함수의 형태로 나타냄).
도 18의 (b)는 프론트 거리 R에 따른 암 하중의 영향의 변화를 도시하고 있다. 암 하중의 영향은 도 13의 (b)에 도시한 바와 같이 θsurf가 0에서 최대로 되고, 이 자세로부터 이격될수록 암 하중의 영향은 작아진다.
도 18의 (c)는 프론트 거리 R에 의하지 않고 일정 속도로 버킷(6)의 타격을 행한 경우의 가압력의 변화를 도시한 도면이다. 가압력은, 프론트 관성과 암 하중의 영향의 양쪽을 받기 때문에, 도 18의 (c)는 도 18의 (a)와 도 18의 (b)의 곱과 같은 형태로 부여할 수 있다.
도 18의 (d)는 본 발명의 버킷 목표 속도 결정부(18a2)에 의해 연산되는 버킷 목표 속도의 변화를 도시한 도면이다. 본 발명은 버킷 목표 속도의 증감을, 가압력의 변화에 영향을 끼치는 항의 증감과 역전시키도록 연산함으로써 프론트 거리 R에 의하지 않고 일정한 가압력을 실현하는 것이므로, 도 18의 (d)은 도 18의 (c)를 반전시킨 형상으로 되는 것에 특징이 있다.
이상과 같이 구성한 본 실시예에 관한 유압 셔블(100)에 있어서도, 제1 실시예와 동일한 효과가 얻어진다.
또한, 암(5)의 길이 방향과 정지 목표면의 법선 방향이 이루는 각도(목표면 각도) θsurf가 0에 근접할수록 버킷(6)이 정지 목표면에 근접하는 속도가 작아지도록, 프론트 거리 R에 따라 결정한 버킷(6)의 목표 속도가 보정된다. 이로써, 목표면 각도 θsurf를 크게 변화시켜 롤링 압박 작업을 행하는 경우라도, 버킷(6)의 가압력을 균일하게 할 수 있다.
이상, 본 발명의 실시예에 대하여 상세하게 설명했지만, 본 발명은, 상기한 실시예에 한정되는 것은 아니고, 다양한 변형예가 포함된다. 예를 들어, 상기한 실시예는, 본 발명을 이해하기 쉽게 설명하기 위해 상세하게 설명한 것이고, 반드시 설명한 모든 구성을 구비하는 것에 한정되는 것은 아니다. 또한, 어느 실시예의 구성에 다른 실시예의 구성의 일부를 더하는 것도 가능하고, 어느 실시예의 구성의 일부를 삭제하거나, 혹은 다른 실시예의 일부와 치환하는 것도 가능하다.
1: 프론트 장치(프론트 작업기)
2: 상부 선회체
2a: 선회 모터(유압 액추에이터)
3: 하부 주행체
3a: 주행 모터
4: 붐
4a: 붐 실린더(유압 액추에이터)
5: 암
5a: 암 실린더(유압 액추에이터),
6: 버킷
6a: 버킷 실린더(유압 액추에이터)
7: 유압 펌프 장치
8: 컨트롤 밸브
9: 운전실
9a: 조작 레버 장치(조작 장치)
9b: 조작 레버 장치(조작 장치)
12: 차체 관성 계측 장치
14: 붐 관성 계측 장치(붐 자세 검출 장치)
15: 암 관성 계측 장치(암 자세 검출 장치)
16: 버킷 관성 계측 장치(버킷 자세 검출 장치)
17: 설계 지형 데이터
18: 컨트롤러(제어 장치)
18a: 롤링 압박 작업 지원 제어부
18a1: 버킷 위치 연산부
18a2: 버킷 목표 속도 결정부
18a3: 제어 전환부
18b: 조작 지시 표시 제어부
18b1: 조작 지시 결정부
18b2: 조작 지시 표시 장치
18c: 유압 시스템 제어부
18c1: 제어량 결정부
18c2: 작업기 속도 조정 장치
18d: 정지 목표면 설정부
18e: 정지 작업 지원 제어부
18e1: 프론트 목표 속도 결정부
18f: 롤링 압박 작업 판단부
100: 유압 셔블

Claims (4)

  1. 차체와, 상기 차체의 전방에 설치되어, 붐, 암 및 버킷을 갖는 다관절형의 프론트 작업기와, 상기 붐을 구동하는 붐 실린더, 상기 암을 구동하는 암 실린더 및 상기 버킷을 구동하는 버킷 실린더를 포함하는 복수의 유압 액추에이터와, 오퍼레이터에 의해 조작되어, 상기 붐, 상기 암 및 상기 버킷의 각 동작을 지시하는 조작 장치와, 상기 붐의 자세를 검출하는 붐 자세 검출 장치와, 상기 암의 자세를 검출하는 암 자세 검출 장치와, 상기 버킷의 자세를 검출하는 버킷 자세 검출 장치와, 상기 조작 장치의 조작에 따라 상기 복수의 유압 액추에이터의 구동을 제어하는 제어 장치를 구비하고,
    상기 제어 장치는, 상기 버킷이 정지 목표면보다도 하방으로 침입하지 않는 상기 조작 장치의 조작 내용을 상기 오퍼레이터에게 통지하거나, 또는 상기 버킷이 정지 목표면보다도 하방으로 침입하지 않도록 상기 복수의 유압 액추에이터의 구동을 제어하는 건설기계에 있어서,
    상기 제어 장치는, 롤링 압박 작업 시에, 상기 붐 자세 검출 장치의 검출값과 상기 암 자세 검출 장치의 검출값과 상기 버킷 자세 검출 장치의 검출값에 기초하여 상기 붐의 회동 지지점으로부터 상기 버킷의 배면 소정 위치까지의 거리인 프론트 거리를 연산하고, 상기 프론트 거리가 커짐에 따라 상기 버킷이 정지 목표면에 근접하는 속도가 작아지도록 상기 버킷의 목표 속도를 결정하고, 상기 버킷의 목표 속도를 달성하기 위한 상기 조작 장치의 조작 내용을 상기 오퍼레이터에게 통지하거나, 또는 상기 버킷의 목표 속도를 달성하도록 상기 복수의 유압 액추에이터를 제어하고,
    상기 제어 장치는, 상기 버킷이 상기 정지 목표면에 접촉할 때에 상기 암의 길이 방향과 상기 정지 목표면의 법선 방향이 이루는 각도인 목표면 각도를 연산하고, 상기 목표면 각도가 작아질수록 상기 버킷이 상기 정지 목표면에 근접하는 속도가 작아지도록, 상기 프론트 거리에 따라 결정한 상기 버킷의 목표 속도를 보정하는 것을 특징으로 하는 건설 기계.
  2. 삭제
  3. 차체와, 상기 차체의 전방에 설치되어, 붐, 암 및 버킷을 갖는 다관절형의 프론트 작업기와, 상기 붐을 구동하는 붐 실린더, 상기 암을 구동하는 암 실린더 및 상기 버킷을 구동하는 버킷 실린더를 포함하는 복수의 유압 액추에이터와, 오퍼레이터에 의해 조작되어, 상기 붐, 상기 암 및 상기 버킷의 각 동작을 지시하는 조작 장치와, 상기 붐의 자세를 검출하는 붐 자세 검출 장치와, 상기 암의 자세를 검출하는 암 자세 검출 장치와, 상기 버킷의 자세를 검출하는 버킷 자세 검출 장치와, 상기 조작 장치의 조작에 따라 상기 복수의 유압 액추에이터의 구동을 제어하는 제어 장치를 구비하고,
    상기 제어 장치는, 상기 버킷이 정지 목표면보다도 하방으로 침입하지 않는 상기 조작 장치의 조작 내용을 상기 오퍼레이터에게 통지하거나, 또는 상기 버킷이 정지 목표면보다도 하방으로 침입하지 않도록 상기 복수의 유압 액추에이터의 구동을 제어하는 건설기계에 있어서,
    상기 차체의 피치 속도를 검출하는 차체 속도 검출 장치를 더 구비하고,
    상기 제어 장치는, 롤링 압박 작업 시에, 상기 붐 자세 검출 장치의 검출값과 상기 암 자세 검출 장치의 검출값과 상기 버킷 자세 검출 장치의 검출값에 기초하여 상기 붐의 회동 지지점으로부터 상기 버킷의 배면 소정 위치까지의 거리인 프론트 거리를 연산하고, 상기 프론트 거리가 커짐에 따라 상기 버킷이 정지 목표면에 근접하는 속도가 작아지도록 상기 버킷의 목표 속도를 결정하고, 상기 버킷의 목표 속도를 달성하기 위한 상기 조작 장치의 조작 내용을 상기 오퍼레이터에게 통지하거나, 또는 상기 버킷의 목표 속도를 달성하도록 상기 복수의 유압 액추에이터를 제어하고,
    상기 제어 장치는, 상기 프론트 거리에 따라 결정한 상기 버킷의 목표 속도를 상기 피치 속도에 따라 보정하는 것을 특징으로 하는 건설 기계.
  4. 제3항에 있어서, 상기 제어 장치는, 상기 버킷의 목표 속도가 상기 프론트 작업기가 달성할 수 있는 버킷 속도의 최댓값보다도 큰 경우에, 상기 정지 목표면에 대한 가압력이 부족한 것을 상기 오퍼레이터에게 통지하는 것을 특징으로 하는 건설 기계.
KR1020207012913A 2017-11-13 2018-11-08 건설 기계 KR102430343B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017218071A JP6912356B2 (ja) 2017-11-13 2017-11-13 建設機械
JPJP-P-2017-218071 2017-11-13
PCT/JP2018/041499 WO2019093424A1 (ja) 2017-11-13 2018-11-08 建設機械

Publications (2)

Publication Number Publication Date
KR20200065040A KR20200065040A (ko) 2020-06-08
KR102430343B1 true KR102430343B1 (ko) 2022-08-08

Family

ID=66438958

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207012913A KR102430343B1 (ko) 2017-11-13 2018-11-08 건설 기계

Country Status (6)

Country Link
US (1) US11668069B2 (ko)
EP (1) EP3712335B1 (ko)
JP (1) JP6912356B2 (ko)
KR (1) KR102430343B1 (ko)
CN (2) CN114687395B (ko)
WO (1) WO2019093424A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552996B2 (ja) * 2016-06-07 2019-07-31 日立建機株式会社 作業機械
JP7463270B2 (ja) * 2018-03-31 2024-04-08 住友重機械工業株式会社 ショベル
WO2020101006A1 (ja) * 2018-11-14 2020-05-22 住友重機械工業株式会社 ショベル、ショベルの制御装置
JP7009600B1 (ja) * 2020-12-07 2022-01-25 日立建機株式会社 作業機械
US20230091185A1 (en) * 2021-01-27 2023-03-23 Hitachi Construction Machinery Co., Ltd. Hydraulic excavator
CN113879979A (zh) * 2021-08-05 2022-01-04 国家石油天然气管网集团有限公司 一种液压挖掘机吊管设备作业防倾翻监测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009432A (ja) 2005-06-28 2007-01-18 Hitachi Constr Mach Co Ltd 建設機械および建設機械に用いられる制御装置
JP2012112108A (ja) 2010-11-22 2012-06-14 Hitachi Constr Mach Co Ltd 作業機械の周囲監視装置
JP2012225084A (ja) * 2011-04-21 2012-11-15 Kobelco Contstruction Machinery Ltd 建設機械
KR101570607B1 (ko) 2014-06-16 2015-11-19 현대중공업 주식회사 비주얼 서보잉을 이용한 굴삭기의 지면 평탄화 및 다지기 작업 제어장치와 그 제어방법
KR101731368B1 (ko) * 2016-03-17 2017-04-28 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량의 제어 시스템, 제어 방법, 및 작업 차량
JP2017166308A (ja) 2016-12-13 2017-09-21 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134950A (ja) * 1994-11-10 1996-05-28 Hitachi Constr Mach Co Ltd 土羽打ち作業装置
JP3091667B2 (ja) * 1995-06-09 2000-09-25 日立建機株式会社 建設機械の領域制限掘削制御装置
JP5342900B2 (ja) * 2009-03-06 2013-11-13 株式会社小松製作所 建設機械、建設機械の制御方法、及びこの方法をコンピュータに実行させるプログラム
JP5476450B1 (ja) * 2012-11-19 2014-04-23 株式会社小松製作所 掘削機械の表示システム及び掘削機械
CN109563698B (zh) 2017-03-29 2021-04-20 日立建机株式会社 作业机械
WO2019053814A1 (ja) * 2017-09-13 2019-03-21 日立建機株式会社 作業機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009432A (ja) 2005-06-28 2007-01-18 Hitachi Constr Mach Co Ltd 建設機械および建設機械に用いられる制御装置
JP2012112108A (ja) 2010-11-22 2012-06-14 Hitachi Constr Mach Co Ltd 作業機械の周囲監視装置
JP2012225084A (ja) * 2011-04-21 2012-11-15 Kobelco Contstruction Machinery Ltd 建設機械
KR101570607B1 (ko) 2014-06-16 2015-11-19 현대중공업 주식회사 비주얼 서보잉을 이용한 굴삭기의 지면 평탄화 및 다지기 작업 제어장치와 그 제어방법
KR101731368B1 (ko) * 2016-03-17 2017-04-28 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량의 제어 시스템, 제어 방법, 및 작업 차량
JP2017166308A (ja) 2016-12-13 2017-09-21 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両

Also Published As

Publication number Publication date
CN111295484A (zh) 2020-06-16
WO2019093424A1 (ja) 2019-05-16
CN114687395B (zh) 2023-08-25
CN114687395A (zh) 2022-07-01
JP2019090185A (ja) 2019-06-13
US11668069B2 (en) 2023-06-06
KR20200065040A (ko) 2020-06-08
US20210040705A1 (en) 2021-02-11
EP3712335B1 (en) 2023-01-11
EP3712335A1 (en) 2020-09-23
EP3712335A4 (en) 2021-09-08
JP6912356B2 (ja) 2021-08-04

Similar Documents

Publication Publication Date Title
KR102430343B1 (ko) 건설 기계
KR101759409B1 (ko) 작업차량 및 작업차량의 제어 방법
KR102322519B1 (ko) 건설 기계
KR101777935B1 (ko) 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
KR101746324B1 (ko) 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
US10017913B2 (en) Construction machine control system, construction machine, and construction machine control method
CN110300827B (zh) 工程机械
KR101907938B1 (ko) 건설 기계의 제어 장치 및 건설 기계의 제어 방법
CN112041510A (zh) 挖掘机、信息处理装置
KR20130113516A (ko) 굴삭 제어 시스템
KR20130113515A (ko) 굴삭 제어 시스템 및 건설 기계
CN110392756A (zh) 作业机械
EP3543409B1 (en) Construction machinery
WO2020170687A1 (ja) 安全装置及び建設機械
US20140067092A1 (en) Adaptive work cycle control system
CN111032962B (zh) 工程机械
WO2020166241A1 (ja) 監視装置及び建設機械
JP2020153200A (ja) 作業機械
WO2020195880A1 (ja) 作業機械、システムおよび作業機械の制御方法
WO2022186215A1 (ja) 作業機械
JP2020133225A (ja) 安全装置及び建設機械
WO2022230417A1 (ja) 作業機械

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant