KR102331570B1 - 반도체 소자 및 반도체 소자 패키지 - Google Patents

반도체 소자 및 반도체 소자 패키지 Download PDF

Info

Publication number
KR102331570B1
KR102331570B1 KR1020170029302A KR20170029302A KR102331570B1 KR 102331570 B1 KR102331570 B1 KR 102331570B1 KR 1020170029302 A KR1020170029302 A KR 1020170029302A KR 20170029302 A KR20170029302 A KR 20170029302A KR 102331570 B1 KR102331570 B1 KR 102331570B1
Authority
KR
South Korea
Prior art keywords
bonding pad
semiconductor device
electrode
disposed
layer
Prior art date
Application number
KR1020170029302A
Other languages
English (en)
Other versions
KR20180102763A (ko
Inventor
이창형
최병연
황성민
Original Assignee
쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 filed Critical 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority to KR1020170029302A priority Critical patent/KR102331570B1/ko
Priority to PCT/KR2018/000839 priority patent/WO2018164371A1/ko
Priority to US16/492,069 priority patent/US11233176B2/en
Publication of KR20180102763A publication Critical patent/KR20180102763A/ko
Application granted granted Critical
Publication of KR102331570B1 publication Critical patent/KR102331570B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예는 반도체 소자 및 반도체 소자 제조방법, 반도체 소자 패키지에 관한 것이다. 실시 예에 따른 반도체 소자는, 발광구조물, 제1 전극, 제2 전극, 제1 절연상 반사층, 제2 절연성 반사층, 제1 본딩패드, 제2 본딩패드를 포함할 수 있다. 실시 예에 의하면, 발광구조물은 제1 도전형 반도체층과 제2 도전형 반도체층을 포함할 수 있다. 제1 전극은 제1 도전형 반도체층 위에 배치되며, 제1 도전형 반도체층에 전기적으로 연결될 수 있다. 제2 전극은 제2 도전형 반도체층 위에 배치되며, 제2 도전형 반도체층에 전기적으로 연결될 수 있다. 제1 절연성 반사층은 제1 전극 위에 배치되며, 제1 전극의 상부 면을 노출시키는 제1 개구부를 포함할 수 있다. 제2 절연성 반사층은 상기 제2 전극 위에 제1 절연성 반사층과 이격되어 배치되며, 제2 전극의 상부 면을 노출시키는 제2 개구부를 포함할 수 있다. 제1 본딩패드는 제1 절연성 반사층 위에 배치되며, 제1 개구부를 통해 제1 전극과 전기적으로 연결될 수 있다. 제2 본딩패드는 제2 절연성 반사층 위에 제1 본딩패드와 이격되어 배치되며, 제2 개구부를 통해 제2 전극과 전기적으로 연결될 수 있다.
실시 예에 의하면, 반도체 소자의 상부 방향에서 보았을 때, 제1 본딩패드의 면적과 제2 본딩패드의 면적의 합은, 제1 본딩패드와 제2 본딩패드가 배치된 반도체 소자의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.

Description

반도체 소자 및 반도체 소자 패키지 {SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE PACKAGE}
실시 예는 반도체 소자 및 반도체 소자 제조방법, 반도체 소자 패키지에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 파장 대역의 빛을 구현할 수 있는 장점이 있다. 또한, 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용한 발광 다이오드나 레이저 다이오드와 같은 발광소자는, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광원도 구현이 가능하다. 이러한 발광소자는, 형광등, 백열등 등 기존의 광원에 비해 저 소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한, 이와 같은 수광 소자는 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용될 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 가스(Gas)나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
발광소자(Light Emitting Device)는 예로서 주기율표상에서 3족-5족 원소 또는 2족-6족 원소를 이용하여 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드로 제공될 수 있고, 화합물 반도체의 조성비를 조절함으로써 다양한 파장 구현이 가능하다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭 넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자, 적색(RED) 발광소자 등은 상용화되어 널리 사용되고 있다.
예를 들어, 자외선 발광소자의 경우, 200nm~400nm의 파장대에 분포되어 있는 빛을 발생하는 발광 다이오드로서, 상기 파장대역에서, 단파장의 경우, 살균, 정화 등에 사용되며, 장파장의 경우 노광기 또는 경화기 등에 사용될 수 있다.
자외선은 파장이 긴 순서대로 UV-A(315nm~400nm), UV-B(280nm~315nm), UV-C (200nm~280nm) 세 가지로 나뉠 수 있다. UV-A(315nm~400nm) 영역은 산업용 UV 경화, 인쇄 잉크 경화, 노광기, 위폐 감별, 광촉매 살균, 특수조명(수족관/농업용 등) 등의 다양한 분야에 응용되고 있고, UV-B(280nm~315nm) 영역은 의료용으로 사용되며, UV-C(200nm~280nm) 영역은 공기 정화, 정수, 살균 제품 등에 적용되고 있다.
한편, 고 출력을 제공할 수 있는 반도체 소자가 요청됨에 따라 고 전원을 인가하여 출력을 높일 수 있는 반도체 소자에 대한 연구가 진행되고 있다.
또한, 반도체 소자 패키지에 있어, 반도체 소자의 광 추출 효율을 항상시키고, 패키지 단에서의 광도를 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다. 또한, 반도체 소자 패키지에 있어, 패키지 전극과 반도체 소자 간의 본딩 결합력을 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다.
실시 예는 광 추출 효율 및 전기적 특성을 향상시킬 수 있는 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지를 제공할 수 있다.
실시 예는 패키지 전극과 반도체 소자 간의 본딩 결합력을 향상시킬 수 있는 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지를 제공할 수 있다.
실시 예는 전류 집중 현상이 발생되는 것을 방지하여 신뢰성을 향상시킬 수 있는 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지를 제공할 수 있다.
실시 예에 따른 반도체 소자는, 제1 도전형 반도체층과 제2 도전형 반도체층을 포함하는 발광구조물; 상기 제1 도전형 반도체층 위에 배치되며, 상기 제1 도전형 반도체층에 전기적으로 연결된 제1 전극; 상기 제2 도전형 반도체층 위에 배치되며, 상기 제2 도전형 반도체층에 전기적으로 연결된 제2 전극; 상기 제1 전극 위에 배치되며, 상기 제1 전극의 상부 면을 노출시키는 제1 개구부를 포함하는 제1 절연성 반사층; 상기 제2 전극 위에 상기 제1 절연성 반사층과 이격되어 배치되며, 상기 제2 전극의 상부 면을 노출시키는 제2 개구부를 포함하는 제2 절연성 반사층; 상기 제1 절연성 반사층 위에 배치되며, 상기 제1 개구부를 통해 상기 제1 전극과 전기적으로 연결된 제1 본딩패드; 상기 제2 절연성 반사층 위에 상기 제1 본딩패드와 이격되어 배치되며, 상기 제2 개구부를 통해 상기 제2 전극과 전기적으로 연결된 제2 본딩패드; 를 포함하고, 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드의 면적과 상기 제2 본딩패드의 면적의 합은, 상기 제1 본딩패드와 상기 제2 본딩패드가 배치된 상기 반도체 소자의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.
실시 예에 의하면, 상기 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드의 면적과 상기 제2 본딩패드의 면적의 합은 상기 반도체 소자의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드 또는 상기 제2 본딩패드는 상기 반도체 소자의 장축 방향을 따라 x의 길이로 제공되고, 상기 반도체 소자의 단축 방향을 따라 y의 길이로 제공되며, 상기 x와 상기 y의 비는 1:1.5 내지 1:2로 제공될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드와 상기 제2 본딩패드 사이의 간격은 125 마이크로 미터에 비해 같거나 크고 300 마이크로 미터에 비해 같거나 작게 제공될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드 또는 상기 제2 본딩패드는 상기 반도체 소자의 장축 방향에 배치된 이웃하는 측면으로부터 b의 길이만큼 떨어져서 배치되고, 상기 반도체 소자의 단축 방향에 배치된 이웃하는 측면으로부터 a의 길이만큼 떨어져서 배치되고, 상기 a는 40 마이크로 미터에 비해 같거나 크고, 상기 b는 40 마이크로 미터에 비해 같거나 크게 제공될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드와 상기 제2 본딩패드가 배치된 상기 반도체 소자의 상부 면의 30% 이상 면적에서 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
실시 예에 의하면, 상기 발광구조물에서 생성된 빛이 상기 반도체 소자의 상부 면, 하부 면, 4 개의 측면 방향으로 투과되어 방출될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드와 상기 제2 본딩패드 사이에 제공된 제1 영역, 상기 반도체 소자의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드 또는 상기 제2 본딩패드 사이에 제공된 제2 영역, 상기 반도체 소자의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드 또는 상기 제2 본딩패드 사이에 제공된 제3 영역에서, 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
실시 예에 따른 반도체 소자 패키지는, 제1 패키지 전극과 제2 패키지 전극을 포함하는 패키지 몸체; 상기 패키지 몸체에 배치된 반도체 소자를 포함하고, 상기 반도체 소자는, 제1 도전형 반도체층과 제2 도전형 반도체층을 포함하는 발광구조물; 상기 제1 도전형 반도체층 위에 배치되며, 상기 제1 도전형 반도체층에 전기적으로 연결된 제1 전극; 상기 제2 도전형 반도체층 위에 배치되며, 상기 제2 도전형 반도체층에 전기적으로 연결된 제2 전극; 상기 제1 전극 위에 배치되며, 상기 제1 전극의 상부 면을 노출시키는 제1 개구부를 포함하는 제1 절연성 반사층; 상기 제2 전극 위에 상기 제1 절연성 반사층과 이격되어 배치되며, 상기 제2 전극의 상부 면을 노출시키는 제2 개구부를 포함하는 제2 절연성 반사층; 상기 제1 절연성 반사층 위에 배치되며, 상기 제1 개구부를 통해 상기 제1 전극과 전기적으로 연결된 제1 본딩패드; 상기 제2 절연성 반사층 위에 상기 제1 본딩패드와 이격되어 배치되며, 상기 제2 개구부를 통해 상기 제2 전극과 전기적으로 연결된 제2 본딩패드; 를 포함하고, 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드의 면적과 상기 제2 본딩패드의 면적의 합은, 상기 제1 본딩패드와 상기 제2 본딩패드가 배치된 상기 반도체 소자의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공되고, 상기 반도체 소자의 상기 제1 본딩패드는 상기 제1 패키지 전극에 전기적으로 연결되고, 상기 반도체 소자의 상기 제2 본딩패드는 상기 제2 패키지 전극에 전기적으로 연결될 수 있다.
실시 예에 따른 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지에 의하면, 광 추출 효율 및 전기적 특성을 향상시킬 수 있는 장점이 있다.
실시 예에 따른 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지에 의하면, 패키지 전극과 반도체 소자 간의 본딩 결합력을 향상시킬 수 있는 장점이 있다.
실시 예에 따른 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지에 의하면, 전류 집중 현상이 발생되는 것을 방지하여 신뢰성을 향상시킬 수 있는 장점이 있다.
실시 예에 따른 반도체 소자, 반도체 소자 제조방법, 반도체 소자 패키지에 의하면, 플립칩 본딩 방식에 적합하도록 전극, 절연성 반사층 및 본딩패드를 배치하여 본딩 공정을 용이하게 수행하고 방출되는 빛의 투과율 및 반사율을 높여 광 추출 효율을 향상시킬 수 있는 장점이 있다.
도 1은 본 발명의 실시 예에 따른 반도체 소자를 나타낸 평면도이다.
도 2는 도 1에 도시된 반도체 소자의 A-A 선에 다른 단면도이다.
도 3은 본 발명의 실시 예에 따른 반도체 소자에 적용된 제1 전극과 제2 전극의 배치 예를 나타낸 도면이다.
도 4는 본 발명의 실시 예에 따른 반도체 소자에 적용된 제1 본딩패드와 제2 본딩패드의 배치 예를 나타낸 도면이다.
도 5a 및 도 5b는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 반도체층과 전류확산층이 형성된 단계를 설명하는 도면이다.
도 6a 및 도 6b는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 오믹접촉층이 형성된 단계를 설명하는 도면이다.
도 7a 및 도 7b는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 제1 전극과 제2 전극이 형성된 단계를 설명하는 도면이다.
도 8a 및 도 8b는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 보호층이 형성된 단계를 설명하는 도면이다.
도 9a 및 도 9b는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 제1 절연성 반사층과 제2 절연성 반사층이 형성된 단계를 설명하는 도면이다.
도 10a 및 도 10b는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 제1 본딩패드와 제2 본딩패드가 형성된 단계를 설명하는 도면이다.
도 11은 본 발명의 실시 예에 따른 반도체 소자의 다른 예를 나타낸 평면도이다.
도 12는 도 11에 도시된 반도체 소자의 B-B 라인에 따른 단면도이다.
도 13은 도 11에 도시된 반도체 소자의 C-C 라인에 따른 단면도이다.
도 14는 본 발명의 실시 예에 따른 반도체 소자의 다른 예에 적용된 제1 전극과 제2 전극의 배치 예를 나타낸 도면이다.
도 15a, 도 15b, 도 15c는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 반도체층과 전류확산층이 형성된 단계를 설명하는 도면이다.
도 16a, 도 16b, 도 16c는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 오믹접촉층이 형성된 단계를 설명하는 도면이다.
도 17a, 도 17b, 도 17c는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 보호층이 형성된 단계를 설명하는 도면이다.
도 18a, 도 18b, 도 18c는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 제1 전극와 제2 전극이 형성된 단계를 설명하는 도면이다.
도 19a, 도 19b, 도 19c는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 제1 절연성 반사층과 제2 절연성 반사층이 형성된 단계를 설명하는 도면이다.
도 20a, 도 20b, 도 20c는 본 발명의 실시 예에 따른 반도체 소자 제조방법에 의하여 제1 본딩패드와 제2 본딩패드가 형성된 단계를 설명하는 도면이다.
도 21은 본 발명의 실시 예에 따른 반도체 소자 패키지를 설명하는 도면이다.
도 22 및 도 23은 본 발명의 실시 예에 따른 반도체 소자의 두께에 따른 광도 변화를 설명하는 도면이다.
도 24는 본 발명의 실시 예에 따른 조명장치를 나타낸 도면이다.
이하 실시 예를 첨부된 도면을 참조하여 설명한다. 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명하나 실시 예가 이에 한정되는 것은 아니다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 반도체 소자 및 반도체 소자 제조방법, 반도체 소자 패키지에 대해 상세히 설명하도록 한다.
먼저, 도 1 및 도 2를 참조하여 본 발명의 실시 예에 따른 반도체 소자를 설명하기로 한다. 도 1은 본 발명의 실시 예에 따른 반도체 소자를 나타낸 평면도이고, 도 2는 도 1에 도시된 반도체 소자의 A-A 선에 따른 단면도이다.
한편, 이해를 돕기 위해, 도 1을 도시함에 있어, 제1 본딩패드(171)와 제2 본딩패드(172) 아래에 배치되지만, 상기 제1 본딩패드(171)에 전기적으로 연결된 제1 전극(141)과 상기 제2 본딩패드(172)에 전기적으로 연결된 제2 전극(142)이 보일 수 있도록 도시되었다.
실시 예에 따른 반도체 소자(100)는, 도 1 및 도 2에 도시된 바와 같이, 기판(105) 위에 배치된 발광구조물(110)을 포함할 수 있다.
상기 기판(105)은 사파이어 기판(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge을 포함하는 그룹 중에서 선택될 수 있다. 예로서, 상기 기판(105)은 상부 면에 요철 패턴이 형성된 PSS(Patterned Sapphire Substrate)로 제공될 수 있다.
상기 발광구조물(110)은 제1 도전형 반도체층(111), 활성층(112), 제2 도전형 반도체층(113)을 포함할 수 있다. 상기 활성층(112)은 상기 제1 도전형 반도체층(111)과 상기 제2 도전형 반도체층(113) 사이에 배치될 수 있다. 예로서, 상기 제1 도전형 반도체층(111) 위에 상기 활성층(112)이 배치되고, 상기 활성층(112) 위에 상기 제2 도전형 반도체층(113)이 배치될 수 있다.
실시 예에 의하면, 상기 제1 도전형 반도체층(111)은 n형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(113)은 p형 반도체층으로 제공될 수 있다. 물론, 다른 실시 예에 의하면, 상기 제1 도전형 반도체층(111)이 p형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(113)이 n형 반도체층으로 제공될 수도 있다.
이하에서는 설명의 편의를 위해 상기 제1 도전형 반도체층(111)이 n형 반도체층으로 제공되고 상기 제2 도전형 반도체층(113)이 p형 반도체층으로 제공된 경우를 기준으로 설명하기로 한다.
또한, 이상의 설명에서는 상기 기판(105) 위에 상기 제1 도전형 반도체층(111)이 접촉되어 배치된 경우를 기준으로 설명되었다. 그러나, 상기 제1 도전형 반도체층(111)과 상기 기판(105) 사이에 버퍼층이 더 배치될 수도 있다. 예로서, 버퍼층은 상기 기판(105)과 상기 발광구조물(110) 간의 격자 상수 차이를 줄여 주고 결정성을 향상시키는 기능을 수행할 수 있다.
상기 발광구조물(110)은 화합물 반도체로 제공될 수 있다. 상기 발광구조물(110)은 예로서 2족-6족 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예로서, 상기 발광구조물(110)은 알루미늄(Al), 갈륨(Ga), 인듐(In), 인(P), 비소(As), 질소(N)로부터 선택된 적어도 두 개 이상의 원소를 포함하여 제공될 수 있다.
상기 제1 도전형 반도체층(111)은, 예로서 2족-6족 화합물 반도체 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예를 들어, 상기 제1 도전형 반도체층(111)은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료 또는 (AlxGa1 -x)yIn1-yP(0≤x≤1, 0≤y≤1)의 조성식을 갖는 반도체 재료로 제공될 수 있다. 예를 들어 상기 제1 도전형 반도체층(111)은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, AlInP, GaInP 등을 포함하는 그룹 중에서 선택될 수 있으며, Si, Ge, Sn, Se, Te 등을 포함하는 그룹 중에서 선택된 n형 도펀트가 도핑될 수 있다.
상기 활성층(112)은, 예로서 2족-6족 화합물 반도체 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예를 들어, 상기 활성층(112)은 InxAlyGa1 -x- yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료 또는 (AlxGa1 -x)yIn1 - yP(0≤x≤1, 0≤y≤1)의 조성식을 갖는 반도체 재료로 제공될 수 있다. 예로서, 상기 활성층(112)은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, AlInP, GaInP 등을 포함하는 그룹 중에서 선택될 수 있다. 예로서, 상기 활성층(112)은 다중 우물 구조로 제공될 수 있으며, 복수의 장벽층과 복수의 우물층을 포함할 수 있다.
상기 제2 도전형 반도체층(113)은, 예로서 2족-6족 화합물 반도체 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예를 들어, 상기 제2 도전형 반도체층(113)은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료 또는 (AlxGa1 -x)yIn1-yP(0≤x≤1, 0≤y≤1)의 조성식을 갖는 반도체 재료로 제공될 수 있다. 예를 들어 상기 제2 도전형 반도체층(113)은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, AlInP, GaInP 등을 포함하는 그룹 중에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등을 포함하는 그룹 중에서 선택된 p형 도펀트가 도핑될 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 2에 도시된 바와 같이, 전류확산층(120)과 오믹접촉층(130)을 포함할 수 있다. 상기 전류확산층(120)과 상기 오믹접촉층(130)은 전류 확산을 향상시켜 광출력을 증가시킬 수 있다. 상기 전류확산층(120)과 상기 오믹접촉층(130)의 배치 위치 및 형상에 대해서는 실시 예에 따른 반도체 소자 제조방법을 설명하면서 더 살펴 보기로 한다.
예로서, 상기 전류확산층(120)은 산화물 또는 질화물 등으로 제공될 수 있다. 상기 전류확산층(120)의 수평 폭은 위에 배치된 제2 전극(142)의 수평 폭 이상으로 제공될 수 있다. 이에 따라, 상기 전류확산층(120)은 상기 제2 전극(142) 하측에서의 전류집중을 방지하여 전기적 신뢰성을 향상시킴으로써 광속을 향상시킬 수 있다.
또한, 상기 오믹접촉층(130)은 금속, 금속 산화물, 금속 질화물을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다. 상기 오믹접촉층(130)은 투광성의 물질을 포함할 수 있다. 예컨대, 상기 오믹접촉층(130)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZON(IZO nitride), IZTO (indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Pt, Ni, Au, Rh, Pd를 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 1 내지 도 3에 도시된 바와 같이, 제1 전극(141)과 제2 전극(142)을 포함할 수 있다.
상기 제1 전극(141)은 상기 제1 도전형 반도체층(111)에 전기적으로 연결될 수 있다. 상기 제1 전극(141)은 상기 제1 도전형 반도체층(111) 위에 배치될 수 있다. 예로서, 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 전극(141)은 상기 제2 도전형 반도체층(113), 상기 활성층(112)을 관통하여 상기 제1 도전형 반도체층(111)의 일부 영역까지 배치되는 리세스(recess) 내에서 상기 제1 도전형 반도체층(111)의 상면에 배치될 수 있다.
상기 제2 전극(142)은 상기 제2 도전형 반도체층(113)에 전기적으로 연결될 수 있다. 상기 제2 전극(142)은 상기 제2 도전형 반도체층(113) 위에 배치될 수 있다. 실시 예에 의하면, 상기 제2 전극(142)과 상기 제2 도전형 반도체층(113) 사이에 상기 전류확산층(120)이 배치될 수 있다.
상기 제1 전극(141)과 상기 제2 전극(142)은 단층 또는 다층 구조로 형성될 수 있다. 예를 들어, 상기 제1 전극(141)과 상기 제2 전극(142)은 오믹 전극일 수 있다. 예를 들어, 상기 제1 전극(141)과 상기 제2 전극(142)은 ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나 또는 이들 중 2개 이상의 물질의 합금일 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 1 및 도 2에 도시된 바와 같이, 보호층(150)을 포함할 수 있다.
상기 보호층(150)은 상기 제2 전극(142) 위에 배치될 수 있다. 상기 보호층(150)은 상기 제2 전극(142) 상의 일부 영역을 노출시키는 제1 개구부(h1)를 포함할 수 있다.
또한, 상기 보호층(150)은 상기 제1 전극(141) 위에 배치될 수 있다. 상기 보호층(150)은 상기 제1 전극(141) 상의 일부 영역을 노출시키는 제2 개구부(h2)를 포함할 수 있다.
예로서, 상기 보호층(150)은 절연물질로 제공될 수 있다. 예를 들어, 상기 보호층(150)은 SiO2, SiOx, SiOxNy, Si3N4, Al2O3 를 포함하는 그룹 중에서 선택된 적어도 하나의 물질로 형성될 수 있다.
또한, 실시 예에 따른 반도체 소자(100)는, 도 1 및 도 2에 도시된 바와 같이, 제1 절연성 반사층(161)과 제2 절연성 반사층(162)을 포함할 수 있다. 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 보호층(150) 위에 배치될 수 있다.
상기 제1 절연성 반사층(161)은 상기 제1 전극(141) 위에 배치될 수 있다. 상기 제1 절연성 반사층(161)은 상기 제1 전극(141) 상의 일부 영역을 노출시키는 제4 개구부(h4)를 포함할 수 있다. 상기 제1 절연성 반사층(161)은 상기 보호층(150)의 상기 제2 개구부(h2)가 형성된 영역에 대응되어 제공된 제4 개구부(h4)를 포함할 수 있다.
예로서, 상기 제4 개구부(h4)의 최대 폭은 상기 제2 개구부(h2)의 최대 폭보다 넓게 배치될 수 있다. 상기 제1 절연성 반사층(161)이 포함하는 제4 개구부(h4)가 상기 보호층(150) 상에 배치되는 제2 개구부(h2)의 폭보다 좁게 배치될 경우, 상기 제1 절연성 반사층(161)은 상기 보호층(150) 상에 배치되는 제2 개구부(h2)의 단차를 따라 배치될 수 있다. 상기 제1 절연성 반사층(161)이 상기 제2 개구부(h2)의 단차를 따라 배치되는 경우, 상기 제1 절연성 반사층(161) 내부에 크랙 등이 발생할 수 있기 때문에 반도체 소자의 신뢰성이 저하될 수 있다.
상기 리세스의 최대 폭은 상기 제2 개구부(h2) 및 상기 제4 개구부(h4)의 폭보다 클 수 있다. 상기 리세스의 최대 폭이 상기 제2 개구부(h2) 및 상기 제4 개구부(h4)보다 클 경우, 상기 제1 전극(141)이 상기 제1 도전형 반도체층(111)과 전기적으로 연결되기 위한 면적을 충분히 확보하여 전기적 특성을 개선할 수 있고, 상기 제2 개구부(h2) 및 상기 제4 개구부(h4)가 상기 리세스와 수직으로 중첩하도록 배치하기 위한 공정 마진을 확보할 수 있다.
상기 제2 절연성 반사층(162)은 상기 제2 전극(142) 위에 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제1 절연성 반사층(161)과 이격되어 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제2 전극(142)의 상부 면을 노출시키는 제3 개구부(h3)를 포함할 수 있다. 상기 제2 절연성 반사층(162)은 상기 보호층(150)의 상기 제1 개구부(h1)가 형성된 영역에 대응되어 제공된 제3 개구부(h3)를 포함할 수 있다.
예로서, 상기 제3 개구부(h3)의 최대 폭은 상기 제1 개구부(h1)의 최대 폭보다 넓게 배치될 수 있다. 상기 제2 절연성 반사층(162)이 포함하는 제3 개구부(h3)가 상기 보호층(150) 상에 배치되는 제1 개구부(h1)의 폭보다 좁게 배치될 경우, 상기 제2 절연성 반사층(162)은 상기 보호층(150) 상에 배치되는 제1 개구부(h1)의 단차를 따라 배치될 수 있다. 상기 제2 절연성 반사층(162)이 상기 제1 개구부(h1)의 단차를 따라 배치되는 경우, 상기 제2 절연성 반사층(162) 내부에 크랙 등이 발생할 수 있기 때문에 반도체 소자의 신뢰성이 저하될 수 있다.예로서, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 DBR(Distributed Bragg Reflector)층 또는 ODR(Omni Directional Reflector)층으로 제공될 수 있다.
실시 예에 의하면, 상기 제1 절연성 반사층(161)은 상기 제1 전극(141)의 측면 및 상면의 일부에 배치될 수 있다. 또한, 상기 제1 전극(141)의 상면의 일부 영역은 상기 제4 개구부(h4) 내에서 노출되며 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제2 전극(142)의 측면 및 상면의 일부에 배치될 수 있다. 또한, 상기 제2 전극(142)의 상면의 일부 영역은 상기 제3 개구부(h3) 내에서 노출되며 배치될 수 있다.
이에 따라, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 발광구조물(110)의 활성층(112)에서 발광되는 빛을 반사시켜 제1 본딩패드(161)와 제2 본딩패드(162)에서 광 흡수가 발생되는 것을 최소화하여 광도(Po)를 향상시킬 수 있다.
예를 들어, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 절연성 재료로 이루어지되, 상기 활성층(114)에서 방출된 빛의 반사를 위하여 반사율이 높은 재료, 예를 들면 DBR 구조를 이룰 수 있다.
상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 굴절률이 다른 물질이 서로 반복하여 배치된 DBR 구조를 이룰 수 있다. 예를 들어, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 TiO2, SiO2, Ta2O5, HfO2중 어느 하나 이상을 포함하는 물질로 제공될 수 있다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 활성층(112)에서 방출되는 파장에 대한 반사도를 높이기 위해, 다양한 구성으로 자유롭게 설계될 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 1 및 도 2에 도시된 바와 같이, 상기 제1 절연성 반사층(161) 위에 배치된 제1 본딩패드(171)를 포함할 수 있다. 또한, 실시 예에 따른 반도체 소자(100)는 상기 제2 절연성 반사층(162) 위에 배치된 제2 본딩패드(172)를 포함할 수 있다. 상기 제2 본딩패드(172)는 상기 제1 본딩패드(171)와 이격되어 배치될 수 있다.
상기 제1 본딩패드(171)는 상기 제4 개구부(h4)와 상기 제2 개구부(h2)를 통하여 상기 제1 전극(141) 상부의 일부 영역에 접촉될 수 있다. 상기 제2 본딩패드(172)는 상기 제3 개구부(h3)와 상기 제1 개구부(h1)를 통하여 상기 제2 전극(142) 상부의 일부 영역에 접촉될 수 있다.
실시 예에 따른 반도체 소자는 플립칩 본딩 방식으로 외부 전원에 연결될 수 있다. 예로서, 반도체 소자 패키지를 제조함에 있어, 상기 제1 본딩패드(171)의 상부 면과 상기 제2 본딩패드(172)의 상부 면이 서브 마운트, 리드 프레임, 또는 회로기판 등에 부착되도록 배치될 수 있다.
예를 들어, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)는 Au, AuTi 등으로 형성됨으로써 실장공장이 안정적으로 진행될 수 있다. 또한 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)는 Ti, Al, In, Ir, Ta, Pd, Co, Cr, Mg, Zn, Ni, Si, Ge, Ag, Ag alloy, Au, Hf, Pt, Ru, Rh, ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 등 중에서 하나 이상의 물질 또는 합금을 이용하여 단층 또는 다층으로 형성될 수 있다.
실시 예에 따른 반도체 소자가 플립칩 본딩 방식으로 실장되어 반도체 소자 패키지로 구현되는 경우, 상기 발광구조물(110)에서 제공되는 빛은 상기 기판(105)을 통하여 방출될 수 있다. 상기 발광구조물(110)에서 방출되는 빛은 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)에서 반사되어 상기 기판(105) 방향으로 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은 상기 발광구조물(100)의 측면 방향으로도 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면 중에서, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 제공되지 않은 영역을 통하여 외부로 방출될 수 있다. 이에 따라, 실시 예에 따른 반도체 소자(100)는 상기 발광구조물(100)을 둘러싼 6면 방향으로 빛을 방출할 수 있게 되며, 광도를 현저하게 향상시킬 수 있다.
또한, 실시 예에 따른 반도체 소자 및 반도체 소자 패키지에 의하면, 넓은 면적을 갖는 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 전원을 제공하는 회로기판에 직접 본딩될 수 있으므로 플립칩 본딩 공정이 쉽고 안정적으로 진행될 수 있다.
한편, 실시 예에 따른 반도체 소자를 설명함에 있어, 상기 제2 도전형 반도체층(113) 위에 상기 오믹접촉층(130)이 제공된 경우를 기준으로 설명되었다. 그러나, 다른 실시 예에 의하면 상기 오믹접촉층(130)이 생략되고 상기 제2 도전형 반도체층(113) 위에 상기 제2 전극(142)이 직접 접촉되도록 배치될 수도 있다.
그러면, 도 4를 참조하여 실시 예에 따른 반도체 소자(100)에 적용된 제1 본딩패드(171)와 제2 본딩패드(172)의 배치 관계에 대해 더 살펴 보기로 한다. 도 4는 본 발명의 실시 예에 따른 반도체 소자에 적용된 제1 본딩패드(171)와 제2 본딩패드(172)의 배치 예를 나타낸 도면이다.
실시 예에 따른 반도체 소자(100)에 의하면, 반도체 소자(100)의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 상기 반도체 소자(100)의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.
예로서, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 발광구조물(100)의 제1 도전형 반도체층(111)의 하부 면의 가로 길이 및 세로 길이에 의하여 정의되는 면적에 대응될 수 있다. 또한, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 기판(105)의 상부 면 또는 하부 면의 면적에 대응될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 70%에 비해 같거나 작게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 반도체 소자(100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)의 면적과 상기 제2 본딩패드(172)의 면적의 합은 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)를 통하여 안정적인 실장이 수행될 수 있고, 상기 반도체 소자(100)의 전기적 특성이 저하되지 않도록 확보할 수 있다.
실시 예에 따른 반도체 소자(100)는, 광 추출 효율 및 본딩의 안정성 확보와 전기적 특성의 확보 고려하여, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상이고 70% 이하로 선택될 수 있다.
즉, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 반도체 소자(100)의 전기적 특성을 확보하고, 반도체 소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 0% 초과 내지 70% 이하인 경우, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 광량이 증가하여 상기 반도체 소자(100)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시 예에서는 상기 반도체 소자(100)의 전기적 특성과 반도체 소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 70% 이하로 선택하였다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 반도체 소자(100)의 전기적 특성과 본딩력을 확보하기 위해서는 70% 초과 내지 100% 이하로 구성될 수 있고, 광도를 증가시키기 위해서는 0% 초과 30% 미만으로 선택하여 구성할 수 있다.
실시 예에 의하면, 상기 제1 본딩패드(171)는, 상기 반도체 소자(100)의 장축 방향을 따라 x1의 길이로 제공되고, 상기 반도체 소자(100)의 단축 방향을 따라 y1의 길이로 제공될 수 있다. 이때, 상기 x1과 y1의 비는 예로서 1:1.5 내지 1:2로 제공될 수 있다.
또한, 상기 제2 본딩패드(172)는, 상기 반도체 소자(100)의 장축 방향을 따라 x2의 길이로 제공되고, 상기 반도체 소자(100)의 단축 방향을 따라 y2의 길이로 제공될 수 있다. 이때, 상기 x2와 y2의 비는 예로서 1:1.5 내지 1:2로 제공될 수 있다.
예컨대, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 최소 간격(d)은 125 마이크로 미터에 비해 같거나 크게 제공될 수 있다. 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 최소 간격(d)은 상기 반도체 소자(100)가 실장 되는 패키지 몸체의 제2 본딩패드와 제1 본딩패드 간의 간격을 고려하여 선택될 수 있다.
예로서, 패키지 몸체의 제2 본딩패드와 제1 본딩패드 간의 최소 간격은 최소 125 마이크로 미터로 제공될 수 있으며, 최대 200 마이크로 미터로 제공될 수 있다. 이때, 공정 오차를 고려하면, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 간격(d)은 125 마이크로 미터 이상이고 300 마이크로 미터 이하로 제공될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 간격(d)이 125 마이크로 미터보다 크게 배치되어야, 반도체 소자의 제1 본딩패드(171)와 제2 본딩패드(172) 사이에서 단락이 발생하지 않을 수 있도록 최소 공간이 확보될 수 있고, 광추출효율을 향상시키기 위한 발광 면적을 확보할 수 있어 상기 반도체 소자(100)의 광도(Po)가 증가될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 간격(d)이 300 마이크로 미터 이하로 제공되어야 상기 반도체 소자 패키지의 제1 본딩패드 및 제2 본딩패드와 상기 반도체 소자의 제1 본딩패드(171) 및 제2 본딩패드(172)가 충분한 본딩력을 가지며 본딩될 수 있고, 상기 반도체 소자(100)의 전기적 특성이 확보될 수 있다.
상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 최소 간격(d)은 광학적 특성을 확보하기 위해 125 마이크로 미터보다 크게 배치되고, 전기적 특성과 본딩력에 의한 신뢰성을 확보하기 위해 300 마이크로 미터보다 작게 배치될 수 있다.
실시 예에서는 상기 125 마이크로 미터 이상 300 마이크로 이하의 최소 간격(d)을 제공하지만, 이에 한정하지 않고, 상기 반도체 소자 패키지의 전기적 특성 또는 신뢰성을 향상시키기 위해서는 125 마이크로 미터보다 작게 배치될 수 있고, 광학적 특성을 향상시키기 위해서는 300 마이크로 미터보다 크게 배치될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드(171)는 상기 반도체 소자(100)의 장축 방향에 배치된 이웃하는 측면으로부터 b1의 길이만큼 떨어져서 배치되고, 상기 반도체 소자(100)의 단축 방향에 배치된 이웃하는 측면으로부터 a1 또는 a3의 길이만큼 떨어져서 배치될 수 있다. 이때, 상기 a1 또는 a3는 예로서 40 마이크로 미터에 비해 같거나 크고, 상기 b1은 40 마이크로 미터에 비해 같거나 크게 제공될 수 있다.
또한, 상기 제2 본딩패드(172)는 상기 반도체 소자(100)의 장축 방향에 배치된 이웃하는 측면으로부터 b2의 길이만큼 떨어져서 배치되고, 상기 반도체 소자(100)의 단축 방향에 배치된 이웃하는 측면으로부터 a2 또는 a4의 길이만큼 떨어져서 배치될 수 있다. 이때, 상기 a2 또는 a4는 예로서 40 마이크로 미터에 비해 같거나 크고, 상기 b2는 40 마이크로 미터에 비해 같거나 크게 제공될 수 있다.
실시 예에 의하면, 상기 a1, a2, a3, a4는 서로 같은 값으로 제공될 수 있다. 또한, 상기 b1과 b2는 서로 같은 값으로 제공될 수 있다. 또한, 다른 실시 예에 의하면, 상기 a1, a2, a3, a4 중에서 적어도 2 개가 서로 다른 값을 가질 수도 있고, 상기 b1과 b2가 서로 다른 값을 가질 수도 있다.
이와 같이 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이에 제공된 제1 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다. 이때, 상기 제1 영역은 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 최소 간격(d)에 대응되는 영역일 수 있다.
또한, 상기 반도체 소자(100)의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제2 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다. 이때, 상기 제2 영역은 b1과 b2에 대응되는 영역일 수 있다.
또한, 상기 반도체 소자(100)의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제3 영역으로 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다. 이때, 상기 제3 영역은 a1, a2, a3, 및 a4에 대응되는 영역일 수 있다.
예컨대, 실시 예에 따른 반도체 소자(100)의 장축 방향 길이가 1250mm이고, 단축 방향 길이가 750mm인 경우에 이상에서 언급된 변수들은 다음과 같은 값을 가질 수 있다.
상기 제1 본딩패드(171)의 면적과 상기 제2 본딩패드(172)의 면적이 서로 같고, 그 합이 30% 경우에, x1:y1=1:2이고, d의 값이 125 마이크로 미터로 제공되면, x1의 값은 265 마이크로 미터로 제공되고, y1의 값은 530 마이크로 미터로 제공될 수 있다. 이에 따라, a1의 값은 예로서 110 마이크로 미터에 비해 작거나 같고, b1의 값은 예로서 300 마이크로 미터에 비해 작거나 같게 제공될 수 있다.
즉, 반도체 소자(100)의 크기에 따라, 상기 제1 본딩패드(171)의 면적과 상기 제2 본딩패드(172)의 면적의 합이 결정되고, 상기 제1 본딩패드(171)의 가로/세로 비율과 d의 값이 결정되면, 나머지 변수들은 계산에 의하여 산출될 수 있게 된다. 이에 따라, a1, a2, a3, a4, b1, b2 등의 상한 값은 나타내지 아니 하였다.
실시 예에 의하면, 상기 제1 절연성 반사층(161)의 크기는 상기 제1 본딩패드(171)의 크기에 비하여 수 마이크로 미터 더 크게 제공될 수 있다. 예를 들어, 상기 제1 절연성 반사층(161)의 면적은 상기 제1 본딩패드(171)의 면적을 완전히 덮을 수 있을 정도의 크기로 제공될 수 있다. 공정 오차를 고려할 때, 상기 제1 절연성 반사층(161)의 한 변의 길이는 상기 제1 본딩패드(171)의 한 변의 길이에 비해 예로서 4 마이크로 미터 내지 10 마이크로 미터 정도 더 크게 제공될 수 있다.
또한, 상기 제2 절연성 반사층(162)의 크기는 상기 제2 본딩패드(172)의 크기에 비하여 수 마이크로 미터 더 크게 제공될 수 있다. 예를 들어, 상기 제2 절연성 반사층(162)의 면적은 상기 제2 본딩패드(172)의 면적을 완전히 덮을 수 있을 정도의 크기로 제공될 수 있다. 공정 오차를 고려할 때, 상기 제2 절연성 반사층(162)의 한 변의 길이는 상기 제2 본딩패드(172)의 한 변의 길이에 비해 예로서 4 마이크로 미터 내지 10 마이크로 미터 정도 더 크게 제공될 수 있다.
실시 예에 의하면, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)에 의하여, 상기 발광구조물(110)로부터 방출되는 빛이 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)에 입사되지 않고 반사될 수 있게 된다. 이에 따라, 상기 제1 절연성 반사층(161) 및 상기 제2 절연성 반사층(162)의 면적이 상기 제1 본딩패드(171) 및 상기 제2 본딩패드(172)의 면적에 비해 같거나 크게 배치됨으로써, 상기 발광구조물(110)에서 생성되어 방출되는 빛이 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)에 입사되어 손실되는 것을 최소화할 수 있다.
그러면, 첨부된 도면을 참조하여 실시 예에 따른 반도체 소자 제조방법을 설명하기로 한다. 실시 예에 따른 반도체 소자 제조방법을 설명함에 있어, 도 1 내지 도 4를 참조하여 설명된 내용과 중복되는 사항에 대해서는 설명이 생략될 수 있다.
먼저, 실시 예에 따른 반도체 소자 제조방법에 의하면, 도 5a 및 도 5b에 도시된 바와 같이, 기판(105) 위에 발광구조물(110)과 전류확산층(120)이 형성될 수 있다. 도 5a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 발광구조물(110)과 전류확산층(120)의 형상을 나타낸 평면도이고, 도 5b는 도 5a에 도시된 반도체 소자의 A-A 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 기판(105) 위에 발광구조물(110)이 형성될 수 있다. 예로서, 상기 기판(105) 위에 제1 도전형 반도체층(111), 활성층(112), 제2 도전형 반도체층(113)이 형성될 수 있다.
그리고, 상기 제2 도전형 반도체층(113)의 일부 영역 위에 전류확산층(120)이 형성될 수 있다. 예로서, 상기 전류확산층(120)은 복수의 선 형상으로 형성될 수 있다.
다음으로, 도 6a 및 도 6b에 도시된 바와 같이, 오믹접촉층(130)이 형성될 수 있다. 도 6a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 오믹접촉층(130)의 형상을 나타낸 평면도이고, 도 6b는 도 6a에 도시된 반도체 소자의 A-A 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 제2 도전형 반도체층(113) 위에 상기 오믹접촉층(130)이 형성될 수 있다. 상기 오믹접촉층(130)은 상기 전류확산층(120) 위에도 형성될 수 있다. 한편, 실시 예에 의하면, 메사 식각 공정을 통하여 상기 제1 도전형 반도체층(111)의 일부 영역이 노출되도록 형성될 수 있다. 상기 오믹접촉층(130)은 메사 식각에 의하여 상기 제1 도전형 반도체층(111)을 노출시키는 메사 개구부(M)를 포함할 수 있다. 예로서, 상기 메사 개구부(M)는 복수의 선 형상으로 제공될 수 있다. 상기 메사 개구부(M)는 리세스로 지칭될 수도 있다.
이어서, 도 7a 및 도 7b에 도시된 바와 같이, 제1 전극(141)과 제2 전극(142)이 형성될 수 있다. 도 7a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 제1 전극(141)과 제2 전극(142)의 형상을 나타낸 평면도이고, 도 7b는 도 7a에 도시된 반도체 소자의 A-A 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 리세스(M)에 의하여 노출된 상기 제1 도전형 반도체층(111) 위에 상기 제1 전극(141)이 형성될 수 있다. 상기 제1 전극(141)은 예를 들어 선 형상으로 형성될 수 있다. 또한, 상기 제1 전극(141)은 선 형상의 다른 영역에 비해 상대적으로 면적이 넓은 N 영역을 포함할 수 있다. 상기 제1 전극(141)의 N 영역은 추후 형성될 제1 본딩패드(171)와 전기적으로 연결될 수 있다.
또한, 상기 전류확산층(120) 위에 상기 제2 전극(142)이 형성될 수 있다. 상기 제2 전극(142)은 예를 들어 선 형상으로 형성될 수 있다. 또한, 상기 제2 전극(142)은 선 형상의 다른 영역에 비해 상대적으로 면적이 넓은 P 영역을 포함할 수 있다. 상기 제2 전극(142)의 P 영역은 추후 형성될 제2 본딩패드(172)와 전기적으로 연결될 수 있다.
다음으로, 도 8a 및 도 8b에 도시된 바와 같이, 보호층(150)이 형성될 수 있다. 도 8a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 보호층(150)의 형상을 나타낸 평면도이고, 도 8b는 도 8a에 도시된 반도체 소자의 A-A 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 제1 전극(141)과 상기 제2 전극(142) 위에 상기 보호층(150)이 형성될 수 있다. 상기 보호층(150)은 복수의 개구부를 포함할 수 있다. 예로서, 상기 보호층(150)은 복수의 제1 개구부(h1)를 포함할 수 있다. 상기 복수의 제1 개구부(h1)를 통해 상기 제2 전극(142)의 P 영역의 일부 영역이 노출될 수 있다. 또한, 상기 보호층(150)은 복수의 제2 개구부(h2)를 포함할 수 있다. 상기 복수의 제2 개구부(h2)를 통해 상기 제1 전극(141) 상의 N 영역의 일부 영역이 노출될 수 있다.
그리고, 도 9a 및 도 9b에 도시된 바와 같이, 제1 절연성 반사층(161)과 제2 절연성 반사층(162)이 형성될 수 있다. 도 9a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 제1 절연성 반사층(161)과 제2 절연성 반사층(162)의 형상을 나타낸 평면도이고, 도 9b는 도 9a에 도시된 반도체 소자의 A-A 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 보호층(150) 위에 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)이 형성될 수 있다.
상기 제1 절연성 반사층(161)은 복수의 제4 개구부(h4)를 포함할 수 있다. 예로서, 상기 복수의 제4 개구부(h4)는 상기 복수의 제2 개구부(h2)가 형성된 위치에 대응되어 제공될 수 있다. 상기 복수의 제4 개구부(h4)와 상기 복수의 제2 개구부(h2)를 통해 상기 제1 전극(141)의 N 영역의 일부 영역이 노출될 수 있다.
또한, 상기 제2 절연성 반사층(162)은 복수의 제3 개구부(h3)를 포함할 수 있다. 예로서, 상기 복수의 제3 개구부(h3)는 상기 복수의 제1 개구부(h1)가 형성된 위치에 대응되어 제공될 수 있다. 상기 복수의 제3 개구부(h3)와 상기 복수의 제1 개구부(h1)를 통해 상기 제2 전극(142)의 P 영역의 일부 영역이 노출될 수 있다.
이어서, 도 10a 및 도 10b에 도시된 바와 같이, 제1 본딩패드(171)와 제2 본딩패드(172)가 형성될 수 있다. 도 10a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 형상을 나타낸 평면도이고, 도 10b는 도 10a에 도시된 반도체 소자의 A-A 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 도 10a에 도시된 형상으로 상기 제1 본딩패드(171)와 제2 본딩패드(172)가 형성될 수 있다. 상기 제1 본딩패드(171)는 상기 제1 절연성 반사층(161) 위에 배치될 수 있다. 상기 제2 본딩패드(172)는 상기 제2 절연성 반사층(162) 위에 배치될 수 있다.
상기 제1 본딩패드(171)의 하부 면이 상기 제1 전극(141)의 상부 면에 접촉될 수 있다. 상기 제1 본딩패드(171)의 일부 영역은 상기 제4 개구부(h4)와 상기 제2 개구부(h2)에 배치되어 상기 제1 전극(141)의 N 영역의 일부 영역에 접촉될 수 있다.
상기 제2 본딩패드(172)의 하부 면이 상기 제2 전극(142)의 상부 면에 접촉될 수 있다. 상기 제2 본딩패드(172)의 일부 영역은 상기 제3 개구부(h3)와 상기 제1 개구부(h1)에 배치되어 상기 제2 전극(142)의 P 영역의 일부 영역에 접촉될 수 있다.
실시 예에 의하면, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)에 전원이 인가됨에 따라, 상기 발광구조물(110)이 발광될 수 있게 된다.
실시 예에 따른 반도체 소자는 플립칩 본딩 방식으로 외부 전원에 연결될 수 있다. 예로서, 상기 제1 본딩패드(171)의 상부 면과 상기 제2 본딩패드(172)의 상부 면이 서브 마운트, 리드 프레임, 또는 회로기판 등에 부착되도록 배치될 수 있다.
실시 예에 따른 반도체 소자가 플립칩 본딩 방식으로 실장되어 반도체 소자 패키지로 구현되는 경우, 상기 발광구조물(110)에서 제공되는 빛은 상기 기판(105)을 통하여 방출될 수 있다. 상기 발광구조물(110)에서 방출되는 빛은 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)에서 반사되어 상기 기판(105) 방향으로 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은 상기 발광구조물(100)의 측면 방향으로도 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면 중에서, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 제공되지 않은 영역을 통하여 외부로 방출될 수 있다. 이에 따라, 실시 예에 따른 반도체 소자(100)는 상기 발광구조물(100)을 둘러싼 6면 방향으로 빛을 방출할 수 있게 되며, 광도를 현저하게 향상시킬 수 있다.
실시 예에 따른 반도체 소자(100)에 의하면, 반도체 소자(100)의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 상기 반도체 소자(100)의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.
예로서, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 발광구조물(100)의 제1 도전형 반도체층(111)의 하부 면의 가로 길이 및 세로 길이에 의하여 정의되는 면적에 대응될 수 있다. 또한, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 기판(105)의 상부 면 또는 하부 면의 면적에 대응될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 70%에 비해 같거나 작게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 반도체 소자(100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)의 면적과 상기 제2 본딩패드(172)의 면적의 합은 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)를 통하여 안정적인 실장이 수행될 수 있게 된다.
실시 예에 따른 반도체 소자(100)는, 광 추출 효율 및 본딩의 안정성 확보를 고려하여, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상이고 70% 이하로 선택될 수 있다.
즉, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 반도체 소자(100)의 전기적 특성을 확보하고, 반도체 소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 0% 초과 내지 70% 이하인 경우, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 광량이 증가하여 상기 반도체 소자(100)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시 예에서는 상기 반도체 소자(100)의 전기적 특성과 반도체 소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 70% 이하로 선택하였다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 반도체 소자(100)의 전기적 특성과 본딩력을 확보하기 위해서는 70% 초과 내지 100% 이하로 구성될 수 있고, 광도를 증가시키기 위해서는 0% 초과 30% 미만으로 선택하여 구성할 수 있다.
이와 같이 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이에 제공된 제1 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 반도체 소자(100)의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제2 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 반도체 소자(100)의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제3 영역으로 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
실시 예에 따른 반도체 소자 및 반도체 소자 제조방법에 의하면, 고전압 및 고출력이 필요한 제품에 적용될 수 있는 플립칩 본딩 방식의 반도체 소자 및 반도체 소자 제조방법을 제공할 수 있다.
그러면, 도 11 내지 도 14를 참조하여 본 발명의 실시 예에 따른 반도체 소자의 다른 예를 설명하기로 한다. 도 11 내지 도 14를 참조하여 실시 예에 따른 반도체 소자를 설명함에 있어, 이상에서 설명된 내용과 중복되는 사항에 대해서는 설명이 생략될 수 있다.
도 11은 본 발명의 실시 예에 따른 반도체 소자의 다른 예를 나타낸 평면도이고, 도 12는 도 11에 도시된 반도체 소자의 B-B 라인에 따른 단면도이고, 도 13은 도 11에 도시된 반도체 소자의 C-C 라인에 따른 단면도이고, 도 14는 본 발명의 실시 예에 따른 반도체 소자의 다른 예에 적용된 제1 전극과 제2 전극의 배치 예를 나타낸 도면이다.
한편, 이해를 돕기 위해, 도 11을 도시함에 있어, 제1 본딩패드(171)와 제2 본딩패드(172) 아래에 배치되지만, 상기 제1 본딩패드(171)에 전기적으로 연결된 제1 전극(141)과 상기 제2 본딩패드(172)에 전기적으로 연결된 제2 전극(142)이 보일 수 있도록 도시되었다.
실시 예에 따른 반도체 소자(100)는, 도 11 내지 도 13에 도시된 바와 같이, 기판(105) 위에 배치된 발광구조물(110)을 포함할 수 있다.
상기 발광구조물(110)은 제1 도전형 반도체층(111), 활성층(112), 제2 도전형 반도체층(113)을 포함할 수 있다. 상기 활성층(112)은 상기 제1 도전형 반도체층(111)과 상기 제2 도전형 반도체층(113) 사이에 배치될 수 있다. 예로서, 상기 제1 도전형 반도체층(111) 위에 상기 활성층(112)이 배치되고, 상기 활성층(112) 위에 상기 제2 도전형 반도체층(113)이 배치될 수 있다.
실시 예에 의하면, 상기 제1 도전형 반도체층(111)은 n형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(113)은 p형 반도체층으로 제공될 수 있다. 물론, 다른 실시 예에 의하면, 상기 제1 도전형 반도체층(111)이 p형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(113)이 n형 반도체층으로 제공될 수도 있다.
이하에서는 설명의 편의를 위해 상기 제1 도전형 반도체층(111)이 n형 반도체층으로 제공되고 상기 제2 도전형 반도체층(113)이 p형 반도체층으로 제공된 경우를 기준으로 설명하기로 한다.
실시 예에 따른 반도체 소자(100)는, 도 12 및 도 13에 도시된 바와 같이, 전류확산층(120)과 오믹접촉층(130)을 포함할 수 있다. 상기 전류확산층(120)과 상기 오믹접촉층(130)은 전류 확산을 향상시켜 광출력을 증가시킬 수 있다. 상기 전류확산층(120)과 상기 오믹접촉층(130)의 배치 위치 및 형상에 대해서는 실시 예에 따른 반도체 소자 제조방법을 설명하면서 더 살펴 보기로 한다.
예로서, 상기 전류확산층(120)은 산화물 또는 질화물 등으로 제공될 수 있다. 상기 전류확산층(120)은 제2 전극(142) 하측에서의 전류집중을 방지하여 전기적 신뢰성을 향상시킴으로써 광속을 향상시킬 수 있다.
또한, 상기 오믹접촉층(130)은 금속, 금속 산화물, 금속 질화물을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다. 상기 오믹접촉층(130)은 투광성의 물질을 포함할 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 11 내지 도 13에 도시된 바와 같이, 보호층(150)을 포함할 수 있다.
상기 보호층(150)은 상기 오믹접촉층(130)을 노출시키는 복수의 제1 개구부(h1)를 포함할 수 있다. 상기 복수의 제1 개구부(h1)가 제공된 영역 하부에 상기 전류확산층(120)이 배치될 수 있다.
또한, 상기 보호층(150)은 상기 제1 도전형 반도체층(111)을 노출시키는 복수의 제2 개구부(h2)를 포함할 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 11 내지 도 14에 도시된 바와 같이, 제1 전극(141)과 제2 전극(142)을 포함할 수 있다.
상기 제1 전극(141)은 상기 제1 도전형 반도체층(111)에 전기적으로 연결될 수 있다. 상기 제1 전극(141)은 상기 제1 도전형 반도체층(111) 위에 배치될 수 있다. 예로서, 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 전극(141)은 상기 제2 도전형 반도체층(113)의 일부와 상기 활성층(112)의 일부가 제거되어 노출된 제1 도전형 반도체층(111)의 상면에 배치될 수 있다.
상기 제1 전극(141)은 상기 보호층(150)에 제공된 제2 개구부(h2)를 통하여 상기 제1 도전형 반도체층(111)의 상면에 전기적으로 연결될 수 있다. 예로서, 상기 제1 전극(141)은, 도 11 내지 도 14에 도시된 바와 같이, 복수의 N 영역에서 상기 제1 도전형 반도체층(111)의 상면에 접촉될 수 있다.
상기 제2 전극(142)은 상기 제2 도전형 반도체층(113)에 전기적으로 연결될 수 있다. 상기 제2 전극(142)은 상기 제2 도전형 반도체층(113) 위에 배치될 수 있다. 실시 예에 의하면, 상기 제2 전극(142)과 상기 제2 도전형 반도체층(113) 사이에 상기 전류확산층(120)이 배치될 수 있다.
상기 제2 전극(142)은 상기 보호층(150)에 제공된 제1 개구부(h1)를 통하여 상기 제2 도전형 반도체층(113)의 상면에 전기적으로 연결될 수 있다. 예로서, 상기 제2 전극(142)은, 도 11 내지 도 14에 도시된 바와 같이, 복수의 P 영역의 일부 영역에서 상기 제2 도전형 반도체층(113)에 전기적으로 연결될 수 있다.
실시 예에 의하면, 도 11 내지 도 14에 도시된 바와 같이, 상기 제1 전극(141)과 상기 제2 전극(142)은 서로 이격되어 배치될 수 있다.
상기 제1 전극(141)은 상기 제2 전극(142)이 배치된 방향으로 연장된 복수의 제1 가지전극(141a)을 포함할 수 있다. 상기 복수의 제1 가지전극(141a)의 일부 영역에 복수의 N 영역이 형성될 수 있다. 상기 복수의 N 영역의 일부 영역을 통하여 상기 제1 전극(141)은 상기 제1 도전형 반도체층(111)과 전기적으로 연결될 수 있다.
상기 제2 전극(142)은 상기 제1 전극(141)이 배치된 방향으로 연장된 복수의 제2 가지전극(142a)을 포함할 수 있다. 상기 복수의 제2 가지전극(142a)의 일부 영역에 복수의 P 영역이 형성될 수 있다. 상기 복수의 P 영역의 일부 영역을 통하여 상기 제2 전극(142)은 상기 제2 도전형 반도체층(113)과 전기적으로 연결될 수 있다.
또한, 실시 예에 따른 반도체 소자(100)는, 도 11 내지 도 13에 도시된 바와 같이, 제1 절연성 반사층(161)과 제2 절연성 반사층(162)을 포함할 수 있다. 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 보호층(150) 위에 배치될 수 있다. 또한, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 제1 전극(141)과 상기 제2 전극(142) 위에 배치될 수 있다.
상기 제1 절연성 반사층(161)은 상기 제1 전극(141) 위에 배치될 수 있다. 상기 제1 절연성 반사층(161)은 상기 제1 전극(141)의 상부 면을 노출시키는 제4 개구부(h4)를 포함할 수 있다.
상기 제2 절연성 반사층(162)은 상기 제2 전극(142) 위에 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제1 절연성 반사층(161)과 이격되어 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제2 전극(142)의 상부 면을 노출시키는 제3 개구부(h3)를 포함할 수 있다.
예로서, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 DBR(Distributed Bragg Reflector)층 또는 ODR(Omni Directional Reflector)층으로 제공될 수 있다.
실시 예에 의하면, 상기 제1 절연성 반사층(161)은 상기 제1 전극(141)의 측면 및 상면의 일부에 상기 제1 전극(141)의 상면을 노출하며 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제2 전극(142)의 측면 및 상면의 일부에 상기 제2 전극(142)의 상면을 노출하며 배치될 수 있다.
이에 따라, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 발광구조물(110)의 활성층(112)에서 발광되는 빛을 반사시켜 제1 본딩패드(161)와 제2 본딩패드(162)에서 광 흡수가 발생되는 것을 최소화하여 광도(Po)를 향상시킬 수 있다.
예를 들어, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 절연성 재료로 이루어지되, 상기 활성층(114)에서 방출된 빛의 반사를 위하여 반사율이 높은 재료, 예를 들면 DBR 구조를 이룰 수 있다.
상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 굴절률이 다른 물질이 서로 반복하여 배치된 DBR 구조를 이룰 수 있다. 예를 들어, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 TiO2, SiO2, Ta2O5, HfO2 중 어느 하나 이상을 포함하는 물질로 제공될 수 있다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)은 상기 활성층(112)에서 방출되는 파장에 대한 반사도를 높이기 위해, 다양한 구성으로 자유롭게 설계될 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 11 내지 도 13에 도시된 바와 같이, 상기 제1 절연성 반사층(161) 위에 배치된 제1 본딩패드(171)를 포함할 수 있다. 또한, 실시 예에 따른 반도체 소자(100)는 상기 제2 절연성 반사층(162) 위에 배치된 제2 본딩패드(172)를 포함할 수 있다. 상기 제2 본딩패드(172)는 상기 제1 본딩패드(171)와 이격되어 배치될 수 있다.
상기 제1 본딩패드(171)는 복수의 NB 영역에서 상기 제1 절연성 반사층(161)에 제공된 상기 제4 개구부(h4)를 통하여 상기 제1 전극(141)의 상부 면에 접촉될 수 있다. 상기 제2 본딩패드(172)는 복수의 PB 영역에서 상기 제2 절연성 반사층(162)에 제공된 상기 제3 개구부(h3)를 통하여 상기 제2 전극(142)의 상부 면에 접촉될 수 있다.
이와 같이 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 본딩패드(171)와 상기 제1 전극(141)이 복수의 영역에서 접촉될 수 있다. 또한, 상기 제2 본딩패드(172)와 상기 제2 전극(142)이 복수의 영역에서 접촉될 수 있다. 이에 따라, 실시 예에 의하면, 복수의 영역을 통해 전원이 공급될 수 있으므로, 접촉 면적 증가 및 접촉 영역의 분산에 따라 전류 분산 효과가 발생되고 동작전압이 감소될 수 있는 장점이 있다.
실시 예에 따른 반도체 소자는 플립칩 본딩 방식으로 외부 전원에 연결될 수 있다. 예로서, 반도체 소자 패키지를 제조함에 있어, 상기 제1 본딩패드(171)의 상부 면과 상기 제2 본딩패드(172)의 상부 면이 서브 마운트, 리드 프레임, 또는 회로기판 등에 부착되도록 배치될 수 있다.
실시 예에 따른 반도체 소자가 플립칩 본딩 방식으로 실장되어 반도체 소자 패키지로 구현되는 경우, 상기 발광구조물(110)에서 제공되는 빛은 상기 기판(105)을 통하여 방출될 수 있다. 상기 발광구조물(110)에서 방출되는 빛은 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)에서 반사되어 상기 기판(105) 방향으로 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은 상기 발광구조물(100)의 측면 방향으로도 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면 중에서, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 제공되지 않은 영역을 통하여 외부로 방출될 수 있다. 이에 따라, 실시 예에 따른 반도체 소자(100)는 상기 발광구조물(100)을 둘러싼 6면 방향으로 빛을 방출할 수 있게 되며, 광도를 현저하게 향상시킬 수 있다.
또한, 실시 예에 따른 반도체 소자 및 반도체 소자 패키지에 의하면, 넓은 면적을 갖는 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 전원을 제공하는 회로기판에 직접 본딩될 수 있으므로 플립칩 본딩 공정이 쉽고 안정적으로 진행될 수 있다.
한편, 실시 예에 따른 반도체 소자에 의하면, 도 4를 참조하여 설명된 바와 같이, 반도체 소자(100)의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 상기 반도체 소자(100)의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.
예로서, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 발광구조물(100)의 제1 도전형 반도체층(111)의 하부 면의 가로 길이 및 세로 길이에 의하여 정의되는 면적에 대응될 수 있다. 또한, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 기판(105)의 상부 면 또는 하부 면의 면적에 대응될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 70%에 비해 같거나 작게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 반도체 소자(100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)의 면적과 상기 제2 본딩패드(172)의 면적의 합은 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)를 통하여 안정적인 실장이 수행될 수 있게 된다.
실시 예에 따른 반도체 소자(100)는, 광 추출 효율 및 본딩의 안정성 확보를 고려하여, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상이고 70% 이하로 선택될 수 있다.
즉, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 반도체 소자(100)의 전기적 특성을 확보하고, 반도체 소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 0% 초과 내지 70% 이하인 경우, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 광량이 증가하여 상기 반도체 소자(100)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시 예에서는 상기 반도체 소자(100)의 전기적 특성과 반도체 소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 70% 이하로 선택하였다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 반도체 소자(100)의 전기적 특성과 본딩력을 확보하기 위해서는 70% 초과 내지 100% 이하로 구성될 수 있고, 광도를 증가시키기 위해서는 0% 초과 30% 미만으로 선택하여 구성할 수 있다.
이와 같이 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이에 제공된 제1 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다. 이때, 상기 제1 영역은 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 최소 간격에 대응되는 영역일 수 있다.
또한, 상기 반도체 소자(100)의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제2 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 반도체 소자(100)의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제3 영역으로 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
그러면, 첨부된 도면을 참조하여 실시 예에 따른 반도체 소자 제조방법을 설명하기로 한다. 실시 예에 따른 반도체 소자 제조방법을 설명함에 있어, 도 1 내지 도 14를 참조하여 설명된 내용과 중복되는 사항에 대해서는 설명이 생략될 수 있다.
먼저, 실시 예에 따른 반도체 소자 제조방법에 의하면, 도 15a 내지 도 15c에 도시된 바와 같이, 기판(105) 위에 발광구조물(110)과 전류확산층(120)이 형성될 수 있다. 도 15a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 발광구조물(110)과 전류확산층(120)의 형상을 나타낸 평면도이고, 도 15b는 도 15a에 도시된 반도체 소자의 B-B 선에 따른 공정 단면도를 나타낸 것이고, 도 15c는 도 15a에 도시된 반도체 소자의 C-C 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 기판(105) 위에 발광구조물(110)이 형성될 수 있다. 예로서, 상기 기판(105) 위에 제1 도전형 반도체층(111), 활성층(112), 제2 도전형 반도체층(113)이 형성될 수 있다.
그리고, 상기 제2 도전형 반도체층(113)의 일부 영역 위에 전류확산층(120)이 형성될 수 있다. 예로서, 상기 전류확산층(120)은 복수의 점 형상으로 형성될 수 있다. 예로서, 상기 전류확산층(120)은 소정 크기를 갖는 복수의 원 형상으로 형성될 수 있다.
다음으로, 도 16a 내지 도 16c에 도시된 바와 같이, 오믹접촉층(130)이 형성될 수 있다. 도 16a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 오믹접촉층(130)의 형상을 나타낸 평면도이고, 도 16b는 도 16a에 도시된 반도체 소자의 B-B 선에 따른 공정 단면도를 나타낸 것이고, 도 16c는 도 16a에 도시된 반도체 소자의 C-C 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 제2 도전형 반도체층(113) 위에 상기 오믹접촉층(130)이 형성될 수 있다. 상기 오믹접촉층(130)은 상기 전류확산층(120) 위에도 형성될 수 있다.
한편, 실시 예에 의하면, 메사 식각 공정을 통하여 상기 제1 도전형 반도체층(111)의 일부 영역이 노출되도록 형성될 수 있다. 상기 발광구조물(110)은 상기 제1 도전형 반도체층(111)을 노출시키는 리세스를 포함할 수 있다. 예로서, 상기 발광구조물(110)은 원 형상의 복수의 리세스를 포함할 수 있다.
다음으로, 도 17a 내지 도 17c에 도시된 바와 같이, 보호층(150)이 형성될 수 있다. 도 17a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 보호층(150)의 형상을 나타낸 평면도이고, 도 17b는 도 17a에 도시된 반도체 소자의 B-B 선에 따른 공정 단면도를 나타낸 것이고, 도 17c는 도 17a에 도시된 반도체 소자의 C-C 선에 따른 공정 단면도를 나타낸 것이다.
상기 보호층(150)은 복수의 개구부를 포함할 수 있다. 예로서, 상기 보호층(150)은 복수의 제1 개구부(h1)를 포함할 수 있다. 상기 복수의 제1 개구부(h1)를 통해 상기 전류확산층(120)이 노출될 수 있다. 또한, 상기 보호층(150)은 복수의 제2 개구부(h2)를 포함할 수 있다. 상기 복수의 제2 개구부(h2)를 통해 상기 제1 도전형 반도체층(111)의 상부 면이 노출될 수 있다. 상기 복수의 제2 개구부(h2)는 상기 복수의 리세스(M) 위에 대응되어 제공될 수 있다.
이어서, 도 18a 내지 도 18c에 도시된 바와 같이, 제1 전극(141)과 제2 전극(142)이 형성될 수 있다. 도 18a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 제1 전극(141)과 제2 전극(142)의 형상을 나타낸 평면도이고, 도 18b는 도 18a에 도시된 반도체 소자의 B-B 선에 따른 공정 단면도를 나타낸 것이고, 도 18c는 도 18a에 도시된 반도체 소자의 C-C 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 제1 전극(141)과 상기 제2 전극(142)은 서로 이격되어 배치될 수 있다.
상기 제1 전극(141)은 상기 제2 전극(142)이 배치된 방향으로 연장된 복수의 제1 가지전극(141a)을 포함할 수 있다. 상기 복수의 제1 가지전극(141a)의 일부 영역에 복수의 N 영역이 형성될 수 있다. 상기 복수의 N 영역을 통하여 상기 제1 전극(141)은 상기 제1 도전형 반도체층(111)과 전기적으로 연결될 수 있다.
상기 제2 전극(142)은 상기 제1 전극(141)이 배치된 방향으로 연장된 복수의 제2 가지전극(142a)을 포함할 수 있다. 상기 복수의 제2 가지전극(142a)의 일부 영역에 복수의 P 영역이 형성될 수 있다. 상기 복수의 P 영역을 통하여 상기 제2 전극(142)은 상기 제2 도전형 반도체층(113)과 전기적으로 연결될 수 있다.
실시 예에 의하면, 상기 제2 개구부(h2)와 상기 리세스(M)에 의하여 노출된 상기 제1 도전형 반도체층(111) 위에 상기 제1 전극(141)의 N 영역이 형성될 수 있다.
또한, 상기 제1 개구부(h1)에 의하여 노출된 상기 전류확산층(120) 위에 상기 제2 전극(142)의 P 영역이 형성될 수 있다.
그리고, 도 19a 내지 도 19c에 도시된 바와 같이, 제1 절연성 반사층(161)과 제2 절연성 반사층(162)이 형성될 수 있다. 도 19a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 제1 절연성 반사층(161)과 제2 절연성 반사층(162)의 형상을 나타낸 평면도이고, 도 19b는 도 19a에 도시된 반도체 소자의 B-B 선에 따른 공정 단면도를 나타낸 것이고, 도 19c는 도 19a에 도시된 반도체 소자의 C-C 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 상기 제1 전극(141)과 상기 제2 전극(142) 위에 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)이 형성될 수 있다.
상기 제1 절연성 반사층(161)은 상기 제1 전극(141) 위에 배치될 수 있다. 상기 제1 절연성 반사층(161)은 복수의 제4 개구부(h4)를 포함할 수 있다. 예로서, 상기 복수의 제4 개구부(h4)를 통해 상기 제1 전극(141)의 상부 면의 일부 영역이 노출될 수 있다.
또한, 상기 제2 절연성 반사층(162)은 상기 제2 전극(142) 위에 배치될 수 있다. 상기 제2 절연성 반사층(162)은 복수의 제3 개구부(h3)를 포함할 수 있다. 예로서, 상기 복수의 제3 개구부(h3)를 통해 상기 제2 전극(142)의 상부 면의 일부 영역이 노출될 수 있다.
또한, 실시 예에 따른 반도체 소자(100)는 상기 제1 가지전극(141a) 위에 배치된 제3 절연성 반사층(163)과 상기 제2 가지전극(142a) 위에 배치된 제4 절연성 반사층(164)를 포함할 수 있다.
실시 예에 의하면, 상기 제1 절연성 반사층(161)은 상기 제1 전극(141)의 측면 및 상면의 일부에 상기 제1 전극(141)의 상면을 노출하며 배치될 수 있다. 상기 제2 절연성 반사층(162)은 상기 제2 전극(142)의 측면 및 상면의 일부에 상기 제2 전극(142)의 상면을 노출하며 배치될 수 있다.
이어서, 도 20a 내지 도 20c에 도시된 바와 같이, 제1 본딩패드(171)와 제2 본딩패드(172)가 형성될 수 있다. 도 20a는 실시 예에 따른 반도체 소자 제조방법에 따라 형성된 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 형상을 나타낸 평면도이고, 도 20b는 도 20a에 도시된 반도체 소자의 B-B 선에 따른 공정 단면도를 나타낸 것이고, 도 20c는 도 20a에 도시된 반도체 소자의 C-C 선에 따른 공정 단면도를 나타낸 것이다.
실시 예에 의하면, 도 20a에 도시된 형상으로 상기 제1 본딩패드(171)와 제2 본딩패드(172)가 형성될 수 있다. 상기 제1 본딩패드(171)는 상기 제1 절연성 반사층(161) 위에 배치될 수 있다. 상기 제2 본딩패드(172)는 상기 제2 절연성 반사층(162) 위에 배치될 수 있다. 상기 제2 본딩패드(172)는 상기 제1 본딩패드(171)와 이격되어 배치될 수 있다.
상기 제1 본딩패드(171)는 복수의 NB 영역에서 상기 제1 절연성 반사층(161)에 제공된 상기 제4 개구부(h4)를 통하여 상기 제1 전극(141)의 상부 면에 접촉될 수 있다. 상기 제2 본딩패드(172)는 복수의 PB 영역에서 상기 제2 절연성 반사층(162)에 제공된 상기 제3 개구부(h3)를 통하여 상기 제2 전극(142)의 상부 면에 접촉될 수 있다.
실시 예에 따른 반도체 소자는 플립칩 본딩 방식으로 외부 전원에 연결될 수 있다. 예로서, 반도체 소자 패키지를 제조함에 있어, 상기 제1 본딩패드(171)의 상부 면과 상기 제2 본딩패드(172)의 상부 면이 서브 마운트, 리드 프레임, 또는 회로기판 등에 부착되도록 배치될 수 있다.
실시 예에 따른 반도체 소자가 플립칩 본딩 방식으로 실장되어 반도체 소자 패키지로 구현되는 경우, 상기 발광구조물(110)에서 제공되는 빛은 상기 기판(105)을 통하여 방출될 수 있다. 상기 발광구조물(110)에서 방출되는 빛은 상기 제1 절연성 반사층(161)과 상기 제2 절연성 반사층(162)에서 반사되어 상기 기판(105) 방향으로 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은 상기 발광구조물(100)의 측면 방향으로도 방출될 수 있다. 또한, 상기 발광구조물(110)에서 방출되는 빛은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면 중에서, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 제공되지 않은 영역을 통하여 외부로 방출될 수 있다. 이에 따라, 실시 예에 따른 반도체 소자(100)는 상기 발광구조물(100)을 둘러싼 6면 방향으로 빛을 방출할 수 있게 되며, 광도를 현저하게 향상시킬 수 있다.
또한, 실시 예에 따른 반도체 소자 및 반도체 소자 패키지에 의하면, 넓은 면적을 갖는 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 전원을 제공하는 회로기판에 직접 본딩될 수 있으므로 플립칩 본딩 공정이 쉽고 안정적으로 진행될 수 있다.
한편, 실시 예에 따른 반도체 소자에 의하면, 도 4를 참조하여 설명된 바와 같이, 반도체 소자(100)의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합은, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 상기 반도체 소자(100)의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.
예로서, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 발광구조물(100)의 제1 도전형 반도체층(111)의 하부 면의 가로 길이 및 세로 길이에 의하여 정의되는 면적에 대응될 수 있다. 또한, 상기 반도체 소자(100)의 상부 면 전체 면적은 상기 기판(105)의 상부 면 또는 하부 면의 면적에 대응될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 70%에 비해 같거나 작게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 반도체 소자(100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드(171)의 면적과 상기 제2 본딩패드(172)의 면적의 합은 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)를 통하여 안정적인 실장이 수행될 수 있게 된다.
실시 예에 따른 반도체 소자(100)는, 광 추출 효율 및 본딩의 안정성 확보를 고려하여, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상이고 70% 이하로 선택될 수 있다.
즉, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 반도체 소자(100)의 전기적 특성을 확보하고, 반도체 소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 0% 초과 내지 70% 이하인 경우, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 광량이 증가하여 상기 반도체 소자(100)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시 예에서는 상기 반도체 소자(100)의 전기적 특성과 반도체 소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 70% 이하로 선택하였다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 반도체 소자(100)의 전기적 특성과 본딩력을 확보하기 위해서는 70% 초과 내지 100% 이하로 구성될 수 있고, 광도를 증가시키기 위해서는 0% 초과 30% 미만으로 선택하여 구성할 수 있다.
이와 같이 실시 예에 따른 반도체 소자(100)에 의하면, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이에 제공된 제1 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다. 이때, 상기 제1 영역은 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172) 사이의 간격에 대응되는 영역일 수 있다.
또한, 상기 반도체 소자(100)의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제2 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 반도체 소자(100)의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드(171) 또는 상기 제2 본딩패드(172) 사이에 제공된 제3 영역으로 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
이상에서 설명된 실시 예에 따른 반도체 소자는 반도체 소자 패키지에 적용될 수 있다. 실시 예에 따른 반도체 소자는 플립칩 본딩 방식, 다이 본딩 방식, 와이어 본딩 방식 등을 통하여 기판 또는 리드 전극에 전기적으로 연결되어 반도체 소자 패키지로 제공될 수 있다.
한편, 도 21은 본 발명의 실시 예에 따른 반도체 소자 패키지를 설명하는 도면이다. 도 21을 참조하여 실시 예에 따른 반도체 소자 패키지를 설명함에 있어, 도 1 내지 도 20을 참조하여 설명된 내용과 중복되는 사항에 대해서는 설명이 생략될 수 있다.
실시 예에 따른 반도체소자 패키지는 패키지 몸체(205), 상기 패키지 몸체(205)에 배치된 제1 패키지 전극(211)과 제2 패키지 전극(212), 상기 패키지 몸체(205) 상에 배치된 반도체 소자(100), 상기 반도체 소자(100) 위에 배치된 형광체가 구비된 몰딩부(230)를 포함할 수 있다. 예로서, 상기 반도체 소자(100)는 도 1 내지 도 20을 참조하여 설명된 실시 예에 따른 반도체 소자일 수 있다.
예로서, 상기 패키지 몸체(205)는 폴리프탈아미드(PPA: Polyphthalamide), PCT(Polychloro Tri phenyl), LCP(Liquid Crystal Polymer), PA9T(Polyamide9T), 실리콘, 에폭시 몰딩 컴파운드(EMC: Epoxy molding compound), 금속을 포함하는 재질, 세라믹, PSG(photo sensitive glass), 사파이어(Al2O3), 인쇄회로기판(PCB) 중 적어도 하나로 형성될 수 있다. 또한, 상기 패키지 몸체(205)는 TiO2와 SiO2와 같은 고굴절 필러를 포함할 수 있다.
상기 제1 패키지 전극(211)과 상기 제2 패키지 전극(212)은 도전성 물질을 포함할 수 있다. 예컨대 상기 제1 패키지 전극(211)과 상기 제2 패키지 전극(212)은 Ti, Cu, Ni, Au, Cr, Ta, Pt, Sn, Ag, P, Fe, Sn, Zn, Al 중 적어도 하나를 포함할 수 있으며, 단층 또는 다층일 수 있다.
상기 반도체 소자(100)는 상기 제1 패키지 전극(211), 제2 패키지 전극(212)과 전기적으로 연결될 수 있다. 예를 들어, 소정의 제1 범프(221), 제2 범프(222)를 통해 반도체 소자(100)는 제1 패키지 전극(211), 제2 패키지 전극(212)과 전기적으로 연결될 수 있다. 상기 반도체 소자(100)의 제1 본딩패드 및 제2 본딩패드가 상기 제1 패키지 전극(211)과 상기 제2 패키지 전극(212)에 각각 전기적으로 연결될 수 있다.
상기 제1 범프(221)와 상기 제2 범프(222)는 반사도가 80% 이상인 높은 금속 예컨대, Ag, Au 또는 Al 중 적어도 하나 또는 이들의 합금으로 형성되어 전극에 의한 광 흡수를 방지하여 광 추출 효율을 향상시킬 수 있다. 예를 들어, 제1 범프(221)와 상기 제2 범프(222)는 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P) 중 적어도 하나 또는 이들의 선택적 합금으로 형성될 수 있다.
또한 상기 반도체 소자(100)는 범프 없이 유테틱 본딩에 의해 상기 제1 패키지 전극(211)과 상기 제2 패키지 전극(212)에 실장될 수도 있다.
이상에서 설명된 바와 같이, 실시 예에 따른 반도체 소자(100)는 6면 방향으로 빛을 방출할 수 있다. 상기 반도체 소자(100)의 제1 본딩패드와 제2 본딩패드가 배치된 하부 방향으로 방출되는 빛은 상기 패키지 몸체(205)의 바닥 면에서 반사되어 상기 패키지 몸체(205)의 상부 방향으로 제공될 수 있다.
실시 예에 따른 반도체 소자(100)는, 도 1 내지 도 20을 참조하여 설명된 바와 같이, 상기 제1 패키지 전극(211) 및 상기 제2 패키지 전극(212)과의 충분한 본딩력을 제공하기 위하여 제1 본딩패드의 면적 및 제2 본딩패드의 면적이 선택되었다. 또한, 실시 예에 따른 반도체 소자(100)는 본딩력 뿐만 아니라 하부 방향으로 빛이 방출되는 효율을 향상시키기 위하여 제1 본딩패드와 제2 본딩패드가 배치된 영역으로 빛이 투과될 수 있는 영역의 크기도 고려하여 제1 본딩패드의 면적 및 제2 본딩패드의 면적이 선택되었다.
한편, 실시 예에 따른 반도체 소자에 의하면, 도 4를 참조하여 설명된 바와 같이, 반도체 소자(100)의 상부 방향에서 보았을 때, 제1 본딩패드와 제2 본딩패드의 면적의 합은, 제1 본딩패드와 제2 본딩패드가 배치된 상기 반도체 소자(100)의 상부 면 전체 면적의 70%에 비해 같거나 작게 제공될 수 있다.
이와 같이, 제1 본딩패드와 제2 본딩패드의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 70%에 비해 같거나 작게 제공되도록 함으로써, 제1 본딩패드와 제2 본딩패드가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 반도체 소자(100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 반도체 소자의 상부 방향에서 보았을 때, 제1 본딩패드의 면적과 제2 본딩패드의 면적의 합은 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 제1 본딩패드와 제2 본딩패드의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 제1 본딩패드와 제2 본딩패드를 통하여 안정적인 실장이 수행될 수 있게 된다.
실시 예에 따른 반도체 소자(100)는, 광 추출 효율 향상 및 본딩력의 안정성 확보를 고려하여, 제1 본딩패드와 제2 본딩패드의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상이고 70% 이하로 선택될 수 있다.
즉, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 반도체 소자(100)의 전기적 특성을 확보하고, 반도체 소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 0% 초과 내지 70% 이하인 경우, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)가 배치된 면으로 방출되는 광량이 증가하여 상기 반도체 소자(100)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시 예에서는 상기 반도체 소자(100)의 전기적 특성과 반도체 소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩패드(171)와 상기 제2 본딩패드(172)의 면적의 합이 상기 반도체 소자(100)의 전체 면적의 30% 이상 내지 70% 이하로 선택하였다.
또한, 다른 실시 예에 의하면, 이에 한정하지 않고, 상기 반도체 소자(100)의 전기적 특성과 본딩력을 확보하기 위해서는 70% 초과 내지 100% 이하로 구성될 수 있고, 광도를 증가시키기 위해서는 0% 초과 30% 미만으로 선택하여 구성할 수 있다.
이와 같이 실시 예에 따른 반도체 소자(100)에 의하면, 제1 본딩패드와 제2 본딩패드 사이에 제공된 제1 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다. 이때, 상기 제1 영역은 제1 본딩패드와 제2 본딩패드 사이의 간격에 대응되는 영역일 수 있다.
또한, 상기 반도체 소자(100)의 장축 방향에 배치된 측면과 이웃하는 제1 본딩패드 또는 제2 본딩패드 사이에 제공된 제2 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 반도체 소자(100)의 단축 방향에 배치된 측면과 이웃하는 제1 본딩패드 또는 제2 본딩패드 사이에 제공된 제3 영역으로 상기 발광구조물(110)에서 생성된 빛이 투과되어 방출될 수 있다.
실시 예에 따른 반도체 소자 패키지에 의하면, 상기 반도체 소자(100)의 6면 방향으로 방출된 빛이 상기 패키지 몸체(205)의 바닥면과 측면에서 반사되어 상기 패키지 몸체(205)의 상부 방향으로 제공될 수 있다.
한편, 도 22 및 도 23은 본 발명의 실시 예에 따른 반도체 소자의 두께에 따른 광도 변화를 설명하는 도면이다.
실시 예에 따른 반도체 소자는, 도 22에 도시된 바와 같이, 발광구조물(110)과 상기 발광구조물(110) 아래에 배치된 절연성 반사층(160)을 포함할 수 있다. 예로서, 상기 절연성 반사층(160)은 도 1 내지 도 20을 참조하여 설명된 제2 절연성 반사층일 수 있다.
상기 발광구조물(110)은 제1 도전형 반도체층(111), 활성층(112), 제2 도전형 반도체층(113)을 포함할 수 있다. 예로서, 상기 제1 도전형 반도체층(111)은 n-GaN층으로 제공될 수 있으며, 상기 제2 도전형 반도체층(113)은 p-GaN층으로 제공될 수 있다.
상기 활성층(112)에서 생성된 빛은 하부 방향으로 진행되어 상기 절연성 반사층(160)에서 상부 방향으로 반사되어 진행될 수 있다. 이에 따라, 상기 절연성 반사층(160)에서 반사된 빛은 상기 활성층(112)에서 생성된 빛과 간섭을 일으킬 수 있다. 예로서, 상기 절연성 반사층(160)에서 반사된 빛은 상기 제2 도전형 반도체층(113)의 두께에 따라 상기 활성층(112)에서 생성된 빛과 보강 간섭을 일으킬 수 있다.
실시 예에 따른 반도체 소자는, [표 1]에 기재된 바와 같이, 상기 제2 도전형 반도체층(113)의 두께에 따라 전기적, 광학적 특성이 변화될 수 있다. 도 23은 제2 도전형 반도체층의 두께 변화에 따른 광도(Po) 변화를 나타낸 그래프이다.
p-GaN 두께(nm) 95 110 (Ref.) 125
적분구
(Median)
If(mA) 65 150 65 150 65 150
Wd(nm) 454.4 453.9 454.9 454.4 454.8 454.3
Vf(V) 2.82 3.04 2.82 3.08 2.81 3.03
Po(mW) 114.3
(101.6%)
245.8 112.5
(Ref.)
240.5 113.1 244.2
종래 반도체 소자의 경우, 양질의 전기적 특성을 확보하기 위하여 상기 제2 도전형 반도체층(113)의 두께는 일반적으로 110 나노미터 이상으로 제공될 것이 권장되었다. 그러나, 실시 예에 따른 반도체 소자는, [표 1] 및 도 23에 도시된 바와 같이, 상기 제2 도전형 반도체층(113)의 두께가 90 나노미터 내지 100 나노미터로 제공된 경우에 광도 특성이 향상되어 검출되는 것을 볼 수 있다. 이는, 상기 제2 도전형 반도체층(113)의 두께가 90 나노미터 내지 100 나노미터로 제공된 경우에, 상기 절연성 반사층(160)에서 반사된 빛과 상기 활성층(112)에서 생성되어 방출되는 빛 간에 보강 간섭이 발생되기 때문인 것으로 해석된다.
참고로, [표 1] 및 도 23에는 도시되지 아니하였으나, 상기 제2 도전형 반도체층(113)의 두께가 90 나노미터 이하로 작아지는 경우, 광도 특성이 다시 저하되는 것으로 검출되었다.
한편, 이상에서 설명된 실시 예에 따른 반도체 소자 패키지는 복수 개가 기판 상에 어레이될 수 있고, 반도체 소자 패키지의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 반도체 소자 패키지, 기판, 광학 부재는 라이트 유닛으로 기능할 수 있다.
또한, 실시 예에 따른 반도체 소자 패키지를 포함하는 표시 장치, 지시 장치, 조명 장치로 구현될 수 있다.
여기서, 표시 장치는 바텀 커버와, 바텀 커버 위에 배치되는 반사판과, 광을 방출하며 반도체 소자를 포함하는 발광 모듈과, 반사판의 전방에 배치되며 발광 모듈에서 발산되는 빛을 전방으로 안내하는 도광판과, 도광판의 전방에 배치되는 프리즘 시트들을 포함하는 광학 시트와, 광학 시트 전방에 배치되는 디스플레이 패널과, 디스플레이 패널과 연결되고 디스플레이 패널에 화상 신호를 공급하는 화상 신호 출력 회로와, 디스플레이 패널의 전방에 배치되는 컬러 필터를 포함할 수 있다. 여기서 바텀 커버, 반사판, 발광 모듈, 도광판, 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.
또한, 조명 장치는 기판과 실시 예에 따른 반도체 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열체, 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 예를 들어, 조명 장치는, 램프, 해드 램프, 또는 가로등을 포함할 수 있다.
해드 램프는 기판 상에 배치되는 반도체 소자를 포함하는 발광 모듈, 발광 모듈로부터 조사되는 빛을 일정 방향, 예컨대, 전방으로 반사시키는 리플렉터(reflector), 리플렉터에 의하여 반사되는 빛을 전방으로 굴절시키는 렌즈, 및 리플렉터에 의하여 반사되어 렌즈로 향하는 빛의 일부분을 차단 또는 반사하여 설계자가 원하는 배광 패턴을 이루도록 하는 쉐이드(shade)를 포함할 수 있다.
한편, 도 24는 실시 예에 따른 조명장치의 분해 사시도이다.
실시 예에 따른 조명 장치는 커버(2100), 광원 모듈(2200), 방열체(2400), 전원 제공부(2600), 내부 케이스(2700), 소켓(2800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(2300)와 홀더(2500) 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈(2200)은 실시 예에 따른 반도체 소자 또는 반도체 소자 패키지를 포함할 수 있다.
상기 광원 모듈(2200)은 광원부(2210), 연결 플레이트(2230), 커넥터(2250)를 포함할 수 있다. 상기 부재(2300)는 상기 방열체(2400)의 상면 위에 배치되고, 복수의 광원부(2210)들과 커넥터(2250)이 삽입되는 가이드홈(2310)들을 갖는다.
상기 홀더(2500)는 내부 케이스(2700)의 절연부(2710)의 수납홈(2719)을 막는다. 따라서, 상기 내부 케이스(2700)의 상기 절연부(2710)에 수납되는 상기 전원 제공부(2600)는 밀폐된다. 상기 홀더(2500)는 가이드 돌출부(2510)를 갖는다.
상기 전원 제공부(2600)는 돌출부(2610), 가이드부(2630), 베이스(2650), 연장부(2670)를 포함할 수 있다. 상기 내부 케이스(2700)는 내부에 상기 전원 제공부(2600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(2600)가 상기 내부 케이스(2700) 내부에 고정될 수 있도록 한다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시 예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시 예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 특허청구범위에서 설정하는 실시 예의 범위에 포함되는 것으로 해석되어야 할 것이다.
100 반도체 소자
105 기판
110 발광구조물
111 제1 도전형 반도체층
112 활성층
113 제2 도전형 반도체층
120 전류확산층
130 오믹접촉층
141 제1 전극
142 제2 전극
150 보호층
161 제1 절연성 반사층
162 제2 절연성 반사층
163 제3 절연성 반사층
164 제4 절연성 반사층
171 제1 본딩패드
172 제2 본딩패드

Claims (9)

  1. 제1 도전형 반도체층과 제2 도전형 반도체층을 포함하는 발광구조물;
    상기 제1 도전형 반도체층 위에 배치되며, 상기 제1 도전형 반도체층에 전기적으로 연결된 제1 전극;
    상기 제2 도전형 반도체층 위에 배치되며, 상기 제2 도전형 반도체층에 전기적으로 연결된 제2 전극;
    상기 제1 및 제2 전극 상에 배치되며, 상기 제1 전극의 상면 일부를 노출하는 제1 개구부 및 상기 제2 전극의 상면 일부를 노출하는 제2 개구부를 포함하는 보호층;
    상기 제1 전극 및 상기 보호층 위에 배치되며, 상기 제1 전극의 상부 면을 노출시키는 제3 개구부를 포함하는 제1 절연성 반사층;
    상기 제2 전극 및 상기 보호층 위에 배치되고 상기 제1 절연성 반사층과 이격되어 배치되며, 상기 제2 전극의 상부 면을 노출시키는 제4 개구부를 포함하는 제2 절연성 반사층;
    상기 제1 절연성 반사층 위에 배치되며, 상기 제1 및 제3 개구부를 통해 상기 제1 전극과 전기적으로 연결된 제1 본딩패드;
    상기 제2 절연성 반사층 위에 상기 제1 본딩패드와 이격되어 배치되며, 상기 제2 및 제4 개구부를 통해 상기 제2 전극과 전기적으로 연결된 제2 본딩패드;를 포함하고,
    상기 제3 개구부는 상기 제1 개구부와 대응되는 영역에 배치되며 상기 제1 전극의 상면 상에 배치된 상기 보호층의 상부 면 일부를 노출하고,
    상기 제4 개구부는 상기 제2 개구부와 대응되는 영역에 배치되며 상기 제2 전극의 상면 상에 배치된 상기 보호층의 상부 면 일부를 노출하고,
    상기 제1 본딩 패드는 상기 제1 개구부에 의해 노출된 상기 제1 전극의 상면, 상기 제3 개구부에 의해 노출된 상기 보호층의 상면, 상기 제3 개구부에 의해 노출된 상기 제1 절연성 반사층의 내측면과 직접 접촉하고,
    상기 제2 본딩 패드는 상기 제2 개구부에 의해 노출된 상기 제2 전극의 상면, 상기 제4 개구부에 의해 노출된 상기 보호층의 상면, 상기 제4 개구부에 의해 노출된 상기 제2 절연성 반사층의 내측면과 직접 접촉하고,
    반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드의 면적과 상기 제2 본딩패드의 면적의 합은, 상기 제1 본딩패드와 상기 제2 본딩패드가 배치된 상기 반도체 소자의 상부 면 전체 면적의 70%에 비해 같거나 작고,
    상기 반도체 소자의 상부 방향에서 보았을 때, 상기 제1 본딩패드의 면적과 상기 제2 본딩패드의 면적의 합은 상기 반도체 소자의 전체 면적의 30%에 비해 같거나 큰 반도체 소자.
  2. 제1항에 있어서,
    상기 제3 개구부의 최대 폭은 상기 제1 개구부의 최대 폭보다 크고, 상기 제4 개구부의 최대 폭은 상기 제2 개구부의 최대 폭보다 큰 반도체 소자.
  3. 제1항에 있어서,
    상기 발광구조물에서 생성된 빛은, 상기 제1 본딩패드와 상기 제2 본딩패드가 배치된 상기 반도체 소자의 상부 면의 30% 이상 면적에서 빛이 투과되어 방출되고,
    상기 반도체 소자의 상부 면, 하부 면, 4 개의 측면 방향으로 투과되어 방출되는 반도체 소자.
  4. 제1항에 있어서,
    상기 제1 본딩패드와 상기 제2 본딩패드 사이에 제공된 제1 영역, 상기 반도체 소자의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드 또는 상기 제2 본딩패드 사이에 제공된 제2 영역, 상기 반도체 소자의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩패드 또는 상기 제2 본딩패드 사이에 제공된 제3 영역에서, 상기 발광구조물에서 생성된 빛이 투과되어 방출되는 반도체 소자.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
KR1020170029302A 2017-03-08 2017-03-08 반도체 소자 및 반도체 소자 패키지 KR102331570B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170029302A KR102331570B1 (ko) 2017-03-08 2017-03-08 반도체 소자 및 반도체 소자 패키지
PCT/KR2018/000839 WO2018164371A1 (ko) 2017-03-08 2018-01-18 반도체 소자 및 반도체 소자 패키지
US16/492,069 US11233176B2 (en) 2017-03-08 2018-01-18 Semiconductor device and semiconductor device package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170029302A KR102331570B1 (ko) 2017-03-08 2017-03-08 반도체 소자 및 반도체 소자 패키지

Publications (2)

Publication Number Publication Date
KR20180102763A KR20180102763A (ko) 2018-09-18
KR102331570B1 true KR102331570B1 (ko) 2021-11-26

Family

ID=63718622

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170029302A KR102331570B1 (ko) 2017-03-08 2017-03-08 반도체 소자 및 반도체 소자 패키지

Country Status (1)

Country Link
KR (1) KR102331570B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044498A (ja) * 1999-07-28 2001-02-16 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2009164423A (ja) * 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2012138499A (ja) 2010-12-27 2012-07-19 Rohm Co Ltd 発光素子、発光素子ユニットおよび発光素子パッケージ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478524B1 (ko) * 2014-12-31 2022-12-19 서울바이오시스 주식회사 고효율 발광 다이오드

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044498A (ja) * 1999-07-28 2001-02-16 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2009164423A (ja) * 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2012138499A (ja) 2010-12-27 2012-07-19 Rohm Co Ltd 発光素子、発光素子ユニットおよび発光素子パッケージ

Also Published As

Publication number Publication date
KR20180102763A (ko) 2018-09-18

Similar Documents

Publication Publication Date Title
US11233176B2 (en) Semiconductor device and semiconductor device package
KR102437770B1 (ko) 발광소자 패키지 및 광원 장치
KR20180073866A (ko) 반도체 소자
KR102473424B1 (ko) 발광소자 패키지
KR102393035B1 (ko) 발광소자 패키지
KR20220075282A (ko) 발광 소자 패키지
KR102271173B1 (ko) 반도체 소자
KR102564179B1 (ko) 발광소자 패키지
KR102539278B1 (ko) 발광소자 패키지
KR102331570B1 (ko) 반도체 소자 및 반도체 소자 패키지
US10672954B2 (en) Light emitting device package
US20200203566A1 (en) Semiconductor device and semiconductor device package
KR102369260B1 (ko) 반도체 소자
KR102237158B1 (ko) 반도체 소자 및 반도체 소자 패키지
KR102379833B1 (ko) 반도체 소자 및 반도체 소자 패키지
KR102432213B1 (ko) 발광소자 패키지
KR102401824B1 (ko) 발광소자 패키지
KR102385939B1 (ko) 발광소자 패키지
KR102369237B1 (ko) 발광소자 패키지 및 그 제조방법
KR102426846B1 (ko) 발광 소자 및 발광 소자 패키지
KR102471690B1 (ko) 발광소자 패키지
KR102413223B1 (ko) 발광소자 패키지
KR102379834B1 (ko) 발광소자 패키지
KR102471692B1 (ko) 발광소자 패키지
KR102433841B1 (ko) 발광소자 패키지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant