KR102346499B1 - 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법 - Google Patents
페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법 Download PDFInfo
- Publication number
- KR102346499B1 KR102346499B1 KR1020200107888A KR20200107888A KR102346499B1 KR 102346499 B1 KR102346499 B1 KR 102346499B1 KR 1020200107888 A KR1020200107888 A KR 1020200107888A KR 20200107888 A KR20200107888 A KR 20200107888A KR 102346499 B1 KR102346499 B1 KR 102346499B1
- Authority
- KR
- South Korea
- Prior art keywords
- ferritin
- vector
- protein
- ferritin protein
- recombinant vector
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/10—Animal feeding-stuffs obtained by microbiological or biochemical processes
- A23K10/16—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43536—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from worms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/70—Vectors containing special elements for cloning, e.g. topoisomerase, adaptor sites
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Polymers & Plastics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Physiology (AREA)
- Animal Husbandry (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 관한 것으로서, 보다 상세하게는 흰이빨 참갯지렁이 유래 철분단백질인 페리틴을 대량생산하기 위한 재조합 벡터, 상기 재조합 벡터를 고초균에 도입한 형질전환체 및 이를 이용한 대량생산방법에 관한 것이다.
본 발명에 따른 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 의하면, 흰이빨 참갯지렁이(Periserrula leucophryna)에서 얻어진 페리틴 유전자를 더 효율적으로 발현 및 분비할 수 있으며, 페리틴 함유 배양액은 사료첨가제로서 우수한 생물학적 활성을 가지며, 특히, 산란계에서 월등한 생물학적 활성을 갖는 효과가 있다.
본 발명에 따른 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 의하면, 흰이빨 참갯지렁이(Periserrula leucophryna)에서 얻어진 페리틴 유전자를 더 효율적으로 발현 및 분비할 수 있으며, 페리틴 함유 배양액은 사료첨가제로서 우수한 생물학적 활성을 가지며, 특히, 산란계에서 월등한 생물학적 활성을 갖는 효과가 있다.
Description
본 발명은 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 관한 것으로서, 보다 상세하게는 흰이빨 참갯지렁이 유래 철분단백질인 페리틴을 대량생산하기 위한 재조합 벡터, 상기 재조합 벡터를 고초균에 도입한 형질전환체 및 이를 이용한 대량생산방법에 관한 것이다.
철은 산소 운반 및 저장 기능을 하는 페리틴, 트랜스페린, 헤모글로빈, 미오글로빈 등의 구성성분이며, 전자전달계 단백질 및 독성물질 제거에 관여하는 페록시다제 등의 필수성분으로서 생체 내에서 생명 유지에 중요한 역할을 한다. 따라서 세포 내에서 대표적 철 저장 단백질인 페리틴 (ferritin)은 모든 생물종, 즉 사람을 포함하여 동물, 식물, 미생물 등 여러 생물체에 존재하는 것으로 보고되었다.
사람 및 척추동물의 페리틴은 유전적, 기능적으로 다른 두가지 형태의 subunit, H (heavy/heart) type과 L (light/liver) type으로 구성되어 있으며 조직에 따라 그 조성비율이 다른 여러 이소페리틴 (isoferritin)으로 존재하지만, 무척추동물의 경우에는 H(heavy) type 만 존재하는 것으로 보고되었다. L type subunit은 페리틴 분자의 내공을 형성하는데 관여하며, H type subunit은 Fe+2의 흡수에 필요한 페록시다제 (ferroxidase) 활성을 가지고 있어 페리틴 흡수 촉진 및 Fe+2의 산화 촉진 활성을 가지고 있고, 또한 H 형이 풍부한 페리틴은 철분 운반의 기능이 높은 것으로 보고되었다. 무기물 철분 제제는 철분 흡수 효율이 낮고 위염, 소화장애 등 부작용이 심해 철분 결핍증의 주요 대상이 유아 및 임산부임을 고려할 때 사용에 많은 제약을 갖는다.
이를 대체할 제제는 페리틴으로 철분 결핍성 빈혈의 치료에 쓰이고 있어 무기물 제제보다 부작용이 작고 훨씬 효과가 있는 것으로 알려져 있다. 현재까지 페리틴의 생산 및 이를 활용하기 위한 다양한 연구가 진행되어 왔다.
이와 관련하여, 국내등록특허 제10-1029765호에서는 페리틴 단백질 및 형광 단백질을 코딩하는 핵산 분자를 포함하여 MRI 분석 및 형광 이미지 검출이 동시에 가능한 렌티바이러스 벡터를 제시하고 있다.
또한, 국내등록특허 제10-1811050호에서는 인간 유래 페리틴 모노머의 4번째 루프의 일부분 및 다섯 번 째 헬리스(helix)가 제거된 페리틴 모노머 단편의 N말단 및/또는 C말단에 항염증성 폴리펩티드가 융합된 융합폴리펩티드 및 이의 염증성 질환 예방 및 치료 용도를 제시하고 있다.
흰이빨 참갯지렁이 (Periserrula leucophryna)는 강화도 갯벌 지역에 사는 다모류의 일종으로 분류학적으로는 전 세계 1속 1종으로 알려진 우리나라 고유의 생명체이며, 최장 길이가 2~2.5 m까지 자라며 갯벌 환경 생태 및 순환에 지대한 역할을 하는 것으로 알려져 있다.
흰이빨 참갯지렁이는 H-type의 페리틴 단백질을 함유하는 것으로 알려져 있으며, 그 분자 중심에 형성된 내공(core)에는 옥시하이드로사이드 폴리머 (oxyhydroxied polymer)가 있어 분자 당 헤모글로빈 1,200 분자를 생합성할 수 있고, 4,500개의 철원자(3가 철)를 저장할 수 있어 철 저장 단백질로서 다른 무기물 제제보다 부작용이 작고 훨씬 효과가 있는 것으로 알려져 있다.
고초균(Bacillus subtilis)은 대표적인 그람 양성균으로 염색체내 DNA 염기서열이 완전 규명되어 유전자 발현 및 조절에 필요한 요소들이 많이 알려져 있다. 안정성이 입증된 GRAS(generally regarded as safe)균주로서 세대시간이 빠르며, codon bias 경향을 보이지 않아 유전자 조작이 용이하며, 전통적인 발효 과정에서 고초균 자체적으로 효율성이 높은 단백질 분비 시스템을 가지고 있어, 많은 양의 외래 유용 단백질을 분비시킬 수 있는 가능성이 높고, 세포 외로 분비된 단백질은 회수가 용이하여 이종 단백질 생산의 주요 숙주세포로 많이 사용된다.
한편, 본 발명자는 우수한 철분 흡수율, 부작용의 최소화 등의 특징을 갖는 페리틴을 의약산업, 식품산업 및 사료산업 분야에 적용하기 위하여 두토막눈썹 참갯지렁이로부터 유래된 신규한 페리틴 및 이를 암호화하는 유전자에 관하여 특허등록(국내등록특허 제10-1253505호)받은 바 있으나, 보다 효율적인 고발현, 고분비 시스템을 개발하고자 하는 연구의 일환으로 본 발명에 이르게 되었다.
본 발명에서는 갯벌생명체인 흰이빨 참갯지렁이(Periserrula leucophryna)로부터 얻어진 페리틴 (H-type)유전자를 더욱 효율적으로 고발현 및 고분비시키기 위하여 promoter, Shine-dalgarno(SD), operator, 신호서열 및 replication origin 등의 주요 조절인자들을 포함하는 발현분비벡터에 추가적인 replication origin을 도입하여 고초균의 copy number를 증가시켜 발현 및 분비를 최적화하였으며, 최적의 발효조건 하에서 철분단백질을 대량생산하였으며, 대량생산된 철분단백질의 생물학적 활성을 확인하였다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 흰이빨 참갯지렁이 유래 철분단백질인 페리틴을 대량생산하기 위한 재조합 벡터, 상기 재조합 벡터를 고초균에 도입한 형질전환체 및 이를 이용한 대량생산방법을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 양태에 따르면, 본 발명은 서열번호 1의 아미노산 서열로 표현되는 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 코딩하는 유전자를 포함하는 페리틴 단백질 대량생산용 재조합 벡터를 제공한다.
상기 페리틴 단백질은 신호서열 17개의 아미노산 (MATSRQTMPRQNYHEEC)을 포함하여 174개의 아미노산으로 구성된다.
본 발명에 있어서 "벡터"는 숙주 세포에 의해 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 코딩하는 유전자를 도입하여 페리틴 단백질을 발현시키기 위한 수단을 말하며, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 등을 포함한 통상의 모든 벡터를 포함하고, 바람직하게는 플라스미드 벡터이며, 본 발명에서는 "Choi, J. W. (2016) Secretion of ferritin protein of Periserrula leucophyryna in Bacillus subtilis and its feed efficiency. KSBB journal.31: 105-112."에 기재된 pRBASFer 벡터를 주형으로 사용하였고, Plasmid의 증식을 위한 균주로 E. coli XL1-Blue MRF (F',proAB, lacIqZ△M15, thi, recA, gyrA, relA, supE, Tn10)(Stratagene, La Jolla, CA) 사용하였고, PCR 산물을 클로닝하기 위해
pGEM-T Easy vector(Promega, Madison, USA)를 사용하였다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 재조합 벡터를 숙주세포에 도입한 형질전환체를 제공한다.
상기 숙주세포는 고초균, 대장균, 효모 중 어느 하나로부터 선택되어질 수 있으며, 바람직하게는, 외래 단백질 발현 및 분비를 위한 숙주세포로는 고초균을 사용할 수 있으며, 더욱 바람직하게는, "Kim, S. I., J. W. Choi, and S. Y. Lee (1997) Effects of pleiotrophic mutations, degUh and spoOA, on the production of foreign proteins using the heterologous secretion system of Bacillus subtilis. Mol. Cells. 7: 158-164."의 Bacillus subtilis LKS87를 사용할 수 있다.
본 명세서에서, 숙주 세포로의 “형질전환" 은 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며 당 분야에서 공지된 바와 같이 숙주 세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산 칼슘(CaPO4) 침전, 염화 칼슘(CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로 박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 포함되나 이로 제한되지 않는다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 재조합 벡터를 이용하여 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 대량생산하는 방법을 제공한다.
본 발명은 상기 재조합 벡터를 이용하여 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 대량생산하는 방법은 1) 흰이빨 참갯지렁이의 페리틴 유전자를 포함하는 벡터에 복제원점을 도입 후 PCR을 수행하여 수득된 DNA 단편을 T벡터에 클로닝하는 단계;와 2) 상기 클로닝된 T벡터를 제한효소로 잘라 복제원점 단편을 수득하는 단계;와 3) 상기 복제원점 단편을 흰이빨 참갯지렁이의 페리틴 유전자를 포함하는 벡터에 도입하여 재조합 분비벡터를 준비하는 단계;와 4) 상기 재조합 벡터를 도입한 고초균 형질전환체를 배지에서 배양하는 단계를 포함한다.
상기 1)단계에서는 흰이빨 참갯지렁이의 페리틴 유전자를 포함하는 벡터에 복제원점을 도입 후 PCR을 수행하여 수득된 DNA 단편을 T벡터에 클로닝하게 되는데, 제한효소부위가 도입된 복제원점 특이적 서열번호 5의 정방향 프라이머와 서열번호 6의 역방향 프라이머를 이용하여 복제원점을 도입하게 된다.
상기 4)단계에서는 상기 재조합 벡터를 도입한 고초균 형질전환체를 배지에서 배양하는 단계로, 상기 배지는 PY, LB, MSR 중 어느 하나의 배지를 사용할 수 있으며, 바람직하게는, PY 배지를 사용할 수 있다. 또한, 상기 배지는 질소원과 탄소원을 추가로 포함할 수 있으며, 질소원으로 Soy peptone, Peptone, Potassium nitrate, Corn steep liquor, defatted soybean meal, soy protein isolate 또는 이들의 조합 중 어느 하나를 사용할 수 있으며, 탄소원으로는 glucose, glycerol, barley, starch, molasses 또는 이들의 조합 중 어느 하나를 사용할 수 있으나, 이에 한정하는 것은 아니다. 바람직하게는, 질소원으로 soy peptone을, 탄소원으로 barley를 사용할 수 있다. 이때, 상기 질소원은 1 내지 4%(w/v), 상기 탄소원은 1 내지 3%(w/v) 첨가될 수 있다.
이때, 배양온도는 28 내지 35 ℃, 교반속도는 150 내지 250 rpm, 공기주입량 0.5 내지 2vvm 하에서 36 내지 96시간 배양공정이 수행될 수 있다. 바람직하게는, 배양온도는 30 ℃, 교반속도는 200rpm, 공기주입량 1vvm 하에서 12 내지 60시간 배양될 수 있다.
또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 상기 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 대량생산하는 방법에 의해 생산된 페리틴 단백질을 제공한다.
또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 상기 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 포함하는 사료첨가용 조성물을 제공한다.
상기 사료첨가용 조성물 내 페리틴 단백질의 혼합비율은 영양상태, 제공횟수, 제공량 등을 고려하여 설계될 수 있으며, 상기 페리틴 단백질은 사료 및 음용수 100중량부에 대하여 0.01 내지 5 중량부 첨가될 수 있으며, 바람직하게는, 0.01 내지 3중량부 첨가될 수 있으며, 더욱 바람직하게는, 0.05 내지 1.5 중량부 첨가될 수 있다.
또한, 상기 사료첨가용 조성물은 분말상, 액상, 현탁액의 형태로 제공될 수 있으며, 동물의 사료 및 음용수 섭취특성 및 환경과 섭취 시 페리틴 단백질의 유실을 최소화할 수 요인 등을 고려하여 제형을 선택할 수 있다.
구체적인 예로는, 음용수 및 액상의 사료에 배양액을 혼합하여 액상의 형태로 제공하거나, 분말상의 사료와 배양액을 동결건조시켜 분말상의 형태로 제공할 수 있다.
상기 사료첨가용 조성물은 한육우, 젖소, 돼지, 산란계, 육계, 오리의 사료첨가제로 사용되며, 바람직하게는, 산란계의 사료첨가제로 사용될 수 있다.
또한, 상기 사료첨가용 조성물을 동물용 사료첨가제가 아닌 철 공급이 요구되는 분야라면 한정되지 않고 적용될 수 있다. 구체적으로, 식물의 비료첨가제, 기능성식품, 의약제품 등에 적용될 수 있다.
상술한 바와 같이, 본 발명에 따른 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 의하면, 무척추동물인 흰이빨 참갯지렁이(Periserrula leucophryna)에서 얻어진 페리틴 유전자를 더 효율적으로 발현 및 분비할 수 있는 효과가 있다.
또한, 본 발명에 따른 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 의하면, 페리틴 함유 배양액은 사료첨가제로서 우수한 생물학적 활성을 가지며, 특히, 산란계에서 월등한 생물학적 활성을 갖는 효과가 있다.
또한, 본 발명에 따른 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법에 의하면, 사료분야 뿐만 아니라, 철 결핍 예방 및 치료용을 위한 식품 산업, 의약소재산업 등의 분야에서도 적용가능한 효과가 있다.
도 1은 흰이빨 참갯지렁이 페리틴 cDNA유전자 서열과 상기 서열로 유도된 아미노산 서열.
도 2는 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 제조메커니즘 및 개열지도.
도 3은 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 고초균 내에서 재조합벡터 (A)pRBASFer 와 (B) pRBASFer-ori에 의한 페리틴 단백질의 분비효율을 보여주는 SDS-PAGE 및 Western blot 분석결과.
도 4는 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 고초균 형질전환체를 배양하기 위한 배지의 (A)질소원과 (B)탄소원 변화에 따른 페리틴의 분비효율을 보여주는 SDS-PAGE 및 Western blot 분석결과.
도 5는 본 발명에 따른 페리틴 단백질 대량생산용 pRBASFer-ori 함유 고초균 형질전환체의 시간에 따른 페리딘 생산능을 보여주는 것으로, (A) 시간간격에 따른 분비된 페리틴 단백질과 세포성장변화를 보여주는 그래프, (B)는 SDS-PAGE 및 Western blot 분석결과.
도 6은 본 발명에 따른 페리틴 단백질 대량생산용 pRBASFer-ori 함유 고초균 형질전환체의 대량배양(50 L jar-fermenter)시시간에 따른 페리딘 생산능을 보여주는 것으로, (A) 시간간격에 따른 분비된 페리틴 단백질과 세포성장변화를 보여주는 그래프, (B)는 SDS-PAGE 및 Western blot 분석결과.
도 7은 본 발명에 따른 페리틴 단백질 대량생산방법으로 제조된 페리틴 단백질이 계란의 품질(난각색, 난중무게 및 Haugh unit(신선도))에 미치는 영향을 보여주는 것으로, (A)는 페리틴 단백질이 계란의 품질(난각색, 난중무게 및 Haugh unit(신선도))에 미치는 영향 및 6주간의 변화를 보여주는 그래프, 도 7(B)는 페리틴 단백질 처리된 난각의 6주간 색깔 변화, 도 7(C)는 ICP(inductively coupled plasma)를 이용하여 측정된 난각과 난황의 철함량 및 시간에 따른 철함량 변화를 보여주는 그래프.
도 8은 본 발명에 따른 페리틴 단백질 대량생산방법으로 제조된 페리틴 단백질을 laying hen에 급여하여 생산된 계란의 1~4주 (A)난각과 (B)난황의 색 변화를 보여주는 사진.
도 2는 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 제조메커니즘 및 개열지도.
도 3은 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 고초균 내에서 재조합벡터 (A)pRBASFer 와 (B) pRBASFer-ori에 의한 페리틴 단백질의 분비효율을 보여주는 SDS-PAGE 및 Western blot 분석결과.
도 4는 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 고초균 형질전환체를 배양하기 위한 배지의 (A)질소원과 (B)탄소원 변화에 따른 페리틴의 분비효율을 보여주는 SDS-PAGE 및 Western blot 분석결과.
도 5는 본 발명에 따른 페리틴 단백질 대량생산용 pRBASFer-ori 함유 고초균 형질전환체의 시간에 따른 페리딘 생산능을 보여주는 것으로, (A) 시간간격에 따른 분비된 페리틴 단백질과 세포성장변화를 보여주는 그래프, (B)는 SDS-PAGE 및 Western blot 분석결과.
도 6은 본 발명에 따른 페리틴 단백질 대량생산용 pRBASFer-ori 함유 고초균 형질전환체의 대량배양(50 L jar-fermenter)시시간에 따른 페리딘 생산능을 보여주는 것으로, (A) 시간간격에 따른 분비된 페리틴 단백질과 세포성장변화를 보여주는 그래프, (B)는 SDS-PAGE 및 Western blot 분석결과.
도 7은 본 발명에 따른 페리틴 단백질 대량생산방법으로 제조된 페리틴 단백질이 계란의 품질(난각색, 난중무게 및 Haugh unit(신선도))에 미치는 영향을 보여주는 것으로, (A)는 페리틴 단백질이 계란의 품질(난각색, 난중무게 및 Haugh unit(신선도))에 미치는 영향 및 6주간의 변화를 보여주는 그래프, 도 7(B)는 페리틴 단백질 처리된 난각의 6주간 색깔 변화, 도 7(C)는 ICP(inductively coupled plasma)를 이용하여 측정된 난각과 난황의 철함량 및 시간에 따른 철함량 변화를 보여주는 그래프.
도 8은 본 발명에 따른 페리틴 단백질 대량생산방법으로 제조된 페리틴 단백질을 laying hen에 급여하여 생산된 계란의 1~4주 (A)난각과 (B)난황의 색 변화를 보여주는 사진.
본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.
이하, 본 발명을 바람직한 일 실시예를 참조하여 다음에서 구체적으로 상세하게 설명한다. 단, 다음의 실시예는 본 발명을 구체적으로 예시하기 위한 것이며, 이것만으로 한정하는 것은 아니다.
1. 물질과 실험방법
1.1. 재료 및 시약
제한 효소와 T4 DNA ligase는 Elpisbio (Daejeon, Korea)으로부터, Taq polymerases는 Applied Biosystem (Foster, CA, USA), NEB (Beverly, MA, USA) 및 Bacto-agar과 tryptone, yeast extract은 Merck (Lutterworth, Germany)로부터 구입하였고, Oligonucleotides는 Bioneer (Daejeon, Korea)에서 합성하였다.
Immobilon-P PVDF 막은 Millipore (Bradford, MA,USA)로부터, pGEM-Teasy cloning kit과 Wizard Plus SV Minipreps DNA purification kit는 Promega (Madison, Wisconsin USA)에서 QIAEX agarose gel extraction kit는 Qiagen (Hilden, Germany), ECL western blotting system는 Amersham Pharmacia biotech (Piscataway, NJ, USA)에서, SDS, NaCl, RNaseA, ampicillin, kanamycin은 Sigma-Aldrich(St Louis, MO, USA), Polyclonal 항체는 Santa Cruz Biotechnology사 (Santa Cruz, CA USA)사로부터 구입하였다. 나머지 시약들은 분석용 수준급을 사용하였다.
1.2. 흰이빨 갯지렁이 cDNA 라이브러리의 설계
흰이빨 갯지렁이(강화도 갯벌)의 조직으로부터 total RNAs를 분리하기 위하여 TRIzol reagent(Sigma, USA)과 QIAGEN RNA 추출키트 및 guanidinium/phenol method (Chomczynski and Sacchi, 1987)을 이용하였다. 추출된 total RNAs로부터 올리고 dT(oligo-dT) 셀룰로스(Stratagene, USA) 크로마토그래피(Collaborative Biomedical Products, USA)을 사용하여 샘부르크(Sambrook et al., 1989) 등의 방법에 따라 정제하였다.
분리 및 정제된 RNA를 이용해 cDNA 라이브러리를 제조하였으며, cDNA 라이브러리 제조 방법은 제조사의 방침에 따라 수행하였다(Stratagene, USA).그 결과, 재조합 플라크(white color)의 생성 효율은 8 × 105 pfu/μg cDNA 로 확인되었으며, 1차 라이브러리는 불안정하기 때문에 E. coli XL1-Blue MRF' host strain에서 증폭되었으며, 증폭된 cDNA library의 타이터는 5 × 1010 pfu/ml로 측정되었다.
흰이빨 갯지렁이 페리틴을 발현하는 유전자를 제조된 cDNA 라이브러리에서 PCR로 증폭한 후에 클로닝하고 증폭된 페리틴 유전자는 대장균의 플라스미드인 pGEM T easy 플라스미드(Promega, USA)에 삽입하였다.
중합 연쇄반응 방법 후 1% 아가로즈 젤(TAE 완충용액) 전기영동으로 DNA 절편의 생산을 확인하고, 증폭된 DNA 절편을 겔로부터 분리하여, 이를 pGEM T easy 플라스미드에 서브클로닝하고 그의 염기서열을 결정한 뒤 그로부터 번역되는 아미노산 서열을 확인하였다.
도 1은 흰이빨 참갯지렁이 페리틴 cDNA유전자 서열과 상기 서열로 유도된 아미노산 서열을 보여주는 것으로, 클로닝된 페리틴은 서열번호 2으로 기재되는 염기서열을 가짐을 알 수 있었으며, 전체 DNA의 크기는 1109 bp로 개방해독틀(open reading frame)의 크기는 종료서열(TAG)를 포함하여 서열번호 3으로 기재되는 525 bp이다.
5'-UTR은 밑줄로 표시되어 있으며, 철 조절 단백질(iron regulatory protein,IRP)이 결합할 수 있도록 stem-loop 구조를 형성하는 서열번호 4의 iron response element(IRE) 서열(-110 to -81,ATCTTGGGACGTCAGTGTGCGTACGGAT)을 갖는다.
화살표는 신호펩타이드의 절단부위이며, degenerated primer의 합성에 사용된 아미노산 잔기는 굵은 글씨로 음영처리되었고, 메탈결합위치와 연관된 7개의 잔기는 각각 밑줄처리되었으며, 종결코돈은 * 표시되었다. 상기 뉴클레오타이드와 페리틴 DNA의 아미노산 서열은 각각 등록번호 DQ207752, ABA55730로 GenBank databases에 등록되었다.
1.3. Bacterial strains, plasmid 및 medium
Plasmid의 증식을 위한 균주로 E. coli XL1-Blue MRF (F', proAB, lacIqZ△M15, thi, recA, gyrA, relA, supE, Tn10)(Stratagene, La Jolla, CA) 사용하였고, pGEM-T Easy vector(Promega, Madison, USA)는 PCR 산물을 클로닝하기 위해, 외래 단백질 발현 및 분비를 위한 숙주세포로는 Bacillus subtilis 168 (wild type, GRAS and genome sequenced strain)균주로부터 gene conversion에 의한 변이 실험에 의해 구축된 Bacillus subtilis LKS87 (nprR2, nprE18, aprA3, amyE) 균주를 사용하였다.
기존 pRBASFer (Ampr, Neor, bler,repB, ColE1 ori, aprE-P, apr signal sequence, ferritin gene) 벡터에 replication origin을 추가적으로 첨가하여 ferritin 유전자를 함유하는 pRBASFer-ori 발현 및 분비 vector를 본 발명에서 제조하였다.
재조합 vector를 보유한 E. coli 형질전환체는 ampicillin (50 μg/mL)을 첨가 후 Luria-Bertani (LB) 배지에서 37℃, 16시간 200 rpm으로 배양하였고, 재조합벡터가 포함된 고초균 (Bacillus subtilis)은 kanamycin (50 μg/mL)를 첨가한 LB 배지를 37℃에서 전 배양 후, kanamycin (50 μg/mL)이 첨가된 PY 배지에서 1% 접종 후 30℃에 배양하였다.
1.4. 재조합 분비벡터 구축 및
Bacillus subtilis
형질전환
Replication origin을 추가적으로 도입하기 위하여 그 origin 서열 특이적으로 제작된 서열번호 5와 서열번호 6의 oligonucleotide 프라이머 세트 (Forward primer: 5'GGGACATGTTCTTTCCTGCGTTATCCCCTG3', Reverse primer: 5'CCCGATATCCTATTTAGAATATTGTTTAGT3') 를 사용하여 PCR (Techne, Vantaa, Finland)에 의해 DNA를 증폭하였다. Replication origin은 다음과 같은 조건으로 (95℃-5 min, 45℃-1 min, 72℃-10 min (1 cycle); 95℃-1 min, 45℃-30 sec, 72℃-1.5 min (29 cycles); 72℃-10 min (1 cycle) PCR을 수행하였으며 PCR 산물은 1% agarose gel에서 분획하고 DNA 단편을 회수한 후 (Qiaquick gel extraction kit, Hilden, Germany), pGEM-Teasy 벡터 (Promega, Madison, WI)에 클로닝하였다. 추가적인 replication origin을 갖는 재조합 벡터를 구성하기 위하여 pRBASFer 벡터를 MluI 효소 처리 후 filling 하고 PciI 효소로 절단하였으며, replication origin 유전자를 함유하는 T-pRBori 클론은 EcoRV 및 PciI으로 절단하여, 508 bp의 DNA 단편을 겔로부터 확보하였다.
얻어진 DNA 단편들은 ligation 한 후 E. coli XL-1 Blue MRF '로 형질전환하여 선별하였으며 제한효소 (EcoRV and PciI)로 처리하여 도입된 유전자를 확인하였고, 최종적으로 확인된 클론은 pRBASFer-ori (7.4 kb)로 명명하였다. 고초균에 형질전환은 SPMM-I (Spizizen's minimal medium)과 SPMM-II 배지를 사용하는 Sadaie and Kada(Sadaie, Y. and T. Kada (1983) Formation of competent Bacillus subtilis cells. J. Bacteriol. 153: 813-821.)방법에 의해 진행하였고, kanamycin (50 μg/mL)이 들어간 LB 고체배지에서 형질전환체를 선별하여 페리틴 단백질 발현 및 분비를 위하여 사용하였다.
1.5. 단백질 발현 분비 및 대량배양
Repliaction origin이 추가적으로 도입된 pRBASFer-ori 발현벡터를 함유하는 Bacillus subtilis LKS87의 형질전환체는 batch culture (500 mL baffled flask)에서 배지, 온도, 배양시간에 따라 페리틴 생산의 최적화를 시도하였고, 이때 얻어진 최적의 조건하에서 5 L jar fermenter (KoBiotech, Korea) 및 50 L fermenter를 이용하여 대량 배양하였다.
1.6. SDS-PAGE 및 western blot 분석
얻어진 배양액을 직접적으로 또는 에탄올 침전에 의해 농축하여 2x sample buffer (0.05 M Tris-HCl, pH 6.8, 0.1 M DTT, 2% SDS, 10% glycerol, and 0.1% bromophenol blue)에 현탁하여 100℃에서 10분 가열 후 12% SDS-PAGE (sodium-dodecyl sulfate polyacrylamide gel electrophoresis)에 의해 분획한 다음, BSA (bovine serum albumin)를 standard로 하여 Bradford protein assay kit (Bio-Rad, Hercules, CA, USA)를 사용하여 정량 하였다. 배양액 내의 단백질들을 SDS-PAGE에서 fractionation 후, Trans-Blot SD apparatus (Bio-Rad, Hercules,CA, USA)를 이용하여 SDS-PAGE에서 단백질들을 PVDF membrane으로 이동시킨 다음, TBST (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20)에 skim milk를 5% 농도로 첨가하여 4℃에서 overnight blocking 시켰다. 그 후, 1차 항체인 rabbit polyclonal anti-ferritin antibody (1:1,000 dilution, Santa Cruz Biotechnology, Dallas, Texas)으로 1시간동안 반응시킨 다음, 결합되지 않은 1차 항체는 TBST 용액으로 세척하여 제거한 다음 2차 항체인 horseradish peroxidaseconjugated anti-rabbit IgG secondary antibody (1:1000, Santa Cruz Biotechnology)으로 1시간동안 반응한 후, ECLTM Western blotting detection system (Amersham Pharmacia Biotech, USA)을 이용하여 X-ray 필름에 감광하였다. 그 blot 을 스캔하여 ChemiImager™ (Alpha Innotech Corporation, San Leandro, USA)로 단백질의 농도를 간접적으로 비교 측정하였다.
1.7. 산란계를 이용한 생물학적 활성 확인
pRBASFer-ori이 형질 전환된 고초균을 최적화된 배지에서 50 L fermenter를 이용하여 대량 생산 후, 연속 원심분리기를 사용하여 균을 제거하고 발효액을 회수하였다, 발현 분비된 ferritin을 SDS-PAGE에 의해 fractionation하여 western blot에 의해 확인하였고, 최종적으로 Bradford 방법(Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.)에 의해 정량 하였다. Ferritin을 포함하는 발효액을 적절한 농도 (10 μg/mL)로 희석 후 자동 급수 시설을 갖춘 산란계 농장 (대구대 농장)에서 음용수에 0.1%로 첨가하여 산란계 (ISA Brown, 80주령, 300수)에 6주 동안 취음 시킨 후 매주 무작위로 계란 60개를 선택하여 난각색, 난중, haugh unit (HU)을 대조군 그룹과 함께 정성 및 정량적으로 측정하여 비교 분석하였다.
1.8. 고주파 유도결합 플라즈마 방출 분광법 (ICP)을 통한 철 (ferric) 정량
수집한 난각과 난황은 대구대학교 중앙기기원에 의뢰하여 ICP (inductively coupled plasma)-OES system 기기를 사용하여 철분 함량을 측정하였다. 즉, 전처리 과정은 마이크로웨이브 (CEM Corporation, Charlotte, USA)를 이용하여 제조하였고, 즉 난각 0.5 g과 질산 10 mL을 첨가한 후, 열판에서 190℃로 20분 동안 가열하였다. 난각에 De-ionized water 50 mL을 넣고, OPTIMA 7300DV ICP-OES SYSTEM (Carnation, Washington, USA)을 사용하여 고주파 유도결합 플라즈마 방출 분광법 (ICP)을 이용하여 철분 함량을 분석하였다.
1.9. 육계에서 페리틴의 생물학적 활성
브로일러(8주~10주령)용 육계를 대상으로 페리틴의 생물학적 활성을 확인하기 위하여 약 1달간 급여 및 관찰하면서 생존율, 일당평균증체량, 사료효율, 생산지수 등을 확인하였다.
액상타입과 분말타입으로 페리틴을 공급하였을 때 생물학적 활성을 비교하였으며, 액상타입의 경우, 액상사료 1L당 5mg의 페리틴을 포함하는 페리틴 조성물을 음용수에 최종농도 0.1%가 되도록 공급하였다. 분말타입의 경우, 말분(Wheat sorts) 1kg당 5mg의 페리틴을 포함하는 페리틴 조성물을 메인사료 급여시 최종농도 0.1%가 되도록 공급하였다.
1.10. 돼지사육에서 페리틴의 생물학적 활성
돼지는 삼원교잡종(랜드레이스×요크셔×두록)의 이유자돈(weanling pig)를 대상으로 생물학적 활성을 확인하였다. 6주간 사육하였으며, 기초사료로는 옥수수-대두박을 공급하였으며, 물은 자유채식시켰다.
대량생산된 페리틴을 사료첨가제로 첨가하여 이유자돈의 성장능력 및 혈액성상에 미치는 영향을 확인하였다. 성장능력은 페리틴의 농도에 따른 일당 평균 증체량, 일당 평균사료섭취량 및 사료효율 등을 확인하여 측정하였다. 혈액성상은 자동혈액분석기(ADVID120, Bayer, USA)를 이용하여 WBC, RBC, lymphocyte 및 hemoglobin을 측정하였다.
2. RESULTS AND DISCUSSION
2.1. 추가적 replication origin을 포함하는 분비벡터 구축
Alkaline protease promoter (0.45 kb) 및 alkaline protease signal sequence (87 bp), 리보솜결합서열 (GGAGAGGG)을 갖는 pRBAS-Fer (6.9 kb) 벡터의 자체 replication origin을 추가로 도입하여 copy number를 증폭시키기 위하여 제한효소부위 (PciI 및 EcoRV)가 도입된 replication origin 특이적primer (Ori-F 및Ori-R)를 이용하여 pRBAS-Fer 벡터를 주형으로 PCR에 의해 0.5 kb DNA단편을 얻은 후, pGEM-Teasy 벡터에 클로닝하여 선별한 다음 DNA 염기서열 분석에 의해 도입된 replication origin 서열을 확인하고 T-pRBori (3.51 kb)로 명명하였다.
도 2는 본 발명에 따른 페리틴 단백질 대량생산용 재조합 벡터의 제조메커니즘 및 개열지도를 보여준다.
기존 벡터 pRBAS-Fer를 MluI으로 자른 후 Klenow 효소로 filling하고 다시 PciI으로 자른 다음 agarose gel에서 DNA 단편을 준비하였다. 또한 T-pRBori 벡터를 EcoRV와 PciI로 잘라 508 bp의 replication origin 단편을 준비한 다음, 상기 linearized vector와 ligation하여 대장균에 형질 전환시켜 얻은 형질전환체들로부터 DNA size 선별 및 염기서열 분석에 의해 replication origin이 tandem 배열로 도입된 재조합 분비벡터를 구성하였고 pRBASFer-ori (7.43 kb)로 명명하였다. 이와 같이 구축된 재조합 분비 벡터 pRBASFer-ori는 대장균에서 증폭하여 고초균 형질전환을 위하여 사용하였다.
2.2 고초균에서 단백질 발현 및 분비 최적화
재조합된 분비 벡터 pRBASFer-ori는 B. subtilis LKS87에 SPMM-I (Spizizen's minimal medium)과 SPMM-II 배지를 사용하는 Sadaie and Kada 방법으로 도입하였고, kanamycin(50 μg/mL)을 첨가한 LB 고체배지에서 형질전환체를 선별 후, plasmid를 분리하여 PCR에 의해 도입된 replication origin 을 다시 확인하였다. 도입된 ferritin 유전자는 mature form 157개의 아미노산에 대한 정보를 가지고 있으며, amylase 신호서열 연결부위에 도입된 HindIII 제한효소부위에서 유래된 AAG (Lys), CTT (Leu) 2개의 아미노산을 포함 159개의 ferritin (18 kDa) 단백질이 세포 외로 분비될 것으로 추정되었다. 그러나 2개의 아미노산이 첨가되어 페리틴 활성에 영향을 줄 수 있으므로 2 아미노산에 대한 coding 염기들을 제거하기 위하여 특이적 primer를 합성하여 PCR에 의해 2개의 codon을 제거하였고 (data not shown), 원래 mature form 페리틴이 amylase 신호서열 (29 아미노산)이 정확히 peptidase에 의해 processing 되어 제거된 후 분비되었다.
도 2는 고초균 내에서 재조합벡터 pRBASFer와 pRBASFer-ori 에 의한 페리틴 단백질의 분비효율을 보여주는 것으로, lane 1: MW marker, lane 2: pRBAS vector, lane 3: ferritin (positive control); lane 4-8, transformant 1-5이며, 화살표는 페리틴의 위치를 나타낸다.
재조합 pRBASFer 및 pRBASFer-ori (in this study)을 각각 B. subtilis LKS87에 도입하여 얻은 형질전환체들 (각각 5종) 에서 페리틴 분비효율을 비교하기 위하여, kanamycin (50 μg/mL)이 첨가된 10 mL LB 배지에서 활성 시킨 후, 500 mL baffled flask 내에 (100 mL working volume) PY 액상 배지를 사용하여 30℃에서 48 시간동안 배양하여 분비된 페리틴 양을 SDS-PAGE에서 densitometer로 비교 하였을 때, 기존 벡터, pRBASFer을 함유하는 고초균 형질전환체 (No1-5)에서는 페리틴이 총단백질의 ~10-11% 정도 분비되었고, pRBASFer-ori 함유 고초균 형질전환체 (No. 1-5)에서는 총단백질의 ~15-18% 까지 증가하여 페리틴 단백질의 분비 효율이 평균적으로 1.4-1.8배까지 증가한 것으로 나타났다(도 3에 도시). 이는 추가적인 replication origin 도입에 의한 효과로 보이며 copy number 증가에 의한 RNA 전사체 양의 증가에 따른 단백질양 증가라고 추정해 불 수 있다. 도 3(B)의 pRBASFer-ori 함유 고초균 형질전환체들중에서 페리틴 단백질 분비 효율이 가장 좋은 (전체단백질의 ~18%) transformant 5번 균주를 이용하여 질소원 및 탄소원 변화에 따른 페리틴 생산양을 조사하였다.
도 4는 고초균 형질전환체를 배양하기 위한 배지의 질소원과 탄소원 변화에 따른 페리틴의 분비효율을 보여주는 것으로, (A)는 질소원에 따른 분비효율을 보여주며, (B)는 탄소원에 따른 분비효율을 보여준다.
(A)에서 lane 1, MW marker; lane 2, ferritin (positive control); lane 3, soy peptone; lane 4, peptone (Merck); lane 5, potassium nitrate; lane 6, corn steep liquor; lane 7, defatted soybean meal; lane 8, soy protein 이고, (B)에서 lane 1, MW marker; lane 2, pRBAS vector only; lane 3, ferritin (positive control); lane 4, glucose; lane 5, glycerol; lane 6, barley; lane 7, starch; lane 8, molasses이다. pRBASFer-ori 함유 고초균 형질전환체는 500 mL baffled flask를 사용하여 PY medium 100 mL 하에서 배양되었다.
여러 질소원 (Soy peptone, Peptone, Potassium nitrate, Corn steep liquor, defatted soybean meal, soy protein isolate)들을 1-4% 농도로 기본배지에 첨가하여 48시간 배양한 후, 발효액을 이용하여 단백질을 분석하였을 때 soypeptone (2%)을 사용하였을 때 다른 질소원들에 비해 가장 높은 수준 (전체단백질의 ~20%)으로 분비되었고, Bacillus subtilis 168 (wild type)에 pRBASFer-ori를 도입한 형질전환체에서 페리틴을 분비했을 때 (data not shown) 와는 달리 배양시간이 길어져도 단백질 분해효소에 의한 페리틴 분해가 일어나지 않는 것으로 보여진다 (도 4(A)에 도시). 이는 사용한 B. subtilis LKS87 (nprR2, nprE18, aprA3, amyE) 균주의 경우 2 종류의 protease 유전자가 결여 되어 고초균 성장단계에서 휴지기에 도입하는 배양시간에도 다른 단백질 분해효소들의 활성화에 의해 외래단백질의 부분적인 분해를 유발하지 않는 것으로 사료된다. 또한 대량배양의 경우 질소원의 원료 가격을 고려할 때 현실적으로 높은 농도의 soypeptone을 사용 한다는 것은 단가에 큰 영향을 미치므로 기본적인 PY배지의 질소원 soypeptone을 2%로 고정하고, 탄소원 (glucose, glycerol, barley, starch, molasses)들을 각각 1-2%로 첨가하여 탄소원에 의한 페리틴 분비효과를 측정한 결과, 도 4(B)에서 보는 바와 같이 2% glucose (전체단백질의 21%)와 barley (전체단백질의 21.5%) 에서 가장 분비 효율이 좋은 것으로 나타났다. Batch culture에서 확립된 배양 조건이 대량 생산을 위한 조건과 정확히 같을 수는 없지만 얻어진 결과를 토대로 적정 온도 (30℃), 최적화된 배지 (PY 배지+ 2% soy peptone and 2% barley)에서 5 L jar-fermenter 및 50 L 발효조에서 배양시간에 따른 세포밀도 및 페리틴 분비량을 측정하였다.
2.3. 대량배양 및 단백질 분석
고초균 형질전환체 (pRBASFer-ori 함유)를 최적화된 배지에서 5 L jar fermenter를 사용하여 30℃, 200 rpm 및 1 vvm 조건하에서 72시간동안 배양하여 세포밀도 및 페리틴 분비량을 측정하였다.
도 5는 5 L jar-fermenter에서 pRBASFer-ori 함유 고초균 형질전환체의 시간에 따른 페리딘 생산능을 보여주는 것으로, 도 5(A)는 시간간격에 따른 분비된 페리틴 단백질과 세포성장변화를 보여주며, 도 5(B)는 SDS-PAGE 및 Western blot 분석결과를 보여준다.
(B)에서 lane 1, MW marker; lane 2, ferritin (positive control); lane 3, pRBASFer-ori(6 h); lane 4, pRBASFer-ori (12 h); lane 5, pRBASFer-ori (24 h); lane 6, pRBASFer-ori (36 h); lane 7, pRBASFer-ori (48 h); lane 8, pRBASFer-ori (60 h); lane 9, pRBASFer-ori (72 h)이다.
PY 배지에 Soy peptone (2%)와 Barley (2%)가 첨가되었고, 30℃에서 72시간 배양되었다. 샘플은 12시간마다 채취되었고, 분비된 페리틴 단백질 함량을 분석하였다.
도 5(A)에서 보듯이 세포밀도는 60시간 째에 도달할 때 가장 높은 최대치 (OD600 = 8.61)에 도달하였고, 배양시간에 따른 페리틴 단백질의 분비량은 12시간째 (28.8 μg/mL)부터 증가하기 시작하여 60시간 배양시간에서 165.4 μg/mL로 가장 많이 분비된 것으로 나타났다. 따라서 페리틴 생산 및 분비는 세포밀도와 비례하여 증가하는 것으로 나타났고 단백질분해효소에 의한 외래단백질 분해현상은 보이지 않았다. 이와 같은 결과를 바탕으로 하여 산업적인 용도로 활용을 하기 위하여 50 L fermenter에서 대량 배양을 시도하였다. 대량배양 50 L (working volume 30 L)는 5 L jar fermenter에서와 마찬가지로 pRBASFer-ori를 함유하는 B.subtilis LKS87를 최적화된 배지 (PY + 2% soypeptone + 2 barley)에 1%로 접종하여 30℃, 150 rpm 및 1 vvm 조건하에서 72 시간동안 배양하여 세포밀도 및 페리틴 분비량을 측정하였다.
도 6은 50 L jar-fermenter에서 pRBASFer-ori 함유 고초균 형질전환체의 시간에 따른 페리딘 생산능을 보여주는 것으로, 도 6(A) 시간간격에 따른 분비된 페리틴 단백질과 세포성장변화를 보여주며, 도 6(B)는 SDS-PAGE 및 Western blot 분석결과를 보여준다.
(B)에서 lane 1, MW marker; lane 2, ferritin (positive control); lane 3, pRBASFer-ori(6 h); lane 4, pRBASFer-ori (12 h); lane 5, pRBASFer-ori (24 h); lane 6, pRBASFer-ori (36 h); lane 7, pRBASFer-ori (48 h); lane 8, pRBASFer-ori (60 h); lane 9, pRBASFer-ori (72 h)이다.
PY 배지에 Soy peptone (2%)와 Barley (2%)가 첨가되었고, 30℃에서 72시간 배양되었다. 샘플은 12시간마다 채취되었고, 분비된 페리틴 단백질 함량을 분석하였다.
도 6(A)에서 보듯이 세포밀도는 배양시간에 따라 증가하여 60시간에 도달했을 때 최대치 (OD600 = 6.61)에 도달하였고, 페리틴 단백질 분비량도 12시간째 (12.8 μg/mL)부터 증가하기 시작하여 60 시간 배양시간에서 102.4 μg/mL 로 가장 많이 분비된 것으로 나타났다. 같은 시간 (60시간)대에 5 L jar fermenter에서 (165.4 μg/mL) 보다는 약 38% 정도는 감소한 것으로 보이지만 이는 교반속도 차이에 의한 용존 산소공급의 감소에 기인하는 것으로 예상되었고, 그러나 1회 발효에 의한 전체 양적인 면에서는 축종에 따른 투여 적정농도 (dose)에 맞도록 처리할 수 있는 충분한 페리틴 단백질을 확보할 수 있었다. 발효가 끝난 후 연속 원심분리기에 의해 균체를 제거하고 발효액을 회수하여 본 사료 및 음용수에 0.1% 정도로 투여할 수 있도록 액상 형태의 사료첨가제를 제조하였으며 (6 μg/mL), 산란계에서 계란의 품질에 미치는 효과를 측정하여 페리틴 단백질의 생물학적 활성 (철분강화제)을 조사하였다. 또한 50 L 발효조를 이용한 페리틴 생산에서도 5 L jar fermenter에서와 같이 단백질분해효소에 의한 페리틴 분해는 관찰되지 않았다.
2.4. 종래 두토막눈썹 참갯지렁이 유래 철 결합 활성 폴리펩타이드를 포함하는 재조합 페리틴 단백질과의 페리틴 활성 비교
또한, 본 발명자의 특허등록특허 제10-1253505호(등록일 2013.04.05.)의 두토막눈썹 참갯지렁이 유래 철 결합 활성 폴리펩타이드를 포함하는 페리틴(이하, 비교예 1 이라 함.)과 본 발명에 따른 흰이빨 참갯지렁이 유래 페리틴과 페리틴 활성 및 대량생산 가능성을 비교하기 위하여, 특허등록특허 제10-1253505호(등록일 2013.04.05.)의 공고문헌의 실시예 6에 기재된 형질전환벡터 pHPS-Fer를 도입한 형질 전환체를 상기 2.3.의 대량배양 조건과 동일한 조건 하에서 대량배양한 후 세포밀도 및 페리틴 분비량을 분석하였다.
대량배양 50 L (working volume 30 L)jar-fermenter에 배지 (PY + 2% soypeptone + 2 barley) 1%로 접종하여 30℃, 150 rpm 및 1 vvm 조건하에서 72 시간동안 배양하였다.
하기의 표 1은 특허등록특허 제10-1253505호(등록일 2013.04.05.)의 두토막눈썹 참갯지렁이 유래 철 결합 활성 폴리펩타이드를 포함하는 페리틴(비교예 1)의 페리틴 분비량과 세포밀도를 보여준다.
6h | 12h | 24h | 36h | 48h | 60h | 72h | |
Soluble ferritin (ug/mL) |
0 (±0.0) |
6.7 (±0.3) |
12.14 (±0.7) |
50.76 (±2.5) |
65.27 (±3.2) |
70.82 (±3.6) |
67.49 (±3.5) |
OD 600 | 0.07 (±0.0) |
1.14 (±0.3) |
2.42 (±0.3) |
3.48 (±0.3) |
4.79 (±0.3) |
5.14 (±0.3) |
5.07 (±0.3) |
그 결과, 비교예 1 는 본 발명에 따른 페리틴 단백질과 마찬가지로 페리틴 단백질 분비량이 배양 12시간 이후부터 증가하기 시작하여 60시간에서 가장 많이 분비되었으며, 페리틴 단백질 분비량 및 세포밀도가 60시간에서 각각 70.82μg/mL와 5.14 를 나타내었다.
반면, 본 발명에 따른 고초균 형질전환체를 이용한 경우 페리틴 단백질 분비량 및 세포밀도가 각각 102.41μg/mL와 6.61로 비교예 1에 비해 약 31%, 약 28%가 높은 값을 나타내었으며, 이를 통해 갯벌생명체라도 종에 따라 페리틴의 발현 및 분비특성이 상이하며, 특히, 본 발명은 흰이빨 참갯지렁이(Periserrula leucophryna)에서 얻어진 페리틴 유전자를 더 효율적으로 발현 및 분비를 위하여 promoter, Shine-dalgarno(SD), operator, 신호서열 및 replication origin 등의 주요 조절인자들을 포함하는 발현분비벡터로 추가적인 replication origin을 도입하여, 즉 고초균의 copy number를 증가시켜 발현 및 분비를 최적화한 것에 기인한 것으로 판단하였다.
2.5. 산란계에서 페리틴의 생물학적 활성
일반적으로 사용하는 철분 사료는 인산 칼슘, 황산 제1철과 같은 무기물 첨가 사료이지만, 철의 소화 흡수에서는 무기태철보다 유기태 철이 생체 이용성이 크다고 보고 되어있다. 따라서 유기철을 보유한 페리틴 액상 형태의 사료첨가제 (6 μg/mL)를 산란계 (ISA Brown, 80주령, 300수) 농장의 자동 급수 시설을 이용하여 음용수의 0.1%에 해당하는 양을 6주 동안 자유롭게 취음 시킨 후 무작위로 매주 계란 60개를 취득하여 난각색, 난중 무게, haugh unit (신선도), 난각 및 난중의 철분함량 등을 분석하였다. 사육기간 동안 음용수의 양을 측정한 결과, 하루 평균 산란계 한 마리가 취음하는 음용수가 약 400 mL, 즉 6주 동안 300마리에 투여한 음용수가 약 5,040 L 사용되었으며, 이에 필요한 ferritin 단백질 (6 μg/mL) 은 5.04 L (30.3 mg 페리틴) 정도 필요한 것으로 측정되었다.
하기의 표 2는 산란계에서 페리틴의 생물학적 활성을 보여준다.
도 7은 대량생산된 페리틴 단백질이 계란의 품질(난각색, 난중무게 및 Haugh unit(신선도))에 미치는 영향을 보여주는 것으로, 도 7(A)는 페리틴 단백질이 계란의 품질(난각색, 난중무게 및 Haugh unit(신선도))에 미치는 영향 및 6주간의 변화를 보여주는 그래프이며, 도 7(B)는 페리틴 단백질 처리된 난각의 6주간 색깔 변화를 보여주며, 도 7(C)는 ICP(inductively coupled plasma)를 이용하여 측정된 난각과 난황의 철함량 및 시간에 따른 철함량 변화를 보여주는 그래프이다.
도 8은 대조군과 1~4주 (A)난각과 (B)난황의 색 변화를 보여준다. 시간의 흐름에 따라 난각색이 밝은 살색에서 갈색으로 변화가 뚜렷하게 관찰되었으며, 난황의 색깔의 경우에도 미미하지만 더욱 진한 주황빛을 띠었다.
페리틴을 함유한 음용수를 6주 동안 투여한 후 난중의 무게를 측정한 결과, 도 7(A)에서 보는 바와 같이 매주 증가하는 추세를 보였고, 6주 후 난중 (66.46 g)의 무게는 대조군 난중(57.82 g) 보다 15% 정도 증가하는 것으로 나타났다. 난각색은 색좌표 CIE (L*a*b*)를 이용하여 분석한 결과, 페리틴 투여 전 대조군 난각색은 연한 갈색 (73.23, 9.55, 25.72)이였으며, 6주 후 난각색은 진한 갈색 (65.23, 18.39, 32)으로 약 17% 정도 진한 갈색으로 변하였다 (표 2 및 도6(B)). Haugh unit (HU, 신선도)은 표 2에 따르면 대조군 (64.44) 보다 6주간 투여한 계란 (70.52)이 8% 증가한 것으로 나타났다. 또한 난각 및 난황에 함유되어 있는 철분을 ICP (inductively coupled plasma)을 이용하여 분석한 결과, 도 7(C)에서 보는 바와 같이 대조군 보다 6주 동안 투여한 난각 및 난황의 철분 함유량이 각각 15.7배, 24배 높게 나타났다. 전체적으로 볼 때 사육농장의 환경조건에 따라 약간의 차이는 있지만 페리틴 액상제제의 첨가는 계란의 품질, 즉 난중의 무게, 난각 및 난황색, 철분 함유량 및 신선도에 큰 영향을 미치는 것으로 보여진다.
2.6. 육계에서 페리틴의 생물학적 활성
브로일러(8주~10주령)용 육계를 대상으로 페리틴의 생물학적 활성을 확인하였다. 하기의 표 3은 액상타입으로 페리틴을 공급하였을 때 생물학적 활성을 보여준다.
액상사료 1L당 5mg의 페리틴을 포함하는 페리틴 조성물을 음용수에 최종농도 0.1%가 되도록 공급하였다.
하기의 표 4는 분말타입으로 페리틴을 공급하였을 때 생물학적 활성을 보여준다.
말분(Wheat sorts) 1kg당 5mg의 페리틴을 포함하는 페리틴 조성물을 메인사료 급여시 최종농도 0.1%가 되도록 공급하였다.
여기서, ADG(Average daily gain)는 일당평균증체량, ABW(Average body weight)는 평균체중, Culturing Period는 급여기간, FE(Feed efficiency)은 사료효율, TFI (Total feed intake)는 총사료 섭취량, TBW (Total body weight)는 총체중 및 PI(Production index)는 생산지수를 나타낸다. ADG(Average daily gain), FE(Feed efficiency) 및 PI(Production index)은 아래와 같이 계산되었다.
ADG (Average daily gain) : ABW (Average body weight)/Culturing Period
FE (Feed efficiency) : TFI (Total feed intake)/ TBW (Total body weight)
PI (Production index) : (ABW × Rate of Survival)/(FE × Culturing Period) × 100
그 결과, 무처리 그룹에 비하여 페리틴 조성물을 공급한 그룹에서 생존율, 생산지수가 높게 측정되었으며, 생산지수의 경우에 액상(17.63%)보다 분말상(22.68%)의 형태로 공급하는 것이 더욱 우수하게 측정되었다.
2.7. 돼지사육에서 페리틴의 생물학적 활성
돼지는 삼원교잡종(랜드레이스 × 요크셔 × 두록)의 이유자돈(weanling pig)를 대상으로 생물학적 활성을 확인하였다. 6주간 사육하였으며, 기초사료로는 옥수수-대두박을 공급하였으며, 물은 자유채식시켰다.
하기의 표 5는 대량생산된 페리틴 단백질의 이유자돈의 성장능력에 미치는 영향을 보여준다.
체중은 초기, 2주, 6주에 측정되었으며, 여기서, Average daily gain(ADG)는 일당 평균 증체량, Average daily feed intake(ADFI)는 일당 평균사료섭취량, Growth/Feed(G/F)는 사료효율이다.
여기서, NC(Normal Control)는 기초사료(Basal diet)공급그룹; T1은 NC + 0.1% Ferritin low concentration <5.0 mg/kg; T2는 NC + 0.1% Ferritin 10 mg/kg; T3는 NC + 0.1% Ferritin 15 mg/kg 이다.
그 결과, 페리틴 단백질 공급함량 및 농도의 증가에 따라 일당 평균 증체량 및 성장률에서 증가가 확인되었다.
하기의 표 6은 대량생산된 페리틴 단백질의 이유자돈의 혈액성상에 미치는 영향을 보여준다.
자동혈액분석기(ADVID120, Bayer, USA)를 이용하여 WBC, RBC, lymphocyte 및 hemoglobin을 측정하였다. 혈청생화학자동분석기(Hitachi 747, Japan)를 이용하여 혈청내 Fe 및 TIBC(total iron binding capacity, 철결합능)을 측정하였다.
여기서, NC(Normal Control)는 기초사료(Basal diet)공급그룹; T1은 NC + 0.1% Ferritin low concentration <5.0 mg/kg; T2는 NC + 0.1% Ferritin 10 mg/kg; T3는 NC + 0.1% Ferritin 15 mg/kg 이다.
그 결과, 공급된 페리틴 단백질 공급함량 및 농도에 따라 철 함량의 증가가확인되었다. 급여 6주차에 헤모글로빈 수치는 T2구 T3구에서 6g/dL로 가장 높게 측정되었고, 철결합능은 농도의 증가에 따라 증가되는 양상을 보였다. 급여 2주차에서는 페리틴 단백질 농도가 높은 T3구에서 적혈구, 백혈구 수치가 높게 나타났으나 급여 6주차에서는 백혈구 수치는 기초사료 공급그룹에서 가장 높게 측정되었고, 적혈구 수치는 T2구에서 가장 높게 측정되어 농도 증가에 따른 뚜렷한 수치변화를 확인하기 어려웠다. 림프구의 수치는 급여 2주차, 6주차 모두 기초사료 공급그룹에서 우수하게 나타났다.
페리틴 단백질의 사료 첨가제로서 효과를 확인하기 위하여 이유자돈, 산란계, 육계에 적용한 결과, 육계의 경우에는 생존률 및 생산지수에서 증가가 확인되었고, 이유자돈의 경우에는 평균일당증체량 및 Growth/Feed에서 증가가 확인되었으며, 산란계에서는 난각색의 뚜렷한 갈색화, 난중 무게 및 신선도의 증가가 확인되었다. 특히, 페리틴 단백질 급여한 산란계에서 난각 및 난황의 철분 함유량이 각각 15.7배, 24배로 나타나 뚜렷한 효과를 보였다.
본 발명에서는 흰이빨 참갯지렁이 유래 철분 단백질, 페리틴을 산업적으로 이용하기 위해 고초균에서 분비효율을 최적화하여 대량배양 하였고, 균을 제거한 배양액을 사료첨가제로 활용하기 위한 시스템을 구축하였다. 기존에 구축된 pRBASFer 분비벡터에 copy 수 증가를 위해 replication 부위를 병렬 방식으로 추가 후, 구성된 pRBASFer-ori 벡터를 B. subtilis LKS87에 도입한 다음, 페리틴 단백질 생산을 최적화하여 생산 수율이 1.4 배 정도 증가하였다.
제조된 페리틴 단백질의 생물학적 활성을 검증하기 위하여 산란계, 육계, 이유자돈에 적용하였다. 그 결과, 육계의 경우에는 생존률 및 생산지수에서 증가가 확인되었고, 이유자돈의 경우에는 평균일당증체량 및 Growth/Feed에서 증가가 확인되었다.
산란계에서 페리틴의 생물학적 활성을 검증하기 위해 액상형태로 제형 후 음용수에 첨가한 다음, 산란계의 계란 품질에 주요 지표가 되는 난각색, 신선도, 난각 및 난황 내 철분함량을 측정한 결과 모든 수치가 증가하였다. 특히 철 함유량 측정 시 난각에서는 대조군에 비해 11 ~ 15.7 배, 난황에서는 8.5 ~ 24 배까지 증가한 것으로 나타났다. 따라서 페리틴 함유 발효액은 사료첨가제로서 충분한 생물학적 활성을 가지므로 사료 분야에서 경쟁력을 가질 수 있을 것이라 전망되며, 철 결핍 예방 및 치료용을 위한 식품 산업, 의약소재산업 등의 분야에서도 유용하게 사용될 것이라 예상된다.
이상과 같이 본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 설명하였지만 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.
<110> Turtlebio Co., Ltd
<120> Recombinant Vector for Mass Production of Ferritin Protein and
Mass Production Method of Ferritin Protein using the Recombinant
Vector
<130> PX20-132
<160> 6
<170> KoPatentIn 3.0
<210> 1
<211> 174
<212> PRT
<213> Unknown
<220>
<223> Ferritin of Periserrula leucophryna
<400> 1
Met Ala Thr Ser Arg Gln Thr Met Pro Arg Gln Asn Tyr His Glu Glu
1 5 10 15
Cys Glu Ala Gly Ile Asn Lys Gln Ile Asn Leu Glu Leu Tyr Ala Ser
20 25 30
Tyr Val Tyr Gln Ser Met Ala Trp Tyr Phe Asn Arg Asp Asp Val Ala
35 40 45
Leu Pro Gly Phe His His Phe Phe Lys Lys Ala Ser Glu Glu Glu Arg
50 55 60
Glu His Ala Glu Lys Phe Met Lys Tyr Gln Asn Met Arg Gly Gly Arg
65 70 75 80
Ile Val Leu Gln Asp Ile Lys Lys Pro Glu Arg Asp Glu Trp Gly Thr
85 90 95
Gly Leu Glu Ala Met Gln Ala Ala His Ala Leu Glu Lys His Val Asn
100 105 110
Gln Ser Leu Leu Asp Leu His Lys Leu Ala Asp Gly His Asp Asp Gly
115 120 125
Gln Leu Thr Asp Phe Leu Glu Gly Glu Tyr Leu Lys Glu Gln Val Glu
130 135 140
Ala Ile Lys Glu Ile Ser Asp His Ile Thr Gln Leu Lys Arg Val Gly
145 150 155 160
Pro Gly Leu Gly Glu Tyr Met Tyr Asp Lys Glu Leu Lys Ser
165 170
<210> 2
<211> 1111
<212> DNA
<213> Unknown
<220>
<223> Ferritin of Periserrula leucophryna
<400> 2
aaaactttga tatcgactgt atcttgggac gtcagtgtgc gtacggatcg gcggtatctc 60
ttcttcaaaa catcctaacc atttctattc aacgtcgtta agtcgagttc aataggtgcg 120
aactaaagat ggccacatcc agacaaacca tgccccgcca gaactaccat gaggagtgcg 180
aagctggaat caacaaacag atcaatctcg aactctacgc cagctatgtt taccaatcta 240
tggcatggta cttcaacagg gatgatgttg ccctcccagg cttccatcat ttcttcaaga 300
aggcttctga ggaagaacgc gaacatgctg agaagttcat gaagtaccag aacatgaggg 360
gtggtcgtat cgttctgcag gacatcaaga agccggagag ggatgagtgg ggaactggat 420
tggaggccat gcaagcggcc catgcactgg agaagcatgt caaccagtcc ctgcttgatc 480
ttcacaagtt ggctgatggc cacgatgacg gccagctgac tgacttcctg gagggcgagt 540
acctcaagga acaagtagag gcaatcaagg agatcagcga ccacatcacc cagctgaaac 600
gtgtcggtcc cggcctggga gagtacatgt acgacaagga actcaagagc tagatgacct 660
acctataagg tcaagagcct caggccgtca ccgagacgcc aagcatagac ccacaatact 720
ctcgctgcag tcttatctcc ttagcctacc cctgtatgaa tcaacatctt tgtttgctat 780
agaatagtca tcagtaacaa cattctctta atatctatga tttctgctta gtgtggttca 840
agtttaatac ttcttaaaag ttacacatgg cacggcatgt gaagataatg gcatctgtag 900
tttcacatat tgcttctgaa ctgtaccata gtcaggaaac ttaatataac attcctaatg 960
tcaaatccag gtacatttat caaatttgtt tcaatcttgt gtaacatttg aaactgccct 1020
ggtggtagaa gtttgaaaag aaaggccttg gtattgttca gttgtgttga atagatgcct 1080
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1111
<210> 3
<211> 525
<212> DNA
<213> Unknown
<220>
<223> coding nucleotide, Ferritin of Periserrula leucophryna
<400> 3
atggccacat ccagacaaac catgccccgc cagaactacc atgaggagtg cgaagctgga 60
atcaacaaac agatcaatct cgaactctac gccagctatg tttaccaatc tatggcatgg 120
tacttcaaca gggatgatgt tgccctccca ggcttccatc atttcttcaa gaaggcttct 180
gaggaagaac gcgaacatgc tgagaagttc atgaagtacc agaacatgag gggtggtcgt 240
atcgttctgc aggacatcaa gaagccggag agggatgagt ggggaactgg attggaggcc 300
atgcaagcgg cccatgcact ggagaagcat gtcaaccagt ccctgcttga tcttcacaag 360
ttggctgatg gccacgatga cggccagctg actgacttcc tggagggcga gtacctcaag 420
gaacaagtag aggcaatcaa ggagatcagc gaccacatca cccagctgaa acgtgtcggt 480
cccggcctgg gagagtacat gtacgacaag gaactcaaga gctag 525
<210> 4
<211> 28
<212> DNA
<213> Unknown
<220>
<223> iron responsive element (IRE)
<400> 4
atcttgggac gtcagtgtgc gtacggat 28
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> forward primer
<400> 5
gggacatgtt ctttcctgcg ttatcccctg 30
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> reverse primer
<400> 6
cccgatatcc tatttagaat attgtttagt 30
Claims (6)
- 삭제
- 삭제
- 서열번호 1의 아미노산 서열로 표현되는 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 코딩하는 유전자를 포함하는 페리틴 단백질 대량생산용 재조합 벡터를 이용하여 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 대량생산하는 방법:
1) 흰이빨 참갯지렁이의 페리틴 유전자를 포함하는 벡터인 pRBASFer 벡터를 주형으로 PCR을 수행하여 수득된 DNA 단편을 T벡터에 클로닝하는 단계;
2) 상기 DNA 단편이 클로닝된 T벡터에서 DNA 단편을 수득하는 단계;
3) 상기 pRBASFer 벡터를 제한효소로 잘라 Klenow 효소로 채우고 다시 제한효소로 자른 후 상기 2단계에서 수득된 DNA 단편을 라이게이션함으로써 복제원점이 tandem 배열로 도입된 재조합 분비벡터를 준비하는 단계;
4) 상기 재조합 벡터를 도입한 고초균 형질전환체를 배지에서 배양하는 단계를 포함하며,
상기 1) 단계는
상기 pRBASFer 벡터에 제한효소 부위가 도입된 복제원점 특이적 서열번호 5의 정방향 프라이머와 서열번호 6의 역방향 프라이머로 PCR을 수행하여 DNA 단편을 수득하며,
상기 4) 단계는
배지에 질소원으로 soypeptone 1 내지 4%(w/v) 탄소원으로 barley 1 내지 3%(w/v)를 첨가하고, 배양온도 28 내지 35 ℃, 교반속도 150 내지 250 rpm, 공기주입량 0.5 내지 2vvm 하에서 36 내지 96시간 상기 재조합 벡터를 도입한 고초균 형질전환체를 배양하는 것을 특징으로 함.
- 삭제
- 삭제
- 제 3항의 흰이빨 참갯지렁이(Periserrula leucophryna)유래 페리틴 단백질을 대량생산하는 방법에 의해 생산된 페리틴 단백질을 포함하는 사료첨가용 조성물에 있어서,
상기 사료첨가용 조성물은 산란계 사료첨가제이며,
상기 페리틴 단백질은 사료 및 음용수 100중량부에 대하여 0.01 내지 5중량부 첨가되는 것을 특징으로 하는
페리틴 단백질을 포함하는 사료첨가용 조성물.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200107888A KR102346499B1 (ko) | 2020-08-26 | 2020-08-26 | 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200107888A KR102346499B1 (ko) | 2020-08-26 | 2020-08-26 | 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102346499B1 true KR102346499B1 (ko) | 2022-01-03 |
Family
ID=79348171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200107888A KR102346499B1 (ko) | 2020-08-26 | 2020-08-26 | 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102346499B1 (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101029765B1 (ko) | 2008-06-12 | 2011-04-19 | 서울대학교병원 | 페리틴 유전자를 포함하는 렌티바이러스 벡터 및 그의 용도 |
KR101253505B1 (ko) | 2010-12-16 | 2013-04-11 | 주식회사 고려비엔피 | 철 결합 활성을 갖는 신규한 페리틴 및 이를 암호화하는 유전자 |
KR101811050B1 (ko) | 2015-09-02 | 2017-12-21 | 경북대학교 산학협력단 | 항염증성 폴리펩티드와 페리틴 모노머 단편이 접합된 융합폴리펩티드 및 이를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 약학적 조성물 |
-
2020
- 2020-08-26 KR KR1020200107888A patent/KR102346499B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101029765B1 (ko) | 2008-06-12 | 2011-04-19 | 서울대학교병원 | 페리틴 유전자를 포함하는 렌티바이러스 벡터 및 그의 용도 |
KR101253505B1 (ko) | 2010-12-16 | 2013-04-11 | 주식회사 고려비엔피 | 철 결합 활성을 갖는 신규한 페리틴 및 이를 암호화하는 유전자 |
KR101811050B1 (ko) | 2015-09-02 | 2017-12-21 | 경북대학교 산학협력단 | 항염증성 폴리펩티드와 페리틴 모노머 단편이 접합된 융합폴리펩티드 및 이를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 약학적 조성물 |
Non-Patent Citations (1)
Title |
---|
Ferritin(Periserrula leucophryna), GenBank accession number #ABA55730.1(2006. 3. 15. 공개)* * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI262083B (en) | Microbially-expressed thermotolerant phytase for animal feed | |
CA1338981C (en) | Biologically active proteins and a method for their production | |
ZA200601544B (en) | Recominant production of antimicrobial agents | |
JPS62275695A (ja) | 成熟型ヒト血清アルブミンの製造方法 | |
KR20210149775A (ko) | 동물 사료 조성물에서의 산화환원 효소 | |
CN111004317B (zh) | 一种犬重组干扰素α7及其制备方法与应用 | |
CN114181321B (zh) | 花鲈fgf6a、fgf6b以及fgf18重组蛋白及其制备方法和应用 | |
CN112851792A (zh) | 一种草鱼TNF-α重组蛋白的制备方法及其应用 | |
CN101356191B (zh) | 用于水生生物培养的神经肽 | |
KR102346499B1 (ko) | 페리틴 단백질 대량생산을 위한 재조합 벡터 및 이를 이용한 페리틴 단백질의 대량생산방법 | |
KR102187479B1 (ko) | 돌돔 유래 pgrp-sc2 단백질 및 이의 용도 | |
CN108752431B (zh) | 杂合抗菌肽Mel-MytB及其应用 | |
US20240200116A1 (en) | Chacterization of biological activity of ferritin protein by mass production using the recombinant vector | |
KR20170135910A (ko) | 동물 사료 조성물 및 사용 방법 | |
EP0645454A2 (en) | Chimeric somatostatin containing protein and coding DNA, immunogenic compositions and method for increasing farm animal productivity | |
KR101536963B1 (ko) | 식물에서 tev 프로테아제를 대량생산하는 방법 및 상기 방법에 의해 제조된 tev 프로테아제 | |
CN101260391A (zh) | 耐热型植酸酶基因及其应用 | |
CN116056587A (zh) | 一种作为改善生长表现和免疫反应的饲料补充物的重组抗微生物胜肽 | |
CN108752459A (zh) | 半滑舌鳎igf-i蛋白及其体外表达制备方法与应用 | |
TWI414244B (zh) | 具有胰脂肪酶活性的重組型多肽暨其核酸編碼序列以及它們的生成與應用 | |
CA2446398A1 (en) | Nucleic acid and protein sequences of bovine epidermal growth factor | |
CN108794645A (zh) | 一种由牛白蛋白、牛干扰素γ和牛干扰素α组成的融合蛋白及其制备方法 | |
CN110317821A (zh) | 一种融合蛋白thg及其应用 | |
Ma et al. | Cloning and expression of swine myostatin gene and its application in animal immunization trial | |
CN108794644A (zh) | 一种由牛白细胞介素2、牛干扰素γ和牛干扰素α组成的融合蛋白及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant |