KR102267761B1 - 그레이딩된 중간층을 갖는 스퍼터링 타깃 조립체 및 제조 방법 - Google Patents

그레이딩된 중간층을 갖는 스퍼터링 타깃 조립체 및 제조 방법 Download PDF

Info

Publication number
KR102267761B1
KR102267761B1 KR1020187030315A KR20187030315A KR102267761B1 KR 102267761 B1 KR102267761 B1 KR 102267761B1 KR 1020187030315 A KR1020187030315 A KR 1020187030315A KR 20187030315 A KR20187030315 A KR 20187030315A KR 102267761 B1 KR102267761 B1 KR 102267761B1
Authority
KR
South Korea
Prior art keywords
layer
backing plate
sputtering target
interlayer
target
Prior art date
Application number
KR1020187030315A
Other languages
English (en)
Other versions
KR20190004702A (ko
Inventor
스테판 퍼라쎄
수잔 디. 스트로더스
신린 시
다이앤 엘. 모랄레스
Original Assignee
허니웰 인터내셔날 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허니웰 인터내셔날 인코포레이티드 filed Critical 허니웰 인터내셔날 인코포레이티드
Publication of KR20190004702A publication Critical patent/KR20190004702A/ko
Application granted granted Critical
Publication of KR102267761B1 publication Critical patent/KR102267761B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

스퍼터링 타깃 조립체는 후방 표면을 갖는 스퍼터링 타깃, 전방 표면을 갖는 배킹 플레이트, 및 타깃과 배킹 플레이트 사이에 배치된 중간층을 포함한다. 중간층은 타깃 재료의 후방 표면에 근접하게 배치된 제1 중간층 부분, 및 배킹 플레이트의 전방 표면에 근접하게 배치된 제2 중간층 부분을 포함한다. 제1 중간층 부분은, 제1 재료 및 제2 재료를 포함하고 제1 재료의 농도가 제2 재료보다 높은 제1 혼합물로 형성되고, 제2 중간층 부분은, 제1 재료 및 제2 재료를 포함하고 제2 재료의 농도가 제1 재료보다 높은 제2 혼합물로 형성된다. 제조 방법이 또한 제공된다.

Description

그레이딩된 중간층을 갖는 스퍼터링 타깃 조립체 및 제조 방법
관련 출원에 대한 상호 참조
본 출원은, 본 명세서에 참고로 전체가 모든 목적을 위해 포함되고 2016년 4월 1일 자로 출원된 미국 가출원 제62/316,701호에 대한 우선권을 주장하고 있다.
기술분야
본 발명은 물리적 증착 시스템에서 스퍼터링 타깃과 함께 사용하기 위한 스퍼터링 타깃 조립체 및 구성요소에 관한 것이다. 본 발명은 또한 적층 제조 공정을 사용하여 제조된 스퍼터링 타깃 조립체 및 구성요소에 관한 것이다.
물리적 증착 방법은 다양한 기재 위에 재료 박막을 형성하기 위하여 널리 사용된다. 그러한 증착 기술에 있어서 중요한 한 분야는 반도체 제조이다. 예시적인 물리적 증착("PVD") 장치(8)의 일부의 개략도가 도 1에 도시되어 있다. 한 가지 구성에서, 스퍼터링 타깃 조립체(10)는 타깃(14)이 접합된 배킹 플레이트(backing plate)(12)를 포함한다. 반도전성 재료 웨이퍼와 같은 기재(18)가 PVD 장치(8) 내에 있고 타깃(14)으로부터 이격되도록 제공된다. 타깃(14)의 표면(16)은 스퍼터링 표면이다. 도시된 바와 같이, 타깃(14)은 기재(18) 위에 배치되고, 스퍼터링 표면(16)이 기재(18)를 대면하도록 위치된다. 작동 시, 스퍼터링된 재료(22)가 타깃(14)의 스퍼터링 표면(16)으로부터 변위되어 기재(18) 위에 코팅(또는 박막)(20)을 형성하는 데 사용된다. 일부 실시 형태에서, 적합한 기재(18)는 반도체 제조에서 사용되는 웨이퍼를 포함한다.
예시적인 PVD 공정에서, 타깃(14)은 스퍼터링 표면(16)으로부터의 원자가 주변 분위기 내로 방출되고 그 후에 기재(18) 상에 침착할 때까지 에너지로 충격된다. 한 가지 예시적인 사용에서, 전자기기에 사용하기 위한 칩 또는 웨이퍼 상에 금속 박막을 침착시키기 위하여 플라즈마 스퍼터링이 사용된다.
타깃(14)은 PVD 침착 공정에 적합한 임의의 금속으로 형성될 수 있다. 예를 들어, 타깃(14)은 알루미늄, 바나듐, 니오븀, 구리, 티타늄, 탄탈륨, 텅스텐, 루테늄, 게르마늄, 셀레늄, 지르코늄, 몰리브덴, 하프늄, 및 이들의 합금 및 조합을 포함할 수 있다. 그러한 예시적인 금속 또는 합금이 표면 상에 막으로서 침착되도록 의도된 경우, 타깃(14)은 원하는 금속 또는 합금으로 형성되고, 그로부터 금속 원자가 PVD 동안 제거될 것이고 기재(18) 상에 침착될 것이다.
배킹 플레이트(12)는 PVD 침착 공정 동안 타깃(14)을 지지하는 데 사용될 수 있다. 본 명세서에서 논의되는 바와 같이, PVD 침착 공정은 타깃(14) 및 배킹 플레이트(12)를 포함하는 스퍼터링 타깃 조립체(10)에 대해 바람직하지 않은 물리적 변화를 야기할 수 있다. 예를 들어, PVD 침착 공정은 높은 온도를 포함할 수 있고, 이는 타깃(14)이 휘거나 변형되게 할 것이다. 이를 방지하기 위하여, 스퍼터링 타깃 조립체(10) 및 구성요소는 이러한 바람직하지 않은 물리적 변화를 감소시키도록 설계될 수 있다. 예를 들어, 배킹 플레이트(12)는 높은 열용량 및/또는 열전도율을 갖도록 구성될 수 있고, 이는 타깃(14) 및 스퍼터링 타깃 조립체(10)에 대한 바람직하지 않은 물리적 변화를 최소화 또는 방지할 수 있다.
스퍼터링 타깃 조립체(10)의 특성을 조정하기 위한 한 가지 옵션은 배킹 플레이트(12)가 어떻게 형성되는가를 제어하는 것을 포함한다. 이는 사용되는 배킹 플레이트 재료의 선택 및 재료가 제조 공정 동안 어떻게 처리되는가를 포함할 수 있다. 다른 옵션은 배킹 플레이트(12)의 조립을 제어하는 것 및 배킹 플레이트(12)의 다양한 구성요소를 형성하는 데 사용되는 방법을 포함한다.
예시적인 2개 구성요소 스퍼터링 타깃 조립체(10) 설계에서, 도 2에 도시된 바와 같이, 배킹 플레이트(12)는 타깃(14)과 별개인 구성요소로서 형성된다. 도시된 바와 같은 배킹 플레이트(12)는 단일 중실 플레이트이다. 타깃(14)은 체결, 용접, 솔더링 및 확산 접합과 같은 기법에 의해 배킹 플레이트(12)에 결합되어 스퍼터링 타깃 조립체(10)를 형성한다. 배킹 플레이트(12)는 전체 스퍼터링 타깃 조립체(10)의 기계적 특성의 강화 및 물리적 특성의 향상을 포함한 다양한 기능을 제공한다. 도 2에 도시된 바와 같은 스퍼터링 타깃 조립체(10)는 타깃(14) 및 배킹 플레이트(12)를 포함하는데, 이들 둘은 결합된 후이다. 타깃 조립체(10)는 볼트 또는 스크루에 의한 체결과 같은 기법에 의해 장착 구성요소(9)에서 PVD 시스템에 부착된다. 추가로, 일부 실시 형태에서, 냉각수(7)가 배킹 플레이트(12)에 직접 접촉한다.
타깃(14)을 배킹 플레이트(12)에 결합시키는 한 가지 방법은 2개의 구성요소를 서로 확산 접합하는 것이다. 확산 접합된 타깃에서, 일부 타깃과 배킹 플레이트 재료들의 접합은 타깃 재료와 배킹 플레이트 재료 사이의 열팽창 계수(CTE)의 큰 차이 때문에 어렵다. 예를 들어, 확산 접합된 타깃에서, 일부 타깃 재료, 예를 들어 텅스텐을 종래의 배킹 플레이트 재료, 예컨대, 알루미늄, 알루미늄 합금, 구리, 또는 구리 합금 배킹 플레이트에 접합하는 것은 이들 재료 사이의 CTE의 큰 차이 때문에 어렵다.
물체가 CTE가 상이한 금속들로 이루어진 두 몸체를 서로 결합함으로써 제조되면, 물체가 가열되는 경우, 예를 들어 접합 동안 또는 PVD와 같은 높은 온도 환경에서 사용되는 경우, 탈접합(de-bonding) 또는 심지어 크랙이 일어날 수 있다. 일례로서, 도 2에서와 같이 스퍼터링 타깃 조립체(10)를 생성하는 경우, 재료들이 고체 상태 접합에 의해 물리적으로 연결되지만 상이한 비율로 수축하는 냉각 단계 동안 타깃(14)을 배킹 플레이트(12)에 접합한 후에 계면(24)에서 열응력이 형성될 수 있다.
대체적으로, 다수의 재료를 갖는 시스템 내의 열응력은 시스템 내의 재료들 사이의 CTE의 차이에 비례한다. 온도(T)의 함수로서의 열응력(σ)과 CTE 차이의 값(ΔCTE, CTE 불일치라고도 함) 사이의 관계는 수식 1을 사용하여 나타낼 수 있다:
수식 1: σ~ ΔCTE*T
따라서, CTE 불일치가 큰 재료들의 경우, 상승된 온도는 시스템 상에서 증가된 열응력을 생성할 것이다.
국소 응력을 감소시키기 위한 일부 접근법은 하기를 포함한다: (i) 접합을 위한 낮은 온도 또는 저온 접합 기술, 예컨대, 솔더링 또는 나노접합(nanobonding)을 사용하는 것, (ii) 텅스텐(W) 타깃을 구리(Cu) 합금 배킹 플레이트에 접합하기 위해 Al과 같은 부드러운 연성 재료의 얇은 중간층을 사용함으로써 응력을 분산시키는 것, (iii) CTE 구배를 생성하도록 타깃 재료와 배킹 플레이트 재료의 CTE 사이의 CTE를 갖는 재료의 중간층을 사용하는 것.
첫 번째 접근법은 대체적으로 6 ksi 미만의 달성될 수 있는 접합 강도에 의해 제한된다. 특히 더 큰 타깃 구성, 예컨대, 300 mm 타깃 및 450 mm 타깃(즉, 300 mm 또는 450 mm 실리콘 웨이퍼 침착 공정에서 사용하기 위한 타깃)의 경우에 전형적으로 6 ksi 초과인 허용가능하고 균일한 접합 강도를 얻기 위하여 높은 온도가 통상 필요하다.
두 번째 접근법은 배킹 플레이트의 CTE와 중간층의 CTE 사이에 큰 차이가 있는 경우에, 그리고 특히 취성 재료를 더 연성인 재료로 제조된 배킹 플레이트에 접합하는 경우에 잠재적으로 실패할 수 있다. 이는 하나의 재료가 CTE 불일치의 문제를 악화시킬 수 있는 더 높은 열팽창 계수를 갖는 경우에 더 명백하다.
세 번째 접근법은 전형적으로 유용하지만, 충분히 높은 융점을 갖고 또한 타깃 재료의 열팽창 계수와 배킹 플레이트 재료의 열팽창 계수 사이의 열팽창 계수를 갖는 금속 및 합금으로 제한된다. 추가적인 고려사항은 비용이다. 타깃 재료와 배킹 플레이트 재료의 공통 쌍들, 예컨대, 구리(Cu)와 텅스텐(W) 사이의 팽창 계수를 갖는 재료는 통상 고가이고(예를 들어 몰리브덴(Mo), 니오븀(Nb), 코발트(Co), 니켈(Ni), 탄탈륨(Ta), 베릴륨(Be), 지르코늄(Zr)), 항상 구매가능하지는 않다.
전술한 내용에 대한 개선인 타깃을 배킹 플레이트에 접합하기 위한 방법이 필요하다.
일부 실시 형태에서, 스퍼터링 타깃 조립체는 후방 표면을 갖는 스퍼터링 타깃, 전방 표면을 갖는 배킹 플레이트, 및 타깃과 배킹 플레이트 사이에 배치된 중간층을 포함한다. 중간층은 타깃 재료의 후방 표면에 근접하게 배치된 제1 중간층 부분, 및 배킹 플레이트의 전방 표면에 근접하게 배치된 제2 중간층 부분을 포함한다. 제1 중간층 부분은, 제1 재료 및 제2 재료를 포함하고 제1 재료의 농도가 제2 재료보다 높은 제1 혼합물로 형성되고, 제2 중간층 부분은, 제1 재료 및 제2 재료를 포함하고 제2 재료의 농도가 제1 재료보다 높은 제2 혼합물로 형성된다.
일부 실시 형태에서, 스퍼터링 타깃 조립체를 형성하는 방법은 제1 재료 및 제2 재료를 포함하는 제1 혼합물로 스퍼터링 타깃의 표면 또는 배킹 타깃의 표면 상에 제1 층을 형성하는 단계를 포함한다. 제2 층이 제1 재료 및 제2 재료를 포함하는 제2 혼합물로 제1 층 상에 형성된다. 제1 층은 제1 재료의 농도가 제2 층보다 높고, 제2 층은 제2 재료의 농도가 제1 층보다 높다. 배킹 플레이트 또는 스퍼터링 타깃이 제2 층 상에 배열되어 스퍼터링 타깃과 배킹 플레이트 사이에 제1 층 및 제2 층을 갖는 조립체를 형성하고, 스퍼터링 타깃과, 제1 층과, 제2 층과, 배킹 플레이트는 타깃 조립체 접합 단계에서 서로 결합된다.
다수의 실시 형태가 개시되어 있지만, 본 발명의 또 다른 실시 형태가 본 발명의 예시적인 실시 형태를 도시하고 설명하는 하기의 상세한 설명으로부터 당업자에게 명백해질 것이다. 따라서, 도면 및 상세한 설명은 제한적이 아닌 사실상 예시적인 것으로 간주될 것이다.
도 1은 스퍼터링 장치의 개략도이다.
도 2는 스퍼터링 타깃 조립체의 개략도이다.
도 3은 중간층을 갖는 스퍼터링 타깃 조립체의 개략도이다.
도 4는 직접식 에너지 침착(directed energy deposition)을 이용한 적층 제조 시스템의 개략도이다.
도 5는 일부 실시 형태에 따른, 직접식 에너지 침착을 이용한 적층 제조 시스템의 개략도이다.
도 6은 일부 실시 형태에 따른, 직접식 에너지 침착을 이용한 적층 제조 시스템의 개략도이다.
도 7은 일부 실시 형태에 따른, 직접식 에너지 침착을 이용한 적층 제조 시스템의 개략도이다.
도 8은 일부 실시 형태에 따른, 직접식 에너지 침착을 이용한 적층 제조 시스템의 개략도이다.
도 9는 일부 실시 형태에 따른, 시트 라미네이션(sheet lamination)을 이용한 적층 제조 시스템의 개략도이다.
도 10은 일부 실시 형태에 따른, 시트 라미네이션을 이용한 적층 제조 방법의 도면이다.
도 11은 일부 실시 형태에 따른, 잉크 젯팅(ink jetting)을 이용한 적층 제조 시스템의 개략도이다.
도 12는 일부 실시 형태에 따른, 분말 베드 확산(powder bed diffusion)을 이용한 적층 제조 시스템의 개략도이다.
도 13은 일부 실시 형태에 따른, 저온 분무 시스템(cold spray system)의 개략도이다.
도 14는 일부 실시 형태에 따른, 플라즈마 분무 시스템의 개략도이다.
도 15a 및 도 15b는 일부 실시 형태에 따른, 스퍼터링 타깃 조립체 중간층을 생성하는 방법의 다이어그램이다.
도 16은 일부 실시 형태에 따른, 스퍼터링 타깃 조립체 중간층을 생성하는 방법의 다이어그램이다.
도 17은 일부 실시 형태에 따른, 스퍼터링 타깃 조립체 중간층을 생성하는 방법의 다이어그램이다.
도 18은 재료 내에 구배를 갖는 적층 제조로 생성된 재료의 도면이다.
도 19는 재료 내에 구배를 갖는 적층 제조로 생성된 재료의 도면이다.
도 20a 및 도 20b는 재료 내에 구배를 갖는 적층 제조로 생성된 재료의 사진이다.
도 21은 재료 내에 구배를 갖는 적층 제조로 생성된 재료의 사진이다.
도 22는 재료 내에 구배를 갖는 적층 제조로 생성된 재료의 사진이다.
적층 제조(AM)는 그레이딩된(graded) 재료 및 그에 따른, 전기 및 열 전도율과 같은 물리적 특성, 및 CTE, 연성, 취성 및 강도(항복 또는 극한 인장 강도)와 같은 재료 특성을 포함하는, 그레이딩된 특성을 갖는 재료를 생성하는 데 사용될 수 있다. AM은 특성 구배를 갖는 스퍼터링 타깃 조립체를 이루는 구성요소를 형성하는 데 사용될 수 있다.
일부 실시 형태에서, 연성, 강도, 또는 CTE의 구배와 같은 특성 구배를 갖는 재료를 생성하는 것은 유사하지 않은 CTE를 갖는 타깃과 배킹 플레이트를 접합하는 데 사용될 수 있다. 일부 실시 형태에서, 타깃 재료와 배킹 플레이트 재료 사이의 접합 계면 부근의 작은 영역에서 연성, 강도, 또는 CTE의 구배와 같은 특성 구배를 갖는 재료를 생성함으로써 유사하지 않은 CTE(즉, 큰 CTE 불일치)를 갖는 재료들의 접합에 대한 해법을 제공한다.
도 3에 도시된 바와 같이, 일부 실시 형태에서, 배킹 플레이트(30)는 특성 구배를 갖는 중간층(34)을 갖는 스퍼터링 타깃(32)에 결합될 수 있다. 배킹 플레이트(30) 및 스퍼터링 타깃(32)은 임의의 적합한 설계로 배열될 수 있다. 예를 들어, 스퍼터링 타깃(32) 및 배킹 플레이트(30)는 각각 도 3에 도시된 바와 같이 실질적으로 평면일 수 있다. 다른 실시 형태에서, 타깃 조립체는 스퍼터링 타깃(32)의 일부가 배킹 플레이트(30) 내에 형성된 리세스 또는 공동 내에 끼워맞춤되는 매설형 설계를 가질 수 있다. 중간층(34)은 스퍼터링 타깃(32) 및 배킹 플레이트(30)를 통하여 연장된 축을 따르는 그리고 스퍼터링 표면의 평면에 대체적으로 수직인 화살표(36)에 의해 나타낸 방향으로 특성 구배를 가질 수 있다.
일부 실시 형태에서, 조정된 특성 구배를 갖는 중간층(34)은 배킹 플레이트(30) 또는 스퍼터링 타깃(32)의 상부에 또는 스퍼터링 타깃(32) 및 배킹 플레이트(30) 둘 모두 상에 AM에 의해 직접 재료를 침착시킴으로써 생성될 수 있다. 중간층(34)을 침착한 후, 배킹 플레이트(30) 및 스퍼터링 타깃(32)은 중간층(34)이 배킹 플레이트(30)와 스퍼터링 타깃(32) 사이에 위치되도록 조립되고, 조립체는 서로 접합된다.
일례에서, 중간층(34)은 스퍼터링 타깃(32) 또는 배킹 플레이트(30) 상에 형성될 수 있다. 예를 들어, 일부 실시 형태에서, 제1 재료와 제2 재료의 제1 혼합물로 형성된 제1 층이 스퍼터링 타깃(32)의 후방 표면 상에 형성된다. 그 후에, 제1 재료와 제2 재료의 제2 혼합물로 형성된 제2 층이 제1 층의 상부에 형성될 수 있다. 제1 층은 제1 재료의 농도가 제2 층보다 높고, 제2 층은 제2 재료의 농도가 제1 층보다 높다. 이어서, 배킹 플레이트(30)는 배킹 플레이트(30)의 전방 표면이 제2 층에 인접하도록 제2 층의 상부에 배열될 수 있다. 이어서, 스퍼터링 타깃(32), 제1 층, 제2 층, 및 배킹 플레이트(30)는 접합 단계에서 서로 결합될 수 있다.
일부 실시 형태에서, 조정된 특성 구배를 갖는 전체 중간층(34)이 먼저 생성될 수 있고, 나중에 스퍼터링 타깃(32)과 배킹 플레이트(30) 사이에 위치 및 접합될 수 있다.
일부 실시 형태에서, 배킹 플레이트(30) 및 스퍼터링 타깃(32)은 하나 이상의 상이한 특성을 갖고, 중간층의 특성 구배는 배킹 플레이트(30)로부터 스퍼터링 타깃(32)으로의 특성의 차이를 매끄럽게 하거나 감소시킨다. 예를 들어, 중간층(34)은 다수의 층으로 구성될 수 있고, 각각의 층은 두께가 약 0.5 밀리미터(0.02 인치) 내지 약 3 밀리미터(0.1 인치)일 수 있다. 일부 실시 형태에서, 중간층(34)은 중간층(34)의 두께가 약 1 밀리미터(0.04 인치) 내지 약 10 밀리미터(0.4 인치)이도록 다수의 층으로 구성된다. 인접한 층들의 적어도 하나의 특성은, 스퍼터링 타깃(32)에 인접한 층의 특성이 스퍼터링 타깃(32)의 특성에 더 유사하고 배킹 플레이트(30)에 인접한 층의 특성이 배킹 플레이트(30)의 특성에 더 유사하도록 가변될 수 있다. 이러한 방식으로, 중간층(34)은 특성 구배를 가질 수 있다.
일례에서, 배킹 플레이트(30) 및 스퍼터링 타깃(32)은 상이한 CTE를 갖는다. 예를 들어, 배킹 플레이트(30)는 높은 CTE를 갖는 알루미늄(Al) 및 구리(Cu) 합금과 같은 배킹 플레이트 재료로 제조될 수 있고, 스퍼터링 타깃(32)은 낮은 CTE를 갖는 재료, 예를 들어 텅스텐(W)으로 제조될 수 있다. 이러한 예시적인 시스템에서, 중간층(34)은 배킹 플레이트(30)에 인접한 측부 상에서 높은 CTE를 갖는 재료 또는 재료들의 조합으로 제조될 수 있고, 스퍼터링 타깃을 대면하는 측부 상에서 더 낮은 CTE를 갖는 재료 또는 재료들의 조합으로 서서히 변할 수 있다. 중간층(34) 내의 각각의 위치에서의 재료 조성은 스퍼터링 타깃(32)의 스퍼터링 표면의 평면에 수직인 방향으로 서서히 변하는 CTE를 갖는 중간층(34) 재료를 생성하도록 선택되는데, 이는 타깃 조립체 내의 응력 및 파단(fracture)을 감소 또는 제거할 수 있다. 다른 실시 형태에서, 중간층(34)은 그에게 스퍼터링 타깃(32)에 인접한 측부에서 낮은 CTE를 그리고 배킹 플레이트(30)에 인접한 측부에서 높은 CTE를 부여하는 재료 또는 재료들의 조합으로 제조될 수 있다. 그러한 중간층은, 예를 들어, 스퍼터링 타깃(32)이 배킹 플레이트(30)보다 낮은 CTE를 갖는 경우에 사용될 수 있다.
여기서 사용되는 바와 같이, 특성 구배는 제1 위치로부터 제2 위치로의 조성 또는 재료 특성의 변화를 지칭한다. 예시적인 특성은 원소 조성, 열팽창 계수, 취성, 연성, 입자(grain) 크기, 입자 텍스처(texture), 및 재료 성분 밀도를 포함한다.
AM은 조성의 구배, 재료 성분 밀도의 구배, 입자 크기의 구배, CTE의 구배, 연성의 구배, 및/또는 입자 텍스처의 구배와 같은 특성 구배를 갖는 재료를 생성하기 위한 몇몇 방식을 제공한다. 일부 실시 형태에서, AM 기법은, 예를 들어, 상이한 열팽창 계수(CTE)를 갖는 재료들과 같은 소정 재료들을 서로 접합하는 것을 향상시키는 가변 조성 및 밀도를 갖는 재료 층들을 생성하는 데 사용될 수 있다. 특성 구배를 생성하는 데 사용되는 AM 방법에 따라서, 재료 특성은 실질적으로 매끄러운 또는 단차형 방식으로 서서히 변할 수 있다. 본 명세서에서 설명된 AM 기법을 사용하여, 재료 층들이 배킹 플레이트, 타깃 재료, 또는 둘 모두 상에 구축될 수 있다.
예를 들어, 일부 실시 형태에서, 스퍼터링 타깃(32)은 스퍼터링 타깃 재료로 형성되고, 제1 층의 열팽창 계수는 스퍼터링 타깃 재료의 열팽창 계수의 500 퍼센트 이내에 있다. 배킹 플레이트(30)는 배킹 플레이트 재료로 형성되고, 제2 층의 열팽창 계수는 배킹 플레이트 재료의 열팽창 계수의 500 퍼센트 이내에 있다. 일 실시 형태에서, 제1 층 및 제2 층 중 어느 하나의 열팽창 계수는 각각 스퍼터링 타깃 재료 및 배킹 플레이트 재료의 열팽창 계수의 300 퍼센트 미만일 수 있다.
본 발명의 방법을 수행하는 데 사용될 수 있는 다양한 AM 기법이 존재한다. 재료가 미리결정된 패턴 및 조성으로 침착되거나 레이 다운(lay down)되기 때문에, AM을 사용하는 본 발명의 부분은 인쇄 단계로 지칭될 수 있다. AM 또는 인쇄 단계는 다양한 AM 기법, 예컨대, 직접식 에너지 침착(DED), 시트 라미네이션, 분말 베드 융합, 잉크 젯팅, 저온 분무, 열 분무, 또는 플라즈마 분무 중 어느 하나를 채용할 수 있다. 예를 들어, AM 기법은 알루미늄(Al), 코발트(Co), 크롬(Cr), 구리(Cu), 철(Fe), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 니켈(Ni), 텅스텐(W), 이트륨(Y), 지르코늄(Zr) 또는 그들의 합금, 또는 강철 중 어느 하나 또는 이들의 임의의 조합으로 중간층을 생성하는 데 사용될 수 있다.
직접식 에너지 침착(DED)
직접식 에너지 침착(DED)은 직접 금속 침착(DMD), 레이저 가공식 정형 성형(laser engineered net shaping), 직접식 광 제조, 블로운 분말 AM(blown powder AM), 및 3D 레이저 클래딩(3D laser cladding)을 포함하는 다양한 용어를 커버한다. 이들 유형의 공정에서, 집속된 열 에너지가 사용되어, 재료가 침착되고 있을 때 재료를 용융시킴으로써 재료들을 융합한다. 일부 실시 형태에서, 레이저는 에너지원이고, 재료는 금속 분말 또는 와이어이다.
도 4는 집속된 열 에너지를 사용하여 재료가 침착되고 있을 때 재료를 용융시킴으로써 재료들을 융합하는 직접식 에너지 침착에 대한 대체적인 개략도를 도시한다. 이러한 공정에서는, 구축 목적물(build object)(40)이 고체 구축 플랫폼(42) 상에 생성된다. 다수의 축을 중심으로 회전할 수 있는 아암(44)이 와이어 또는 분말 형태의 재료(46)를 침착시킨다. 재료(46)는 구축 목적물(40)의 기존의 또는 고형화된 표면(48) 상으로 침착된다. 침착 후에, 재료(46)는 에너지원(52)으로부터의 레이저, 전자 빔 또는 플라즈마 아크와 같은 집속된 에너지(50)를 사용하여 용융된다. 이어서, 재료(46)는 냉각 또는 고형화되어 재료(46)의 다음의 이후 재료에 대한 기존 표면(48)이 된다. 이러한 방식으로, 재료(46)는 층층이 부가되고 고형화되어, 구축 목적물(40) 상에 새로운 재료 특징부를 생성 또는 보수(repairing)한다.
이러한 기법에서, 레이저는 에너지(50)의 공급원일 수 있고 재료(46)는 금속 분말일 수 있다. 일부 경우에, 금속 분말은 레이저에 의해 생성된 용융된 금속의 풀(pool) 상에 주입 또는 침착된다. 이러한 기법의 다른 명칭은 블로운 분말 AM 및 레이저 클래딩을 포함한다. 일부 고유한 능력은 몇몇 재료의 동시 침착을 포함하여, 기능적으로 그레이딩된 부분을 가능하게 한다. 대부분의 직접식 에너지 침착 기계는 또한, 침착 헤드를 위치설정하기 위하여 4-축 또는 5-축 운동 시스템 또는 로봇 아암을 가져서, 구축 순서가 평행한 평면들 상의 연속적인 수평 층들로 제한되지 않게 한다. 하이브리드 시스템은 또한 분말-공급형 직접식 에너지 침착을 CNC 밀링(예컨대, 4-축 또는 5-축 밀링)과 조합할 수 있다.
도 5 내지 도 8에는 본 발명에 따른 방법, DMD와 같은 직접식 에너지 침착의 시스템의 다양한 추가 설명이 예시되어 있다.
DMD 시스템(60)의 예시적인 개략도가 도 5에 도시되어 있다. 일부 실시 형태에서, 시스템(60)은 침착 헤드(64)를 위치설정하기 위하여 4-축 또는 5-축 컴퓨터 수치 제어(CNC) 제어식 운동 시스템 또는 로봇 아암을 가져서, 구축 순서가 평행한 평면들 상의 연속적인 수평 층들로 제한되지 않게 한다. 침착 헤드(64)는 레이저, e-빔 또는 플라즈마 용접 토치(torch)와 같은 강력한 그리고 집속된 열원(66), 및 적어도 제1 공급기(68)를 포함한다. 일부 실시 형태에서, 제1 공급기(68)는 분말 형태의 금속과 같은 구축 재료(70)를 전달하도록 구성된다. 금속 분말은 불활성 기체에 의해 온보드(on-board) 시스템으로부터, 일부 실시 형태에서, 미리정의된 속도로, 제1 공급기(68)로 이동되고, 횡단하는 에너지원(74)에 의해 생성된 용융된 금속의 풀(72) 상에 침착된다. 용융된 풀(72)은 용융되어 유입되는 구축 재료 및 기재의 이전 층의 상부의 일부 둘 모두를 포함할 수 있다. 용융된 재료의 풀(72)은 하나 또는 다수의 공급기로부터 나오는 분말들의 결합 및 혼합을 가능하게 하고, 결과적으로, 주어진 조성을 갖는 층이 생성된다. 빠른 냉각 속도로 인해, 고형화는 극히 신속하여, 이제는 고체 층이 존재하는, 이동하는 에너지 빔(74) 거의 바로 뒤에서 일어난다. 일부 실시 형태에서, 각각 상이한 조성을 갖는 2개의 층은 각각의 층 사이에서 제1 공급기의 조성을 변화시킴으로써 침착될 수 있다. 예를 들어, 텅스텐(W) 또는 구리(Cu)의 높은 농도와 같은 제1 조성을 갖는 제1 층(76)이 구축 플랫폼, 스퍼터링 타깃, 배킹 플레이트 또는 이전에 침착된 층과 같은 기재(71) 상에 레이 다운된다. 다음으로, 제1 공급기(68)로부터 나오는 재료의 조성은 변화되어 제1 층(76)과는 상이한 텅스텐(W) 대 구리(Cu)의 비를 갖는 제2 층(78)이 레이 다운된다. 이러한 공정이 반복된 후에, 구배 조성을 갖는 중간층(80)이 형성된다.
일부 실시 형태에서, 둘 이상의 재료의 제1 농도와 같은 제1 조성을 갖는 제1 층(76)이 레이 다운된다. 다음으로, 제1 공급기(68)로부터 나오는 재료의 조성은 변화되어 동일한 재료들의 상이한 비를 갖는 제2 층(78)이 레이 다운된다. 이러한 공정이 다수 회 반복된 후에, 구배를 갖는 중간층(80)이 형성된다. 각각의 층이 이전의 층과는 상이한 재료를 갖는 개별 층들이 형성될 수 있다는 것이 또한 구상된다. 예를 들어, 제1 층(76)의 조성은 특정 CTE를 갖는 층을 생성하기 위하여 선택될 수 있다. 제1 층(76)은 제1 재료 및 제2 재료를 포함할 수 있다. 더욱이, 제1 층(76)은 특정 CTE를 달성하기 위하여 제3 재료 또는 임의의 수의 추가 재료를 포함할 수 있다. 후속 층의 CTE가 제1 층(76)보다 높은 한, 제1 층(76)에 존재하는 것과 동일한 재료들의 상이한 비를 갖는, 또는 가능하게는, 제1 층(76)과는 상이한 재료를 갖는 후속 층이 형성될 수 있다. 다시 말하면, 각각의 층의 CTE가 중간층의 일 측부로부터 반대편 측부로의 방향으로 구배를 형성하는 한, 각각의 층은 상이한 비로 맞닿은 층과 동일한 재료를 가질 수 있거나, 상이한 재료를 가질 수 있다. 이러한 방식으로, 전체 중간층이 형성될 수 있는데, 각각의 개별 층의 CTE가 이전에 형성된 층보다 높거나 낮은 한, 각각의 층은 이전의 층과 상이한 재료 조성을 갖는다.
도 6에 도시된 바와 같이, 재료 층이 놓이는 동안 연속적인 층을 위하여 준비되고 있는 재료를 사용자가 변경하는 것을 가능하게 하는 2개 공급기 시스템을 갖는 것이 가능하다. 시스템(60)은, 침착 헤드(64)가 제1 재료(84)를 침착할 수 있는 제1 공급기(68) 및 제2 재료(86)를 침착할 수 있는 제2 공급기(82) 둘 모두를 갖는다는 것을 제외하고는 도 5에 도시된 것과 유사하다. 제1 공급기(68) 및 제2 공급기(82) 둘 모두를 사용하여, 상이한 조성을 갖는 층들이 각각의 층에 대해 새로운 조성을 갖는 공급기들 사이를 전환함으로써 더 빠르게 침착될 수 있다. 예를 들어, 둘 이상의 성분의 제1 비와 같은 제1 조성을 갖는 제1 층(76)이 제1 공급기(68)에 의해 레이 다운된다. 다음으로, 제1 층(76)에 존재하는 비와 상이한 둘 이상의 성분의 제2 비를 갖는 후속 층(78)이 제2 공급기(82)에 의해 레이 다운된다. 제2 공급기(82)가 재료를 놓는 동안, 제1 공급기(68)로부터 나오는 재료의 조성은 변경된다. 이러한 방식으로, 구배 재료를 갖는 중간층(80)이 생성된다.
도 7 및 도 8에 도시된 바와 같이, 각각의 공급기의 토출 속도의 정밀한 제어에 의해 둘 이상의 공급기로부터 나오는 분말의 각각의 양을 변화시킴으로써 침착 동안 각각의 층의 조성을 조정하는 것이 가능하다. 최종 결과는 입력된 컴퓨터 이용 설계(CAD) 모델의 것과 형상 및 기하학적 형태가 동일한 상이하고 잠재적으로 새로운 조성 또는 다수의 층을 갖는 복합 재료의 3D 침착물이다.
도 7 및 도 8에 도시된 바와 같이, 일부 실시 형태에서, 시스템(60)은 적어도 2개의 공급기를 갖는 침착 헤드(64)를 포함할 수 있다. 도 7에 도시된 바와 같이, 제1 공급기(68)는 둘 이상의 성분의 제1 비를 갖는 것과 같은 특정 재료 조성을 갖는 제1 재료(84)를 침착하는 데 사용될 수 있다. 제2 공급기(82)는 제1 재료(84)와 상이한 둘 이상의 성분의 비를 갖는 재료 조성을 갖는 제2 재료(86)를 침착하는 데 사용될 수 있다. 각각의 공급기는 이전에 형성된 층 상에 재료를 동시에 놓고 있을 수 있다. 재료 내의 각각의 원소 또는 합금의 비는 침착 공정 동안 제어될 수 있고, 따라서 각각의 층의 조성은 침착 공정이 일어나고 있을 때 조정될 수 있다. 예를 들어, 제1 공급기(68)에 의해 침착되는 제1 재료(84)는 모두 구리(Cu)일 수 있는 한편, 제2 재료(86)는 모두 텅스텐(W)일 수 있다. 대안으로, 제1 공급기(68)에 의해 침착되는 제1 재료(84)가 구리(Cu)와 텅스텐(W)의 조합일 수 있는 한편, 제2 재료(86)는 알루미늄(Al)과 텅스텐(W)의 조합일 수 있다. 일부 실시 형태에서, 제1 재료(84) 및 제2 재료(86)는 다양한 조합으로 3개의 성분을 포함할 수 있다. 각각의 공급기로부터 침착되는 재료의 양을 제어함으로써, 각각의 층의 재료 조성은 재료가 놓이고 있을 때 제어될 수 있다. 각각의 층이 형성되는 바로 그 때에 변경될 수 있는 재료 구배(80)를 갖는, 도 8에 도시된 바와 같은, 중간층(88)이 결과이다.
일부 실시 형태에서, 공급원료(feedstock)는 분말 대신 와이어를 포함할 수 있다. 본 예에서, 열원은 와이어를, 이들이 용융된 풀 내로 포획되고 혼합되기 전에, 미세 분말로 용융 및 원자화(atomize)할 수 있다.
일부 실시 형태에서, DMD 시스템은 10 ppm 미만일 수 있는 산소 및 수분 레벨을 유지하기 위하여 아르곤으로 또는 높은 진공으로 퍼지된 기밀 밀봉된 챔버를 갖는다. 그러한 환경은 최상의 품질의 재료를 보장하기 위하여 산화 및 오염을 방지하고 부품들을 청결한 상태로 유지하는 것을 돕는다. 분말 공급 시스템 및 토출된 분말은 또한 아르곤과 같은 기체 차폐부에 의해 둘러싸여서, 압력뿐만 아니라 추가 보호를 제공한다.
시트 라미네이션
시트 라미네이션은 상이한 재료의 얇은 층들의 평행한 적층물을 생성할 수 있는 다른 3D 인쇄 기법이다. 시트 라미네이션은 재료 시트들이 접합되어 3D 목적물을 형성하는 AM 공정이다. 시트 라미네이션은 배킹 플레이트 또는 타깃 재료의 상부에 상이한 CTE를 갖는 얇은 포일(foil)들의 적층물을 생성하는 데 사용될 수 있다.
도 9에 도시된 바와 같이, 미리결정된 비의 성분들을 갖는 구축 재료의 미리형성된 재료 시트(100)가 롤러(104) 및 선택적으로는 벨트(106)와 같은 재료 시트(100)를 제공하기 위한 추가 디바이스에 의해 절단 베드(102) 상의 제자리에 위치된다. 재료 시트(100)는, 접착제 또는 에너지원을 사용하여, 이전에 접합된 층(108) 위에 특정 순서로 제자리에 접합된다. 이어서, 요구되는 형상이, 레이저 또는 나이프(knife)와 같은 절단 공구(110)에 의해 접합된 재료 시트(100)로부터 절단된다. 절단 또는 접합 단계는 역으로 될 수 있고, 대안으로, 재료 시트(100)는 위치 및 접합되기 전에 절단될 수 있다. 금속의 경우, 시트 재료는 종종 금속 테이프 또는 포일의 형태로 제공된다. 특히, 초음파 적층 제조(UAM)에서, 금속 포일과 테이프는 또한 트윈 고주파 트랜스듀서에 의해 공급된 초음파 에너지와 시스템의 롤링 소노트로브(rolling sonotrobe)에 의해 생성된 압축력의 조합에 의해 서로 용접될 수 있다. 시트 라미네이션 기술은 완전한 CNC-기계가공 능력과 조합될 수 있다.
일부 실시 형태에서, 특히 금속 및 합금에 아주 적합한 시트 라미네이션 기법의 한 가지 유형은 초음파 적층 제조(UAM)이다. 도 10에 도시된 바와 같이, UAM은 2개의 초음파 트랜스듀서(120) 및 용접 혼(horn)(122)을 포함하는 롤링 초음파 용접 시스템을 사용한다. 재료 포일(123)은 용접 혼(122)과 기재(124), 예를 들어 다른 재료 포일 사이에 배치될 수 있다. 높은 주파수(예컨대, 20,000 헤르츠)의 초음파 진동이 디스크 형상의 용접 혼(122)으로 전달되고, 이어서 용접부를 생성하기 위하여 높은 압력 하에서 함께 보유된 포일(123)에 적용된다. 이러한 방법은 초음파 운동으로 인한 마찰 및 압력에 의해 이루어지는 저온 용접을 제공한다. 제1 단계에서, 반복적인 초음파 전단 운동은 어떠한 표면 산화물도 파괴하여 어떠한 표면의 거친 부분도 평탄하게 한다. 후속 공정에서, 미세하게 거친 부분은 초음파 운동에 의해 붕괴된다. 결과적으로, 혼으로부터의 열 및 압력은 고체 상태 접합부의 형성으로 이어진다.
UAM은 통상 롤링 초음파 용접 시스템을 CNC 밀링 능력과 조합하여, 우수한 공차 또는 형상을 보장하고 3D 형상 및 기하학적 형태가 입력된 CAD 설계를 따르는 것을 보장한다. 예를 들어, 표면 내의 구멍 또는 변화 부분은 필요한 경우 밀링될 수 있다. UAM은 배킹 플레이트 재료의 상부에, 다양한 비의 티타늄(Ti), 알루미늄(Al), 또는 구리(Cu)를 갖는 포일들과 같은 용이하게 입수가능한 재료 포일들의 다수의 적층물을 구축하기 위한 매우 효과적인 기법일 수 있다. 수반되는 낮은 온도는 제조 동안 열응력을 감소시킨다. 또한, UAM이 분말 대신 고체 포일을 활용하기 때문에, 이는 각각의 층 내의 다공성(porosity)의 원인을 제거한다.
금속 및 합금으로 제조된 3D 구조물을 구축하는 데 사용될 수 있는 다른 AM 기법은 결합제 젯팅, 분말 베드 융합, 저온 분무, 열 분무, 및 플라즈마 분무를 포함한다.
결합제 젯팅
결합제 젯팅은, 도 11에 도시된 바와 같이, 액체 접착제 공급부(140)를 통하여 선택적으로 분배되고 잉크젯 프린트 헤드(142)의 노즐을 통하여 침착되어 분말 베드(144) 내에서 분말 재료들을 결합시키는 액체 접합제를 수반한다. 결합제 젯팅에 있어서, 분배된 재료는 구축 재료가 아니고, 오히려 원하는 형상으로 분말을 보유하기 위해 분말 베드(144) 상에 침착되는 액체이다. 분말 재료는 롤러(150)를 사용하여 분말 공급부(146)로부터 이동되어 구축 플랫폼(148) 위에 분산된다. 프린트 헤드(142)는 필요한 곳인 분말 베드(144)의 상부에 결합제 접착제(152)를 침착시킨다. 구축 플랫폼(148)은 구축 목적물(156)이 구축되는 동안 하강된다. 일단 이전에 침착된 층이 접합되었으면, 분말의 다른 층이 롤러(150)에 의해 분말 공급부(146)로부터 구축 목적물(156) 위로 분산된다. 구축 목적물(156)은 분말이 결합제 접착제(152)에 결합되는 곳에서 형성된다. 미결합 분말은 구축 목적물(156)을 둘러싸는 분말 베드(144) 내에 남아 있다. 공정은 전체 구축 목적물(156)이 제조될 때까지 반복된다.
결합제 젯팅에 의해 생성된 금속 부품은 통상, AM 구축 공정 후에 소결되고 제2 금속의 침투가 이루어져야만 한다. 일례는 스테인리스 강, 청동, 또는 철 부품에 대한 청동 침투제의 사용이다. 다른 침투제는 알루미늄(Al), 유리 또는 탄소 섬유일 수 있다. 구축후 가열 사이클(post-build furnace cycle) 동안, 결합제는 전소되고(burned out) 청동은 부품 내로 침투되어 금속 합금을 생성한다. 이러한 기법은 그레이딩된 조성을 생성하는 데 사용될 수 있다. 그러나, 분말 베드의 사용 외에, 이러한 기법은 그레이딩된 조성을 생성하는 데 하기와 같은 다른 잠재적인 단점을 갖는다: i) 소결 및 침투 단계의 추가 비용, ii) 침투 단계 동안 원하지 않는 다공성에 대한 더 큰 위험, 및 iii) 침투제 재료의 수의 제한 및 그에 따른 달성가능한 조성의 수의 제한.
분말 베드 융합
분말 베드 융합은 도 12에 도시된 것과 같이, 레이저와 같은 열 에너지가 분말 베드의 영역을 선택적으로 융합하는 AM 방법이다. AM 디바이스는 금속 또는 금속 합금 분말과 같은 구축 재료(160)의 베드를 포함할 수 있다. 구축 재료(160)는 또한 구축되는 3차원 구조물(164)을 보유하기 위한 구축 플랫폼(166)의 상부에 층층이 침착될 수 있다. 구축 재료(160)는 상하로 층층이 부가되고 고형화되어 3차원 구조물(164)을 점진적으로 형성할 수 있다. 구축 플랫폼(166)은 종종 구축 재료(160)에 대해 상부 또는 하부로 이동하는 엘리베이터(168)에 부착되어 구축 재료(160)의 추가 층을 부가하는 것을 돕는다. 용융 또는 경화 장치(162)가 대체적으로 구축 플랫폼(166) 위에 위치된다. 경화 장치(162)는 금속과 같은 구축 재료(160)를 용융시키기 위한 디바이스를 포함할 수 있거나, 라미네이트 또는 다른 재료를 경화하기 위한 경화 디바이스를 포함할 수 있다. 용융 또는 경화 장치(162)는 종종 구축되는 재료의 다양한 위치를 용융시키기 위하여 구축 플랫폼(166)에 관하여 용융 또는 경화 장치(162)를 이동시키는 래스터(raster)(170)에 연결된다. 일부 실시 형태에서, AM 장치는 재료 베드(160)를 갖지 않지만, 그 대신 용융 장치(162)가 재료를 구축 플랫폼(166) 상에 용융시키고 분배하고 후속 재료 층을 부가하여 3차원 구조물(164)을 구축하는 디스펜서를 포함한다. 엘리베이터(168) 및 용융 및 경화 장치(162)는 엘리베이터(168) 및 용융 및 경화 장치(162)의 이동에 기초하여 3차원 구조물(164)이 어떻게 구축되는지를 통제하는 제어 시스템(172)에 의해 제어된다.
열 에너지는 분말 재료의 층의 선택된 부분을 용융시키고, 이는 이어서 그가 냉각됨에 따라 고체상으로 변하게 된다. 금속 부품의 경우, 앵커(anchor)가 부품을 베이스 플레이트에 부착시킬 수 있고 하향하는 구조물을 지지할 수 있다. 이는, 앵커가 사용되지 않는 경우 열응력 및 뒤틀림을 야기하는 높은 열 구배를 생성할 수 있는 금속 분말의 높은 융점으로 인해 필요하다. 분말 베드 융합에 대한 다른 통상의 명칭은 레이저 용융(LM), 선택적 레이저 용융/소결(SLM/SLS), 직접 금속 레이저 소결(DMLS) 및 전자 빔 용융을 포함한다. 일부 실시 형태에서, 타깃 재료 또는 배킹 플레이트는 분말 베드 내에 삽입될 수 있고 기재로서 사용될 수 있는데, 그 위에 다양한 층이 침착되고 이어서 레이저에 의해 선택적으로 어닐링되어(annealed) 상기 문단에서 설명된 바와 같이 입자 크기의 구배를 생성한다.
저온 분무
저온 분무는 밀한(dense) 코팅 또는 자유형태(freeform)를 생성하기에 충분한 운동학적 에너지를 사용하여 기재에 대해 구축 재료를 추진시키는 것을 수반한다. 저온 분무는 구축 재료의 용융을 야기하지 않고 따라서 상대적으로 낮은 온도에서 수행될 수 있다. 공정은 소성 변형에 의해 침착물을 형성하기 위하여 높은 속도(예컨대, 약 500 m/s 내지 1500 m/s)로 고체 입자를 분무함으로써 수행될 수 있다. 저온 분무 기법이 사용되어 금속 산화를 피할 수 있고 높은 밀도의 단단한 금속 침착물을 형성할 수 있다.
도 13에 도시된 바와 같이, 일부 실시 형태에서, 본 방법은 드 라발(de Laval) 또는 수렴 발산 노즐(180)을 통하여 가열 가압된 캐리어 기체(178)를 추진하는 단계를 포함한다. 기체가 아음속으로 유동하고 있는 경우, 기체는 압축가능하고 소리가 그를 통하여 전파될 것이다. 드 라발 노즐에서, 노즐의 단면이 감소되는 노즐의 수렴 섹션(182)에서, 초크(choke)가 형성된다. 기체 유동이 등엔트로피이기 때문에, 기체 속도는 단면이 최소인 곳에서 음속이 될 것이다. 기체가 노즐의 발산 섹션(184)으로 들어감에 따라, 기체는 팽창하고 초음속에 도달한다. 구축 재료(186)는 초크 점으로부터 상류 또는 하류에서 기체 흐름 내로 주입된다. 캐리어 기체(178)는 구축 재료(186)를 노즐(180)의 외부로 운반한다. 노즐(180)로부터의 구축 재료(186)의 이탈 속도는 잘 접합된 코팅(190) 및 밀한 구축 층을 형성하기 위하여 그가 기재(188)와의 충돌 시 소성 변형되도록 하기에 충분히 높아야만 한다. 따라서, 이러한 형태의 노즐을 사용하여, 초음속 이탈 속도가 가능하고, 그에 따라서 구축 재료(186)는 접합을 생성하는 데 요구되는 필요 입자 속도에 도달한다. 저온 분무 적층 제조를 사용하여 티타늄(Ti), 코발트(Co), 크롬(Cr), 및 합금 예컨대, 티타늄-알루미늄-바나듐(TiAlV) 합금, 및 니켈(Ni)계 합금을 포함하는 소정 금속으로부터 구축 목적물을 생성하는 것이 현재 가능하다.
열 분무
열 분무 방법, 예컨대, 플라즈마 분무, 고속 산소 연료(HVOF) 분무, 아크 분무, 및 화염(flame) 분무는 대체적으로 열원에 의해 구축 재료를 액적으로 용융시키는 것 및 용융된 구축 재료를 고속으로 기재 또는 구축 표면 상에 분무하는 것을 수반한다. 구축 재료는 화학적 연소, 플라즈마, 또는 전기 아크와 같은 다양한 에너지원에 의해 용융될 수 있다. 금속 구축 재료는 분말 또는 와이어 또는 금속 매트릭스 복합물과 같은 공급원료로서 제공될 수 있다.
도 14에 도시된 바와 같이, 일부 실시 형태에서, 플라즈마 분무 장비는 유동 경로를 따라서 인라인으로 된 캐소드(194)와 애노드(195)의 조합에 의해 가속되는 플라즈마 기체(192)를 포함할 수 있다. 구축 재료(196)는 구축 재료(196)를 입자 흐름(197)으로서 노즐의 외부로 운반하는 플라즈마 기체(192)의 흐름 내로 도입된다. 구축 층(198)은 액적을 기재(199) 상에 평탄화함으로써 형성된 라멜라(lamella)로 지칭되는 구축 재료의 다수의 팬케이크형 침착물로 이루어진다.
중간층을 형성하는 AM 방법
도 15a 및 도 15b는 일부 실시 형태에 따른, AM 방법과 함께 사용될 수 있는 처리 단계를 설명한다.
일부 실시 형태에서, 배킹 플레이트와 스퍼터링 타깃 사이에 입자 크기 및 텍스처의 구배를 갖는 중간층을 생성하기 위하여 사용될 수 있는 예시적인 형태의 AM은 DMD 및 DED(도 15a) 및 시트 라미네이션(도 15b)을 포함한다. 도 15a에 도시된 바와 같이, DMD 공정은 단계(200)에서 제1 조성의 분말형 금속의 층을 배킹 플레이트 상에 침착하고 열 에너지를 사용하여 분말을 융합 및 혼합하고 제1 층 조성을 생성함으로써 시작한다. 단계(202)에서, 이전에 놓인 층보다 점진적으로 더 높은 농도의 제1 재료 및 대응하는 점진적으로 더 낮은 농도의 제2 재료를 각각 갖는 후속 재료 층들이 놓인다. 단계(202)에서, 입자 크기의 구배는 열 에너지원의 출력(power), 스캐닝 속도, 냉각 속도, 초기 분말 크기 및 후속 열 처리에 의해 제어된다. 중간층을 생성하는 경우, 최종 층의 분말의 조성은 대체적으로 스퍼터링 타깃 재료의 조성과 동일하거나 유사하다.
일단 전체 중간층이 형성되면, 이는 다음 단계 전에 중간층의 표면을 준비하기 위하여 CAD 설계에 따라서 CNCL 밀링을 사용하여 단계(204)에서 표면 처리될 수 있다. 단계(206)에서, 스퍼터링 타깃이 중간층에 부가된다. 이는, 중간층 내의 어떠한 결함도 치유하는 것을 도울 수 있는 적합한 임의의 접합 단계를 사용하여 수행될 수 있다. 일부 실시 형태에서, 고온 등압 가압(hot isostatic pressing) "히핑(HIPping)"과 같은 확산 접합 방법이 사용될 수 있다. 최종적으로, 단계(208)에서, 배킹 플레이트와 중간층과 스퍼터링 타깃이 결합된 타깃 조립체는, 예를 들어, 표면을 매끄럽게 하기 위하여 최종 기계가공 단계를 거칠 수 있다.
도 15b는 초음파 적층 제조와 같은 시트 라미네이션을 이용한 예시적인 공정을 도시한다. 도 15b에 도시된 시트 라미네이션 방법에서, 각각의 재료 시트는 2개의 금속 또는 금속 합금의 원하는 상대 함량 비를 가질 수 있는 미리결정된 특정 조성을 갖는다. 따라서, 시트는 제어되는 순서로 배치 및 결합되어야만 한다. 단계(220)에서, 배킹 플레이트의 금속 농도와 유사한 금속 농도를 갖는 제1 재료 시트가 배킹 플레이트 위에 놓이고 그에 결합된다. 단계(222)에서, 높은 농도의 제1 금속으로부터 높은 농도의 제2 금속으로 서서히 변하는 금속 농도를 갖는 후속 재료 시트가 순서대로 부가되고 서로 결합된다. 단계(224)에서, 중간층은 중간층의 표면을 처리하기 위하여 CNC 선반 또는 다른 방법을 거칠 수 있고, 접합 단계를 위하여 이를 준비한다. 접합 단계(226)는 스퍼터링 타깃을 중간층 및 배킹 플레이트에 결합하기 위한 임의의 적합한 방법일 수 있다. 일부 실시 형태에서, 히핑과 같은 확산 접합 방법이 사용될 수 있다. 최종적으로, 단계(228)에서, 배킹 플레이트와 중간층과 스퍼터링 타깃이 결합된 타깃 조립체는, 예를 들어, 표면을 매끄럽게 하기 위하여 최종 기계가공 단계를 거칠 수 있다.
도 16 및 도 17에 도시된 바와 같이, 일부 실시 형태에서, AM 공정은 스퍼터링 타깃(도 16)에 대해 직접 또는 배킹 플레이트(도 17)에 대해 직접 수행될 수 있다. 일부 실시 형태에서, 중간층은 배킹 플레이트 및 스퍼터링 타깃과 완전히 별개로 AM에 의해 형성될 수 있고, 그 후에 배킹 플레이트와 스퍼터링 타깃 사이에 위치되어 이들에 접합될 수 있다. 도 16 및 도 17은 또한, 조성, 특성, 예컨대, 미세구조물의 입자 크기 및 텍스처에 더하여, 각각의 층의 다른 특성을 제어하는 방법을 예시한다.
도 16에 도시된 바와 같이, 단계(230)에서, 분말형 층이 타깃 상에 놓이고 열 에너지가 사용되어 분말을 융합한다. 이러한 동일한 단계는 도 16에 도시된 바와 같이 타깃에 대해 직접, 또는 도 17의, 단계(240)에 도시된 바와 같이 배킹 플레이트에 대해 직접 수행될 수 있다. 열 에너지는 입자를 적합한 크기로 조정하기 위하여 제어될 수 있다. AM 공정은 매우 작은 양의 재료를 한 번에 용융시킨다. 결과적으로, 전통적인 공정에서보다 훨씬 더 빠른 매우 신속한 고형화가 일어나서, 캐스팅 또는 분말 야금과 같은 전통적인 공정과 비교하여 부품 전체에 걸쳐 더 균일하고 더 미세한 미세구조물을 생성한다. 또한, 합금의 경우, 합금 원소의 분리(segregation)가 훨씬 더 작은 규모로 일어난다. 이는 대체적으로 타깃 재료 상에 침착된 AM 층이 타깃 재료보다 더 작고 더 균일한 입자 크기를 가질 것임을 의미한다.
다음으로, 도 16의 단계(232) 및 도 17의 단계(242)에서, 분말의 추가 층이 부가되고 융합된다. 각각의 재료 층은 이전의 층과 상이한 재료 농도를 가질 수 있고, 또한 이전의 층과 상이한 입자 크기를 가질 수 있다. 더욱이, 각각의 층의 입자 크기는 아래에서 설명되는 바와 같이 에너지원을 제어함으로써 제어될 수 있다.
입자 크기의 추가 제어는 AM 공정 중에 침착된 층 내에서 가능하다. 도 16의 단계(234) 및 도 17의 단계(244)에서, 사용된 열 에너지의 양은 제어될 수 있는데, 예를 들어 출력이 변경될 수 있고, 스캐닝 속도가 가변될 수 있다. 한 가지 옵션은 레이저 또는 e-빔 공급원을 사용함으로써 AM 단계 중에 중간 국소 열 처리를 수행하는 것이다. 이는 일단 소수의 층이 침착되었고 이미 고형화되었으면 수행될 수 있다. 이어서, 레이저 또는 e-빔 공급원의 출력 및 스캐닝 패턴이 어떠한 용융도 유도하지 않고서 침착된 층의 입자 크기를 특정 값으로 성장시키기에 충분한 열을 생성하도록 낮아진다. 이러한 방법은 주어진 입자 크기를 갖는 몇몇 침착된 층을 각각이 포함하는 몇몇 영역을 생성할 수 있다. 다른 옵션은 AM 침착 공정을 위하여 다양한 크기의 분말을 선택하는 것이다. 일반적으로, 더 미세한 분말이, 용융 조건이 최적화되는 한, 더 미세한 최종 입자 크기를 부여할 수 있다. 더 미세한 분말은 통상 더 고가이고, 비용은 벌크 조각(bulk piece)의 재료의 경우 통상 더 높다. 그러나, 상대적으로 훨씬 더 작은 부피의 침착물이 타깃의 일 측부 상에 사용된 경우 비용은 허용가능할 수 있다. 다른 옵션은, 일단 모든 층이 레이저원을 사용함으로써 또는 종래의 오븐 내의 전체 챔버를 제위치에서 가열함으로써 침착되면, 전체 층에 걸쳐 전체로서 열 처리를 수행하는 것이다. 그러한 경우에, 입자 크기 성장은 앞서 설명된 옵션에서와 같이 국소화되지 않고 전체 침착물을 가로질러 더 균일하게 일어난다.
도 16의 단계(236) 및 도 17의 단계(246)에서, 이전의 옵션에서 설명된 바와 같은 유사한 방법이 사용되고 접합을 위한 준비를 포함하는데, 접합은 바람직하게는 히핑, 최종 기계가공 및 패키징에 의한 것이다. 입자 크기는 조성 및 밀도보다 열적으로 덜 안정적일 수 있고, 그에 따라서 어떠한 입자 크기 구배도 열 및 온도에 더 민감할 수 있다. 스퍼터링 타깃의 경우에, 이는 실제로, 접합 온도(통상, 300℃ 내지 500℃)가, 통상 0.4 내지 0.5Tm - 여기서 Tm은 주어진 재료의 융점임 - 에서 일어나는 재료의 입자 성장의 온도보다 훨씬 낮아야 한다는 것을 의미한다. 예를 들어, 텅스텐(W)의 융점은 3410℃인데, 이는 0.4Tm이 약 1360℃이고, 그러므로 접합 단계가 170℃ 내지 500℃에서 수행되는 경우 입자 성장이 텅스텐(W)을 포함하는 그레이딩된 다층에서 일어나지 않을 것임을 의미한다.
AM의 한 가지 추가 이점은 접합 표면이 더 정밀하게 제조될 수 있고, 개선된 또는 우수한 접합 강도를 생성하도록 제어될 수 있다는 것이다. 예를 들어, 오목부(dent), 단차, 홈, 또는 키(key)와 같은 특징부가 중간층과 스퍼터링 타깃 또는 배킹 플레이트 사이의 접합 강도를 개선하기 위하여 중간층의 표면에 인쇄될 수 있다. AM 기법에 의해 이들 특징부가 더 정제되고 복잡하게 될 수 있다. 니어 네트 형상(near net shape) 제조는 제조 시간 및 재료 비용을 감소시킨다. 더욱이, DED, DMD, 및 UAM을 포함하는 AM 기법은 CNC 밀링 능력과 조합될 수 있다. 일부 실시 형태에서, CNC 밀링은 우수한 또는 개선된 표면 마감 및 치수 공차를 제공하기 위하여 AM과 조합하여 사용될 수 있는데, 예를 들어, CNC 밀링은 접합 단계를 용이하게 하기 위하여 그레이딩된 중간층의 상부 표면 상에 홈을 기계가공하는 데 사용될 수 있다. 예를 들어, CNC 밀링은 중간층의 면을 가로질러 삼각형 오목부로 이루어진 표면을 생성하는 데 사용될 수 있다.
구배 중간층 및 배킹 플레이트 조립체에 대한 타깃의 고체 상태 접합이 다음으로 수행된다. 일부 실시 형태에서, 히핑이 바람직한데, 이는 그가 비교적 높은 온도에서 부품 상에 모든 방향으로부터의 등방성 압력을 가하기 때문이다. 이러한 방법은 확산 및 다공성의 감소를 촉진시키는 것을 돕는 한편, 동시에 고체 상태 확산 접합을 제공한다. 히핑 전에, 히핑 동안에, 그리고 특히 히핑 후에 수행된 열 처리는 또한 잔류 응력을 감소시키는 것을 돕는다. 추가로, 접합 단계 동안의 열 처리는 때때로 AM으로 형성된 층들 사이의 추가 상호 확산을 촉진시키는 것을 도울 수 있고, 사실상 조성의 더 연속적인 구배를 생성하는데, 이는 열응력을 감소시키는 것을 추가로 돕는다.
최종적으로, 도 16의 단계(238) 및 도 17의 단계(248)에서, 최종 기계가공 단계는 스퍼터링 타깃 및/또는 배킹 플레이트의 표면을 연마하는 데 사용될 수 있다. 또한, AM 공정 후에 남아 있을 수 있는 어떠한 잔류 재료도 제거하기 위하여 세정 단계가 사용될 수 있다.
전술된 바와 같이, 레이저 또는 전자 빔과 같은 열원을 사용하는 AM 기법은 타깃 또는 배킹 플레이트의 하나의 표면 상에서 구배 재료 조성 및 제어가능한 입자 크기를 갖는 재료 층을 형성할 수 있다. 예를 들어, 구리(Cu) 합금 배킹 플레이트를 갖는 텅스텐(W) 타깃의 경우, 예를 들어 니어 네트 형상 W/Ti/Cu 또는 W/Mo/Cu 층 적층물을 형성하는 것이 유리할 수 있다. 대체적으로 3개인 층의 적층물은 W/X/Cu 형태를 가질 수 있는데, 여기서 X는 타깃 재료(본 예에서, 텅스텐(W))와 배킹 플레이트 재료(본 예에서, 구리(Cu) 합금) 사이의 CTE 계수를 갖는 금속 또는 합금이다.
본 방법은 W/X/Y/Cu 형태의 4개인 층의 적층물의 경우로 더 확장될 수 있는데, 여기서 X 및 Y는 타깃 재료(본 예에서, 텅스텐(W))와 배킹 플레이트 재료(본 예에서, 구리(Cu) 합금) 사이의 CTE 계수를 갖는 금속 또는 합금이다. 다른 예에서, Y의 CTE는 X의 CTE와 비교하여 배킹 플레이트 재료(본 경우에, 구리(Cu) 합금)에 더 가까운데, 이는 Y가 구리(Cu) 합금 배킹 플레이트 상에 직접 침착되기 때문이다. 요약하면, W의 CTE < X의 CTE < Y의 CTE < Cu의 CTE이다.
이러한 과정은 각각의 층의 조성 및/또는 밀도를 제어함으로써 CTE의 구배를 형성하는 다수의 재료의 다수의 적층물에 대해 일반화될 수 있다. 구배 조성을 갖는 재료를 생성하기 위한 한 가지 방법은 최상의 효율 및 비용 감소를 위한 단일 연속 단계를 수반하는 제어가능한 방법일 것이다. 일부 실시 형태에서, 사용자는 또한 원자 또는 마이크로 규모에서 구배 조성을 조정할 수 있고, 재료 두께를 통한 조성 및 특성의 거의 연속적인 변동을 제공할 수 있다. 입자 크기 및 텍스처의 구배를 제어할 수 있는 방법을 갖는 것은 또한, 특히 취성 타깃 재료의 경우, 국소 응력에 대한 더 나은 제어로 이어질 것이고 접합 라인 근처에서 일어나는 크랙을 감소시킬 것이다.
일부 실시 형태에서, 중간층(320)은 중간층(320)의 특정 위치에서 특정 CTE를 갖도록 조정될 수 있다. 도 18에 도시된 바와 같이, 스퍼터링 타깃(300) 및 배킹 플레이트(310)는 상이한 또는 유사하지 않은 CTE를 가질 수 있다. 적합한 중간층(320)을 제공하기 위하여, 중간층의 제1 층 또는 부분(330)이 둘 이상의 성분의 제1 비로 형성될 수 있다. 예를 들어, 제1 층(330)은 높은 농도의 성분 A 및 낮은 농도의 성분 B를 갖는 제1 비를 가질 수 있다. 선택적으로, 추가 성분, 예컨대, 성분 C, 성분 D 및 그 이상이 제1 층(330) 내에 포함될 수 있다. 제1 층(330)에 인접한 중간층(320)의 제2 층 또는 부분(340)은 더 낮은 농도의 성분 A 및 더 높은 농도의 성분 B를 가질 수 있다. 선택적으로, 추가 성분, 예컨대, 성분 C, 성분 D 및 그 이상이 제2 층(340) 내에 포함될 수 있다. 추가 성분은 제1 층(330)에서보다는 제2 층(340)에서 더 높은 농도로 존재할 수 있다. 일부 실시 형태에서, 다수의 층이 제2 층(340) 위에 형성될 수 있고, 각각의 층은 점진적으로 더 낮은 농도의 성분 A 및 점진적으로 더 높은 농도의 성분 B를 가질 수 있다. 일부 실시 형태에서, 성분 C, 성분 D 및/또는 그 이상이 또한 점진적으로 증가할 수 있다. 대안으로, 추가 성분들 중 하나 이상의 추가 성분의 농도가 일정하게 유지될 수 있는 한편, 성분 A 및 성분 B의 농도만이 부가되는 각각의 후속 층에 따라 변경된다. 이러한 공정은 배킹 플레이트(310)에 인접한 최종 층이 낮은 농도의 성분 A, 높은 농도의 성분 B, 및 선택적으로 더 높은 농도의 성분 C 및/또는 D를 갖도록 형성될 때까지 반복된다(즉, 복수의 층이 형성될 수 있다). 따라서, 완전히 형성된 중간층(320)은 스퍼터링 타깃(300)에 인접한 중간층의 제1 측부로부터 배킹 플레이트(310)에 인접한 제2 측부까지 각각의 층에서 특정 CTE를 갖는다. 일부 실시 형태에서, 각각의 층의 CTE는 인접한 층의 CTE와 상이할 수 있다. 다른 실시 형태에서, 층의 전부가 아닌 일부의 CTE가 상이할 수 있다.
다시 도 18을 참조하면, 일부 실시 형태에서, 중간층(320)은 성분이 층에서 층으로 가변하는 둘 이상의 성분을 갖는 층으로 형성될 수 있다. 예를 들어, 제1 층(330)은 성분 A, 성분 B, 및 성분 C로 형성될 수 있다. 각각의 층 내의 각각의 성분 및 각각의 성분의 비는 입자 크기 또는 CTE와 같은 특정 재료 특성을 갖는 층을 생성하기 위하여 선택된다. 제2 층(340)은 성분들, A, B 및 C, 및 추가로 또는 대안으로 성분 D, 성분 E, 및 성분 F로 형성될 수 있다. 완전한 중간층을 구축하기 위하여 추가 층이 부가될 수 있는데, 각각의 후속 층은, 예를 들어 이전에 형성된 층보다 높거나 낮은 CTE를 갖는 층을 생성하기 위하여 선택된 다양한 성분의 특정 조합을 가질 것이다. 따라서, 완전히 형성된 중간층은 스퍼터링 타깃(300)에 인접한 중간층의 제1 측부로부터 배킹 플레이트(310)에 인접한 제2 측부까지 CTE 구배와 같은 재료 특성 구배를 갖는다.
실시예
하기 비제한적인 실시예는 본 발명의 다양한 특징부 및 특성을 예시하는 것으로, 이는 그에 제한되는 것으로 해석되어서는 안 되며, 모든 백분율은 달리 명시되지 않는 한 중량%이다.
실시예 1: 텅스텐(W) 타깃을 구리-크롬(CuCr) 배킹 플레이트에 결합하기 위하여 구리(Cu) 및 티타늄(Ti)의 구배 중간층을 형성하기 위한 AM의 사용:
도 19 내지 도 22는 조성의 구배를 생성하기 위하여 직접식 에너지 침착 기법, 이러한 경우에는 직접 금속 침착(DMD)의 사용의 실시예를 도시한다. 스퍼터링 타깃은 15 cm(6 인치) 직경 및 1 cm(0.5 인치) 두께의 W 타깃이었다. 배킹 플레이트는 15 cm(6 인치) 직경 및 2 cm(0.75 인치) 두께의 CuCr C18200 배킹 플레이트였다. 약 6 mm 두께의 기능적 구배 중간층을 상이한 구리(Cu)/티타늄(Ti) 조성을 갖는 5개의 1.2 mm 두께의 층의 적층물에 의해 생성하였다. 배킹 플레이트의 주 원소인 구리(Cu)와 혼합되도록 티타늄(Ti)을 선택하였는데, 이는 티타늄(Ti)이 구리(Cu)의 CTE와 텅스텐(W)의 CTE 사이인 8.6 x10-6 m/(m K)의 CTE를 갖기 때문이다.
중간층의 층들에 대한 조성을 DMD 전에 기계적으로 혼합하고 DMD 시스템의 별개의 분말 공급기 내에 넣었다. 여기서 사용된 방법은 도 6에 대해 위에서 설명된 방법과 유사하다. 제1 조성을 포함하는 1.2 mm 두께의 제1 층을 침착하기 위한 하나의 분말 공급기와 함께, 그리고 이어서 나머지 층에 대해서는 1.2 mm 두께의 다른 층 등을 구축하기 위하여 제2 조성을 포함하는 상이한 분말 공급기로 전환하여, DMD를 사용하였다. CuCr로 제조된 Cu 합금 배킹 플레이트(400)(1.6 중량% 크롬 및 나머지 구리의 조성(Cu1.6%Cr)을 갖고 CTE = 17.6 X10-6 m/(m K)인 C18200 배킹 플레이트) 상에 가장 높은 구리(Cu) 함량을 갖는 층(95%Cu + 5%Ti; 층(402))을 먼저 침착하였다. 다음의 4개 층(층(404 내지 410))에 대하여, 구리(Cu)의 양이 (75% 내지 50%로부터 25% 내지 15%로) 서서히 감소되도록 그리고 티타늄(Ti)의 양이 (25% 내지 50%로부터 75% 내지 85%로) 비례하여 증가하도록 조성을 가변시켰다. 결과적으로, CTE를 CuCr에 인접한 제1 층으로부터 (W와 접촉하는) 제5 층으로 서서히 감소시켰고, 그에 의해 CTE 불일치를 서서히 최소화시켰다. 이들 층 및 조성의 배열은 도 19에 도시되고 표 1에 요약되어 있다.
[표 1]
Figure 112018103393057-pct00001
접착을 촉진시키고 다공성을 감소시키기 위하여, 각각의 침착된 층을 각각의 레이저 적용 전에 예열시켰다. 이러한 처리는 또한 일부 제한된 확산 및 조성의 균질화를 허용한다. 응력을 최소화하고 조성 변화를 고려하도록 예열 단계 온도를 각각의 연속적인 층에 대해 느리게 감소시켰다. 총 DMD 사이클은 총 185분 동안 비교적 짧았고 그러므로 생산 응용예를 잘 받아들인다는 것에 유의하여야 한다. 도 20a 및 도 20b는 2개의 상이한 층의 침착 후의 중간층의 사진이다. 구체적으로, 도 20a는 층(408)(25 중량% 구리(Cu) 및 75 중량% 티타늄(Ti))의 침착 후의 중간층의 이미지이고, 도 20b는 층(410)(15 중량% 구리(Cu) 및 85 중량% 티타늄(Ti))의 침착 후의 중간층의 이미지이다.
SEM/EDX에 의한 중간층의 단면의 관찰 결과가 도 21에 도시되어 있고, 이는 침착된 층의 실제 조성이 원래 분말 혼합물에 비교적 가까웠음을 나타낸다. 구축 표면에 수직인 방향으로 중간층을 통과하는 라인 내의 7개의 위치에서 샘플을 취하였다. 표 2는 각각의 위치에서의 Ti 및 Cu의 중량% 농도를 포함한다.
[표 2]
Figure 112018103393057-pct00002
위의 표 2 및 도 21의 대응하는 위치 번호를 참조하면, 상기 실시예는 위치 1 및 위치 2가 85% 초과의 Ti와 15% 미만의 Cu의 혼합물을 갖는 조성을 갖는 층인 중간층을 예시한다. 위치 3은 대략 50% Ti와 50% Cu의 혼합물을 갖는 층이다. 위치 4는 거의 30% Ti와 70% Cu의 혼합물을 갖는 층이다. 위치 5 및 위치 6은 대략 15% Ti와 85% Cu의 혼합물을 갖는다. 그리고, 위치 7은 5% Ti와 95% Cu의 혼합물을 갖는 층이다.
도 22에 도시된 다른 도면에서 또한 알 수 있는 바와 같이, 층들 사이의 계면에서 크랙이 관찰되지 않았는데, 이는 허용가능하고 우수한 접합 및 일관된 침착을 나타낸다. 최소의 그리고 허용가능한 양의 다공성이 확인되었다. 인자들의 조합은, i) 용융 및 고형화가 일어나는 작은 부피, ii) 분말 및 용융된 풀을 둘러싸는 차폐 기체의 압력, 및 iii) 예비 열 처리 단계에 기여하였을 수 있다. 특히, 히핑에 의해 수행될 때의 접합 단계는 다공성의 감소에 추가로 기여한다는 것을 또한 관찰하였다.
스퍼터링 타깃 조립체가 본 명세서에 개시되는데, 스퍼터링 타깃 조립체는 후방 표면을 갖는 스퍼터링 타깃, 전방 표면을 갖는 배킹 플레이트, 및 타깃과 배킹 플레이트 사이에 배치된 중간층을 포함한다. 중간층은 적어도 제1 재료 및 제2 재료, 타깃 재료의 후방 표면에 근접하게 배치된 제1 중간층 부분, 및 배킹 플레이트의 전방 표면에 근접하게 배치된 제2 중간층 부분을 포함한다. 제1 중간층 부분은 제1 재료의 농도가 제2 재료보다 높고, 제2 중간층 부분은 제2 재료의 농도가 제1 재료보다 높다.
또한, 스퍼터링 타깃 조립체를 형성하는 방법이 본 명세서에 개시되는데, 본 방법은 적어도 제1 재료 및 제2 재료를 갖는 중간층을 형성하는 단계를 포함한다. 중간층은 제1 중간층 부분 및 제2 중간층 부분을 갖고, 제1 중간층 부분은 제1 재료의 농도가 제2 중간층 부분보다 높고, 제2 중간층 부분은 제2 재료의 농도가 제1 중간층 부분보다 높다. 본 방법은 후방 표면을 갖는 타깃을 타깃 후방 표면이 제1 중간층 부분에 인접한 상태로 배열하는 단계; 전방 표면을 갖는 배킹 플레이트를 배킹 플레이트의 전방 표면이 제2 중간층 부분에 인접한 상태로 배열하는 단계; 및 타깃 조립체 접합 단계에서 타깃과, 중간층과, 배킹 플레이트를 서로 결합시키는 단계를 포함한다. 중간층을 형성하는 단계는 제1 농도의 제1 재료를 갖는 제1 중간층 부분을 형성하는 단계; 후속 재료 층을 제1 중간층 부분에 부가하는 단계 - 각각의 재료 층은 제1 재료의 농도가 이전에 부가된 층보다 낮음 -; 제2 농도의 제1 재료를 갖는 제2 중간층 부분을 형성하는 단계; 및 중간층이 중간층 접합 단계를 거치게 하는 단계를 포함한다.
또한, 스퍼터링 타깃 조립체를 형성하는 방법이 본 명세서에 개시되는데, 본 방법은 제1 중간층 부분 및 제2 중간층 부분을 갖는 중간층을 형성하는 단계를 포함하고, 중간층을 형성하는 단계는 제1 중간층 부분을 형성하는 단계, 및 구축 재료를 층층이 부가하는 단계를 포함한다. 본 방법은 또한 제2 중간층 부분을 형성하는 단계, 및 중간층이 접합 단계를 거치게 하는 단계를 포함한다. 제1 중간층 부분으로부터 제2 중간층 부분으로의 방향을 따라서, 구축 재료의 각각의 층은 이전의 층보다 더 낮은 농도의 제1 재료 및 더 높은 농도의 제2 재료를 갖는다. 본 방법은 또한 스퍼터링 타깃과 배킹 플레이트 사이에 중간층을 배치하는 단계; 및 중간층과 스퍼터링 타깃 사이 및 중간층과 배킹 플레이트 사이에 확산 접합을 형성하기에 충분히 높은 온도로 스퍼터링 타깃, 중간층, 및 배킹 플레이트를 가열하는 단계를 포함한다.
또한, 스퍼터링 타깃 조립체를 형성하는 방법이 본 명세서에 개시되는데, 본 방법은 제1 중간층 부분 및 제2 중간층 부분을 갖는 중간층을 형성하는 단계를 포함한다. 중간층을 형성하는 단계는 제1 재료 특성 값을 갖는 제1 중간층 부분을 형성하는 단계, 후속 재료 층을 제1 중간층 부분에 부가하는 단계, 제2 재료 특성 값을 갖는 제2 중간층 부분을 형성하는 단계를 포함한다. 제1 중간층 부분으로부터 제2 중간층 부분으로의 방향을 따라서, 중간층은 제1 재료 특성 값으로부터 제2 재료 특성 값으로의 재료 특성 값 구배를 갖는다. 본 방법은 또한 중간층이 중간층 접합 단계를 거치게 하는 단계; 후방 표면을 갖는 스퍼터링 타깃을 타깃 후방 표면이 제1 중간층 부분에 인접한 상태로 배열하는 단계; 전방 표면을 갖는 배킹 플레이트를 배킹 플레이트의 전방 표면이 제2 중간층 부분에 인접한 상태로 배열하는 단계; 및 타깃 조립체 접합 단계에서 스퍼터링 타깃과, 중간층과, 배킹 플레이트를 서로 결합시키는 단계를 포함한다.
본 발명의 범주로부터 벗어나지 않고서 논의된 예시적인 실시 형태에 대해 다양한 변경 및 추가가 이루어질 수 있다. 예를 들어, 전술된 실시 형태가 특정 특징부를 언급하지만, 본 발명의 범주는 또한 특징부들의 상이한 조합을 갖는 실시 형태 및 전술된 특징부들 모두를 포함하지 않는 실시 형태를 포함한다.

Claims (15)

  1. 스퍼터링 타깃 조립체로서,
    후방 표면을 갖는 스퍼터링 타깃;
    전방 표면을 갖는 배킹 플레이트(backing plate); 및
    상기 타깃과 상기 배킹 플레이트 사이에 배치되고, 상기 타깃 재료의 후방 표면에 고체 상태(solid state) 접합된 제1 중간층 부분 및 상기 배킹 플레이트의 전방 표면에 고체 상태 접합된 제2 중간층 부분을 포함하는 중간층을 포함하고;
    상기 제1 중간층 부분은, 제1 재료 및 제2 재료를 포함하고 상기 제1 재료의 농도가 상기 제2 재료보다 높은 제1 혼합물로 형성되고, 상기 제2 중간층 부분은, 상기 제1 재료 및 상기 제2 재료를 포함하고 상기 제2 재료의 농도가 상기 제1 재료보다 높은 제2 혼합물로 형성되는, 스퍼터링 타깃 조립체.
  2. 제1항에 있어서, 상기 중간층은 상기 스퍼터링 타깃 및 상기 배킹 플레이트를 통하여 연장된 축을 따라서, 입자(grain) 크기, 입자 텍스처(texture), 재료 조성, 또는 재료 성분 밀도 중 어느 하나의 기능적 재료 구배(functional material gradient)를 갖고, 상기 축은 상기 스퍼터링 타깃의 상기 후방 표면에 수직인, 스퍼터링 타깃 조립체.
  3. 스퍼터링 타깃 조립체를 형성하는 방법으로서,
    제1 재료 및 제2 재료를 포함하는 제1 혼합물로 스퍼터링 타깃의 표면 또는 배킹 플레이트의 표면 상에 제1 층을 형성하는 단계;
    상기 제1 재료 및 상기 제2 재료를 포함하는 제2 혼합물로 상기 제1 층 상에 제2 층을 형성하는 단계 - 상기 제1 층은 상기 제1 재료의 농도가 상기 제2 층보다 높고, 상기 제2 층은 상기 제2 재료의 농도가 상기 제1 층보다 높음 -;
    상기 제2 층 상에 상기 배킹 플레이트 또는 스퍼터링 타깃을 배열하여 상기 스퍼터링 타깃과 배킹 플레이트 사이에 상기 제1 층 및 제2 층을 갖는 조립체를 형성하는 단계; 및
    타깃 조립체 고체 상태 접합 단계에서 상기 스퍼터링 타깃과, 상기 제1 층과, 상기 제2 층과, 상기 배킹 플레이트를 서로 결합시키는 단계를 포함하는, 방법.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
KR1020187030315A 2016-04-01 2017-03-28 그레이딩된 중간층을 갖는 스퍼터링 타깃 조립체 및 제조 방법 KR102267761B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662316701P 2016-04-01 2016-04-01
US62/316,701 2016-04-01
US15/470,581 2017-03-27
US15/470,581 US20170287685A1 (en) 2016-04-01 2017-03-27 Sputtering target assembly having a graded interlayer and methods of making
PCT/US2017/024440 WO2017172692A1 (en) 2016-04-01 2017-03-28 Sputtering target assembly having a graded interlayer and methods of making

Publications (2)

Publication Number Publication Date
KR20190004702A KR20190004702A (ko) 2019-01-14
KR102267761B1 true KR102267761B1 (ko) 2021-06-24

Family

ID=59961223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187030315A KR102267761B1 (ko) 2016-04-01 2017-03-28 그레이딩된 중간층을 갖는 스퍼터링 타깃 조립체 및 제조 방법

Country Status (7)

Country Link
US (1) US20170287685A1 (ko)
EP (1) EP3436618B1 (ko)
JP (1) JP6728389B2 (ko)
KR (1) KR102267761B1 (ko)
CN (1) CN109154073A (ko)
TW (1) TWI791432B (ko)
WO (1) WO2017172692A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800900C1 (ru) * 2022-09-07 2023-07-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Градиентный материал для соединения титанового сплава bt1-0 с нержавеющей сталью 316l методом прямого лазерного выращивания

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019005972A1 (en) 2017-06-27 2019-01-03 Fluid Handling Llc METHOD FOR MODIFYING THE DIMENSIONS OF A PUMP PART IN CAST IRON
CA3071392C (en) 2017-07-28 2023-08-08 Fluid Handling Llc Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing
US11351590B2 (en) 2017-08-10 2022-06-07 Honda Motor Co., Ltd. Features of dissimilar material-reinforced blanks and extrusions for forming
US10532421B2 (en) * 2017-08-29 2020-01-14 Honda Motor Co., Ltd. UAM resistance spot weld joint transition for multimaterial automotive structures
US10870166B2 (en) 2018-02-01 2020-12-22 Honda Motor Co., Ltd. UAM transition for fusion welding of dissimilar metal parts
CN111989421B (zh) * 2018-05-21 2022-12-06 株式会社爱发科 溅射靶材及其制造方法
JP2022523357A (ja) * 2019-02-22 2022-04-22 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン 物理的気相成長(pvd)用ターゲットの製造方法
JP7424093B2 (ja) * 2019-03-08 2024-01-30 株式会社リコー 立体造形物を造形する装置、立体造形物を造形する方法
CN110508809B (zh) * 2019-08-29 2020-11-17 华中科技大学 一种增材制造与表面涂覆复合成形系统及方法
EP3797904A1 (de) * 2019-09-27 2021-03-31 Flender GmbH Additives herstellungsverfahren mit härtung
US11465390B2 (en) 2020-03-02 2022-10-11 Honda Motor Co., Ltd. Post-process interface development for metal-matrix composites
US20230043638A1 (en) * 2020-10-14 2023-02-09 Questek Innovations Llc Steel to tungsten functionally graded material systems
US20220176449A1 (en) * 2020-12-07 2022-06-09 Divergent Technologies, Inc. Ultrasonic additive manufacturing of box-like parts
KR102370835B1 (ko) * 2020-12-16 2022-03-08 주식회사 이엠엘 3D 프린팅을 이용한 고효율 Zr계 실린더형 합금타겟 제조방법
CN112743216A (zh) * 2020-12-29 2021-05-04 宁波江丰电子材料股份有限公司 一种靶材和背板的焊接方法
CN112828316A (zh) * 2020-12-31 2021-05-25 西安铂力特增材技术股份有限公司 粉状金属实时混合均匀的方法及金属3d打印方法和装置
US11951542B2 (en) * 2021-04-06 2024-04-09 Eaton Intelligent Power Limited Cold spray additive manufacturing of multi-material electrical contacts
GB202105385D0 (en) * 2021-04-15 2021-06-02 Tokamak Energy Ltd Graded interlayer
EP4323134A1 (en) * 2021-04-15 2024-02-21 Tokamak Energy Ltd Graded interlayer
CN113523298B (zh) * 2021-06-30 2023-07-07 洛阳科威钨钼有限公司 一种平面锂靶材的制备方法
JP7378907B2 (ja) * 2022-02-28 2023-11-14 山陽特殊製鋼株式会社 3d造形用混合粉末の製造方法
CN117904619A (zh) 2023-04-28 2024-04-19 甚磁科技(上海)有限公司 一种合金靶材的制备装置及制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681143A (ja) * 1992-08-31 1994-03-22 Mitsubishi Kasei Corp スパッタリングターゲット及びその製造方法
US5522535A (en) * 1994-11-15 1996-06-04 Tosoh Smd, Inc. Methods and structural combinations providing for backing plate reuse in sputter target/backing plate assemblies
JP3660014B2 (ja) * 1995-03-31 2005-06-15 株式会社テクノファイン スパッタ用ターゲット
US5901336A (en) * 1996-08-30 1999-05-04 Brush Wellman Inc. Bonding beryllium to copper alloys using powder metallurgy compositional gradients
US6089444A (en) * 1997-09-02 2000-07-18 Mcdonnell Douglas Corporation Process of bonding copper and tungsten
US5988488A (en) * 1997-09-02 1999-11-23 Mcdonnell Douglas Corporation Process of bonding copper and tungsten
US6579431B1 (en) * 1998-01-14 2003-06-17 Tosoh Smd, Inc. Diffusion bonding of high purity metals and metal alloys to aluminum backing plates using nickel or nickel alloy interlayers
WO2000006793A1 (en) * 1998-07-27 2000-02-10 Applied Materials, Inc. Sputtering target assembly
US6619537B1 (en) * 2000-06-12 2003-09-16 Tosoh Smd, Inc. Diffusion bonding of copper sputtering targets to backing plates using nickel alloy interlayers
WO2003106733A1 (en) * 2002-06-14 2003-12-24 Tosoh Smd, Inc. Target and method of diffusion bonding target to backing plate
TW200506080A (en) * 2003-02-25 2005-02-16 Cabot Corp Method of forming sputtering target assembly and assemblies made therefrom
ATE474071T1 (de) * 2003-08-11 2010-07-15 Honeywell Int Inc Target/trägerplatte-konstruktionen und herstellungsverfahren dafür
JP4331727B2 (ja) * 2003-12-25 2009-09-16 日鉱金属株式会社 接合方法及び装置
WO2008079461A2 (en) * 2006-09-08 2008-07-03 Reactive Nanotechnologies, Inc. Reactive multilayer joining with improved metallization techniques
WO2008055616A1 (en) * 2006-11-07 2008-05-15 Perkinelmer Optoelectronics Gmbh & Co. Kg Method for bonding metal surfaces by applying a first oxidised metal layer and a second oxidised metal layer object having cavities or structure of a light emitting diode produced through the last method
TWI516624B (zh) * 2010-06-18 2016-01-11 烏明克公司 用於接合濺鍍靶的組件之方法,濺鍍靶組件的接合總成,及其用途
CN102248160B (zh) * 2011-07-07 2013-01-23 中国科学院理化技术研究所 一种钨/铜梯度材料的制备方法
CN103706939B (zh) * 2012-09-28 2015-10-28 清华大学 一种钨铜异种金属的扩散连接方法
US9970100B2 (en) * 2012-11-16 2018-05-15 The Boeing Company Interlayer composite substrates
JP6068642B2 (ja) * 2013-07-18 2017-01-25 三菱マテリアル電子化成株式会社 シリコンターゲット構造体の製造方法およびシリコンターゲット構造体
CN104259644B (zh) * 2014-07-24 2016-04-27 有研亿金新材料有限公司 一种钨钛合金靶材焊接方法
CN105234547A (zh) * 2015-10-20 2016-01-13 兰微悦美(天津)科技有限公司 互不固溶金属的连接工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800900C1 (ru) * 2022-09-07 2023-07-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Градиентный материал для соединения титанового сплава bt1-0 с нержавеющей сталью 316l методом прямого лазерного выращивания

Also Published As

Publication number Publication date
EP3436618A1 (en) 2019-02-06
EP3436618B1 (en) 2023-05-03
WO2017172692A1 (en) 2017-10-05
JP6728389B2 (ja) 2020-07-22
US20170287685A1 (en) 2017-10-05
KR20190004702A (ko) 2019-01-14
CN109154073A (zh) 2019-01-04
TWI791432B (zh) 2023-02-11
EP3436618A4 (en) 2019-12-25
JP2019518865A (ja) 2019-07-04
TW201807228A (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
KR102267761B1 (ko) 그레이딩된 중간층을 갖는 스퍼터링 타깃 조립체 및 제조 방법
EP2326443B1 (en) Method of producing objects containing nano metal or composite metal
EP2081714B1 (en) Method of producing products of amorphous metal
CN109396434B (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
US20180323047A1 (en) Sputter target backing plate assemblies with cooling structures
JP7018603B2 (ja) クラッド層の製造方法
Matějíček et al. Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications
Hentschel et al. Experimental investigations of processing the high carbon cold-work tool steel 1.2358 by laser metal deposition for the additive manufacturing of cold forging tools
JP2023156376A (ja) 付加製造された耐火金属部材、付加製造方法及び粉末
US10384285B2 (en) Method of selective laser brazing
WO2020080425A1 (ja) 硬化層の積層方法、及び積層造形物の製造方法
JP2950436B2 (ja) 複合化材料の製造方法
US20210362236A1 (en) Cured layer lamination method and production method for laminated molded article
KR20210087968A (ko) 적층 제조된 내화 금속 부품, 적층 제조 방법 및 분말
US20230073429A1 (en) Methods to create structures with engineered internal features, pores, and/or connected channels utilizing cold spray particle deposition
WO2022078630A1 (en) Method of manufacturing a build plate for use in an additive manufacturing process
CN114535603A (zh) 一种提高增材制造金属层状复合材料薄弱区塑韧性的方法
KR20190011357A (ko) 마이크로 금속와이어를 이용한 고해상도 3d 프린팅 방법
Dwarkanath Laser powder fusion of H13 tool steel using pulsed Nd: YAG laser

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
X701 Decision to grant (after re-examination)
GRNT Written decision to grant