KR102425681B1 - 압력 센서 - Google Patents
압력 센서 Download PDFInfo
- Publication number
- KR102425681B1 KR102425681B1 KR1020180030890A KR20180030890A KR102425681B1 KR 102425681 B1 KR102425681 B1 KR 102425681B1 KR 1020180030890 A KR1020180030890 A KR 1020180030890A KR 20180030890 A KR20180030890 A KR 20180030890A KR 102425681 B1 KR102425681 B1 KR 102425681B1
- Authority
- KR
- South Korea
- Prior art keywords
- housing
- diaphragm
- heat
- pressure sensor
- shell
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0072—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/12—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/06—Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
- G01L19/0627—Protection against aggressive medium in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
- G01L19/147—Details about the mounting of the sensor to support or covering means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
유체 라인에 마련된 유체 도입관의 급격한 온도 변화에 의한 다이어프램의 휨을 억제할 수 있는 압력 센서를 제공한다. 피측정 유체의 압력을 받는 수압면을 가진 다이어프램과, 상기 수압면의 이면과 갭을 형성하여 대향하는 전극면을 가진 전극체와, 상기 수압면을 둘러싸며, 측정실을 형성하도록 상기 다이어프램으로 되어 있는 하우징과, 상기 하우징에 접속되어, 상기 피측정 유체를 상기 측정실로 안내하는 입구관과, 상기 입구관에 마련된, 소정의 열용량을 가지는 열완충 부재를 가지는 압력 센서이다.
Description
본 발명은, 압력에 의해 변형하는 다이어프램과 전극체와의 사이의 정전 용량의 변화에 근거하여 유체의 압력을 측정하기 위한 압력 센서에 관한 것이다.
종래, 반도체 제조 공정 등에서 박막 형성 프로세스 중의 진공 상태의 압력을 계측하기 위해서, 압력 센서가 이용되고 있다. 이런 종류의 압력 센서로서, 예를 들면, 특허 문헌 1 및 도 4에 개시되어 있는 바와 같이, 피측정 유체의 도입부를 가지는 하우징(11)과, 이 하우징(11)의 도입부(10A)를 통하여 안내되어 오는 피측정 유체의 압력을 받아 휘는 다이어프램(32)과, 다이어프램(32)의 변화를 정전 용량의 변화로서 도출하는 센서 칩(30)을 가지는 것이 알려져 있다. 하우징의 도입부(10A)에, 반도체 제조 장치의 유체 라인에 마련된 유체 도입관을 접속함으로써, 유체 라인을 흐르는 가스 등의 피측정 유체가, 하우징(11)의 내부에 받아들여진다. 이러한 압력 센서에서는, 프로세스 대상의 박막과 동일 물질이나 그 부생성물(이하에서, '오염 물질'이라고 칭함)이, 사용시에 다이어프램에 부착되고, 당해 부착된 오염 물질에 의한 응력에 의해서 다이어프램에 휨이 생겨, 센서의 출력 신호의 시프트를 일으키는 경우가 있다. 그 때문에, 다이어프램 등으로의 오염 물질의 부착을 방지하기 위해서, 예를 들면 특허 문헌 1에 기재되어 있는 바와 같이, 하우징(11)을 둘러싸는 센서 케이스(80)를 히터(90)에 의해서 가열함으로써, 하우징(11) 내의 온도를 오염 물질이 석출되지 않을 정도의 고온으로 유지하도록 하는 것이 알려져 있다.
그런데, 이러한 압력 센서에서는, 피측정 유체를 압력 센서로 안내하기 위한 유체 도입관을 하우징에 접속한 후, 사용시에, 유체 도입관으로의 가스 등의 유체의 응착(凝着)을 방지하는 것을 목적으로 하여, 유체 도입관을 히터에 의해 가열하는 것이 행해지고 있다. 이와 같이 유체 도입관을 가열하는 것에 의해 유체 도입관에의 가스의 부착을 방지할 수 있다.
그러나, 유체 도입관을 히터에 의해 가열하면, 그 열이 압력 센서의 하우징의 하부로 전도(傳導)되어, 하우징의 하부에서 급격한 온도 상승이 일어나며, 그것에 따라 하우징의 하부가 급격하게 열팽창한다. 한편, 유체 도입관과 떨어져 있는 하우징의 상부에서는, 유체 도입관을 히터에 의해 급가열한 경우라도, 그 열은 하우징 내를 전도하기 때문에, 하우징의 상부의 온도는 급격하게 상승하지 않고 완만하게 상승하며, 그것에 따라 하우징 상부의 열팽창은, 하우징 하부의 열팽창에 비해 작게 된다. 그 때문에, 하우징의 상부와 하부와의 사이에서 열팽창의 차이가 생기고, 하우징의 하부에서는 열팽창에 의해 외측, 즉, 다이어프램의 면방향에서 다이어프램의 대략 중심으로부터 원주(圓周)를 향하는 방향으로 퍼지는 응력이 생기는 한편으로, 하우징의 상부에서는 내측, 즉, 다이어프램의 면방향에서 다이어프램의 원주로부터 대략 중심을 향하는 방향으로 되돌리려고 하는 응력이 생긴다. 그 결과, 하우징의 상부에 지지(또는 접합)되어 있는 다이어프램에 휨이 생기고, 압력 센서로부터 출력되는 측정 압력의 신뢰성이 저하될 우려가 있다.
본 발명은, 상술한 문제를 감안하여 이루어진 것이며, 그 목적은, 유체 라인에 마련된 유체 도입관의 급격한 온도 변화에 의한 다이어프램의 휨(이하에서, '배관 열영향'이라고 칭하는 경우가 있음)을 억제할 수 있는 압력 센서를 제공하는 것을 목적으로 한다.
즉, 본 발명의 압력 센서는, 피측정 유체의 압력을 받는 수압면(受壓面)을 가진 다이어프램과, 상기 수압면의 이면(裏面)과 갭을 형성하여 대향하는 전극면을 가진 전극체와, 상기 수압면을 둘러싸며, 측정실을 형성하도록 상기 다이어프램에 지지되어 있는 하우징과, 상기 하우징에 접속되어, 상기 피측정 유체를 상기 측정실로 안내하는 입구관과, 상기 입구관에 마련된, 소정의 열용량을 가지는 열완충 부재를 가지는 것을 특징으로 한다.
이러한 것이면, 소정의 열용량을 가지는 열완충 부재가 입구관에 장착되어 있으므로, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 그 열의 일부는, 입구관에 마련된 열완충 부재를 승온시키기 위해서 소비된다. 그 때문에, 입구관 및 그것에 접속되어 있는 하우징의 하부의 온도는 급격하게 상승하지 않고, 완만하게 상승한다. 그리고, 입구관 및 하우징의 하부의 온도가 시간을 두고 완만하게 상승하는 동안에, 유체 도입관으로부터 열이 하우징 내를 전도하여, 다이어프램이 접속되어 있는 하우징 상부의 온도가 상승한다. 이와 같이, 입구관에 소정의 열용량을 가지는 열완충 부재가 마련되어 있는 것에 의해, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 하우징 하부만이 급격하게 온도 상승하지 않고, 하우징 전체의 온도를 완만하게 상승시킬 수 있다. 즉, 열완충 부재를 입구관에 마련하는 것에 의해, 열완충 부재가 온도 조정 기구로서 기능하고, 유체 도입관의 가열시에서의, 하우징 내의 온도 분포의 편차를 저감할 수 있는 것이다. 그 때문에, 다이어프램에 지지되어 있는 하우징의 상부와 하부에서의 열팽창의 차이를 작게 할 수 있어, 다이어프램의 휨을 억제할 수 있다.
또, 본 명세서에서 「소정의 열용량을 가진다」라는 것은, 유체 도입관이 급가열된 경우라도, 하우징 하부의 급격한 온도 상승을 방지하고, 하우징 내의 온도 분포의 편차를 저감하는 것에 의해, 하우징의 상부와 하부의 열팽창 차이에 기인하는 다이어프램의 휨을 허용 범위 이내로 억제할 수 있을 정도의 열용량을 의미한다.
본 발명의 압력 센서는, 상기 하우징 및 상기 다이어프램의 일부 또는 전부를 공간을 매개로 하여 둘러싸는 셸과, 상기 셸을 가열하는 히터를 더 가지며, 상기 열완충 부재와 상기 셸이 열적으로 접속되어 있는 것이 바람직하다.
이러한 것이면, 셸과 하우징의 사이에 공간이 존재하고 있으므로, 히터에 의해서 가열된 셸로부터 방사되는 열이 공간 내를 확산하므로, 하우징 전체를 보다 균일하게, 즉 온도 분포의 편차가 적은 상태로 승온시킬 수 있어, 열팽창 차이에 기인하는 다이어프램의 휨을 보다 저감할 수 있다. 또는, 열완충 부재와 셸이 열적으로 접속되어 있으므로, 가열된 유체 도입관으로부터의 열을, 열완충 부재를 매개로 하여 셸에 전도시킬 수 있다. 즉, 유체 도입관으로부터 하우징으로 전도되는 열량을 보다 줄일 수 있으므로, 하우징의 하부에서의 급격한 온도 변화를 보다 억제할 수 있다. 또는, 열완충 부재로부터 셸로 전도된 열이, 셸 내측의 공간을 확산하여 하우징으로 전해지므로, 하우징 전체를 보다 균일하게 승온시킬 수 있다. 그 결과, 하우징 전체를 보다 균일하게, 즉 온도 분포의 편차가 적은 상태로 승온시킬 수 있으므로, 하우징의 상부와 하부의 열팽창 차이에 의한 다이어프램의 휨을 보다 작게 할 수 있다.
본 명세서에서, 「상기 열완충 부재와 상기 셸이 열적으로 접속되어 있다」라는 것은, 열완충 부재와 셸과의 사이에서, 직접적 또는 간접적으로 열이 전도되도록 구성되어 있는 것을 의미한다. 「간접적으로 열이 전도된다」라는 것은, 열완충 부재와 셸과의 사이에, 열을 전도하는 다른 부재가 개재해도 괜찮은 것을 의미한다. 다른 부재 사이에서의 「열적인 접속」에 대해서도, 동일한 의미이다.
본 발명의 압력 센서는, 상기 열완충 부재는 상기 셸의 외면에 접촉하고 있는 것이 바람직하다.
이러한 것이면, 셸과 하우징과의 사이에 열완충 부재가 존재하지 않으므로, 셸로부터 방사되는 열이 공간에 의해서 보다 확산된다. 그 때문에, 하우징 전체를 보다 균일하게 승온시킬 수 있어, 열팽창 차이에 기인하는 다이어프램의 휨을 보다 저감할 수 있다.
본 발명의 압력 센서는, 상기 열완충 부재가 상기 입구관의 외측 둘레면에 장착되어 있는 것이 바람직하다.
이러한 것이면, 입구관의 둘레 방향을 둘러싸도록 열완충 부재가 마련되어 있으므로, 가열된 유체 도입관으로부터 전도되는 열을, 입구관의 둘레 방향에 의해 균일하게 열완충 부재로 전도시킬 수 있다. 그 때문에, 입구관이 접속되는 하우징에서, 둘레 방향에서의 온도 분포의 편차를 보다 작게 할 수 있어, 열팽창 차이에 기인하는 다이어프램의 휨을 보다 저감할 수 있다.
본 명세서에서, 「입구관의 외측 둘레면에 장착되어 있다」라는 것은, 입구관의 외면을 둘레 방향으로 둘러싸고, 입구관에 접촉하도록 장착되어 있는 것을 의미한다.
본 발명의 압력 센서는, 상기 열완충 부재가 상기 입구관에 일체 성형된 것인 것이 바람직하다.
이러한 것이면, 압력 센서를 제조할 때에, 열완충 부재와 입구관을 용접에 의해 접합하는 공정을 생략할 수 있으므로, 생산성을 높일 수 있다.
본 발명의 압력 센서는, 상기 열완충 부재가 원판 모양을 이루며, 상기 입구관에 축선을 합치시켜서 마련되어 있는 것이 바람직하다.
이러한 것이면, 가열된 유체 도입관으로부터의 열을, 입구관의 둘레 방향으로 더 균일하게 열완충 부재로 전도시킬 수 있다. 그 때문에, 입구관이 접속되는 하우징에서, 둘레 방향에서의 온도 분포의 편차를 더 작게 할 수 있어, 열팽창 차이에 기인하는 다이어프램의 휨을 보다 한층 저감할 수 있다.
본 명세서에서, 「축선」이란, 단면이 원형 모양인 부재인, 원형 단면의 원 중심을 통과하고, 또한 원형 단면에 수직인 선을 말한다. 또, 「열완충 부재를 입구관에 축선을 합치시켜 마련한다」라는 것은, 단면 형상이 원형인 입구관과, 단면이 동심원 모양이 되도록, 열완충 부재를 입구관에 장착하는 것을 의미한다.
본 발명의 압력 센서는, 상기 하우징은 측벽과 저벽을 가지며, 상기 다이어프램과 상기 측벽과 상기 저벽에 의해서 상기 측정실을 형성하는 것으로서, 상기 측벽의 일부에, 다른 부분보다 두께가 작고, 주회하는 박육부(薄肉部)가 마련되어 있는 것이 바람직하다.
이러한 것이면, 하우징의 일부에 강성이 낮은 박육부가 장착되어 있으므로, 하우징의 하부에서 열팽창에 의해 하우징의 외측으로 퍼지는 응력이 생긴 경우라도, 박육부가 휘어 변형하는 것에 의해, 하우징의 상부에서 내측으로 되돌아가려고 하는 응력이 저감되고, 그 결과, 하우징의 상부와 하부의 열팽창 차이에 기인하는 다이어프램의 휨을 보다 저감할 수 있다.
본 발명의 압력 센서는, 피측정 유체의 압력을 받는 수압면을 가진 다이어프램과, 상기 수압면의 이면과 갭을 형성하여 대향하는 전극면을 가진 전극체와, 상기 수압면을 둘러싸며, 측정실을 형성하도록 상기 다이어프램에 지지되어 있는 하우징과, 상기 하우징에 접속되어, 상기 피측정 유체를 상기 측정실로 안내하는 입구관을 가지며, 상기 하우징은 측벽 및 저벽을 가지고, 상기 저벽의 일부 또는 전부의 벽 두께가, 상기 측벽의 벽 두께보다도 두꺼운 것을 특징으로 한다.
이러한 것이면, 입구관이 접속하고 있는 하우징의 저벽의 열용량을 크게 할 수 있다. 그 때문에, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 그 열은 먼저 하우징의 저벽을 승온시키기 위해서 소비되므로, 하우징의 하부의 측벽의 온도가 급격하게 상승하지 않고, 완만하게 상승한다. 그리고, 하우징의 하부의 측벽의 온도가 시간을 두고 완만하게 상승하는 동안에, 유체 도입관으로부터의 열이 하우징 내를 전도하여, 다이어프램이 접속되어 있는 하우징의 상부의 측벽의 온도가 상승한다. 이와 같이, 하우징의 저벽의 열용량을 크게 하는 것에 의해, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 하우징의 하부의 측벽만이 급격하게 온도 상승하지 않고, 하우징의 측벽의 전체의 온도를 완만하게 상승시킬 수 있다. 즉, 하우징의 저벽의 일부 또는 전부의 벽 두께를 측벽의 벽 두께보다도 크게 하는 것에 의해, 즉 저벽의 열용량을 크게 하는 것에 의해, 하우징의 저벽이 온도 조정 기구로서 기능하고, 유체 도입관의 가열시에서의, 하우징 내의 온도 분포의 편차를 저감할 수 있다. 그 때문에, 다이어프램에 지지되는 하우징의 상부의 측벽과 하우징의 하부의 측벽에서의 열팽창의 차이를 작게 할 수 있어, 다이어프램의 휨을 억제할 수 있다.
이와 같이, 본 발명의 압력 센서에 의하면, 소정의 열용량을 가지는 열완충 부재를 입구관에 마련하고 있으므로, 유체 도입관에서 급격한 온도 상승이 생긴 경우라도, 하우징 하부에서의 급격한 온도 상승 및 그것에 따른 국소적인 열팽창을 방지할 수 있어, 하우징 전체를 보다 균일하게, 즉 온도 분포의 편차가 적은 상태로 승온시킬 수 있다. 그 때문에, 하우징의 상부와 하부의 열팽창 차이를 작게 할 수 있고, 그 결과, 유체 도입관의 급격한 온도 변화에 따른 다이어프램의 휨을 억제하는 것이 가능하게 된다.
도 1은, 본 발명의 일 실시 형태에 관한 압력 센서의 구성을 나타내는 개략 단면도이다.
도 2는, 본 발명의 그 외의 실시 형태에 관한 압력 센서의 구성을 나타내는 개략 단면도이다.
도 3은, 본 발명의 그 외의 실시 형태에 관한 압력 센서의 구성을 나타내는 개략 단면도이다.
도 4는, 종래의 정전(靜電) 용량형 압력 센서의 구조를 나타내는 개략 단면도이다.
도 2는, 본 발명의 그 외의 실시 형태에 관한 압력 센서의 구성을 나타내는 개략 단면도이다.
도 3은, 본 발명의 그 외의 실시 형태에 관한 압력 센서의 구성을 나타내는 개략 단면도이다.
도 4는, 종래의 정전(靜電) 용량형 압력 센서의 구조를 나타내는 개략 단면도이다.
이하, 본 발명에 관한 압력 센서의 일 실시 형태에 대해서, 도면을 참조하여 설명한다. 단, 이하에 설명하는 압력 센서는, 본 발명의 기술 사상을 구체화하기 위한 것으로서, 특정적인 기재가 없는 한, 본 발명을 이하의 것에 한정하지 않는다. 또, 일 실시 형태에서 설명하는 내용은, 다른 실시 형태에도 적용 가능하다. 또, 각 도면이 나타내는 부재의 크기나 위치 관계 등은, 설명을 명확하게 하기 위해, 과장하고 있는 경우가 있다.
본 실시 형태의 압력 센서(100)는, 전압(全壓)진공계(眞空計)의 절대압 계측형에 해당하는 정전 용량형 다이어프램 진공계이며, 압력에 의해 변위하는 다이어프램(10)과, 고정 전극(20)과의 사이의 정전 용량의 변위량을 검출하고, 그 변위량을 압력으로 환산하여 압력을 측정하는 것이다. 사용시에, 피측정 유체를 안내하는 유체 도입관을, 압력 센서(100)에 접속하는 것에 의해, 피측정 유체는 압력 센서(100) 내의 측정실(S)로 받아들여진다.
구체적으로는, 도 1에 나타내는 바와 같이, 압력 센서(100)는, 피측정 유체의 압력을 받아 변형하는 다이어프램(10)과, 다이어프램(10)과 갭을 형성하여 배치되는 전극체(20)와, 다이어프램(10)에 지지(또는, 접합)되어 측정실(S)을 형성하는 하우징(30)과, 하우징(30)에 접속되어, 피측정 유체를 측정실(S)로 안내하는 입구관(50)과, 입구관(50)에 마련된 열완충 부재(60)를 구비한다.
이하, 각 구성 부재에 대해서 설명한다.
다이어프램(10)은, 전극체(20)의 일단면(一端面)인 전극면(22)와 함께, 콘덴서를 구성하는 것이다.
도 1에 나타내는 바와 같이, 다이어프램(10)은, 측정실(S)에 도입된 피측정 유체와 접촉하여 피측정 유체의 압력을 받는 수압면(12)을 가지고 있으며, 수압면(12)의 이면(14)이 전극체(20)의 전극면(22)과 갭을 형성하여 대향하도록, 구성되어 있다.
본 실시 형태의 다이어프램(10)의 수압면(12)의 형상은, 피측정 유체의 압력을 받지 않는 상태에서는, 대략 원판(圓板) 모양이다. 이러한 형태이면, 수압면(12)이 피측정 유체의 압력을 받았을 때에, 다이어프램(10)의 중심으로부터의 방향에 의하지 않고, 다이어프램(10)은 균일하게 휠 수 있으므로, 피측정 유체의 압력을 보다 정밀도 좋게 측정할 수 있다.
다이어프램(10)은, 수압면(12)이 받는 미소한 압력 변화에 의해 탄성 변형하는 것이며, 내식성 및 내열성이 뛰어난 금속 박판이다. 본 실시 형태의 다이어프램(10)은, 주성분을 니켈 및 코발트로 하여, 텅스텐, 몰리브덴, 티탄, 크롬 등을 포함하는 Ni-Co합금으로 형성되어 있는 것이 바람직하다. 또, 다이어프램(10)은, 주성분을 니켈로 하고, 철, 크롬 및 니오브(Niob) 등을 포함하는 Ni합금으로 형성되어 있어도 괜찮다.
다이어프램(10)의 두께는, 피측정 유체의 압력 변화에 대한 감도(感度)를 향상시키기 위해서, 예를 들면, 5㎛ 이상 50㎛ 이하인 것이 바람직하다.
전극체(20)는, 다이어프램(10)의 일단면인 이면(14)과 함께, 콘덴서를 구성하는 것이다. 전극체(20)는, 전극면(22)이 다이어프램(10)의 이면(14)과 소정의 갭을 형성하여 대향하도록 하여 마련되어 있다.
전극체(20)의 상단부(전극면(22)을 형성하는 단부와는 반대측의 단부)에는, 정전 용량의 변화를 검출하기 위한 리드 선(도시하지 않음)이 접속되어 있다. 이 리드 선은, 정전 용량의 변화량을 압력 신호로 변환하여 출력하는 연산 회로(도시하지 않음)에 접속되어 있다.
하우징(30)은, 다이어프램(10)의 수압면(12)을 둘러싸고 피측정 유체가 도입되는 측정실(S)을 형성함과 아울러, 전극체(20)의 적어도 일부를 둘러싸서 고정하는 것이다. 도 1에 나타내는 바와 같이, 하우징(30)은, 다이어프램(10)을 사이에 두고 반대 방향으로 형성되어 있는 제1 요소(32)와 제2 요소(34)를 구비하고 있다.
제1 요소(32)는, 다이어프램(10)의 수압면(12)을 둘러싸고, 피측정 유체가 도입되는 측정실(S)을 형성하는 것이다.
도 1에 나타내는 바와 같이 제1 요소(32)는, 다이어프램(10)의 수압면(12)측의 외측 가장자리에 접합되어 있다. 제1 요소(32)는, 다이어프램(10)의 외측 가장자리부에 접합되어 있는 측벽(32a)과, 입구관(50)이 접속되는 저벽(32b)과, 저벽(32b)의 중앙에 마련된 유체 입구 구멍(32c)을 가진다. 측벽(32a), 저벽(32b) 및 수압면(12)에 의해서 둘러싸여진 영역이 측정실(S)로 되어 있다.
본 실시 형태의 제1 요소(32)는, 다이어프램(10)의 면방향과 수직인 방향으로 축방향을 가지는 대략 원통 형상으로 형성된 것이며, 측벽(32a)의 벽 두께가 균일하게 되도록 형성되어 있다. 제1 요소(32)는, 단일의 부재에 의해 구성되어도 괜찮으며, 또는 복수의 부재를 접합하여 구성한 것이라도 좋다.
제2 요소(34)는, 다이어프램(10)의 이면(14)측에 마련되며, 전극체(20)를 고정하는 것이다.
도 1에 나타내는 바와 같이, 제2 요소(34)는, 다이어프램(10)의 이면(14)의 외측 가장자리에 접합되어 있다. 본 실시 형태의 제2 요소(34)는, 다이어프램(10)의 면방향과 수직인 방향으로 축방향을 가지는 대략 원통 형상으로 형성된 것이며, 다이어프램(10)의 외측 가장자리부에 접합되어 있는 측벽(34a)과, 전극체(20)가 접합되어 있는 상벽(上壁)(34b)을 가지고 있다. 전극체(20)는, 상벽(34b)의 중앙을 관통하도록 마련되어 있다. 제2 요소(34)와 전극체(20)는, 제2 요소(34)와 전극체(20)와의 사이를 기밀하게 씰링하는 씰링 유리 등의 씰링 부재(24)를 매개로 하여 접합되어 있다. 제2 요소(34)는, 단일의 부재에 의해 구성되어도 괜찮으며, 또는 복수의 부재를 접합하여 구성한 것이라도 괜찮다.
입구관(50)은, 유체 도입관에 접속되고, 피측정 유체를 제1 요소(32) 내에 형성된 측정실(S)로 안내하는 것이다.
입구관(50)은, 대략 원통 형상으로 형성된 것이며, 제1 요소(32)의 저벽(32b)에 마련된 유체 입구 구멍(32c)에 접속되어 있다.
본 실시 형태의 입구관(50)은, 제1 요소(32)와는 다른 부재에 의해 구성되어 있지만, 이 형태로 한정되지 않는다. 예를 들면, 입구관(50)과 제1 요소(32)는, 일체 성형된 것이라도 좋다.
본 실시 형태의 압력 센서(100)는, 다이어프램(10) 및 하우징(30)을 간접적으로 가열하여 온조(溫調)하는, 온조 기구 및 셸(70)을 구비한다. 온조 기구는, 열을 방사하는 히터(40)와, 셸(70)의 외면에 장착된 온도 센서(도시하지 않음)와, 온도 센서에 의해 측정되는 온도가 소망의 목표 온도로 유지되도록 히터(40)가 방사하는 열량을 조정하는 제어 회로를 구비한다.
셸(70)은, 히터(40)로부터 방사된 열을 다이어프램(10) 및 하우징(30)의 외면에 균일하게 방사하는 것이다.
셸(70)은, 열전도율이 뛰어난 재료를 주성분으로 하는 것이며, 예를 들면 Al 또는 Cu 등의 금속으로 이루어진다. 그 때문에, 히터(40)로부터 방사된 열이 셸(70)의 내부를 잘 전도하여, 셸(70) 내의 온도 분포에 편차가 적은 것으로 할 수 있다.
셸(70)은, 다이어프램(10)의 외주면, 제1 요소(32)의 측벽(32a) 및 저벽(32b) 그리고 제2 요소(34)의 측벽(34a) 및 상벽(34b)을 둘러싸도록 형성되어 있다. 이러한 형태이면, 상술한 바와 같이 셸(70) 내의 온도 분포에 편차가 적은 것으로 되어 있으므로, 셸(70)로부터 방사되는 열에 의해서, 다이어프램(10), 제1 요소(32) 및 제2 요소(34)의 외면을, 위치에 의하지 않고 보다 균일하게 가열할 수 있다. 그 때문에, 다이어프램(10), 제1 요소(32) 및 제2 요소(34)를 보다 균일하게, 즉 온도 분포의 편차가 보다 적은 상태로 승온시킬 수 있어, 열팽창 차이에 기인하는 다이어프램(10)의 휨을 보다 저감할 수 있다.
본 실시 형태의 압력 센서(100)에서는, 셸(70)과, 다이어프램(10) 및 하우징(30)과의 사이에, 열을 확산하기 위한 공간(72)이 마련되어 있다. 이러한 공간(72)이 존재하고 있는 것에 의해, 셸(70)로부터 방사된 열은, 공간(72) 내를 확산하므로, 공간(72)을 마련하지 않는 경우에 비해, 다이어프램(10), 제1 요소(32) 및 제2 요소(34)를 보다 균일하게, 즉 온도 분포의 편차가 보다 적은 상태로 승온시킬 수 있다. 그 때문에, 열팽창 차이에 기인하는 다이어프램(10)의 휨을 보다 저감할 수 있다.
또, 공간(72) 내에 열확산성이 뛰어난 소재(예를 들면, 세라믹, 카본 등)가 포함되어 있어도 괜찮다.
히터(40)는, 셸(70) 및 공간(72)을 매개로 하여 다이어프램(10) 및 하우징(30)을 가열하는 것이다. 이것에 의해, 측정실(S) 내, 즉 다이어프램(10)의 수압면(12) 및 제1 요소(32)의 내벽에, 오염 물질이 부착되는 것을 방지할 수 있다.
히터(40)는, 그 일부 또는 전부가 셸(70)과 열적으로 접속하도록 구성되어 있다. 본 실시 형태의 히터(40)는, 셸(70)의 외측 둘레면을 접촉하여 둘러싸도록 구성되어 있다.
열완충 부재(60)는, 소정의 열용량을 가지는 것이며, 입구관(50) 및 하우징(30)의 온도 상승(또는 하강) 속도를 조정하는 것이다. 열완충 부재(60)는, 입구관(50)에 열적으로 접촉하도록 마련되어 있으므로, 유체 도입관으로부터 입구관(50)으로 전도되는 열의 적어도 일부는, 열완충 부재(60)를 승온시키기 위해서 소비된다. 그 때문에, 유체 도입관이 가열되어 급격하게 온도가 상승한 경우라도, 입구관(50) 및 하우징(30)(특히, 제1 요소(32))의 하부에서의 급격한 온도의 상승을 억제할 수 있다.
본 실시 형태의 열완충 부재(60)는, 입구관(50)의 외측 둘레면에 마련되어 있다. 보다 구체적으로는, 열완충 부재(60)는 상면(62) 및 하면(64)을 가지는 원판 모양을 이루는 것이며, 입구관(50)에 축선을 합치시켜서 마련되어 있다. 이러한 형태이면, 가열한 유체 도입관으로부터 전도되는 열을, 입구관(50)의 둘레 방향에서, 보다 균일하게 열완충 부재(60)로 전도시킬 수 있다. 그 때문에, 입구관(50)이 접속되는 제1 요소(32)에서, 입구관(50)으로부터 전도되는 열량이 둘레 방향에서 보다 균일하게 되어, 둘레 방향의 온도 분포의 편차를 한층 작게 할 수 있어, 열팽창 차이에 기인하는 다이어프램의 휨을 보다 한층 저감할 수 있다.
본 실시 형태의 열완충 부재(60)는, 셸(70)과 열적으로 접속되어 있다. 보다 구체적으로는, 도 1에 나타내는 바와 같이, 열완충 부재(60)의 상면(62) 전부가, 셸(70)의 하면(74)에 접촉하도록 하여 마련되어 있다. 이러한 형태이므로, 가열한 유체 도입관으로부터의 열을, 열완충 부재(60)를 매개로 하여 셸(70)로 전도시킬 수 있다. 즉, 유체 도입관으로부터 입구관(50)을 경유하여 제1 요소(32)로 전도되는 열량을 보다 줄일 수 있으므로, 제1 요소(32)의 하부에서의 급격한 온도 변화를 보다 억제할 수 있다. 또한, 열완충 부재(60)로부터 셸(70)로 전도된 열이, 셸(70)의 내측의 공간(72)을 확산하여 제1 요소(32)로 전해지므로, 제1 요소(32) 전체를 보다 균일하게 승온시킬 수 있다. 그 결과, 제1 요소(32) 전체를 보다 균일하게, 즉 온도 분포의 편차가 적은 상태로 승온시킬 수 있으므로, 제1 요소(32)의 상부와 하부의 열팽창 차이에 의한 다이어프램(10)의 휨을 보다 작게 할 수 있다.
<본 실시 형태의 효과>
이와 같이 구성한 본 실시 형태의 압력 센서(100)에 의하면, 소정의 열용량을 가지는 열완충 부재(60)가 입구관(50)에 장착되어 있으므로, 히터에 의해 유체 도입관(도시하지 않음)을 급속 가열한 경우라도, 그 열의 적어도 일부는, 입구관(50)에 마련된 열완충 부재(60)를 승온시키기 위해서 소비된다. 그 때문에, 입구관(50) 및 그것에 접속되어 있는 하우징(30)의 하부의 온도는 급격하게 상승하지 않고, 완만하게 상승한다. 그리고, 입구관(50) 및 하우징(30)의 하부의 온도가 시간을 두고 완만하게 상승하는 동안에, 유체 도입관으로부터의 열이 하우징(30) 내를 전도하여, 다이어프램(10)이 접속되어 있는 하우징(30)의 상부의 온도가 상승한다. 이와 같이, 입구관(50)에 소정의 열용량을 가지는 열완충 부재(60)가 마련되어 있는 것에 의해, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 하우징(30)의 하부만이 급격하게 온도 상승하지 않고, 하우징(30) 전체의 온도를 완만하게 상승시킬 수 있다. 즉, 열완충 부재(60)를 입구관(50)에 마련하는 것에 의해, 열완충 부재(60)가 온도 조정 기구로서 기능하여, 유체 도입관을 가열했을 때의, 하우징(30)내의 온도 분포의 편차를 저감할 수 있다. 그 때문에, 다이어프램(10)에 지지(또는 접합)되는 하우징(30)의 상부와 하우징(30)의 하부에서의 열팽창의 차이를 작게 할 수 있어, 다이어프램(10)의 휨을 억제할 수 있다.
<그 외의 변형 실시 형태>
또, 본 발명은 상기의 실시 형태에 한정되는 것은 아니다. 이하에, 그 외의 변형 실시 형태에 관한 압력 센서에 대해서, 상기 실시 형태와 다른 부분을 중심으로 설명한다. 이하의 실시 형태에 관한 압력 센서(100)의 각 요소에 대해서, 특단의 설명이 없는 것에 대해서는, 상기 실시 형태의 대응하는 요소와 동일한 구성을 가져도 괜찮다.
예를 들면, 상기 실시 형태의 압력 센서(100)는, 입구관(50)에 소정의 열용량을 가지는 열완충 부재(60)가 마련된 것이었지만, 도 2에 나타내는 바와 같이, 변형 실시 형태에서는, 입구관(50)에 열완충 부재(60)가 마련되어 있지 않고, 제1 요소(32)의 저벽(32b)의 일부 또는 전부의 벽 두께가, 측벽(32a)의 벽 두께보다 두껍게 되도록 구성되어 있어도 괜찮다. 이러한 형태이면, 입구관(50)이 접속하고 있는 제1 요소(32)의 저벽(32b)의 열용량을 크게 할 수 있다. 그 때문에, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 그 열은 먼저 제1 요소(32)의 저벽(32b)을 승온시키기 위해서 소비되므로, 제1 요소(32)의 하부의 측벽(34)의 온도가, 급격하게 상승하지 않고 완만하게 상승한다. 그리고, 제1 요소(32)의 하부의 측벽(34)의 온도가 시간을 두고 완만하게 상승하는 동안에, 유체 도입관으로부터의 열이 제1 요소(32) 내를 전도하여, 다이어프램(10)이 접속되어 있는 제1 요소(32)의 상부의 측벽(32a)의 온도가 상승한다. 이와 같이, 제1 요소(32)의 저벽(32b)의 열용량을 크게 하는 것에 의해, 히터에 의해 유체 도입관을 급속 가열한 경우라도, 제1 요소(32)의 하부의 측벽(32a)만이 급격하게 온도 상승하지 않고, 제1 요소(32)의 측벽(32a)의 전체의 온도를 완만하게 상승시킬 수 있다. 즉, 제1 요소(32)의 저벽(32b)의 일부 또는 전부의 벽 두께를 측벽(32a)의 벽 두께보다도 크게 하는 것에 의해, 즉 저벽(32b)의 열용량을 크게 하는 것에 의해, 제1 요소(32)의 저벽(32b)이 온도 조정 기구로서 기능하여, 유체 도입관의 가열시에서의, 제1 요소(32) 내의 온도 분포의 편차를 저감할 수 있다. 그 때문에, 다이어프램(10)에 지지되어 있는 제1 요소(32)의 상부의 측벽(34)과 제1 요소(32)의 하부의 측벽(32a)에서의 열팽창의 차이를 작게 할 수 있어, 다이어프램(10)의 휨을 억제할 수 있다.
또, 상기 실시 형태의 압력 센서(100)는, 제1 요소(32)의 측벽(34)의 벽 두께가 높이 방향의 위치에 의하지 않고 일정했지만, 변형 실시 형태에서는, 도 3에 나타내는 바와 같이, 측벽(32a)의 일부에, 다른 부분보다 두께가 작은 원통 형상의 박육부(薄肉部)(36)가 마련되어 있어도 괜찮다.
이러한 형태이면, 제1 요소(32)의 측벽의 일부에, 다른 부분보다도 강성이 낮은 박육부(36)가 마련되어 있으므로, 제1 요소(32)의 하부의 측벽(32a)에서, 열팽창에 의한 외측으로 퍼지는 응력이 생긴 경우라도, 박육부(36)가 우선적으로 휘어 변형한다. 이것에 의해, 제1 요소(32)의 하부의 측벽(32a)에서의 열팽창에 의해 생기는, 외측으로 퍼지는 응력이, 박육부(36)에 의해서 완화되고, 그것에 의해, 제1 요소(32)의 상부에서 측벽(32a)을 내측으로 되돌리려고 하는 응력이 저감된다. 그 결과, 제1 요소(32)의 상부와 하부의 열팽창 차이에 기인하는 다이어프램(10)의 휨을 보다 저감할 수 있다.
제1 요소(32)와 박육부(36)는, 일체 성형된 것이라도 좋다. 즉, 제1 요소(32)의 측벽(32a)이, 높이 방향의 소정의 구간에서만, 그 두께가 얇게 되도록 구성되어 있어도 좋다.
혹은, 제1 요소(32)와 박육부(36)는, 다른 복수의 부재에 의해서 구성되어 있어도 괜찮다. 즉, 제1 요소(32)와 박육부(36)가, 용접 등에 의해 접합된 것이라도 괜찮다.
또, 상기 실시 형태의 압력 센서(100)는, 열완충 부재(60)는 셸(70)에 접촉하도록 구성되는 것이었지만, 이 형태에 한정되지 않는다. 열완충 부재(60)는 셸(70)과 열적으로 접촉하도록 구성되어 있으면, 입구관(50)으로부터의 열을, 열완충 부재(60)를 경유하여 셸(70)에 놓아줄 수 있다. 예를 들면, 열완충 부재(60)와 셸(70)과의 사이에 Cu 또 Al 등으로 이루어지는 열전도성이 뛰어난 부재가 배치되고, 당해 부재가 열완충 부재(60) 및 셸(70)과 접촉하고 있어도 괜찮다.
또, 상기 실시 형태의 압력 센서(100)는, 열완충 부재(60)는 셸(70)의 외면(하면(74))에 접촉하도록 구성되는 것이었지만, 변형 실시 형태에서는, 열완충 부재(60)는, 셸(70)과 제1 요소(32)의 저벽(32c)과의 사이에 형성되고, 셸(70)의 내면에 접촉하도록 구성되어도 괜찮다. 이러한 형태라도, 가열된 유체 도입관으로부터의 열을, 열완충 부재(60)를 매개로 하여 셸(70)로 전도시킬 수 있으므로, 제1 요소(32)의 하부에서의 급격한 온도 변화를 보다 억제함과 아울러, 제1 요소(32) 전체를 보다 균일하게, 즉 온도 분포의 편차가 적은 상태로 승온시킬 수 있다. 그 결과, 제1 요소(32)의 상부와 하부의 열팽창 차이에 의한 다이어프램(10)의 휨을 보다 작게 할 수 있다.
또, 상기 실시 형태의 압력 센서(100)는, 열완충 부재(60)는 원판 모양을 이루는 것이었지만, 이 형태에 한정되지 않는다. 변형 실시 형태에서는, 열완충 부재(60)는, 원기둥 모양, 블록 모양 또는 직사각형 모양 등이라도 괜찮다.
그 외, 본 발명은 상기 실시 형태에 한정되지 않고, 그 취지를 일탈하지 않는 범위에서 여러 가지의 변형이 가능함은 말할 필요도 없다.
100:압력 센서 10:다이어프램
12:수압면 14:이면
20:전극체 22:전극면
24:씰링 부재 30:하우징
32:제1 요소 32a:측벽
32b:저벽 32c:유체 입구 구멍
34:제2 요소 34a:측벽
34b:상벽 36:박육부
40:히터 50:입구관
60:열완충 부재 62:상면
64:하면 70:셸
72:공간 74:하면
S:측정실
12:수압면 14:이면
20:전극체 22:전극면
24:씰링 부재 30:하우징
32:제1 요소 32a:측벽
32b:저벽 32c:유체 입구 구멍
34:제2 요소 34a:측벽
34b:상벽 36:박육부
40:히터 50:입구관
60:열완충 부재 62:상면
64:하면 70:셸
72:공간 74:하면
S:측정실
Claims (8)
- 피측정 유체의 압력을 받는 수압면(受壓面)을 갖고, 압력을 받아 변형하는 다이어프램과,
상기 수압면의 이면(裏面)과 갭을 형성하여 대향하는 전극면을 가진 전극체와,
상기 수압면을 둘러싸며, 측정실을 형성하도록 상기 다이어프램의 수압면에 연결되어 있는 하우징과,
상기 하우징의 저벽에 접속되어, 상기 피측정 유체를 상기 측정실로 안내하는 입구관과,
상기 입구관에 마련된, 소정의 열용량을 가지는 열완충 부재와,
상기 하우징 및 상기 다이어프램의 일부 또는 전부를 공간을 매개로 하여 둘러싸는 셸(shell)과,
상기 셸을 가열하는 히터를 가지고,
상기 열완충 부재와 상기 셸이 열적으로 접속되어 있고,
상기 공간이, 적어도 상기 하우징의 상기 저벽의 저면과 상기 셸과의 사이에 마련되어 있는 압력 센서. - 청구항 1에 있어서,
상기 셸이, 상기 하우징 및 상기 다이어프램의 전부를 상기 공간을 매개로 하여 둘러싸는 압력 센서. - 청구항 1에 있어서,
상기 열완충 부재는 상기 셸의 외면에 접촉하고 있는 압력 센서. - 청구항 1에 있어서,
상기 열완충 부재는 상기 입구관의 외측 둘레면에 마련되어 있는 압력 센서. - 청구항 1에 있어서,
상기 열완충 부재는 상기 입구관에 일체 성형된 것인 압력 센서. - 청구항 1에 있어서,
상기 열완충 부재는 원판(圓板) 모양을 이루며, 상기 입구관에 축선을 합치(合致)시켜서 마련되어 있는 압력 센서. - 청구항 1에 있어서,
상기 하우징은 측벽과 저벽을 가지며, 상기 다이어프램과 상기 측벽과 상기 저벽에 의해서 상기 측정실을 형성하는 것으로서,
상기 측벽의 일부에, 다른 부분보다 두께가 작고, 주회(周回)하는 박육부(薄肉部)가 마련되어 있는 압력 센서. - 삭제
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017065340A JP6895289B2 (ja) | 2017-03-29 | 2017-03-29 | 圧力センサ |
JPJP-P-2017-065340 | 2017-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180110596A KR20180110596A (ko) | 2018-10-10 |
KR102425681B1 true KR102425681B1 (ko) | 2022-07-28 |
Family
ID=63669163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180030890A KR102425681B1 (ko) | 2017-03-29 | 2018-03-16 | 압력 센서 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10718677B2 (ko) |
JP (1) | JP6895289B2 (ko) |
KR (1) | KR102425681B1 (ko) |
CN (1) | CN108692854B (ko) |
TW (1) | TWI778034B (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976279A (zh) * | 2017-12-15 | 2018-05-01 | 北京创昱科技有限公司 | 一种真空测量装置 |
CN111174966A (zh) * | 2020-01-06 | 2020-05-19 | 中国科学院微电子研究所 | 散热结构及电容压力传感器 |
CN111207882A (zh) * | 2020-01-17 | 2020-05-29 | 中国科学院微电子研究所 | 压力传感器 |
CN111207883A (zh) * | 2020-01-17 | 2020-05-29 | 中国科学院微电子研究所 | 压力传感器 |
JP7418248B2 (ja) * | 2020-03-05 | 2024-01-19 | 株式会社堀場エステック | 真空計 |
KR102615633B1 (ko) | 2022-04-25 | 2023-12-19 | 충북대학교 산학협력단 | 자성유체 진공씰의 실시간 압력편차 감지시스템 |
KR20240044706A (ko) | 2022-09-29 | 2024-04-05 | 충북대학교 산학협력단 | 자성유체 진공씰의 실시간 디지털 압력편차 및 온도 측정시스템 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015522808A (ja) * | 2012-06-06 | 2015-08-06 | ディーテリヒ・スタンダード・インコーポレーテッド | フィン付き共面プロセス流体フランジを備えたプロセス流体流量送信機 |
JP2015148579A (ja) * | 2014-02-10 | 2015-08-20 | アズビル株式会社 | 静電容量型圧力センサ |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5524423A (en) * | 1978-08-10 | 1980-02-21 | Nissan Motor Co Ltd | Semiconductor pressure sensor |
JPS6093935A (ja) * | 1983-10-28 | 1985-05-25 | Hitachi Ltd | 真空容器 |
JPH04116437A (ja) * | 1990-09-07 | 1992-04-16 | Fuji Electric Co Ltd | フランジ付き差圧測定装置 |
US5542300A (en) * | 1994-01-24 | 1996-08-06 | Setra Systems, Inc. | Low cost, center-mounted capacitive pressure sensor |
US5808206A (en) * | 1996-01-16 | 1998-09-15 | Mks Instruments, Inc. | Heated pressure transducer assembly |
US6561038B2 (en) * | 2000-01-06 | 2003-05-13 | Rosemount Inc. | Sensor with fluid isolation barrier |
EP1309840B1 (en) * | 2000-08-11 | 2010-06-09 | MKS Instruments, Inc. | Capacitive based pressure sensor design |
JP4014006B2 (ja) * | 2004-06-17 | 2007-11-28 | 株式会社山武 | 圧力センサ |
US7201057B2 (en) * | 2004-09-30 | 2007-04-10 | Mks Instruments, Inc. | High-temperature reduced size manometer |
US9184364B2 (en) * | 2005-03-02 | 2015-11-10 | Rosemount Inc. | Pipeline thermoelectric generator assembly |
JP2009258085A (ja) * | 2008-03-25 | 2009-11-05 | Epson Toyocom Corp | 圧力センサおよびその製造方法 |
JP5714395B2 (ja) * | 2010-05-25 | 2015-05-07 | 株式会社堀場エステック | 静電容量型圧力センサ |
JP5576331B2 (ja) * | 2011-03-31 | 2014-08-20 | アズビル株式会社 | 圧力センサ装置 |
JP2014020953A (ja) * | 2012-07-19 | 2014-02-03 | Azbil Corp | 差圧・圧力発信器 |
US9631985B2 (en) * | 2013-10-16 | 2017-04-25 | Rosemount Aerospace Inc. | Total air temperature sensors |
EP2990773B1 (en) * | 2013-11-25 | 2021-08-04 | Horiba Stec, Co., Ltd. | Capacitive pressure sensor |
WO2015076413A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社堀場エステック | 静電容量型圧力センサ |
JP6059642B2 (ja) * | 2013-11-25 | 2017-01-11 | 株式会社堀場エステック | 静電容量型圧力センサ |
CN106225962A (zh) * | 2016-10-14 | 2016-12-14 | 沈阳市传感技术研究所 | 动电极板镀金的电容压力传感器 |
JP6908391B2 (ja) * | 2017-02-17 | 2021-07-28 | アズビル株式会社 | 静電容量型圧力センサ |
-
2017
- 2017-03-29 JP JP2017065340A patent/JP6895289B2/ja active Active
-
2018
- 2018-03-15 CN CN201810213732.7A patent/CN108692854B/zh active Active
- 2018-03-16 KR KR1020180030890A patent/KR102425681B1/ko active IP Right Grant
- 2018-03-27 TW TW107110449A patent/TWI778034B/zh active
- 2018-03-28 US US15/938,163 patent/US10718677B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015522808A (ja) * | 2012-06-06 | 2015-08-06 | ディーテリヒ・スタンダード・インコーポレーテッド | フィン付き共面プロセス流体フランジを備えたプロセス流体流量送信機 |
JP2015148579A (ja) * | 2014-02-10 | 2015-08-20 | アズビル株式会社 | 静電容量型圧力センサ |
Also Published As
Publication number | Publication date |
---|---|
TWI778034B (zh) | 2022-09-21 |
US10718677B2 (en) | 2020-07-21 |
US20180283971A1 (en) | 2018-10-04 |
JP6895289B2 (ja) | 2021-06-30 |
CN108692854A (zh) | 2018-10-23 |
TW201837444A (zh) | 2018-10-16 |
JP2018169226A (ja) | 2018-11-01 |
KR20180110596A (ko) | 2018-10-10 |
CN108692854B (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102425681B1 (ko) | 압력 센서 | |
US8210048B2 (en) | Pressure transfer device and pressure measuring device with such pressure transfer means | |
JP5714395B2 (ja) | 静電容量型圧力センサ | |
CN107771274B (zh) | 压力传递模块及具有压力传递模块的压力传感器 | |
US6837112B2 (en) | Capacitance manometer having a relatively thick flush diaphragm under tension to provide low hysteresis | |
US10620072B2 (en) | Capacitive pressure sensor | |
JP5011110B2 (ja) | 静電容量型圧力計のダイヤフラム取付構造 | |
JP6154760B2 (ja) | 静電容量型圧力センサ | |
EP3285058B1 (en) | Pressure sensor | |
KR102612893B1 (ko) | 압력 검출 장치 | |
JP6093722B2 (ja) | 静電容量型圧力センサ | |
US10845264B2 (en) | Pressure sensor and manufacturing method therefor | |
JP2005539240A (ja) | 静電容量式圧力センサ | |
EP3399295A1 (en) | Pressure sensor and manufacturing method therefor | |
JP2017089837A (ja) | ダイヤフラムバルブおよびその製造方法 | |
JP6248009B2 (ja) | 圧力センサ | |
JP5260155B2 (ja) | 静電容量型圧力センサ及びその製造方法 | |
JP6130765B2 (ja) | 静電容量型圧力センサ | |
JP2017072384A (ja) | 圧力センサ | |
KR101885854B1 (ko) | 박막 파손방지 기구를 갖는 열식유량센서 및 제조방법 | |
JP2009192288A (ja) | 差圧・圧力伝送器とその製造方法 | |
KR20040102631A (ko) | 진공 측정기 | |
JP2004045424A (ja) | 圧力検出器の取付け構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |