KR102393639B1 - 다이메틸칼콘 유도체 및 이의 제조방법 - Google Patents

다이메틸칼콘 유도체 및 이의 제조방법 Download PDF

Info

Publication number
KR102393639B1
KR102393639B1 KR1020190120021A KR20190120021A KR102393639B1 KR 102393639 B1 KR102393639 B1 KR 102393639B1 KR 1020190120021 A KR1020190120021 A KR 1020190120021A KR 20190120021 A KR20190120021 A KR 20190120021A KR 102393639 B1 KR102393639 B1 KR 102393639B1
Authority
KR
South Korea
Prior art keywords
group
formula
compound represented
reaction
iii
Prior art date
Application number
KR1020190120021A
Other languages
English (en)
Other versions
KR20210037807A (ko
Inventor
박광용
이하나
최연정
이지영
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020190120021A priority Critical patent/KR102393639B1/ko
Publication of KR20210037807A publication Critical patent/KR20210037807A/ko
Application granted granted Critical
Publication of KR102393639B1 publication Critical patent/KR102393639B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/455Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation with carboxylic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/65Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/82Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
    • C07C49/835Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups having unsaturation outside an aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/297Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/017Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 다이메틸칼콘(DMC) 유도체 및 이의 제조방법에 관한 것으로, 본 발명의 실시예를 따르는 화합물은 하기 화학식 I로 표시된다:
[화학식 I]
Figure 112019099328577-pat00098

상기 화학식 I에서, R1, R2, 및 R3는 서로 동일하거나 상이하고, R1은 하이드록시기, 또는 메톡시메톡시기이고, R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군 에서 선택된다.

Description

다이메틸칼콘 유도체 및 이의 제조방법{DIMETHYLCHALCONE DERIVATIVES AND PREPARATION METHOD THEREOF}
본 발명은 다이메틸칼콘(Dimethylchalcone, DMC) 유도체 및 이의 제조방법에 관한 것으로, 다양하게 치환된 칼콘 구조를 가지는 유도체를 저렴한 플로로글루시놀(phloroglucinol)등을 시작물질로 하여 간단한 공정을 통해 높은 수율로 용이하게 제조하는 방법을 포함한다.
천연 식물로부터 추출된 다양한 물질은 인간의 질병 치료에 있어 막대한 영향을 끼쳐왔다. 그러나 자연물 섭취의 경우 수요에 대비하여 양이 제한적이고, 특정 성분 조절을 통한 부작용이나 효능의 변화가 불가능하므로, 전합성 연구를 통한 천연물을 대체할 의약품의 생산은 필수적이다.
2',4'-다이하이드록시-6'-메톡시-3',5'-다이메틸칼콘(2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC)는 칼콘계 화합물로 방향족 케톤의 골격을 갖고 있다. 대표적으로 Cleistocalyx operculatus 꽃 봉오리에서 추출되고 있으며, 현재까지 항종양제, 항염증제와 같은 다양한 생물학적 활성을 가지고 있는 것으로 밝혀졌다.
이처럼 생물학적 가치가 있는 디엠씨는 많은 관심과 함께 다양한 약리학적 연구가 진행되고 있지만, 현재 디엠씨 물질 자체의 연구만 존재하고 디엠씨 유도체의 특성에 관한 연구들은 아직 제대로 진행된 바 없다.
또한, Cleistocalyx operculatus 의 분포 자체가 드물고, Cleistocalyx operculatus 에서의 디엠씨 추출 함량이 매우 낮기 때문에 생산량이 부족하여 심도 깊은 약리학적 연구를 진행하는 것에 한계가 있다. 또한, 이미 보고되어 있는 디엠씨 합성에 대한 선행연구 사례를 보면 값비싼 아세토페논 계열의 화합물을 시작 물질로 사용해야 할 뿐만 아니라, 총 수율이 7% 미만인 연구들이 대부분이다.
따라서 저렴한 반응 물질을 사용하여 디엠씨 및 디엠씨 유도체의 경제적이고 효율적인 합성 경로를 설계하고, 작용기 변화를 통해 다양한 유도체들을 생산하고, 이를 통해 디엠씨 및 그 유도체가 가지는 효능을 극대화시킬 수 있는 새로운 제조 방법에 대한 연구가 필요하다.
유럽 공개특허공보 EP0328669 A1
본 발명은 산업적으로 유용하지만, 아직 합성이 보고된 적이 없는 다양한 다이메틸칼콘 유도체를 제조하고, 상기 유도체를 저렴한 플로로글루시놀(phloroglucinol) 등을 시작물질로 하여 간단한 공정을 통해 높은 수율로 제조하는 방법을 제공하고자 한다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 I로 표시된다.
[화학식 I]
Figure 112019099328577-pat00001
상기 화학식 I에서, R1, R2, 및 R3는 서로 동일하거나 상이하고, R1은 하이드록시기, 또는 메톡시메톡시기이고, R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고, 상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 II로 표시될 수 있다.
[화학식 II]
Figure 112019099328577-pat00002
상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 II-1 내지 화학식 II-5로 표시되는 화합물 중 어느 하나일 수 있다.
[화학식 II-1]
Figure 112019099328577-pat00003
[화학식 II-2]
Figure 112019099328577-pat00004
[화학식 II-3]
Figure 112019099328577-pat00005
[화학식 II-4]
Figure 112019099328577-pat00006
[화학식 II-5]
Figure 112019099328577-pat00007
.
본 발명의 실시예를 따르는 화합물은 하기 화학식 III으로 표시될 수 있다.
[화학식 III]
Figure 112019099328577-pat00008
상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 III-1 내지 화학식 III-6으로 표시되는 화합물 중 어느 하나일 수 있다.
[화학식 III-1]
Figure 112019099328577-pat00009
[화학식 III-2]
Figure 112019099328577-pat00010
[화학식 III-3]
Figure 112019099328577-pat00011
[화학식 III-4]
Figure 112019099328577-pat00012
[화학식 III-5]
Figure 112019099328577-pat00013
[화학식 III-6]
Figure 112019099328577-pat00014
.
본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법은 하기 화학식 B로 표시되는 화합물로부터 하기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계; 하기 화학식 C으로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 및 하기 화학식 D로 표시되는 화합물로부터 하기 화학식 II로 표시되는 화합물을 합성하는 반응 4단계;을 포함한다.
[화학식 B]
Figure 112019099328577-pat00015
[화학식 C]
Figure 112019099328577-pat00016
[화학식 D]
Figure 112019099328577-pat00017
[화학식 II]
Figure 112019099328577-pat00018
상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법은 상기 반응 2단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 A-1로 표시되는 화합물을 합성하는 반응 1-1단계; 및 하기 A-1로 표시되는 화합물로부터 상기 화학식 B로 표시되는 화합물을 합성하는 반응 1-2단계를 더 포함할 수 있다.
[화학식 A]
Figure 112019099328577-pat00019
.
[화학식 A-1]
Figure 112019099328577-pat00020
.
본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법에서 상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 연속적으로 한 단계로 수행될 수 있다.
본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법에서 상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 중간에 정제과정과 분리과정 없이 연속적으로 한 단계로 수행될 수 있다.
본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법에서, 상기 반응 4단계는 상기 화학식 D로 표시되는 화합물로부터 하기 화학식 D-1로 표시되는 화합물을 합성하는 반응 4-1단계; 하기 화학식 D-1로 표시되는 화합물로부터 상기 화학식 III으로 표시되는 화합물을 합성하는 반응 4-2단계; 및 상기 화학식 III으로 표시되는 화합물로부터 상기 화학식 II로 표시되는 화합물을 합성하는 반응 4-3단계;를 더 포함할 수 있다.
[화학식 D-1]
Figure 112019099328577-pat00021
[화학식 III]
Figure 112019099328577-pat00022
상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법은 하기 화학식 B로 표시되는 화합물로부터 하기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계; 하기 화학식 C으로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 하기 화학식 D로 표시되는 화합물로부터 하기 화학식 D-1로 표시되는 화합물을 합성하는 반응 4-1단계; 및 하기 화학식 D-1로 표시되는 화합물로부터 하기 화학식 III으로 표시되는 화합물을 합성하는 반응 4-2단계;을 포함한다.
[화학식 B]
Figure 112019099328577-pat00023
[화학식 C]
Figure 112019099328577-pat00024
[화학식 D]
Figure 112019099328577-pat00025
[화학식 D-1]
Figure 112019099328577-pat00026
[화학식 III]
Figure 112019099328577-pat00027
상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법은, 상기 반응 2단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 화학식 A-1로 표시되는 화합물을 합성하는 반응 1-1단계; 및 하기 화학식 A-1로 표시되는 화합물로부터 상기 화학식 B로 표시되는 화합물을 합성하는 반응 1-2단계를 더 포함할 수 있다.
[화학식 A]
Figure 112019099328577-pat00028
.
[화학식 A-1]
Figure 112019099328577-pat00029
.
본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법에서 상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 연속적으로 한 단계로 수행될 수 있다.
본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법에서 상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 중간에 분리과정 없이 연속적으로 한 단계로 수행될 수 있다.
본 발명의 실시예는 산업적으로 유용하지만, 아직 합성이 보고된 적이 없는 다양한 다이메틸칼콘 유도체를 제조하고, 상기 유도체를 저렴한 플로로글루시놀(phloroglucinol) 등을 시작물질로 하여 간단한 공정을 통해 높은 수율로 제조하는 방법을 제공한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
본 명세서에서 사용되는 "포함하는"과 같은 표현은, 해당 표현이 포함되는 문구 또는 문장에서 특별히 다르게 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 명세서에서 사용되는 "바람직한" 및 "바람직하게"는 소정 환경 하에서 소정의 이점을 제공할 수 있는 본 발명의 실시 형태를 지칭한다. 그러나, 동일한 환경 또는 다른 환경 하에서, 다른 실시 형태가 또한 바람직할 수 있다. 추가로, 하나 이상의 바람직한 실시 형태의 언급은 다른 실시 형태가 유용하지 않다는 것을 의미하지 않으며, 본 발명의 범주로부터 다른 실시 형태를 배제하고자 하는 것은 아니다.
본 발명의 일 실시예는 저렴한 플로로글루시놀(phloroglucinol)을 시작물질로 하여 아세토페논(acetophenone) 물질을 만들고 이 화합물과 다양한 벤즈알데하이드(Benzaldehyde) 간의 클라이젠-슈미트(Claisen-Schmidt) 반응을 이용하여 다이메틸칼콘 및 그 유도체를 합성한다. 이로써 식물 그 자체에서 추출하는 것보다 훨씬 효율적이고 경제적인 합성법을 제공한다. 또한, 전자주개(electron donating group, EDG) 및 전자끌개(electron withdrawing group, EWG)등 다양한 작용기를 갖는 다이메틸칼콘 유도체들을 제조하여 약리적인 효과가 기존 디엠씨보다 좋거나 독성이 적은 화합물을 합성하고 응용할 수 있다. 이하 이를 상세하게 설명한다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 I로 표시된다.
[화학식 I]
Figure 112019099328577-pat00030
상기 화학식 I에서, R1, R2, 및 R3는 서로 동일하거나 상이하고, R1은 하이드록시기, 또는 메톡시메톡시기이고, R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고, 상기 ‘치환 또는 비치환된’은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
하기 후술할 제조방법에 따르면, R1이 하이드록시기인 경우인, 화학식 D로 표시되는 화합물로부터 화학식 II로 표시되는 화합물을 제조하거나, R1이 메톡시메톡시기인, 화학식 D-1로 표시되는 화합물로부터 화학식 III으로 표시되는 화합물을 제조할 때에는 클라이젠-슈미트 반응(Claisen-Schmidt Reaction)을 수행할 수 있다. 이때 반응물은 R2 또는 R3가 치환 또는 비치환된 벤즈알데하이드가 된다. R2 및 R3은 상기 클라이젠-슈미트 반응이 진행될 수 있다면 특별히 제한되지 않는다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 II로 표시될 수 있다.
[화학식 II]
Figure 112019099328577-pat00031
상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 II-1 내지 화학식 II-5로 표시되는 화합물 중 어느 하나일 수 있다.
[화학식 II-1]
Figure 112019099328577-pat00032
[화학식 II-2]
Figure 112019099328577-pat00033
[화학식 II-3]
Figure 112019099328577-pat00034
[화학식 II-4]
Figure 112019099328577-pat00035
[화학식 II-5]
Figure 112019099328577-pat00036
본 발명의 실시예를 따르는 화합물은 하기 화학식 III으로 표시될 수 있다.
[화학식 III]
Figure 112019099328577-pat00037
상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
본 발명의 실시예를 따르는 화합물은 하기 화학식 III-1 내지 화학식 III-6으로 표시되는 화합물 중 어느 하나일 수 있다.
[화학식 III-1]
Figure 112019099328577-pat00038
[화학식 III-2]
Figure 112019099328577-pat00039
[화학식 III-3]
Figure 112019099328577-pat00040
[화학식 III-4]
Figure 112019099328577-pat00041
[화학식 III-5]
Figure 112019099328577-pat00042
[화학식 III-6]
Figure 112019099328577-pat00043
.
본 발명의 실시예를 따르는 각 반응 단계의 반응물 및 생성물은 다음에서 열거된 화합물일 수 있다.
[화학식 A]
Figure 112019099328577-pat00044
[화학식 A-1]
Figure 112019099328577-pat00045
[화학식 B]
Figure 112019099328577-pat00046
[화학식 C]
Figure 112019099328577-pat00047
[화학식 D]
Figure 112019099328577-pat00048
[화학식 D-1]
Figure 112019099328577-pat00049
[화학식 III]
Figure 112019099328577-pat00050
[화학식 II]
Figure 112019099328577-pat00051
다만, 필수적인 반응 단계가 아니라면 상기 열거된 반응물 및 생성물이 아닌 다른 반응물 및 생성물이 반응하거나 생성될 수 있다. 필수적인 반응 단계가 아니라면 필수적인 반응 단계의 반응물 및 생성물을 생성할 수 있는 반응물이면 모두 허용된다. 또한 필수적인 반응 단계가 아니라면 필수적인 반응 단계의 반응물 및 생성물로부터 생성될 수 있는 생성물이면 모두 허용된다.
화학식 II로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계는 상기 화학식 B로 표시되는 화합물로부터 상기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계; 상기 화학식 C으로 표시되는 화합물로부터 상기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 및 상기 화학식 D로 표시되는 화합물로부터 상기 화학식 II로 표시되는 화합물을 합성하는 반응 4단계가 된다.
화학식 III으로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계는 상기 화학식 B로 표시되는 화합물로부터 상기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계; 상기 화학식 C으로 표시되는 화합물로부터 상기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 상기 화학식 D로 표시되는 화합물로부터 상기 화학식 D-1로 표시되는 화합물을 합성하는 반응 4-1단계; 및 상기 화학식 D-1로 표시되는 화합물로부터 상기 화학식 III으로 표시되는 화합물을 합성하는 반응 4-2단계;가 된다.
본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계 및 필수적이지 않은 반응 단계를 포함한 반응루트 I을 도시하면 다음과 같다.
*<반응루트 I>
Figure 112019099328577-pat00052
본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계 및 필수적이지 않은 반응 단계를 포함한 반응루트 II를 도시하면 다음과 같다.
<반응루트 II>
Figure 112019099328577-pat00053
본 발명의 일 실시예로서, 반응 1-1 단계는 A 화합물로부터 A-1 화합물을 합성하는 단계로서, 다음과 같이 진행될 수 있다. A 화합물은 비교적 저렴하게 구입할 수 있는 화합물이므로, 이를 이용하여 본 발명의 목적 생성물을 경제적으로 제조할 수 있다.
<반응 1-1 단계>
Figure 112019099328577-pat00054
일 실시예로서, 반응 1-1단계는 플로로글루시놀(phloroglucinol)에 dimethyl을 만들기 위해 먼저 diformylation을 진행할 수 있다. 종래 2',4',6'-trihydroxyacetophenone을 출발 물질로 하여 formylation 반응을 진행하였지만 2',4',6'-trihydroxy-3',5'-diformylacetophenone의 수율이 현저히 낮았다. 이에 값이 더 저렴하고 높은 수율을 얻을 수 있는 phloroglucinol을 출발 물질로 하여 화합물 A-1을 합성할 수 있다. 이 반응은 먼저 dimethylformamide와 phosphorus(V) oxychloride를 교반하여 chloroiminium ion인 Vilsmeier reagent를 만들고 난 후 1,4-다이옥산에 녹인 phloroglucinol에 만든 reagent 를 넣어 함께 교반함으로써 화합물 A-1이 합성될 수 있다. 합성 뒤에 물을 이용하여 석출시키고 다른 정제 과정 없이 건조시킬 수 있다. 하지만 다음 과정인 hydroxyl group에 methylation 하는 반응이 수분에 민감하기 때문에 MgSO4를 이용하여 미세수분을 제거한 후 다음 반응을 진행시키는 것이 보다 바람직하다.
본 발명의 일 실시예로서, 반응 1-2 단계는 A-1 화합물로부터 B 화합물을 합성하는 단계로서 다음과 같이 진행될 수 있다.
<반응 1-2 단계>
Figure 112019099328577-pat00055
일 실시예로서, 반응 1-2단계는 다이메틸칼콘 유도체가 가지고 있는 하나의 methoxy group을 만들기 위해 dimethyl sulfate와 염기를 이용하여 진행시킬 수 있다. 2,4-diformylphloroglucinol(1)는 세 개의 hydroxyl 이 존재하고 구조적으로 대칭구조를 띄고 있기 때문에 하나의 hydroxyl 만 반응 시키는 것이 쉽지 않다. 염기로 K2CO3를 사용했을 시에는 너무 강하여 dimethoxy-1,3-benzenedicarboxaldehyde 와 trimethoxy-1,3-benzenedicarbox-aldehyde 같은 원하지 않는 화합물들이 합성될 수 있다. 보다 바람직하게는, 약한 염기인 pyridine과 NaHCO3를 사용할 수 있다. 반응을 최적화 하기 위해서 염기의 종류 및 당량비, 반응 시간 및 온도 등을 조절한 실험 결과는 표 1과 같다. 실험 결과에 따르면, pyridine은 반응이 진행되지 않았고 NaHCO3를 사용한 반응은 67.2 %의 높은 수율을 얻었다. 결과적으로 9 g기준으로 42℃ 조건에서 NaHCO3의 염기를 사용하여 12시간 간격으로 0.4당량씩 총 1.2당량을 넣어 주었을 때 최적의 수율로 합성할 수 있었다. 다만, 상기 반응이 진행될 수 있다면, 특별히 제한되지는 않는다. 또한, scale을 키워가면서 acetone을 이용하여 재결정으로도 정제가 가능하다.
Entry 1 (g) Excess
equiv.
Base(equiv.) Temp. Time
(h)
6 Yield
(%)
1 1 1 K2CO3 (1eq) reflux 4 29.67
2 5 1 K2CO3 (1eq) reflux 28 32
3 20 1 K2CO3 (1eq) reflux 48 33
4 5 1+0.2+0.2 K2CO3 (1.1eq) reflux 48 35
5 5 1+0.2+0.2 K2CO3 (1.1eq) r.t. 72 38
6 5 1.5 K2CO3 (1.1eq) reflux 4 32
7 5 2 K2CO3 (1.1eq) reflux 4 31
8 5 1 Pyridine (1eq) reflux 144 none
9 5 1 NaHCO3 (1eq) reflux 48 38
10 5 1 NaHCO3 (1eq) 42℃ 72 43.3
11 9 1 NaHCO3 (0.6eq*2/24h) 42℃ 120 42
12 9 1 NaHCO3 (0.4eq*3/12h) 42℃ 120 60
13 9 1 NaHCO3 (0. 2eq*6/12h) 42℃ 120 60
14 9 1.2 NaHCO3 (0.4eq*3/12h) 42℃ 144 61
15 9 1.2 NaHCO3 (0.4eq*3/12h) 42℃ 192 67
16 15 1.2 NaHCO3 (0.4eq*3/12h) 42℃ 192 57
16 15 1.2 NaHCO3 (0.4eq*3/12h) 56℃ 192 66
17 20 1.2 NaHCO3 (0.4eq*3/12h) 56℃ 192 64
본 발명의 일 실시예로서, 반응 2단계는 B 화합물로부터 C 화합물을 합성하는 단계로서 다음과 같이 진행될 수 있다.
<반응 2단계>
Figure 112019099328577-pat00056
일 실시예로서, 반응 2단계는 화합물 B의 aldehyde group을 zinc 아말감과 산을 이용하여 alkane으로 만들기 위한 Clemmensen Reduction 반응으로 진행될 수 이다. NaBH3CN와 산을 이용하는 방법과 zinc 아말감을 이용하는 두 방법 모두 90-95%의 높은 수율을 얻을 수 있다. 그러나, scale을 증가시키면서 보다 저렴한 시약을 사용하는 것이 경제적이므로, 보다 바람직하게는, zinc 아말감을 이용한 Clemmensen reduction 을 통해 합성할 수 있다. 아말감을 이용한 실험은 반응물질 10g Scale에도 여전히 높은 수율이 재현될 수 있다. 보다 바람직하게는, 아말감을 만들 때, 3% HCl에 있는 흩어져있는 Zinc가 fluffy 되도록 충분히 격렬하게 오래 교반하는 것이 좋다. 다만, 상기 반응이 진행될 수 있다면 특별한 제한이 없다.
본 발명의 일 실시예로서, 반응 3단계는 C 화합물로부터 D 화합물을 합성하는 단계이다. 상기 단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 나누어서 진행될 수 있고, 보다 바람직하게는 연속적으로 한 단계로 수행될 수 있다.
<반응 3단계>
Figure 112019099328577-pat00057
일 실시예로서, o-아세틸레이션(o-Acetylation)단계는 다음과 같이 진행될 수 있다. 벤젠고리에 acetyl group을 붙이는 반응을 진행하는 경우, hydroxyl group의 반응성이 더 크기 때문에 acetoxy group의 생성이 불가피 하다. 또한 벤젠고리에 acyl 을 붙이기 위해서는 100 ℃ 이상의 높은 온도와 같은 조건이 요구될 수 있다. 하지만 이러한 높은 온도에 반응물의 methoxy group이 깨지는 현상이 발생할 수 있으므로, 보다 바람직하게는 상온에서 acetoxy group을 붙이고 다음 migration 반응을 진행시킬 수 있다. 이 반응을 최적화 하기 위한 촉매 및 반응물의 당량비와 온도 및 시간 등에 대한 실험 결과에 따르면, 0 ℃ 조건하에 excess인 acetic anhydride를 사용하여 출발물질을 녹인 후 BF3·2O를 1.2당량가량 천천히 넣어주었을 때 최적의 수율로 합성할 수 있다.
일 실시예로서, 이동(Migration) 단계는 다음과 같이 진행될 수 있다. acetoxy group 을 벤젠고리의 acyl group로 migration 시키기 위해 BF3·2AcOH을 이용할 수 있다. 다른 용매 없이 화합물과 BF3·2AcOH을 이용하여 반응을 진행하여 환류시킬 수 있다. 12시간이상 반응 진행 시 환류로 인해 일부 화합물의 치환기들이 깨질 수 있는데, 최적화 실험 결과에 따르면, 화합물 6g을 기준으로 3시간후 GC로 반응을 확인하였을 때 90-98%의 수율로 진행될 수 있다.
일 실시예로서, 보호기 제거(Deprotection) 단계는 다음과 같이 진행될 수 있다. 가장 적절한 촉매 및 반응 온도의 최적화를 위한 실험 결과에 따르면, 상온에서 MeOH : DI-water (1: 1) 50ml 와 K2CO3을 염기로 사용하였을 때 우수한 수율로 합성할 수 있다. 높은 온도나 농도 조건에서는 벤젠고리에 있는 acyl group이 떨어질 수 있다. 다만, 상기 반응이 진행될 수 있다면 특별한 제한이 없다.
상기 세 단계는 모든 단계에서 정제 및 분리하여 실험을 진행할 경우, 각 단계에서 89.5 %, 65.3 %, 96.4%로 3 steps의 전체 수율이 56.3 %을 나타냈다. 하지만 중간에 다른 분리과정 없이 반응을 연속적으로 진행하였을 때의 전체 수율은 67%로 보다 더 높은 수율을 나타내었다. 이는 각각의 반응 단계에서 gas chromatography 로 측정해본 결과, o-아세틸레이션 단계의 경우 최종 생성물들의 비가 화합물 C-1: 화합물 C-2: 화합물 D = 90: 1: 7 이었고 이동 단계의 경우에는 C-1 화합물 C-2: 화합물 D= 3: 60: 20 이었기 때문이다. 또한, column chromatography 진행 시 화합물 C-1과 D가 TLC에서 같은 위치에 있기 때문에 분리가 굉장히 어렵다. 따라서 반응 3단계에서는 중간에 다른 정제과정 또는 분리과정 없이 반응을 연속적으로 세 단계를 진행하는 것이 훨씬 경제적이고 우수한 수율로 합성을 할 수 있다. 또한, 중간에 정제과정 및 분리과정이 없이 반응을 연속적으로 진행하였을 때의 전체 수율은 72%로 보다 더 높은 수율을 나타내었다.
본 발명의 일 실시예로서, 반응 4단계는 D 화합물로부터 II 화합물을 생성하는 단계로서, 반응 4-1, 4-2, 및 4-3 단계를 거쳐 진행될 수 있다.
<반응 4단계>
Figure 112019099328577-pat00058
D 화합물에서 D-1화합물을 합성하는 반응 4-1 단계는, D 화합물의 hydroxyl group을 protection 하기 위한 반응으로 진행될 수 있다. 최종 화합물을 만들기 위해 진행하는 Claisen-Schmidt Reaction 반응에서 반응물의 구조가 hydroxyl group이 2개 이상인 경우 반응이 잘 진행되지 않을 수 있으므로, 이에 protection 과정이 필요하다. 상기 보호기는 hydroxyl group을 보호할 수 있다면 특별한 제한이 없다. 또한, 반응 조건을 최적화 하기 위하여 다양한 Base와 유기용매를 사용한 실험 결과에 따르면, 보다 바람직하게는 acetone용매 하에서 potassium carbonate를 염기로 사용하여 환류반응을 진행할 때 최적의 수율로 합성할 수 있다. 상기 단계로 진행하였을 때, 수율은 94.5 %를 나타내었다.
D-1 화합물에서 III 화합물을 합성하는 반응 4-2 단계에서, 화합물 D-1에 치환 또는 비치환된 benzaldehyde와 Claisen-Schmidet 반응을 진행하여 다양한 다이메틸칼콘 유도체들을 합성할 수 있다. 다만, 상기 III 화합물이 진행될 수 있다면 특별한 제한이 없다. 이 반응을 최적화 하기 위한 benzaldehyde와 base의 당량 조절, 반응 온도 및 시간 등에 대한 실험 결과는 표 2와 같다. 치환기가 OMOM, 및 OMe 의 경우에는 상온 및 excess 1.2당량 조건 하에서는 반응이 20-30% 밖에 가지 않아 30 ℃의 온도에서 2.4당량을 넣어 반응을 진행하여 최대 수율을 얻을 수 있다. 최종 생성물은 column chromatograpy로 정제한 후에 ethanol을 통하여 재결정으로 한번 더 정제할 수 있다.
화합물 III 에서 화합물 II를 합성하는 반응 4-3단계는, 화합물 III의 methoxymethyl group을 다시 hydroxyl group으로 복원시키는 반응으로 진행될 수 있다. 이는 보호기를 제거할 수 있는 반응이라면, 특별한 제한이 없다. 다만, 높은 온도에서 1-3%의 HCl을 사용하였을 때에는 일부 chalcone 구조의 이중결합이 깨질 수 있다. 이 반응을 최적화 하기 위한 적절한 촉매 및 반응 온도에 대한 실험 결과, 보다 바람직하게는 p-TsOH으로 촉매를 사용하여 상온에서 반응을 수행할 수 있다. 이 경우, 80-99%의 우수한 수율을 얻을 수 있다.
본 발명의 실시예에 따르면, 플로로글루시놀을 시작물질로 하여 다양한 다이메틸칼콘 유도체를 합성하는 경우, 총 7단계를 거쳐 수행될 수 있고, 최적화를 통하여 총 수율 29.8 ~36.6% 로 제조할 수 있다. 이는 기존의 제조 방법보다 적은 단계이며 훨씬 경제적이다. 또한, 하기 후술하는 바와 같이, 합성된 최종 합성물들은 분리 정제를 통해 구조 분석까지 완료하였다.
하기 후술할 각 실시예에서 각 반응 단계의 분석 방법은 다음과 같다.
<박층 크로마토그래피(Thin Layer Chromatography, TLC)>
Merck 사의 TLC plate(silica gel layer thickness: 250μm, silica gel pore size : 60Å, fluorescent indicator)를 사용하였다. 시료에 맞는 전개용매를 사용하였고 254nm, 365nm의 UV lamp를 이용하여 분석하였다.
<기체 크로마토그래피(Gas Chromatography, GC)>
Hewlett packard의 HP 6890 gas chromatography (30m * 0.25 mm cross-linked methyl silicone column, a flame ionization detector)를 이용하여 반응이 진행중인 시료의 반응 진행 정도 및 생성물의 순도를 확인하였다. 이동상은 수소와 질소 그리고 공기를 혼합하여 사용하였고, 적절한 용매에 시료를 녹여 GC용 micro syringe를 이용하여 1-1.5㎛를 주입하였다.
<핵자기 공명법(Nuclear Magnetic Resonance, NMR)>
Verian Gemini 2000 spectrometer (1H-NMR600MHz,13C-NMR150MHz)와 Verian Germini 2000 spectrometer (1H-NMR300MHz) 를 사용하였고, 용매는 주로 CDCl3-d와 DMSO-d 6 를 사용하였다. 화학적 이동값(chemical shift)은 ppm (δ)로 나타냈다.
<녹는점 게이지(Melting Point Gauge)>
Bamstead Electrothermal Corporation’9100 (15V, 45W, 1AMP). 을 이용하여 측정하였다.
<실시예 1> 반응 1-1단계
2구 둥근 바닥 플라스크에 dimethylformamide 59.30 ml (6.34 mol)를 넣고, phosphorus(V) oxychloride 49.12 ml (6.34 mol)를 dropping funnel을 사용하여 0 ℃에서 점적투입하며 30분간 강하게 교반하였다. 반응이 끝난 뒤 노란색 점성 액체(Vilsmeyer reagent)가 생성되었다. 또 다른 둥근 바닥 플라스크에 1,4-dioxane (200 ml)와 화합물 A인 anhydrous phloroglucinol (40 g, 3.17 mol)를 넣어 강하게 교반하여 완전히 녹인 뒤 앞서 만든 Vilsmeyer reagent를 dropping funnel을 사용하여 0 ℃에서 점적투입하여 강하게 교반하였다. 상온에서 4시간 이상 교반하고 노란색 고체를 얻었다. 이 화합물을 2L 둥근 바닥 플라스크로 옮기고, DI water (1.5 L)를 넣어 3시간 동안 격렬하게 교반하였다. 교반 후, 침전된 노란색 고체를 여과하여 진공 오븐에서 30 ℃에서 12 시간 동안 건조시켜 연한 주황색의 화합물 A-1(56.84 g, 98.4 %)을 얻었다.
mp = 221-224 °TLC R f = 0.208 (n-hexane: acetone = 1:2); IR νmax (cm-1) 2887.88, 1598.70, 1503.24, 1438.64, 1393.32, 1253.50, and 1186.97; 1HNMR(300MHz,DMSO-d6) δ 12.52 (br s, 2H, -OH), 10.01 (s, 2H, -CHO), 5.90 (s, 1H, Ar-H); and 13CNMR(150MHz,DMSO-d6 δ 191.37 (2C), 169.42 (2C), 169.02 (1C), 103.77 (2C) and 94.07 (1C).
<실시예 2> 반응 1-2단계
둥근 바닥 플라스크에 화합물 A-1을 (9 g, 49.42 mmol)을 넣은 뒤, 진공펌프를 이용하여 공기를 제거한 후, 질소를 넣어 반응이 질소 분위기로 진행될 수 있도록 하였다. 질소 분위기를 만들고 주사기를 사용하여 dry acetone을 500 mL 주입하였다. 10분간 교반 후 dimethyl sulfate (5.16 ml, 54.36 mmol) 을 첨가하고 이어 sodium bicarbonate (1.66 g, 19.77 mmol)을 첨가하였다. 그 다음, sodium bicarbonate (1.66 g, 19.77 mmol)를 12 시간 간격으로 2 회 더 첨가하였다. 반응 액은 42 ℃에서 8 일간 교반 하였다. 반응 후에 상온으로 식힌 뒤 ethyl acetate로 희석하였다. 그 다음 유기층을 1% HCl 수용액, 물, 포화 NaCl 수용액을 이용하여 세척하고, MgSO4를 이용하여 미세수분을 제거하였다. 이후 감압 증류하여 용매를 제거하였다. 생성물은 column chromatography(n-hexane: acetone = 20: 1)를 이용하여 분리하여 백색의 화합물 B (6.51 g, 67.2 %)를 얻었다.
mp = 139-140 °TLC Rf =0.647(n-hexane: acetone = 3:2); IR νmax (cm-1) 2897.52, 1614.13, 1593.88, 1188.90, and 1080.90; 1HNMR(300MHz,CDCl3)δ 13.64 (s, 1H, -OH), 13.09 (s, 1H, -OH), 10.18 (s, 1H, -CHO), 10.05 (s, 1H, -CHO), 5.92 (s, 1H, Ar-H), 3.95 (s, 3H, -OCH3);and 13CNMR(150MHz,DMSO-d6) δ 191.85 (1C), 191.48 (1C), 171.21 (1C), 168.89 (1C), 168.87 (1C), 104.60 (1C), 104.53 (1C) 91.96 (1C), and 57.46 (1C).
<실시예 3> 반응 2단계
zinc powder (30 g)을 1 % HCl 수용액 (300 ml)에서 1 시간 동안 교반하여 활성화시켰다, 이후 활성화된 zinc powder와 mercury(II) chloride (0.9 g)를 3% HCl 수용액 (150 ml)에 넣어 상온에서 격렬하게 4시간 동안 교반하여 zinc아말감을 제조하였다. 아말감을 여과하고 1,4-dioxane 으로 세척하였다. 둥근 바닥 플라스크에 화합물 B와 1,4-dioxane (200 ml)를 넣어 강하게 교반하여 완전히 녹인 뒤 앞서 세척한 아말감을 첨가하였다. 이후 0 ℃에서 36 % HCl 수용액 (12 ml)을 천천히 첨가하고 30분간 교반 시켰다. TLC를 이용하여 화합물 B가 완전히 반응이 진행된 것을 확인 후, 혼합물을 여과하여 ethyl acetate로 희석하였다. 유기층을 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거하였다. 이후 감압 증류하여 용매를 제거하였다. 생성물은 column chromatography(n-hexane: acetone = 30: 1)를 이용하여 분리하여 백색의 화합물 C (2.44g, 94.9 %)을 얻었다.
mp = 95-96 °TLC Rf =0.500(n-hexane: acetone = 3:2); IR νmax (cm-1) 3375.78, 2920.66, 2852.20, 1615.09, 1505.17, 1454.06, 1329.68, 1275.68, 1208.18, 1112.73, and 1088.62; 1HNMR(300MHz,DMSO-d6) δ 8.83 (s, 1H, -OH), 7.95 (s, 1H, -OH), 6.01 (s, 1H, Ar-H), 3.63 (s, 3H, -OCH3),1.91(s,3H,-CH3),and 1.90(s,3H,-CH3);and 13CNMR(150MHz,DMSO-d6) δ 155.92 (1C), 154.41 (1C), 153.99 (1C), 103.70 (1C), 103.15 (1C), 91.50 (1C), 55.48 (1C) 9.21 (1C), and 9.01 (1C).
<실시예 4> 반응 3단계
하기 실시예 4-1 내지 실시예 4-3 은 각 단계에서 정제과정 및 분리과정을 거치면서 세 단계로 제조될 수 있고, 각 단계에서 정제과정 또는 분리과정 없이 크루드(crude)한 상태로 연속적으로 한 단계로 제조될 수 있다.
<실시예 4-1> o-Acetylation
둥근 바닥 플라스크에 화합물 C (5.5 g, 32.7 mmol)를 넣은 뒤, 진공펌프를 이용하여 공기를 제거한 후, 질소를 넣어 반응이 질소 분위기로 진행될 수 있도록 하였다. 질소 분위기를 만들고 주사기를 사용하여 acetic anhydride (30.93 ml, 327.2 mmol)을 첨가하고, 0 ℃에서 boron trifluoride diethyl etherate (4.93 ml, 39.3 mmol)를 천천히 첨가하였다. 혼합물을 상온에서 1 시간 동안 교반 하였다. TLC를 이용하여 화합물 C가 완전히 반응이 진행된 것을 확인 후, 혼합물을 ethyl acetate로 희석하였다.
정제 및 분리과정을 수행하는 경우라면, 다음과 같이 수행한다. 유기층을 1% HCl 수용액, 물, 포화 NaCl 수용액을 이용하여 세척하고, MgSO4를 이용하여 미세수분을 제거한 후 감압 증류하여 용매를 제거하였다. 생성물은 column chromatography(n-hexane: acetone = 300: 1)를 이용하여 분리하여 투명한 액상의 화합물 C-1을 (7.38 g, 89.5 %)을 얻었다.
TLC Rf = 0.610 (n-hexane: acetone = 3: 2); IR νmax (cm-1) 2935.32, 1755.82, 1367.59, 1189.42, 1116.11, 1009.47, and 1073.73; 1HNMR(600MHz,DMSO-d 6 ) δ 6.69 (s, 1H, Ar-H), 3.75 (s, 3H, -OCH3), 2.34(s,3H,-OCOCH3), 2.29(s,3H,-OCOCH3), 1.91(s,3H,-CH3),and 1.81(s,3H,-CH3);and 13CNMR(151MHz,DMSO-d 6 ) δ 169.22 (1C), 168.76 (1C), 156.14 (1C), 148.79 (1C), 147.95 (1C), 116.43 (1C), 115.09 (1C), 103.59 (1C), 56.30 (1C), 20.94 (1C), 20.55 (1C), 9.77 (1C), and 9.56 (1C).
<실시예 4-2>
둥근 바닥 플라스크에 화합물 C-1 (7 g, 27.7 mmol)을 넣은 뒤, 진공펌프를 이용하여 공기를 제거한 후, 질소를 넣어 반응이 질소 분위기로 진행될 수 있도록 하였다. 질소 분위기를 만들고 주사기를 이용하여 boron trifluoride-acetic acid complex (15.43 ml, 111.1 mmol)을 첨가하여 4시간 동안 환류 시켰다.
정제 및 분리과정을 수행하는 경우라면, 다음과 같이 실시하였다. 반응 후, 상온으로 식힌 뒤 ethyl acetate로 희석한 뒤, 유기층을 1% HCl 수용액, 물, 포화 NaCl 수용액을 이용하여 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 생성물은 column chromatography(n-hexane: acetone = 50: 1)를 이용하여 분리하여 연한 노란색의 화합물 C-2(4.57 g, 65.3 %)를 얻었다.
mp = 79-80 °TLC Rf =0.706(n-hexane : acetone = 3:2); IR νmax (cm-1) 2921.63, 1743.33, 1615.09, 1585.20, 1405.85, 1385.60, 1360.53, 1316.18, 1283.39, 1218.79, and 1168.65; 1HNMR(300MHz,DMSO-d6) δ 12.28 (s, 1H, -OH), 3.70 (s, 3H, -OCH3), 2.65(s,3H,-COCH3), 2.37(s,3H,-OCOCH3), 1.96(s,3H,-CH3),and 1.91(s,3H,-CH3);and 13CNMR(150MHz,DMSO-d6) δ 204.79 (1C), 168.45 (1C), 157.82 (1C), 157.59 (1C), 153.25 (1C), 115.50 (1C), 115.33 (1C), 115.16 (1C), 62.33 (1C), 32.26 (1C), 20.62 (1C), 9.66 (1C), and 9.37 (1C).
<실시예 4-3>
둥근 바닥 플라스크에 화합물 C-2(4.54 g, 18.0 mmol)과 메탄올 - 물 (1 : 1, v / v) (30 ml)을 넣고 용액에 potassium carbonate (9.96 g, 72.0 mmol)을 첨가하고 sonicator 를 이용하여 최대한 녹인 뒤 밤새 교반하였다.
정제 및 분리과정을 수행하는 경우라면, 다음과 같이 실시하였다. TLC를 이용하여 화합물 C-2 가 완전히 반응이 진행된 것을 확인 후, 혼합물을 ethyl acetate로 희석하였다. 유기층을 1% HCl 수용액, 물, 포화 NaCl 수용액을 이용하여 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 생성물은 column chromatography(n-hexane: acetone = 250: 1)를 이용하여 분리하여 연한 노란색 고체의 화합물 D (3.65 g, 96.4 %)를 얻었다. 또한 DCM을 이용하여 한번 더 재결정을 통해 정제하여 노란색의 결정을 얻었다.
mp = 156 °TLC Rf =0.634(n-hexane: acetone = 1:1); IR νmax (cm-1)3268.75,2920.66,2852.20,1604.48,1573.63,1438.64,1419.35,1366.32,1305.57,1271.82,1214.93,1189.86,and1101.15;1H NMR (300 MHz, DMSO-d6) δ 13.63 (s, 1H, -OH), 9.56 (s, 1H, -OH), 3.67 (s, 3H, -OCH3),2.62(s,3H,-COCH3), 2.04(s,3H,-CH3),and 1.98(s,3H,-CH3);and 13CNMR(150MHz,DMSO-d6) δ 203.05 (1C), 161.02 (1C), 160.77 (1C), 158.78 (1C) 109.61 (1C), 107.74 (1C), 106.80 (1C), 61.37 (1C), 31.03 (1C), 9.23 (1C), and 8.20 (1C).
<실시예 5> 반응 4-1단계
둥근 바닥 플라스크에 화합물 D (0.95 g, 4.52 mmol)와 potassium carbonate (0.75 g, 5.42 mmol) 을 넣은 뒤, 진공펌프를 이용하여 공기를 제거한 후, 질소를 넣어 반응이 질소 분위기로 진행될 수 있도록 하였다. 질소 분위기를 만들고 주사기를 사용하여 dry acetone (40 mL)를 넣은 뒤 chloromethyl methyl ether (0.42 ml, 5.42 mmol)를 투입하고 1시간동안 환류 시켰다. 반응 후, 상온으로 식힌 뒤 ethyl acetate로 희석하고 유기층을 1% HCl 수용액, 물, 포화 NaCl 수용액을 이용하여 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 생성물은 column chromatography(n-hexane: acetone = 50: 1)를 이용하여 분리하여 연한 노란색의 화합물 D-1 (1.085 g, 94.5 %)을 얻었다.
mp = 59-60 °TLC Rf =0.676 (n-hexane: acetone = 1:1); IR νmax (cm-1) 2953.45, 2921.63, 2852.20, 1601.55, 1454.06, 1409.71, 1355.71, 1317.14, 1267.97, 1218.79, and 1172.51; 1H NMR (300 MHz, DMSO-d 6 ) δ 12.80 (br s, 1H, -OH), 5.00 (s, 3H, -CH2-O), 3.71 (s, 3H, -OCH3),3.51(s,3H,-OCH3), 2.65(s,3H,-COCH3),2.10(s,3H,-CH3),and 2.04(s,3H,-CH3);and 13C NMR (150 MHz, DMSO-d6) δ 204.33 (1C), 160.79 (1C), 159.09 (1C), 158.21 (1C), 115.34 (1C), 114.69 (1C), 112.42 (1C), 98.96 (1C), 61.52 (1C), 57.14 (1C), 31.59 (1C), 9.76 (1C), and 9.25 (1C).
<실시예 6> 반응 4-2단계
<실시예 6-1> 화합물 III-1의 합성
둥근 바닥 플라스크에 화합물 D-1 (1.42 g, 5.58 mmol), potassium hydroxide (0.94 g, 16.7 mmol) 를 넣은 뒤, ethanol (30 mL)을 투입하여 완전히 녹인다. 이후 주사기를 사용하여 benzaldehyde (0.68 ml, 6.70 mmol) 투입하고 상온에서 7일 동안 교반 하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% NH4Cl수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500: 1)를 이용하여 분리하였다. 이후 생성물은 methanol을 이용하여 재결정시켜 정제하여 노란색 고체의 화합물 III-1 (1.78 g, 93.1 %) 을 얻었다.
mp = 66 °TLC R f =0.703 (n-hexane: acetone = 1:1); IR νmax (cm-1) 3461.57, 2958.27, 1630.64, 1563.19, 1345.28, 1144.75, 1113.27, 1057.07, 940.13 and 1225.54; 1HNMR(600MHz,CDCl3)δ 13.08 (s, 1H, -OH), 7.98-7.95 (d, J = 15.65 Hz, 1H, -C=C-H), 7.88-7.86 (d, J = 15.68 Hz, 1H, -C=C-H), 7.66-7.65 (m, 2H, Ar-H), 7.44-7.39 (m, 3H, Ar-H), 5.02 (s, 2H, -CH2-O-), 3.67 (s, 3H, -OCH3),3.63 (s, 3H, -OCH3), 2.20 (s, 3H, , -CH3),and 2.18 (s, 3H, -CH3);and 13CNMR(151MHz,DMSO-d6) δ 194.23 (1C), 160.54 (1C), 158.58 (1C), 157.65 (1C), 143.96 (1C), 135.01 (1C), 131.13 (1C), 129.55(2C), 129.00(2C), 127.30 (1C), 116.12 (1C), 115.44 (1C), 114.10 (1C), 99.46 (1C), 62.43 (1C), 57.61 (1C), 10.00 (1C), and 9.93 (1C).
<실시예 6-2> 화합물 III-2의 합성
둥근 바닥 플라스크에 화합물 D-1 (0.3 g, 1.18 mmol), potassium hydroxide(0.199 g, 3.54 mmol)를 넣은 뒤, ethanol (20 mL)을 투입하여 완전히 녹인다. 이후 주사기를 사용하여 p-tolualdehyde (0.17 ml, 1.41 mmol) 투입하고 상온에서 7일 동안 교반 하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% NH4Cl수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500: 1)를 이용하여 분리하였다. 이후 생성물은 methanol을 이용하여 재결정시켜 정제하여 노란색 고체의 화합물 III-2 (0.358 g, 85.2 %) 을 얻었다.
mp = 61 °TLC Rf =0.721 (n-hexane: acetone = 1:1); IR νmax (cm-1) 3391.10, 2932.35, 1625.94, 1601.35, 1586.41, 1547.84, 1341.49, 1163.11, 1137.07, 1096.09, 1060.42 and 980.87; 1H NMR (600 MHz, CDCl3)δ 13.12 (s, 1H, -OH), 7.94-7.92 (d, J = 15.61 Hz, 1H, -C=C-H), 7.87-7.85 (d, J = 15.64 Hz, 1H, -C=C-H), 7.56-7.55 (d, J = 7.81 Hz, 2H, Ar-H), 7.23-7.22 (d, J = 7.82 Hz, 2H, Ar-H), 5.02 (s, 2H, -CH2-O-), 3.66 (s, 3H, -OCH3), 3.62(s,3H,-OCH3), 2.40 (s, 3H, , -CH3), 2.20(s,3H,,-CH3),and 2.17(s,3H,-CH3);and 13C NMR (151 MHz, DMSO-d 6 ) δ 194.18 (1C), 160.49 (1C), 158.63 (1C), 157.64 (1C), 144.22 (1C), 141.30 (1C), 132.29 (1C), 130.18(2C), 129.05(2C), 126.20 (1C), 116.11 (1C), 115.41 (1C), 114.02 (1C), 99.45 (1C), 62.40 (1C), 57.60 (1C), 21.52 (1C), 9.99 (1C), and 9.92 (1C).
<실시예 6-3> 화합물 III-3의 합성
둥근 바닥 플라스크에 화합물 D-1 (0.3 g, 1.18 mmol), potassium hydroxide(0.199 g, 3.54 mmol)를 넣은 뒤, ethanol (20 mL)을 투입하여 완전히 녹인다. 이후 주사기를 사용하여 4-isopropylbenzaldehyde (0.214 ml, 1.41 mmol) 투입하고 상온에서 7일 동안 교반하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% NH4Cl수용액과 물, 포화 NaCl 수용액으로 세척하고 MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500: 1)를 이용하여 분리하였다. 이후 생성물은 methanol을 이용하여 재결정시켜 정제하여 노란색 고체의 화합물 III-3 (0.38 g, 83.7 %)을 얻었다.
mp = 65 °TLC R f =0.730(n-hexane: acetone = 1:1); IR νmax (cm-1) 3420.22, 2961.13, 1633.54, 1560.36, 1344.72, 1141.05, 1110.29, and 985.97; 1H NMR (600 MHz, CDCl3)δ 13.12 (s, 1H, -OH), 7.95-7.92 (d, J = 15.65 Hz, 1H, -C=C-H), 7.88-7.86 (d, J = 15.57 Hz, 1H, -C=C-H), 7.60-7.58 (d, J = 7.9 Hz, 2H, Ar-H), 7.29-7.27 (d, J = 7.94 Hz, 2H, Ar-H), 5.02 (s, 2H, -CH2-O-), 3.66 (s, 3H, -OCH3),3.63(s,3H,-OCH3), 2.98-2.91 (septet, J = 6.96 Hz, 1H, -CH), 2.20 (s, 3H, -CH3), 2.17 (s, 3H, , -CH3),and 1.28-1.27 (d, J = 6.91 Hz, 6H, -CH3);and 13C NMR (151 MHz, DMSO-d 6 ) δ 194.16 (1C), 160.56 (1C), 158.74 (1C), 157.70 (1C), 152.03 (1C), 144.18 (1C), 132.70 (1C), 129.19(2C), 127.55(2C), 126.23 (1C), 116.12 (1C), 115.41 (1C), 113.93 (1C), 99.45 (1C), 62.42 (1C), 57.60 (1C), 33.86 (1C), 24.03(2C), 9.99 (1C), and 9.92 (1C).
<실시예 6-4> 화합물 III-4의 합성
둥근 바닥 플라스크에 화합물 D-1 (1.65 g, 6.49 mmol), potassium hydroxide(1.1 g, 19.48 mmol)를 넣은 뒤, ethanol (30 mL)을 투입하여 완전히 녹인다. 이후 주사기를 사용하여 4-methoxymethoxy benzaldehyde (2.59 ml, 15.58 mmol) 투입하고 상온에서 7일 동안 교반하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% NH4Cl수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500: 1)를 이용하여 분리하였다. 이후 생성물은 methanol을 이용하여 재결정시켜 정제하여 노란색 고체의 화합물 III-4 (2.17 g, 83.1 %)로 나타내는 화합물을 얻었다.
mp = 66 °TLC R f =0.633 (n-hexane: acetone = 1:1); IR νmax (cm-1) 3431.67, 2958.57, 1631.02, 1152.50, 1140.45, 1057.15, 1054.54, 1005.70// 1632.64, 1560.69, 1512.01, and 1156.51; 1H NMR (600 MHz, CDCl3)δ 13.14 (s, 1H, -OH), 7.88-7.86 (d, J = 15.61 Hz, 1H, -C=C-H), 7.86-7.83 (d, J = 15.64 Hz, 1H, -C=C-H), 7.61-7.59 (d, J = 7.81 Hz, 2H, Ar-H), 7.08-7.06 (d, J = 7.82 Hz, 2H, Ar-H), 5.22 (s, 2H, -CH2-O-), 5.02 (s, 2H, -CH2-O-), 3.66 (s, 3H, -OCH3),3.62(s,3H,-OCH3),3.49(s,3H,-OCH3), 2.19 (s, 3H, , -CH3),and 2.17(s,3H,-CH3);and 13CNMR(151 MHz, DMSO-d 6 ) δ 194.04 (1C), 160.41 (1C), 159.32 (1C), 158.69 (1C), 157.62 (1C), 144.07 (1C), 130.84(2C), 128.57 (1C), 125.16 (1C), 116.99(2C), 116.03 (1C), 115.38 (1C), 114.01 (1C), 99.44 (1C), 94.15 (1C), 62.38 (1C), 57.60 (1C), 56.20 (1C), 10.00 (1C), and 9.93 (1C).
<실시예 6-5> 화합물 III-5의 합성
둥근 바닥 플라스크에 화합물 D-1(1.9 g, 7.477 mmol), potassium hydroxide(1.26 g, 22.43 mmol)를 넣은 뒤, ethanol (30 mL)을 투입하여 완전히 녹인다. 이후 주사기를 사용하여 4-methoxybenzaldehyde(2.174 ml, 17.94 mmol) 투입하고 상온에서 7일 동안 교반하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% NH4Cl 수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500 : 1)를 이용하여 분리하였다. 이후 생성물은 methanol을 이용하여 재결정시켜 정제하여 노란색 고체의 화합물 III-5 (2.31 g, 82.7 %)을 얻었다.
mp = 88 °TLC R f =0.650(n-hexane: acetone = 1:1); IR νmax (cm- 1)3530.27 2945.69, 1625.57, 1548.34, 1511.09, 1172.30, 1141.29 1113.79, and 939.40; 1H NMR (600 MHz, CDCl3)δ 13.16 (s, 1H, -OH), 7.89-7.86 (d, J = 15.76 Hz, 1H, -C=C-H), 7.86-7.83 (d, J = 15.68 Hz, 1H, -C=C-H), 7.62-7.60 (d, J = 8.77 Hz, 2H, Ar-H), 6.94-6.93 (d, J = 8.76 Hz, 2H, Ar-H), 5.02 (s, 2H, -CH2-O-), 3.86 (s, 3H, -OCH3),3.66(s,3H,-OCH3),3.62(s,3H,-OCH3), 2.19 (s, 3H, -CH3),and 2.17 (s, 3H, -CH3);and 13CNMR(151 MHz, DMSO-d 6 ) δ194.01 (1C), 161.94 (1C), 160.37 (1C), 158.67 (1C), 157.61 (1C), 144.37 (1C), 130.96(2C), 127.60 (1C), 124.63 (1C), 116.05 (1C), 115.37 (1C), 115.08(2C), 113.99 (1C), 99.44 (1C), 62.37 (1C), 57.60 (1C), 55.86 (1C), 9.99 (1C), and 9.92 (1C).
<실시예 7> 반응 4-3단계
<실시예 7-1> 화합물 II(R2, 및 R3는 H)의 합성
둥근 바닥 플라스크에 화합물 III-1 (0.48 g, 1.40 mmol), methanol 30 ml을 넣은 뒤 주사기를 사용하여 p-toluenesulfonic acid (0.320 g, 1.68 mmol) 를 첨가하고 상온에서 24시간 교반하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% HCl 수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 100: 1)를 이용하여 분리하였다. 분리하여 백색의 화합물 II(R2, 및 R3는 H) (0.414 g, 98.9 %)을 얻었다.
mp = 126 °TLC R f =0.617 (n-hexane: acetone = 1:1); IR νmax (cm-1); 3353.87, 2936.49, 1628.49, 1609.29, 1537.70 1359.59, 1219.99, 1166.04, 1110.80, and 987.30; 1HNMR(600MHz,CDCl3) δ 13.61 (s, 1H, -OH), 8.00-7.98 (d, J = 15.66 Hz, 1H, -C=C-H), 7.85-7.83 (d, J = 15.68 Hz, 1H, -C=C-H), 7.65-7.64 (m, 2H, Ar-H), 7.43-7.38 (m, 3H, Ar-H), 5.44 (s, 1H, -OH), 3.66 (s, 3H, -OCH3), 2.16 (s, 3H, -CH3), and 2.13 (s, 3H, -CH3);and 13C NMR (151 MHz, DMSO-d 6 ) δ 192.83 (1C), 161.73(1C), 161.71(1C), 158.75 (1C), 142.87 (1C), 135.34(1C), 130.86(1C), 129.55 (2C), 128.80 (2C), 127.03(1C), 110.61(1C), 108.25(1C), 107.60(1C), 62.34(1C), 9.41(1C), and 8.78(1C).
<실시예 7-2> 화합물 II-1의 합성
둥근 바닥 플라스크에 화합물 III-2 (0.82 g, 2.3 mmol), methanol 30 ml을 넣은 뒤 주사기를 사용하여 p-toluenesulfonic acid (0.528 g, 2.76 mmol)를 첨가하고 상온에서 24시간 교반 하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% HCl 수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500: 1)를 이용하여 분리하였다. 분리하여 백색의 화합물 II-1 (0.65g, 90.5 %)을 얻었다.
mp = 126 °TLC R f =0.656 (n-hexane: acetone = 1:1); IR νmax (cm-1) 3373.74, 2917.05, 1625.81, 1609.97 1540.24, 1359.81, 1163.45, and 1111.58; 1H NMR (600 MHz, CDCl3) δ 13.65 (s, 1H, -OH), 7.96-7.94 (d, J = 15.62 Hz, 1H, -C=C-H), 7.85-7.82 (d, J = 15.67 Hz, 1H, -C=C-H), 7.55-7.54 (d, J = 7.72 Hz, 2H, Ar-H), 7.23-7.21 (d, J = 7.76 Hz, 2H, Ar-H), 5.42 (s, 1H, -OH), 3.66 (s, 3H, -OCH3), 2.39 (s, 3H, -CH3), 2.15 (s, 3H, -CH3), and 2.13 (s, 3H, -CH3); and 13CNMR(151MHz,DMSO-d 6 ) δ 192.78(1C), 161.73(1C), 161.65(1C), 158.70(1C), 143.07(1C), 140.95(1C), 132.63(1C), 130.17 (2C) , 128.84 (2C) , 125.93(1C), 110.57(1C), 108.20(1C), 107.58(1C), 62.30(1C), 21.51(1C), 9.41(1C), and 8.79(1C).
<실시예 7-3> 화합물 II-2의 합성
둥근 바닥 플라스크에 화합물 III-3 (1.4 g, 3.64 mmol), methanol 30 ml을 넣은 뒤 주사기를 사용하여 p-toluenesulfonic acid (0.8318 g, 4.37 mmol)를 첨가하고 상온에서 24시간 교반 하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% HCl 수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 500: 1)를 이용하여 분리하였다. 분리하여 백색의 화합물 II-2 (1.2 g 98.4 %)을 얻었다.
mp = 101 °TLC R f =0.656 (n-hexane: acetone = 1:1); IR νmax (cm-1) 3343.73, 2956.05, 1628.47, 1605.90, 1552.23, 1354.84, 1166.48, and 1113.41; 1HNMR(600MHz,CDCl3) δ 13.65 (s, 1H, -OH), 7.97-7.94 (d, J = 15.65 Hz, 1H, -C=C-H), 7.86-7.83 (d, J = 15.62 Hz, 1H, -C=C-H), 7.59-7.58 (d, J = 7.99 Hz, 2H, Ar-H), 7.28-7.27 (d, J = 7.97 Hz, 2H, Ar-H), 5.36 (s, 1H, -OH), 3.66 (s, 3H, -OCH3), 2.97-2.92 (septet, J = 6.92 Hz, 1H, -CH), 2.16 (s, 3H, -CH3), 2.13 (s, 3H, -CH3)and 1.28-1.27 (d, J = 6.89 Hz, 6H, -CH3);and 13C NMR (151 MHz, DMSO-d 6 ) δ 192.77 (1C), 161.74 (1C), 161.66 (1C), 158.71 (1C), 151.71 (1C), 143.05 (1C), 133.02 (1C), 128.98(2C), 127.54(2C), 125.99 (1C), 110.58 (1C), 108.21 (1C), 107.58 (1C), 62.31 (1C), 33.85 (1C), 24.06(2C), 9.41 (1C), and 8.79 (1C).
<실시예 7-4> 화합물 II-3의 합성
둥근 바닥 플라스크에 화합물 III-5 (1.3 g, 3.49 mmol), methanol 30 ml을 넣은 뒤 주사기를 사용하여 p-toluenesulfonic acid (0.797 g, 4.191 mmol)를 첨가하고 상온에서 24시간 교반하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% HCl 수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 50: 1)를 이용하여 분리하였다. 분리하여 백색의 화합물 II-3 (1.088 g 94.9 %)을 얻었다.
mp = 164 °TLC R f =0.590 (n-hexane: acetone = 1:1); IR νmax (cm-1) 3516.40, 2943.09, 1628.13, 1606.73, 1558.04, 1509.35, 1348.72, 1162.34, and 1109.43; 1HNMR(600MHz, CDCl3) δ 13.69 (s, 1H, -OH), 7.89-7.87 (d, J = 15.55 Hz, 1H, -C=C-H), 7.85-7.82 (d, J = 15.62 Hz, 1H, -C=C-H), 7.61-7.59 (d, J = 8.57 Hz, 2H, Ar-H), 6.94-6.92 (d, J = 8.46 Hz, 2H, Ar-H), 5.44 (s, 1H, -OH), 3.85 (s, 3H, -OCH3), 3.66 (s, 3H, -OCH3), 2.15 (s, 3H, -CH3),and 2.13 (s, 3H, -CH3); and 13CNMR(151MHz,DMSO-d 6 ) δ 192.71 (1C), 161.73 (1C), 161.70 (1C), 161.38 (1C), 158.64 (1C), 143.24 (1C), 130.70(2C), 127.94 (1C), 124.34 (1C), 115.07(2C), 110.48 (1C), 108.23 (1C), 107.57 (1C), 62.27 (1C), 55.84 (1C), 9.41 (1C), and 8.79 (1C).
<실시예 7-5> 화합물 II-4의 합성
둥근 바닥 플라스크에 화합물 III(R2는 H, R3는 OH) (1.4 g, 3.48 mmol), methanol 30 ml을 넣은 뒤 주사기를 사용하여 p-toluenesulfonic acid (1.59 g, 8.352 mmol)를 첨가하고 상온에서 24시간 교반하였다. 반응 후, ethyl acetate로 희석한 뒤, 유기층을 1% HCl 수용액과 물, 포화 NaCl 수용액으로 세척하고, MgSO4를 이용하여 미세수분을 제거한 후, 감압 증류하여 용매를 제거하였다. 그런 다음, column chromatography(n-hexane: acetone = 50: 1)를 이용하여 분리하였다. 분리하여 백색의 화합물 II-4 (0.99 g 90.8 %)을 얻었다.
mp = 180 °TLC R f =0.516 (n-hexane: acetone = 1:1); IR νmax (cm-1);3390.38, 3329.06, 2929.85, 1634.32, 1606.17, 1556.27, 1450.30, 1430.78, 1167.66, and 1110.33; 1HNMR(600MHz,CDCl3) δ 13.66 (s, 1H, -OH), 7.88-7.86 (d, J = 15.61 Hz, 1H, -C=C-H), 7.83-7.80 (d, J = 15.67 Hz, 1H, -C=C-H), 7.57-7.55 (d, J = 8.46 Hz, 2H, Ar-H), 6.88-6.86 (d, J = 8.65 Hz, 2H, Ar-H), 5.30 (s, 1H, -OH), 5.21 (s, 1H, -OH), 3.66 (s, 3H, -OCH3), 2.15 (s, 3H, -CH3),and 2.13 (s, 3H, -CH3);and 13C NMR (151 MHz, DMSO-d 6 ) δ 192.67 (1C), 161.70 (1C), 161.29 (1C), 160.51 (1C), 158.61 (1C), 143.90 (1C), 130.96(2C), 126.39 (1C), 123.18 (1C), 116.48(2C), 110.43 (1C), 108.19 (1C), 107.55 (1C), 62.25 (1C), 9.41 (1C), and 8.80 (1C).
<실험예 1>
본 발명의 실시예를 따르는 생성물인 화합물 III의 수율은 표 2와 같다.
Compd. Product Yield (%)
III-1
Figure 112019099328577-pat00059
93.1
III-2
Figure 112019099328577-pat00060
85.2
III-3
Figure 112019099328577-pat00061
83.9
III-4
Figure 112019099328577-pat00062
83.1
III-5
Figure 112019099328577-pat00063
82.7
<실험예 2>
본 발명의 실시예를 따르는 생성물인 화합물 II의 수율은 표 3과 같다.
Compd. Product Yield (%)
II(R1, R2는 H)
Figure 112019099328577-pat00064
98.9
II-1
Figure 112019099328577-pat00065
90.5
II-2
Figure 112019099328577-pat00066
98.4
II-3
Figure 112019099328577-pat00067
94.9
II-4
Figure 112019099328577-pat00068
90.8

Claims (14)

  1. 하기 화학식 I로 표시되는 화합물:
    [화학식 I]
    Figure 112022033274973-pat00069

    상기 화학식 I에서,
    R1, R2, 및 R3는 서로 동일하거나 상이하고,
    R1은 하이드록시기, 또는 메톡시메톡시기이고,
    R2, 및 R3는 각각 독립적으로 수소, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알킬기로 이루어진 군에서 선택되고,
    R2 및 R3가 모두 수소인 경우는 제외하고,
    상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
  2. 제 1 항에 있어서,
    상기 화학식 I은 하기 화학식 II로 표시되는 화합물:
    [화학식 II]
    Figure 112019099328577-pat00070

    상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
  3. 제 1 항에 있어서,
    상기 화학식 I은 하기 화학식 II-1, II-2 및 II-5로 표시되는 화합물 중 어느 하나:
    [화학식 II-1]
    Figure 112021106528975-pat00071

    [화학식 II-2]
    Figure 112021106528975-pat00072

    [화학식 II-5]
    Figure 112021106528975-pat00075
    .
  4. 제 1 항에 있어서,
    상기 화학식 I은 하기 화학식 III으로 표시되는 화합물:
    [화학식 III]
    Figure 112019099328577-pat00076

    상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
  5. 제 1 항에 있어서,
    상기 화학식 I은 하기 화학식 III-2, III-3 및 III-6으로 표시되는 화합물 중 어느 하나:
    [화학식 III-2]
    Figure 112021106528975-pat00078

    [화학식 III-3]
    Figure 112021106528975-pat00079

    [화학식 III-6]
    Figure 112021106528975-pat00082
    .
  6. 하기 화학식 B로 표시되는 화합물로부터 하기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계;
    하기 화학식 C으로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 및
    하기 화학식 D로 표시되는 화합물로부터 하기 화학식 II로 표시되는 화합물을 합성하는 반응 4단계;를 포함하는,
    화학식 II로 표시되는 화합물을 제조하는 방법:
    [화학식 B]
    Figure 112022033274973-pat00083

    [화학식 C]
    Figure 112022033274973-pat00084

    [화학식 D]
    Figure 112022033274973-pat00085

    [화학식 II]
    Figure 112022033274973-pat00086

    상기 화학식 II에서,
    R2, 및 R3는 서로 동일하거나 상이하고,
    R2, 및 R3는 각각 독립적으로 수소, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알킬기로 이루어진 군에서 선택되고,
    R2 및 R3가 모두 수소인 경우는 제외하고,
    상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
  7. 제 6 항에 있어서,
    상기 반응 2단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 A-1로 표시되는 화합물을 합성하는 반응 1-1단계; 및
    하기 A-1로 표시되는 화합물로부터 상기 화학식 B로 표시되는 화합물을 합성하는 반응 1-2 단계를 더 포함하는,
    화학식 II로 표시되는 화합물을 제조하는 방법:
    [화학식 A]
    Figure 112019099328577-pat00087

    [화학식 A-1]
    Figure 112019099328577-pat00088
    .
  8. 제 6 항에 있어서,
    상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 연속적으로 한 단계로 수행되는,
    화학식 II로 표시되는 화합물을 제조하는 방법.
  9. 제 6 항에 있어서,
    상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계를 중간에 분리과정 없이 연속적으로 한 단계로 수행되는,
    화학식 II로 표시되는 화합물을 제조하는 방법.
  10. 제 6 항에 있어서,
    상기 반응 4단계는 상기 화학식 D로 표시되는 화합물로부터 하기 화학식 D-1로 표시되는 화합물을 합성하는 반응 4-1단계;
    하기 화학식 D-1로 표시되는 화합물로부터 하기 화학식 III으로 표시되는 화합물을 합성하는 반응 4-2단계; 및
    하기 화학식 III으로 표시되는 화합물로부터 하기 화학식 II로 표시되는 화합물을 합성하는 반응 4-3단계;를 더 포함하는,
    화학식 II로 표시되는 화합물을 제조하는 방법:
    [화학식 D-1]
    Figure 112019099328577-pat00089

    [화학식 III]
    Figure 112019099328577-pat00090

    상기 화학식 III에서, R2 및 R3는 상기 화학식 II에서 정의한 바와 동일하다.
  11. 하기 화학식 B로 표시되는 화합물로부터 하기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계;
    하기 화학식 C으로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계;
    하기 화학식 D로 표시되는 화합물로부터 하기 화학식 D-1로 표시되는 화합물을 합성하는 반응 4-1단계; 및
    하기 화학식 D-1로 표시되는 화합물로부터 하기 화학식 III으로 표시되는 화합물을 합성하는 반응 4-2단계;을 포함하는,
    화학식 III으로 표시되는 화합물을 제조하는 방법:
    [화학식 B]
    Figure 112022033274973-pat00091

    [화학식 C]
    Figure 112022033274973-pat00092

    [화학식 D]
    Figure 112022033274973-pat00093

    [화학식 D-1]
    Figure 112022033274973-pat00094

    [화학식 III]
    Figure 112022033274973-pat00095

    상기 화학식 III에서,
    R2, 및 R3는 서로 동일하거나 상이하고,
    R2, 및 R3는 각각 독립적으로 수소, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알킬기로 이루어진 군에서 선택되고,
    R2 및 R3가 모두 수소인 경우는 제외하고,
    상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
  12. 제 11 항에 있어서,
    상기 반응 2단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 화학식 A-1로 표시되는 화합물을 합성하는 반응 1-1단계; 및
    하기 화학식 A-1로 표시되는 화합물로부터 상기 화학식 B로 표시되는 화합물을 합성하는 반응 1-2단계를 더 포함하는,
    화학식 III으로 표시되는 화합물을 제조하는 방법:
    [화학식 A]
    Figure 112019099328577-pat00096

    [화학식 A-1]
    Figure 112019099328577-pat00097
    .
  13. 제 11 항에 있어서,
    상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 연속적으로 한 단계로 수행되는,
    화학식 III으로 표시되는 화합물을 제조하는 방법.
  14. 제 11 항에 있어서,
    상기 반응 3단계는 o-아세틸레이션(o-Acetylation), 이동(Migration), 보호기 제거(Deprotection)의 세 단계가 중간에 분리과정 없이 연속적으로 한 단계로 수행되는,
    화학식 III으로 표시되는 화합물을 제조하는 방법.
KR1020190120021A 2019-09-27 2019-09-27 다이메틸칼콘 유도체 및 이의 제조방법 KR102393639B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190120021A KR102393639B1 (ko) 2019-09-27 2019-09-27 다이메틸칼콘 유도체 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190120021A KR102393639B1 (ko) 2019-09-27 2019-09-27 다이메틸칼콘 유도체 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20210037807A KR20210037807A (ko) 2021-04-07
KR102393639B1 true KR102393639B1 (ko) 2022-05-04

Family

ID=75469659

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190120021A KR102393639B1 (ko) 2019-09-27 2019-09-27 다이메틸칼콘 유도체 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR102393639B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850040B (zh) * 2022-12-05 2024-05-28 江西亚太科技发展有限公司 一种芳烃单酰化和双酰化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613334A (zh) 2008-06-23 2009-12-30 中国人民解放军军事医学科学院毒物药物研究所 黄酮类衍生物及其医药用途
KR101021830B1 (ko) * 2010-08-17 2011-03-17 주식회사 중앙백신연구소 크레이스토카릭스 오페르쿠라투스로부터 얻은 조류, 돼지 인플루엔자 및 신종플루에 대한 항바이러스제

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000989A1 (en) 1987-07-25 1989-02-09 Nippon Oil And Fats Co., Ltd. Chalcone derivative compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613334A (zh) 2008-06-23 2009-12-30 中国人民解放军军事医学科学院毒物药物研究所 黄酮类衍生物及其医药用途
KR101021830B1 (ko) * 2010-08-17 2011-03-17 주식회사 중앙백신연구소 크레이스토카릭스 오페르쿠라투스로부터 얻은 조류, 돼지 인플루엔자 및 신종플루에 대한 항바이러스제

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Trong-Tuan Dao et al., C-Methylated Flavonoids from Cleistocalyx operculatus and Their Inhibitory Effects on Novel Influenza A (H1N1) Neuraminidase, Journal of Natural Products, 2010, 73, pp1636-1642
석사학위논문, Ji Young Lee, Synthesis of 2’,4’-dihydroxy-6’-methoxy-3’,5’-dimethylchalcone, 중앙대학교 대학원(2018.02.)*

Also Published As

Publication number Publication date
KR20210037807A (ko) 2021-04-07

Similar Documents

Publication Publication Date Title
US7186850B2 (en) Synthesis of cannabinoids
CN109206384B (zh) 基于吩噻嗪衍生物的室温磷光分子及其制备方法和应用
AU2002253386A1 (en) Synthesis of cannabinoids
KR102393639B1 (ko) 다이메틸칼콘 유도체 및 이의 제조방법
CN102321063B (zh) 一种制备不对称罗丹明的方法
Saito et al. The Palladium-catalyzed Arylation of 4-Chromanone Enol Esters. A New Synthesis of Isoflavanones
TW518323B (en) Process for producing quinolone derivatives
KR102285493B1 (ko) 다이메틸칼콘 유도체 및 이의 제조방법
KR102285494B1 (ko) 할로겐이 치환된 다이메틸칼콘 유도체 및 이의 제조방법
CN113735799B (zh) 一种盐酸达克罗宁的合成方法
He et al. Synthesis of polysubstituted phenyl acetates via FeCl3-mediated domino reaction of 2-(aryl (piperidin-1-yl) methyl) phenols and 1, 3-diketones
CN113698375A (zh) 一种4-环己亚胺甲基取代苯并呋喃衍生物的合成方法
Liu et al. A general and efficient method for synthesis of enaminones and enamino esters catalyzed by NbCl 5 under solvent-free conditions
CA1039726A (en) Flavone derivatives
CN110950739A (zh) 一种苯酚类化合物邻位直接氟化的方法
WO2006040652A2 (en) Process for the preparation of n-(3,5-dichloropyrid-4-yl)-4difluoromethoxy-8-methanesulfonamido-dibenzo[b,d]furan-1-carboxamide
CN116023357B (zh) 一种邻羟基苯乙酮类转化为含季碳中心色满酮化合物的方法
CN111333528B (zh) 一种多构型o-苯基-丝氨酸类化合物的合成方法
EP2368895A1 (en) Ferrocenyl flavonoids
KR102563123B1 (ko) 피세틴 또는 피세틴 유도체의 제조 방법
Adelwöhrer et al. Synthesis of novel 3-oxa-chromanol type antioxidants
JP3097281B2 (ja) フロログルシン型フェノールのベンジルエーテルの合成法
CN115583876B (zh) 苯基萘嵌苯酮化合物及其制备方法和应用
JP2913706B2 (ja) カルコン誘導体及びその製造方法
JPH07291902A (ja) アリルキノン誘導体の製造方法および中間体

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant