KR102244207B1 - 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법 - Google Patents

무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법 Download PDF

Info

Publication number
KR102244207B1
KR102244207B1 KR1020150062106A KR20150062106A KR102244207B1 KR 102244207 B1 KR102244207 B1 KR 102244207B1 KR 1020150062106 A KR1020150062106 A KR 1020150062106A KR 20150062106 A KR20150062106 A KR 20150062106A KR 102244207 B1 KR102244207 B1 KR 102244207B1
Authority
KR
South Korea
Prior art keywords
reference signal
signal
user
denotes
channel
Prior art date
Application number
KR1020150062106A
Other languages
English (en)
Other versions
KR20160129628A (ko
Inventor
이건국
박선호
심병효
김태영
설지윤
Original Assignee
삼성전자주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 서울대학교산학협력단 filed Critical 삼성전자주식회사
Priority to KR1020150062106A priority Critical patent/KR102244207B1/ko
Priority to PCT/KR2016/004541 priority patent/WO2016175609A1/ko
Priority to EP16786795.1A priority patent/EP3291498A4/en
Priority to US15/570,647 priority patent/US10367659B2/en
Priority to CN201680025009.5A priority patent/CN107624235B/zh
Publication of KR20160129628A publication Critical patent/KR20160129628A/ko
Application granted granted Critical
Publication of KR102244207B1 publication Critical patent/KR102244207B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0236Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols using estimation of the other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03783Details of reference signals

Abstract

본 발명은 무선 통신 시스템에서 수신기가 하향링크 채널을 추정하는 방법에 있어서, 기준 신호를 기반으로 하향링크 채널을 추정하여 정보 비트를 복구하고, 상기 정보 비트 복구에 성공하였는지 여부를 검사하고, 상기 정보 비트 복구에 성공하지 못한 경우, 관련 자원 위치에서 복원된 데이터의 정확도 및 상 관련 자원 위치와 상기 기준 신호에 관련된 자원 위치 간의 상관도를 기반으로, 수신 신호들 중 적어도 하나를 가상 기준 신호로서 선택하고, 상기 적어도 하나의 가상 기준 신호를 기반으로 상기 하향링크 채널을 추정한다.

Description

무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법 {APPARATUS AND METHOD FOR DOWNLINK CHANNEL ESTIMATION IN WIRELESS COMMUNICATION SYSTEM}
본 발명은 다중 사용자(MU: multi user)-다중 입력 다중 출력(MIMO: multiple-input multiple-output) 시스템에서 하향링크 채널을 추정하는 장치 및 방법에 관한 것이다.
MU-MIMO 시스템에서는 하향링크의 채널 정보를 이용하여 복수의 사용자들에게 동일한 자원을 할당하고, 상기 동일한 자원이 할당된 사용자들 간에 간섭이 발생하지 않도록 빔 형성(beam forming)을 적용하여 합용량(sum rate)을 높이도록 하고 있다. 이때 채널 정보가 정확할 경우에는 빔 형성의 적용으로 한 사용자에게 다른 사용자의 신호로 인한 간섭이 전혀 영향을 미치지 않게 되며, 따라서 단일 입력 단일 출력(SISO: single-input single-output) 시스템에서와 동일하게 수신기를 설계하더라도 수신성능의 향상을 도모할 수 있다. 그러나 채널 추정의 오차와 하향링크의 채널 정보를 상향링크를 통해 전달하는 과정에서의 양자화(quantization)로 인한 정보 손실로 인하여, 정확한 채널 정보를 송신 단에 전달하기란 매우 어렵다. 이러한 상황에서 정확하지 않은 채널 정보를 이용하여 형성된 빔은 간섭 제어를 완벽하게 수행하지 못하게 되고, 이는 수신성능 저하의 문제를 발생시키게 된다.
한편, MU-MIMO 시스템에서 기준 신호(reference signal)는 직교 패턴으로 전송된다. 즉 한 사용자의 기준 신호와 다른 사용자의 기준 신호는 신호 자체는 같으나 부호가 상이한 직교 패턴으로 전송된다. 물론 이상적인 경우를 가정하면 상기 한 사용자는 이러한 직교 패턴을 이용하여 상기 다른 사용자의 신호에 영향 받지 않고 자신의 신호를 수신하여 채널을 추정할 수 있다. 그러나 대부분의 경우 사용자는 채널 추정 시 주파수 변화나 시간의 흐름에 따른 채널의 변화 량을 제대로 반영하기 어려우며 이로 인해 정확한 채널 정보의 추정 또한 쉽지 않다. 또한 MU-MIMO 시스템에서는 간섭이 완벽히 제거되었다는 가정하에 수신 신호를 처리하기 때문에 정확하지 않은 채널 정보는 수신성능 저하를 일으키는 요인이 된다.
또한 MU-MIMO 시스템에서 수신기의 성능은 전송 단에서 형성된 빔의 정확성에 의존한다. 그러나 MU-MIMO 시스템에서는 다른 사용자의 간섭이 전송 단의 빔 형성으로 제거되었다는 가정하에 수신 신호를 처리하는 과정만을 포함하므로, 채널 정보를 상향링크를 통해 전달하는 과정에서의 양자화나 채널 추정 오차로 인해 불완전하게 형성된 빔에 의한 간섭에 취약하다는 문제가 있다. 따라서 불완전하게 형성된 빔에 의한 간섭을 처리해야 하는 다중 사용자 신호 검출 과정이 필요로 하나 이 역시 불완전한 채널 추정으로 인하여 성능의 증가폭이 제한되는 영향이 있다.
따라서 MU-MIMO 시스템에서 하향링크 채널을 정확하게 추정하기 위한 방안이 필요하다.
한편, 상기와 같은 데이터는 본 발명의 이해를 돕기 위한 백그라운드(background) 데이터로서만 제시될 뿐이다. 상기 내용 중 어느 것이라도 본 발명에 관한 종래 기술로서 적용 가능할지 여부에 관해, 어떤 결정도 이루어지지 않았고, 또한 어떤 주장도 이루어지지 않는다.
본 발명은 MU-MIMO 시스템에서 하향링크 채널을 추정하는 장치 및 방법을 제안한다.
또한 본 발명은 MU-MIMO 시스템에서 가상 기준 신호를 이용하여 하향링크 채널을 추정하는 장치 및 방법을 제안한다.
또한 본 발명은 MU-MIMO 시스템에서 복원된 데이터의 정확도와 수신 신호와 기준 신호 간의 상관도를 기반으로 선택된 가상 기준 신호를 이용하여 하향링크 채널을 추정하는 장치 및 방법을 제안한다.
또한 본 발명은 MU-MIMO 시스템에서 채널의 평균 오차를 기반으로 선택된 가상 기준 신호를 이용하여 하향링크 채널을 추정하는 장치 및 방법을 제안한다.
본 발명의 일 실시예에서 제안하는 방법은; 무선 통신 시스템에서 수신기가 하향링크 채널을 추정하는 방법에 있어서, 기준 신호를 기반으로 하향링크 채널을 추정하여 정보 비트를 복구하는 과정과, 상기 정보 비트 복구에 성공하였는지 여부를 검사하는 과정과, 상기 정보 비트 복구에 성공하지 못한 경우, 관련 자원 위치에서 복원된 데이터의 정확도 및 상 관련 자원 위치와 상기 기준 신호에 관련된 자원 위치 간의 상관도를 기반으로, 수신 신호들 중 적어도 하나를 가상 기준 신호로서 선택하는 과정과, 상기 적어도 하나의 가상 기준 신호를 기반으로 상기 하향링크 채널을 추정하는 과정을 포함한다.
본 발명의 일 실시예에서 제안하는 장치는; 무선 통신 시스템에서 하향링크 채널을 추정하는 수신기에 있어서, 기준 신호를 기반으로 하향링크 채널을 추정하여 정보 비트를 복구하는 복호기와, 상기 정보 비트 복구에 성공하였는지 여부를 검사하고, 상기 정보 비트 복구에 성공하지 못한 경우, 관련 자원 위치에서 복원된 데이터의 정확도 및 상 관련 자원 위치와 상기 기준 신호에 관련된 자원 위치 간의 상관도를 기반으로, 수신 신호들 중 적어도 하나를 가상 기준 신호로서 선택하고, 상기 적어도 하나의 가상 기준 신호를 기반으로 상기 하향링크 채널을 추정하는 채널 추정기를 포함한다.
본 발명의 다른 측면들과, 이득들 및 핵심적인 특징들은 부가 도면들과 함께 처리되고, 본 발명의 바람직한 실시예들을 게시하는, 하기의 구체적인 설명으로부터 해당 기술 분야의 당업자에게 자명할 것이다.
하기의 본 게시의 구체적인 설명 부분을 처리하기 전에, 이 특허 문서를 통해 사용되는 특정 단어들 및 구문들에 대한 정의들을 설정하는 것이 효과적일 수 있다: 상기 용어들 “포함하다(include)” 및 “포함하다(comprise)”과 그 파생어들은 한정없는 포함을 의미하며; 상기 용어 “혹은(or)”은 포괄적이고 '및/또는'을 의미하고; 상기 구문들 “~와 연관되는(associated with)” 및 ““~와 연관되는(associated therewith)”과 그 파생어들은 포함하고(include), ~내에 포함되고(be included within), ~와 서로 연결되고(interconnect with), 포함하고(contain), ~내에 포함되고(be contained within), ~에 연결하거나 혹은 ~와 연결하고(connect to or with), ~에 연결하거나 혹은 ~와 연결하고(couple to or with), ~와 통신 가능하고(be communicable with), ~와 협조하고(cooperate with), 인터리빙하고(interleave), 병치하고(juxtapose), ~로 가장 근접하고(be proximate to), ~로 ~할 가능성이 크거나 혹은 ~와 ~할 가능성이 크고(be bound to or with), 가지고(have), 소유하고(have a property of) 등과 같은 것을 의미하고; 상기 용어 “제어기”는 적어도 하나의 동작을 제어하는 임의의 디바이스, 시스템, 혹은 그 부분을 의미하고, 상기와 같은 디바이스는 하드웨어, 펌웨어 혹은 소프트웨어, 혹은 상기 하드웨어, 펌웨어 혹은 소프트웨어 중 적어도 2개의 몇몇 조합에서 구현될 수 있다. 어떤 특정 제어기와 연관되는 기능성이라도 집중화되거나 혹은 분산될 수 있으며, 국부적이거나 원격적일 수도 있다는 것에 주의해야만 할 것이다. 특정 단어들 및 구문들에 대한 정의들은 이 특허 문서에 걸쳐 제공되고, 해당 기술 분야의 당업자는 많은 경우, 대부분의 경우가 아니라고 해도, 상기와 같은 정의들이 종래 뿐만 아니라 상기와 같이 정의된 단어들 및 구문들의 미래의 사용들에도 적용된다는 것을 이해해야만 할 것이다.
본 발명은 MU-MIMO 시스템에서 수신기가 상기 다중 사용자의 신호를 검출하여 가상 기준 신호를 생성하고 상기 가상 기준 신호를 기반으로 채널 추정을 수행함으로써, 반복적인 검출 기법을 통해 수신단 성능을 향상시키는 효과가 있다.
본 발명의 특정한 바람직한 실시예들의 상기에서 설명한 바와 같은 또한 다른 측면들과, 특징들 및 이득들은 첨부 도면들과 함께 처리되는 하기의 설명으로부터 보다 명백하게 될 것이다:
도 1은 일반적인 MU-MIMO 시스템에서 하향링크 채널을 추정하는 수신기 구조를 도시한 블록도,
도 2는 일반적인 MU-MIMO 시스템에서 하향링크 채널을 추정하는 예를 나타낸 도면,
도 3는 일반적인 MU-MIMO 시스템의 자원 블록에서 기준 신호 위치와 데이터 신호 위치를 나타낸 도면,
도 4는 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 하향링크 채널을 추정하는 수신기 구조를 도시한 블록도,
도 5는 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 하향링크 채널을 추정하는 채널 추정기 구조를 도시한 블록도,
도 6은 본 발명의 일 실시예에 따른 MU-MIMO 시스템의 자원 블록에서 기준 신호 위치와 가상기준 신호의 위치의 예를 나타낸 도면,
도 7은 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 수신기가 하향링크 채널을 추정하는 동작을 나타낸 순서도,
도 8은 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 단일 사용자 검출 방식을 사용하는 수신기와 다중 사용자 검출 방식을 사용하는 수신기의 성능을 나타낸 그래프,
도 9는 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 단일 사용자 검출 방식을 사용하는수신기와 다중 사용자 검출 방식을 사용하는 수신기의 성능을 나타낸 또 다른 그래프.
상기 도면들을 통해, 유사 참조 번호들은 동일한 혹은 유사한 엘리먼트들과, 특징들 및 구조들을 도시하기 위해 사용된다는 것에 유의해야만 한다.
이하, 본 발명의 실시 예들을 첨부한 도면들을 참조하여 상세히 설명한다. 그리고, 하기에서는 본 발명의 실시예들에 따른 동작을 이해하는데 필요한 부분만이 설명되며, 그 이외의 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다. 그리고 후술되는 용어들은 본 발명의 실시예들에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예들을 가질 수 있는 바, 특정 실시 예들을 도면들에 예시하여 상세하게 설명한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
또한, 본 명세서에서 명백하게 다른 내용을 지시하지 않는 “한”과, “상기”와 같은 단수 표현들은 복수 표현들을 포함한다는 것이 이해될 수 있을 것이다. 따라서, 일 예로, “컴포넌트 표면(component surface)”은 하나 혹은 그 이상의 컴포넌트 표현들을 포함한다.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
또한, 본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명의 실시예들에서, 별도로 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 실시예에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 일반적인 MU-MIMO 시스템에서 하향링크 채널을 추정하는 수신기 구조를 도시한 블록도이다.
도 1을 참조하면, 도시된 수신기는 고속 퓨리에 변환(FFT: Fast Fourier Transform)기(102), 자원 디맵핑(resource demapping)기(104), 로그 우도 비(LLR: Log Likelihood Ratio) 생성기(106), 복호기(decoder)(108), 및 채널 추정(channel estimation)기(110)를 포함한다.
MU-MIMO 시스템에서 송신기는 Nt개의 안테나를 가지는 반면, 수신기는 1개의 안테나를 가지고 있다. 1개의 안테나를 통해 수신된 수신 신호는 FFT기(102)로 입력되고, FFT기(102)는 FFT가 수행된 수신 신호를 출력하여 자원 디매핑기(104)와 채널 추정기(110)로 전달한다.
자원 디매핑기(104)는 입력된 수신 신호 중 관련 자원 영역에 매핑된 수신 신호를 검출하고, 검출된 수신 신호 y를 LLR 생성기(106)로 전달한다. 도시하지는 않았으나 상기 자원 디매핑기(104)는 물리 자원 디매핑기와 논리 자원 디매핑기를 포함할 수 있으며, 이 경우 물리 자원 디매핑기는 입력된 수신 신호 중 물리 자원 영역에 매핑된 수신 신호를 검출하고, 논리 자원 디매핑기는 입력된 수신 신호 중 논리 자원 영역에 매핑된 수신 신호를 검출한다.
LLR 생성기(106)는 검출된 수신 신호 y로부터 복구하고자 하는 심볼들에 대한 LLR 값들을 계산하고, 계산된 LLR 값 Le를 복호기(108)로 전달한다. 복호기(108)는 계산된 LLR 값 Le를 기반으로 송신기의 부호기에서 사용된 부호율에 따라 채널 복호를 수행하여 정보 비트들을 복구한다. 또한 복호기(108)에서 출력된 신호는 반복적인 복호를 위해 사전 확률정보 La로서 LLR 생성기(106)에 전달된다.
한편, 채널 추정기(110)는 입력된 수신 신호를 기반으로 하향링크 채널을 추정하고, 추정된 채널 값
Figure 112015042651301-pat00001
를 LLR 생성기(106)로 전달한다.
MU-MIMO 시스템에서 특정 i번째 사용자에게 수신된 신호 yi는 하기 수학식 1과 같이 나타낼 수 있다.
Figure 112015042651301-pat00002
수학식 1에서
Figure 112015042651301-pat00003
는 전송 신호의 전력을 나타내고,
Figure 112015042651301-pat00004
는 i번째 사용자의 채널을 나타내고,
Figure 112015042651301-pat00005
는 i번째 사용자의 프리코딩 벡터를 나타내고,
Figure 112015042651301-pat00006
는 i번째 사용자의 심볼을 나타내고,
Figure 112015042651301-pat00007
는 j번째 사용자의 프리코딩 벡터를 나타내고,
Figure 112015042651301-pat00008
는 j번째 사용자의 심볼을 나타내고,
Figure 112015042651301-pat00009
는 i번째 사용자의 가우시안 잡음을 나타낸다.
정확한 채널 정보로 형성된 빔을 가정하면, i번째 사용자의 채널 hi와 j번째 사용자의 프리코딩 벡터 wj의 곱은 0이 되므로, (
Figure 112015042651301-pat00010
)
Figure 112015042651301-pat00011
번째 사용자는 j번째 사용자에 의한 간섭이 제거되고 가우시안 잡음만 남은 신호를 수신하게 된다. 이렇게 완벽한 간섭 제거를 위해서는 전송 단이 모든 사용자들의 정확한 채널 정보를 알고 있어야 한다.
그러나 수신 단에서 채널을 추정할 때 발생하는 추정 오차와 전송 단으로 채널 정보를 피드백(feedback)하는 과정에서의 양자화로 인한 정보 손실이 필연적으로 발생하기 때문에 전송 단이 모든 사용자들의 정확한 채널 정보를 알고 있기란 쉽지 않으며, 이로 인해 수신 신호에서 다른 사용자의 간섭 신호를 완벽하게 제거하는 것 역시 쉽지 않다.
도 2는 일반적인 MU-MIMO 시스템에서 하향링크 채널을 추정하는 예를 나타낸 도면이다.
도 2를 참조하면, 두 명의 사용자가 2개의 자원을 할당 받아 기준 신호를 수신하는 경우를 가정하며, 이 경우 첫 번째 사용자에게 수신되는 신호는 하기 수학식 2와 같이 나타낼 수 있다. 수신 신호
Figure 112015042651301-pat00012
는 자원 202에서 수신되는 신호를 나타내고, 수신 신호
Figure 112015042651301-pat00013
는 자원 204에서 수신되는 신호를 나타낸다.
Figure 112015042651301-pat00014
수학식 2에서
Figure 112015042651301-pat00015
는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, w2는 두 번째 사용자의 프리코딩 벡터를 나타내고, p2는 두 번째 자원에 할당된 기준 신호를 나타내고, n1은 첫 번째 사용자의 가우시안 잡음을 나타낸다. 수학식 2에 나타낸 바와 같이 두 명의 사용자에게 전송되는 기준 신호는 신호 자체는 같으나 부호가 상이한 직교 패턴으로 전송된다.
첫 번째 사용자에게 수신되는 신호를 이용한 채널 추정은 수학식 3과 같이 나타낼 수 있다.
Figure 112015042651301-pat00016
는 자원 202에서 수신되는 신호를 이용한 채널 추정을 나타내고,
Figure 112015042651301-pat00017
는 자원 204에서 수신되는 신호를 이용한 채널 추정을 나타낸다.
Figure 112015042651301-pat00018
수학식 3에서
Figure 112015042651301-pat00019
는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, w2는 두 번째 사용자의 프리코딩 벡터를 나타내고, p2는 두 번째 자원에 할당된 기준 신호를 나타내고, n1은 첫 번째 사용자의 가우시안 잡음을 나타낸다.
또한 첫 번째 사용자의 채널이 기준 신호가 있는 위치에서 변화하지 않았다고 가정하면 첫 번째 사용자의 기준 신호는 하기 수학식 4와 같이 나타낼 수 있다.
Figure 112015042651301-pat00020
수학식 4에서
Figure 112015042651301-pat00021
는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, p2는 두 번째 자원에 할당된 기준 신호를 나타내고, y1은 첫 번째 사용자의 수신 신호를 나타낸다.
도 3는 일반적인 MU-MIMO 시스템의 자원 블록에서 기준 신호 위치와 데이터 신호 위치를 나타낸 도면이다.
도 3을 참조하면, 두 개의 자원 블록을 도시하고 있으며, 각 자원 블록은 복수개의 자원 요소들을 포함한다고 가정한다.
각 자원 블록의 가로축은 7개의 직교 주파수 분할 다중(OFDM: orthogonal frequency division multiplexing) 심볼(symbol)들을 포함하고, 세로축은 12개의 부반송파(subcarrier)들을 포함하며, 자원 요소들 각각에서는 셀-특정(cell-specific) 기준 신호(RS: reference signal)(302), 제1 복조(demodulation) RS(304), 제2 복조 RS(305), 제어 신호(control signals)(306), 데이터 신호(data signals)(308) 중 어느 하나의 신호가 전송된다. 도 3에서는 4개의 안테나에 대해서 2개의 안테나를 하나의 그룹으로 구성할 경우를 가정하며, 따라서 제1 복조 RS(304)는 제1 복조 RS 그룹을 의미하고 제2 복조 RS(305)는 제2 복조 RS 그룹을 의미한다.
하향링크 채널은 제1 및 제2 복조 RS(304, 305)를 기반으로 추정되고, 제1 복조 RS(304)를 기반으로 하는 채널 추정을 예를 들어 설명하면 다음과 같다.
수신기는 제1 위치(310)에서 수신되는 제1 복조 RS(304)를 기반으로 채널을 추정하고, 제1 위치(310)에서 추정된 채널 정보를 이용하여 제2 위치(312), 제3 위치(314), 제4 위치(316)에서의 채널 정보를 추정한다. 즉 수신기는 제1 위치(310)에서 추정된 채널 정보에 주파수축(frequency-axis)을 기반으로 보간법(interpolation) 또는 선형 보간법(linear interpolation)을 적용하여 제2 위치(312)와 제3 위치(314)의 채널 정보를 추정하고, 제1 위치(310)에서 추정된 채널 정보에 시간축(time-axis)을 기반으로 보간법 또는 선형 보간법을 적용하여 제4 위치(316)의 채널 정보를 추정한다.
또한 수신기는 상기 추정된 제2 위치(312)의 채널 정보에 시간축을 기반으로 보간법 또는 선형 보간법을 적용하여 제5 위치(318)의 채널 정보를 추정한다. 또 다른 방법으로 수신기는 상기 추정된 제4 위치(316)의 채널 정보에 주파수축을 기반으로 보간법 또는 선형 보간법을 적용하여 제5 위치(318)의 채널 정보를 추정한다.
또한 수신기는 상기 추정된 제3 위치(314)의 채널 정보에 시간축을 기반으로 보간법 또는 선형 보간법을 적용하여 제6 위치(320)의 채널 정보를 추정한다. 또 다른 방법으로 수신기는 상기 추정된 제4 위치(316)의 채널 정보에 주파수축을 기반으로 보간법 또는 선형 보간법을 적용하여 제6 위치(320)의 채널 정보를 추정한다.
도 3에서는 설명하지 않았으나 제2 복조 RS(305)에 대한 채널 추정도 제1 복조 RS(304)에 대한 채널 추정에서 적용되는 방식과 동일한 방식으로 수행될 수 있음은 물론이다. 즉 특정 위치에서 수신되는 제2 복조 RS(305)를 기반으로 채널을 추정하고, 상기 추정된 채널 정보를 이용하여 다른 위치에서의 제2 복조 RS(305)에 대한 채널 정보를 추정할 수 있다.
한편, 수신기는 추정된 채널 정보를 기반으로 데이터 신호의 LLR 값을 구한 뒤 복호기를 통해 채널 복호를 수행하여 정보 비트들을 복원하고, 정보 비트들의 복원에 실패할 경우 복호기의 출력값을 이용하여 채널을 재 추정한다. 여기서 상기 채널을 재 추정하는 동작은 정보 비트 복원에 성공할 때까지 반복하여 수행되며, 또는 반복 복호 회수를 미리 정해놓고 정해진 반복 복호 회수만큼만 채널 재 추정 동작을 수행할 수도 있다.
도 4는 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 하향링크 채널을 추정하는 수신기 구조를 도시한 블록도이다.
도 4를 참조하면, 도시된 수신기는 FFT기(402), 자원 디맵핑기(404), LLR 생성기(406), 복호기(408), 및 채널 추정기(410)를 포함한다.
MU-MIMO 시스템에서 송신기는 Nt개의 안테나를 가지는 반면, 수신기는 1개의 안테나를 가지고 있다. 1개의 안테나를 통해 수신된 수신 신호는 FFT기(402)로 입력되고, FFT기(402)는 FFT가 수행된 수신 신호를 출력하여 자원 디매핑기(404)와 채널 추정기(410)로 전달한다.
자원 디매핑기(404)는 입력된 수신 신호 중 관련 자원 영역에 매핑된 수신 신호를 검출하고, 검출된 수신 신호 y를 LLR 생성기(406)로 전달한다. 여기서는 관련 자원 영역에 매핑된 수신 신호가 기준 신호가 가정한다. 또한 도시하지는 않았으나 상기 자원 디매핑기(404)는 물리 자원 디매핑기와 논리 자원 디매핑기를 포함할 수 있으며, 이 경우 물리 자원 디매핑기는 입력된 수신 신호 중 물리 자원 영역에 매핑된 수신 신호를 검출하고, 논리 자원 디매핑기는 입력된 수신 신호 중 논리 자원 영역에 매핑된 수신 신호를 검출한다.
LLR 생성기(406)는 검출된 기준 신호 y로부터 복구하고자 하는 심볼들에 대한 LLR 값들을 계산하고, 계산된 LLR 값 Le를 복호기(408)로 전달한다. 여기서 복호기(408)로 전달되는 LLR 값 Le는 하기 수학식 5와 같이 계산된다.
Figure 112015042651301-pat00022
수학식 5에서
Figure 112015042651301-pat00023
는 이전 채널 추정 과정에서 복호기로부터 생성된 LLR 값을 나타내고,
Figure 112015042651301-pat00024
는 첫 번째 사용자의 정보 비트 중
Figure 112015042651301-pat00025
번째 정보 비트의 논리 값이 1인 경우를 나타내고,
Figure 112015042651301-pat00026
는 첫 번째 사용자의 정보 비트 중
Figure 112015042651301-pat00027
번째 정보 비트의 논리 값이 0인 경우를 나타내고,
Figure 112015042651301-pat00028
Figure 112015042651301-pat00029
인 경우의 데이터 신호를 나타내고,
Figure 112015042651301-pat00030
Figure 112015042651301-pat00031
인 경우의 데이터 신호를 나타내고,
Figure 112015042651301-pat00032
Figure 112015042651301-pat00033
번째 정보 비트를 제외한 나머지 정보 비트를 나타낸다.
복호기(408)는 계산된 LLR 값 Le를 기반으로 송신기의 부호기에서 사용된 부호 방식에 대응되는 복호 방식에 따라 채널 복호를 수행하고 정보 비트들을 복구한다. 또한 복호기(408)는 채널 추정 과정에서 복호기로부터 생성된 LLR 값 La를 채널 추정기(410)로 전달한다.
한편, 채널 추정기(410)는 입력된 수신 신호를 기반으로 하향링크 채널을 추정하고, 추정된 채널 값
Figure 112015042651301-pat00034
를 LLR 생성기(406)로 전달한다. 이때 채널 추정기는 복호기(408)의 출력을 이용하여 가상 기준 신호를 선별 및 생성한 뒤 상기 가상 기준 신호를 기반으로 채널을 재 추정함으로써 좀더 정확한 채널 정보를 얻을 수 있다.
또한 LLR 생성기(406)는 다른 사용자로부터 수신되는 간섭 신호, 일례로 간섭 스트림(interference stream)을 처리하기 위해 다른 사용자로부터 수신되는 데이터 신호, 일례로 희망 스트림(desired stream)의 채널을 함께 추정하고, 이에 따른 LLR 값을 계산한다. 그러나 다른 사용자의 데이터 신호를 복호하는 것은 매우 어렵기 때문에 채널을 재 추정할 때 생성되는 다른 사용자의 가상 기준 신호는 계산된 LLR 값으로부터 생성하도록 한다.
도 5에서는 도 4에 도시된 채널 추정기(410)의 동작을 보다 상세히 설명하도록 한다.
도 5는 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 하향링크 채널을 추정하는 채널 추정기 구조를 도시한 블록도이다.
도 5를 참조하면, 도시된 채널 추정기는 소프트 심볼(soft-symbol) 생성 유닛(502), 자원 매핑 유닛(504), 가상 기준 신호(VPS: virtual pilot signal) 선택 유닛(506), 채널 추정 유닛(508)을 포함한다.
복호기로부터 생성된 LLR 값 La는 소프트 심볼 생성 유닛(502)에 입력되고, 소프트 심볼 생성 유닛(502)은 하기 수학식 6에 따라 상기 LLR 값 La를 기반으로 소프트 심볼을 생성한다.
Figure 112015042651301-pat00035
수학식 6에서
Figure 112015042651301-pat00036
는 심볼셋
Figure 112015042651301-pat00037
에 속하는 심볼들 중 하나를 나타내고,
Figure 112015042651301-pat00038
는 한 심볼에 속한 정보비트의 수를 나타낸다.
변조 방식으로 QPSK(quadrature phase shift keying) 방식을 사용한다고 가정할 때, 2차 모멘트의 경우 하기 수학식 7과 같이 계산할 수 있다.
Figure 112015042651301-pat00039
수학식 7에서
Figure 112015042651301-pat00040
는 심볼셋
Figure 112015042651301-pat00041
에 속하는 심볼들 중 하나를 나타내고,
Figure 112015042651301-pat00042
는 한 심볼에 속한 정보비트의 수를 나타낸다.
자원 매핑 유닛(504)에는 수신 신호 y와 소프트 심볼 생성 유닛(502)으로부터 출력된 소프트 심볼이 입력되고, 상기 자원 매핑 유닛(504)은 상기 소프트 심볼의 값을 재배치하여 VPS 선택 유닛(506)으로 전달한다. VPS 선택 유닛(506)은 하향링크 신호들 각각이 수신되는 자원 위치를 기반으로 관련 자원 위치에서 복원된 데이터의 정확도와 상기 관련 자원 위치와 기준 신호가 수신되는 자원 위치의 상관도 등을 고려하여 가상 기준 신호를 선택한다. 즉 VPS 선택 유닛(506)은 상기 복원된 데이터의 정확도가 높으면서 상기 상관도가 높은 자원 위치에서 수신되는 신호를 가상 기준 신호로써 선택하고 선택된 가상 기준 신호를 채널 추정 유닛(508)으로 전달한다. 여기서 상기 복원된 데이터의 정확도와 상기 상관도는 이후에 설명할 수학식 18에 의해 계산될 수 있다.
채널 추정 유닛(508)은 VPS 선택 유닛(506)으로부터 입력된 가상 기준 신호를 기반으로 채널을 재 추정한다.
도 6는 본 발명의 일 실시예에 따른 MU-MIMO 시스템의 자원 블록에서 기준 신호 위치와 가상기준 신호의 위치의 예를 나타낸 도면이다.
도 6을 참조하면, 상기 MU-MIMO 시스템은 4개의 안테나를 가지는 기지국과 4명의 사용자를 포함한다고 가정하고, 상기 4개의 안테나에 대해 2개의 안테나를 하나의 그룹으로 구성할 경우를 가정한다. 또한 상기 4명의 사용자가 4개의 자원을 할당 받아 기준 신호를 수신하는 경우를 가정한다.
이 경우 첫 번째 사용자의 수신 신호 y1을 벡터화하여 나타내면 하기 수학식 8과 같이 나타낼 수 있다.
Figure 112015042651301-pat00043
수학식 8에서 p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, p2는 두 번째 자원에 할당된 기준 신호를 나타내고, P3는 세 번째 자원에 할당된 기준 신호를 나타내고, p4는 네 번째 자원에 할당된 기준 신호를 나타내고, d1은 첫 번째 사용자의 데이터 신호를 나타내고, d2는 두 번째 사용자의 데이터 신호를 나타내고, d3는 세 번째 사용자의 데이터 신호를 나타내고, d4는 네 번째 사용자의 데이터 신호를 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, w2는 두 번째 사용자의 프리코딩 벡터를 나타내고, w3는 세 번째 사용자의 프리코딩 벡터를 나타내고, w4는 네 번째 사용자의 프리코딩 벡터를 나타내고, n1은 첫 번째 사용자의 가우시안 잡음을 나타내고, n2는 두 번째 사용자의 가우시안 잡음을 나타내고, n3는 세 번째 사용자의 가우시안 잡음을 나타내고, n4는 네 번째 사용자의 가우시안 잡음을 나타낸다.
첫 번째 사용자의 수신 신호를 이용한 채널 추정은 수학식 9와 같이 나타낼 수 있다.
Figure 112015042651301-pat00044
는 도 2의 자원 202에서 수신되는 신호를 이용한 채널 추정을 나타내고,
Figure 112015042651301-pat00045
는 도 2의 자원 204에서 수신되는 신호를 이용한 채널 추정을 나타낸다.
Figure 112015042651301-pat00046
수학식 9에서 y는 도 4의 자원 디매핑기(404)에서 출력되는 신호를 의미하고,
Figure 112015042651301-pat00047
는 도 4의 채널 추정기(410)에서 출력되는 신호를 의미하고, 여기에서
Figure 112015042651301-pat00048
이다.
본 발명의 일 실시예에 따른 채널 추정 방법은 한 번에 여러 명의 사용자들의 채널을 추정할 수 있는 장점이 있지만, 가상 기준 신호의 숫자가 증가하게 되면 채널 추정을 위한 역행렬 계산의 복잡도가 기하 급수적으로 증가하여 구현이 어려워질 수도 있다.
따라서 이러한 계산 복잡도를 감소시키기 위해, 본 발명의 일 실시예에서는 기준 신호에서 직교 패턴을 미리 제거한 뒤 채널을 추정을 하는 방법을 이용한다. 두 명의 사용자가 두 개의 자원을 이용하여 두 개의 기준 신호를 포함하는 기준 신호 그룹으로 채널을 추정할 경우, 직교 패턴이 제거된 수신 신호
Figure 112015042651301-pat00049
는 하기 수학식 10과 같이 나타낼 수 있다.
Figure 112015042651301-pat00050
수학식 10에서 p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, p2는 두 번째 자원에 할당된 기준 신호를 나타내고, y1은 첫 번째 사용자의 수신 신호를 나타내고,
Figure 112015042651301-pat00051
는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, n1은 첫 번째 사용자의 가우시안 잡음을 나타낸다.
수학식 10과 같은 수신 신호의 채널 추정은 기준 신호 그룹에 포함되는 복수개의 기준 신호들을 벡터화한 뒤 하기 수학식 11과 같이 나타낼 수 있다.
Figure 112015042651301-pat00052
수학식 11에서
Figure 112015042651301-pat00053
는 전송 신호의 전력을 나타내고, σ는 잡음 신호의 전력 나타낸다. 한편, 데이터 신호로부터 생성된 i번째 가상 기준 신호는 하기 수학식 12와 같이 나타낼 수 있다.
Figure 112015042651301-pat00054
수학식 12에서
Figure 112015042651301-pat00055
는 전송 신호의 전력을 나타내고, g1은 첫 번째 사용자의 가상 기준 신호에 관련된 자원 위치의 채널을 나타내고, d1은 첫 번째 사용자의 데이터 신호를 나타내고, Nt는 전송 안테나의 수를 나타내고, j는 사용자 인덱스를 나타내고, W1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, v1은 가상 기준 신호에 관련된 위치에서의 잡음 신호를 나타낸다.
수학식 12에 나타낸 가상 기준 신호 z1을 벡터화하여 나타내면 하기 수학식 13과 같이 나타낼 수 있다.
Figure 112015042651301-pat00056
수학식 13에서 d1은 첫 번째 사용자의 데이터 신호를 나타내고,
Figure 112015042651301-pat00057
는 전송 신호의 전력을 나타내고, g1은 첫 번째 사용자의 가상 기준 신호에 관련된 위치의 채널을 나타내고, w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, j는 사용자 인덱스를 나타내고, v1은 가상 기준 신호에 관련된 위치에서의 잡음 신호를 나타낸다.
직교 패턴을 제거한 기준 신호와 달리 수학식 13의 가상 기준 신호에서는 다른 사용자의 간섭 신호와 데이터 신호가 남아있기 때문에 수학식 14에 나타낸 바와 같은 정제 과정을 거친다.
Figure 112015042651301-pat00058
수학식 14에서
Figure 112015042651301-pat00059
는 전송 신호의 전력을 나타내고, j는 사용자 인덱스를 나타내고,
Figure 112015042651301-pat00060
는 다중 사용자 검출기를 통해 검출된 다른 사용자, 일례로 j번째 사용자의 신호를 나타내고,
Figure 112015042651301-pat00061
는 유효 채널
Figure 112015042651301-pat00062
를 나타내고,
Figure 112015042651301-pat00063
는 이전 채널 추정 과정에서 얻어진 다른 사용자, 일례로 j번째 사용자의 채널 값을 나타내고, v1은 가상 기준 신호에 관련된 위치에서의 잡음 신호를 나타낸다.
결국 기준 신호와 가상 기준 신호를 벡터화하여 나타내면 하기 수학식 12와 같이 나타낼 수 있다.
Figure 112015042651301-pat00064
수학식 15에서
Figure 112015042651301-pat00065
는 전송 신호의 전력을 나타내고, j는 사용자 인덱스를 나타내고,
Figure 112015042651301-pat00066
는 다중 사용자 검출기를 통해 검출된 다른 사용자, 일례로 j번째 사용자의 신호를 나타내고,
Figure 112015042651301-pat00067
는 유효 채널
Figure 112015042651301-pat00068
를 나타내고,
Figure 112015042651301-pat00069
는 이전 반복 과정에서 얻어진 다른 사용자, 일례로 j번째 사용자의 채널 값을 나타내고, v1은 가상 기준 신호에 관련된 위치에서의 잡음 신호를 나타낸다.
정제된 수신 신호에 기반한 가상 기준 신호를 이용한 채널 추정은 하기 수학식 16과 같이 나타낼 수 있다.
Figure 112015042651301-pat00070
수학식 16에서
Figure 112015042651301-pat00071
이고,
Figure 112015042651301-pat00072
이고,
Figure 112015042651301-pat00073
이고,
Figure 112015042651301-pat00074
이다.
가상 기준 신호로 인한 성능 향상을 위해서는 가상 기준 신호를 기반으로 복원된 데이터의 정확도도 중요하지만 상기 가상 기준 신호는 원래의 기준 신호와 강한 연관성을 가지고 있어야 한다. 또한 다른 사용자에 의한 간섭이 존재하기 때문에 다른 사용자의 간섭이 비교적 잘 제거된 자원 위치의 신호를 상기 가상 기준 신호로 사용하여야 한다. 따라서 가상 기준 신호를 이용한 채널 추정이 최대 효과를 얻기 위해서는 다음과 같이 추정된 채널의 평균 오차가 가장 작은 신호를 기준으로 가상 기준 신호를 선택하여야 한다.
상기 추정된 채널의 평균 오차 값이 가장 작은 자원의 위치는 하기 수학식 17와 같이 나타낼 수 있다.
Figure 112015042651301-pat00075
수학식 17에서
Figure 112015042651301-pat00076
는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, g1은 첫 번째 사용자의 가상 기준 신호에 관련된 자원 위치의 채널을 나타낸다.
여러 과정의 계산을 거치고 나면, 수학식 17에 나타낸 평균 오차 값이 작은 자원의 위치는 하기 수학식 18에 나타낸 식의 값이 큰 값을 가지는 자원의 위치와 동일함을 알 수 있다.
Figure 112015042651301-pat00077
수학식 18에서
Figure 112015042651301-pat00078
는 전송 신호의 전력을 나타내고, i는 사용자 인덱스를 나타내고, d1은 첫 번째 사용자의 데이터 신호를 나타내고, λi는 i번째 사용자의
Figure 112015042651301-pat00079
를 나타낸다. 또한 수학식 18에서 첫 번째 항(term)은 관련 자원 위치에서 복원된 데이터의 정확도를 나타내고, 두 번째 항은 관련 자원 위치와 기준 신호의 자원 위치 간의 상관도를 나타낸다. 상기 상관도는 상기 관련 자원과 상기 기준 신호의 자원이 주파수 축 또는 시간 축 상에서 얼마나 가까이 위치하는지를 나타낼 수 있다. 또한
Figure 112015042651301-pat00080
는 0 내지 1 사이의 값을 가지며 상기
Figure 112015042651301-pat00081
값이 1에 가까워질수록 상관도는 높아진다.
도 6 및 수학식 8 내지 수학식 18은 기준 신호가 LTE(long term evolution) 시스템의 복조 RS인 경우를 일례로 설명하였다. 그러나 도 6의 실시예 및 수학식 8 내지 수학식 18은 복조 RS 뿐만 아니라 다른 구조의 RS에도 얼마든지 적용될 수 있음은 물론이다. 또한 도 6의 실시예는 안테나 구조, 관련 시스템이 포함하는 사용자 수, 안테나들을 기반으로 기준 신호 그룹을 생성하는 원리와 무관하게 적용될 수 있음은 물론이다.
도 7은 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 수신기가 하향링크 채널을 추정하는 동작을 나타낸 순서도이다.
도 7을 참조하면, 702단계에서 수신기는 신호를 수신하고 수신된 신호에 대해 FFT를 수행한다. 704단계에서 수신기는 FFT가 수행된 수신 신호로부터 관련 자원 영역에 매핑되는 수신 신호를 검출한다. 여기서는 관련 자원 영역에 매핑되는 수신 신호가 기준 신호라 가정한다.
706단계에서 수신기는 검출된 기준 신호를 기반으로 하향링크 채널을 추정하고, 708단계로 진행하여 상기 검출된 기준 신호로부터 복구하고자 하는 심볼에 대한 LLR 값을 계산한다.
710단계에서 수신기는 LLR 값을 기반으로 채널 복호를 수행하여 정보 비트를 복구하고, 712단계로 진행하여 정보 비트 복구에 성공하였는지 여부를 검사한다. 상기 채널 복호에는 부호기에서 사용된 부호 방식에 대응하는 복호 방식이 사용되며, 여기서는 일례로 터보 복호 방식을 사용한다고 가정한다. 또한 712단계의 검사 동작에는 다양한 오류 검출 방식이 사용될 수 있으며, 여기서는 일례로 순환 중복 검사(CRC: cyclic redundancy check) 방식을 사용한다고 가정한다.
712단계 검사 결과 수신기는 상기 정보 비트 복구에 성공한 경우 채널 추정 동작을 종료하고, 상기 정보 비트 복구에 성공하지 못한 경우 714단계로 진행하여 LLR 값을 기반으로 소프트 심볼을 생성한다. 714단계에서 수신기는 소프트 심볼 값들을 재배치하고, 718단계로 진행하여 가상 기준 신호로 선택한다. 이때 상기 가상 기준 신호는 관련 자원 위치에서 복원된 데이터의 정확도와 상기 관련 자원 위치와 기준 신호가 수신되는 자원 위치의 상관도를 기반으로 선택되며, 상기 복원된 데이터의 정확도가 높으면서 상기 상관도가 높은 자원 위치에서 수신되는 신호가 상기 가상 기준 신호로서 선택된다.
이후 수신기는 706단계로 진행하고, 718단계에서 선택한 가상 기준 신호를 기반으로 하향링크 채널을 재 추정한다.
한편 도 7에서는 정보 비트 복구에 성공할 때까지 채널 추정 동작을 반복하여 수행하는 경우를 일례로 설명하였다. 그러나 수신기는 반복 복호 회수를 미리 결정할 수도 있으며, 이 경우 수신기는 미리 결정된 반복 복호 회수만큼만 채널 추정 동작을 수행하고 정보 비트 복구의 성공 여부와 관계 없이 채널 추정 동작을 종료할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 단일 사용자 검출 방식을 사용하는 수신기와 다중 사용자 검출 방식을 사용하는 수신기의 성능을 나타낸 그래프이다.
도 8을 참조하면, 상기 MU-MIMO 시스템은 4개의 안테나를 가지는 기지국과 4명의 사용자를 포함한다고 가정하고, 상기 4개의 안테나에 대해 2개의 안테나를 하나의 그룹으로 구성할 경우를 가정한다. 또한 상기 4명의 사용자가 4개의 자원을 할당 받아 기준 신호를 수신하는 경우를 가정한다.
채널 환경은 EVA(Extended Vehicular A) 모델을 사용하고, 도플러 효과는 70hz를 가정하며, LLR 계산 방식으로 최소 평균 제곱 에러(MMSE: minimum mean square error)-부분 간섭 제거(PIC: partial interference cancellation) 방식을 사용하고, 가상 기준 신호의 경우 하나의 자원 블록당 32개의 심볼을 선택한다고 가정한다. 또한 변조 방식으로 QPSK 1/2을 사용하고 간섭의 합계 전력이 지정된 사용자 전력 대비 -2dB에 상당한다고 가정한다.
도시된 그래프의 가로축은 Eb/No(energy per bit to noise spectral density ratio)를 의미하고 세로축은 BLER(block error rate)을 의미한다.
또한 Perfect CSI(channel state information) with SUD는 채널 정보를 정확히 알고 있고 단일 사용자 검출(SUD: single user detection) 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, Conventional MMSE with SUD는 기존의 MMSE 방식과 SUD 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, Perfect CSI with MUD는 채널 정보를 정확히 알고 있고 다중 사용자 검출(MUD: multi user detection) 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, MMSE with MUD는 MMSE 방식으로 간섭 채널을 추정하고 MUD 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, Proposed with MUD는 가상 기준 신호를 사용하는 수신기의 성능을 나타낸 그래프이다.
도 8의 그래프를 통해 가상 기준 신호를 사용하는 수신기는 SUD 방식의 수신기 대비 4dB의 성능 향상이 있음을 확인할 수 있고, MUD 방식의 수신기 대비 0.5dB의 성능 향상이 있음을 확인할 수 있다.
도 9는 본 발명의 일 실시예에 따른 MU-MIMO 시스템에서 단일 사용자 검출 방식을 사용하는수신기와 다중 사용자 검출 방식을 사용하는 수신기의 성능을 나타낸 또 다른 그래프이다.
도 9를 참조하면, 상기 MU-MIMO 시스템은 4개의 안테나를 가지는 기지국과 4명의 사용자를 포함한다고 가정하고, 상기 4개의 안테나에 대해 2개의 안테나를 하나의 그룹으로 구성할 경우를 가정한다. 또한 상기 4명의 사용자가 4개의 자원을 할당 받아 기준 신호를 수신하는 경우를 가정한다.
채널 환경은 EVA 모델을 사용하고, 도플러 효과는 70hz를 가정하며, LLR 계산 방식으로 MMSE-PIC 방식을 사용하고, 가상 기준 신호의 경우 하나의 자원 블록당 32개의 심볼을 선택한다고 가정한다. 또한 변조 방식으로 16 QAM(quadrature amplitude modulation) 방식을 사용하고 간섭의 합계 전력이 지정된 사용자 전력 대비 -3dB에 상당한다고 가정한다.
도시된 그래프의 가로축은 Eb/No를 의미하고 세로축은 BLER을 의미한다.
또한 Perfect CSI with SUD는 채널 정보를 정확히 알고 있고 SUD 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, Conventional MMSE with SUD는 기존의 MMSE 방식과 SUD 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, Perfect CSI with MUD는 채널 정보를 정확히 알고 있고 MUD 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, MMSE with MUD는 MMSE 방식으로 간섭 채널을 추정하고 MUD 방식을 사용하는 수신기의 성능을 나타낸 그래프이고, Proposed with MUD는 가상 기준 신호를 사용하는 수신기의 성능을 나타낸 그래프이다.
도 9의 그래프를 통해 가상 기준 신호를 사용하는 수신기는 SUD 방식의 수신기 대비 3dB의 성능 향상이 있음을 확인할 수 있고, MUD 방식의 수신기 대비 1dB의 성능 향상이 있음을 확인할 수 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
또한 본 발명의 실시예에 따른 하향링크 채널 추정 장치 및 방법은 하드웨어, 소프트웨어 또는 하드웨어 및 소프트웨어의 조합의 형태로 실현 가능하다는 것을 알 수 있을 것이다. 이러한 임의의 소프트웨어는 예를 들어, 삭제 가능 또는 재기록 가능 여부와 상관없이, ROM 등의 저장 장치와 같은 휘발성 또는 비휘발성 저장 장치, 또는 예를 들어, RAM, 메모리 칩, 장치 또는 집적 회로와 같은 메모리, 또는 예를 들어 CD, DVD, 자기 디스크 또는 자기 테이프 등과 같은 광학 또는 자기적으로 기록 가능함과 동시에 기계(예를 들어, 컴퓨터)로 읽을 수 있는 저장 매체에 저장될 수 있다. 본 발명의 그래픽 화면 갱신 방법은 제어부 및 메모리를 포함하는 컴퓨터 또는 휴대 단말에 의해 구현될 수 있고, 상기 메모리는 본 발명의 실시 예들을 구현하는 지시들을 포함하는 프로그램 또는 프로그램들을 저장하기에 적합한 기계로 읽을 수 있는 저장 매체의 한 예임을 알 수 있을 것이다.
따라서, 본 발명은 본 명세서의 임의의 청구항에 기재된 장치 또는 방법을 구현하기 위한 코드를 포함하는 프로그램 및 이러한 프로그램을 저장하는 기계(컴퓨터 등)로 읽을 수 있는 저장 매체를 포함한다. 또한, 이러한 프로그램은 유선 또는 무선 연결을 통해 전달되는 통신 신호와 같은 임의의 매체를 통해 전자적으로 이송될 수 있고, 본 발명은 이와 균등한 것을 적절하게 포함한다
또한 본 발명의 실시예에서는 하향링크 채널 추정 장치로부터 상기 프로그램을 수신하여 저장할 수 있다. 상기 프로그램 제공 장치는 그래픽 처리 장치가 기 설정된 컨텐츠 보호 방법을 수행하도록 하는 지시들을 포함하는 프로그램, 컨텐츠 보호 방법에 필요한 정보 등을 저장하기 위한 메모리와, 상기 그래픽 처리 장치와의 유선 또는 무선 통신을 수행하기 위한 통신부와, 상기 그래픽 처리 장치의 요청 또는 자동으로 해당 프로그램을 상기 송수신 장치로 전송하는 제어부를 포함할 수 있다.

Claims (16)

  1. 무선 통신 시스템에서 수신기가 하향링크 채널을 추정하는 방법에 있어서,
    수신 신호들 중 기준 신호에서 직교 패턴(orthogonal pattern)을 제거하는 단계;
    상기 직교 패턴이 제거된 상기 기준 신호에 기반하여, 하향링크 채널을 추정하여 정보 비트를 복구하는 단계;
    상기 정보 비트의 복구가 실패한 경우, 상기 수신 신호들 각각을 전달하는 자원의 위치에서 복원된 데이터의 정확도(accuracy), 상기 수신 신호들 각각을 전달하는 자원의 위치 및 상기 기준 신호를 전달하는 자원의 위치 간 상관도(correlation), 및 상기 수신 신호들 각각을 전달하는 자원의 위치에서 추정된 채널의 평균 오차(average error) 중 적어도 하나에 기반하여 가상 기준 신호를 선택하는 단계;
    상기 선택된 가상 기준 신호에 기반하여, 상기 하향링크 채널을 추정하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 가상 기준 신호를 선택하는 단계는,
    상기 수신 신호들 중 가장 높은 복원된 데이터의 정확도 및 가장 높은 상관도를 갖는 신호를 상기 가상 기준 신호로서 선택하는 단계를 포함하는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 가장 높은 복원된 데이터의 정확도 및 상기 가장 높은 상관도를 갖는 상기 신호를 전달하는 자원의 위치는 하기 수학식에 의해 결정되는 것을 특징으로 하는 방법.
    Figure 112021024963461-pat00082

    상기 첫 번째 항(term)은 상기 복원된 데이터의 정확도를 나타내고, 상기 두 번째 항은 상기 상관도를 나타내고, 상기
    Figure 112021024963461-pat00083
    는 전송 신호의 전력을 나타내고, i는 사용자 인덱스를 나타내고, d1은 첫 번째 사용자의 데이터 신호를 나타내고, λi는 i번째 사용자의
    Figure 112021024963461-pat00084
    를 나타냄.
  4. 제1항에 있어서,
    상기 가상 기준 신호를 선택하는 단계는,
    상기 추정된 채널의 평균 오차가 가장 작은 신호를 상기 가상 기준 신호로서 선택하는 단계를 포함하는 것을 특징으로 하는 방법.
  5. 제4항에 있어서,
    상기 추정된 채널의 평균 오차가 가장 작은 상기 신호를 전달하는 자원의 위치는 하기 수학식에 의해 결정됨을 특징으로 하는 방법.
    Figure 112021024963461-pat00085

    상기
    Figure 112021024963461-pat00086
    는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, g1은 첫 번째 사용자의 가상 기준 신호에 관련된 자원 위치의 채널을 나타냄.
  6. 제1항에 있어서,
    상기 직교 패턴이 제거된 기준 신호
    Figure 112021024963461-pat00087
    는 하기 수학식에 의해 나타냄을 특징으로 하는 방법.
    Figure 112021024963461-pat00088

    상기 p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, 상기 p2는 두 번째 자원에 할당된 기준 신호를 나타내고, 상기 y1은 첫 번째 사용자의 수신 신호를 나타내고, 상기
    Figure 112021024963461-pat00089
    는 전송 신호의 전력을 나타내고, 상기 h1은 첫 번째 사용자의 채널을 나타내고, 상기 w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, 상기 n1은 첫 번째 사용자의 가우시안 잡음을 나타냄.
  7. 제1항에 있어서,
    상기 가상 기준 신호로부터 다른 사용자의 간섭 신호 및 데이터 신호를 제거하여 정제하는 단계를 더 포함하며,
    상기 정제된 가상 기준 신호
    Figure 112021024963461-pat00090
    은 하기 수학식과 같이 나타냄을 특징으로 하는 방법.
    Figure 112021024963461-pat00091

    상기
    Figure 112021024963461-pat00092
    는 전송 신호의 전력을 나타내고, 상기 j는 사용자 인덱스를 나타내고, 상기
    Figure 112021024963461-pat00093
    는 다중 사용자 검출기를 통해 검출된 다른 사용자, 일례로 j번째 사용자의 신호를 나타내고, 상기
    Figure 112021024963461-pat00094
    는 유효 채널
    Figure 112021024963461-pat00095
    를 나타내고, 상기
    Figure 112021024963461-pat00096
    는 이전 채널 추정 과정에서 얻어진 다른 사용자, 일례로 j번째 사용자의 채널 값을 나타내고, 상기 v1은 가상 기준 신호에 관련된 위치에서의 잡음 신호를 나타냄.
  8. 제1항에 있어서,
    상기 선택된 가상 기준 신호를 기반으로 상기 하향링크 채널을 추정하는 단계는 상기 정보 비트의 복구가 성공할 때까지 반복되거나, 미리 정해진 복호 반복 횟수만큼 반복되는 것을 특징으로 하는 방법.
  9. 무선 통신 시스템에서 하향링크 채널을 추정하는 장치에 있어서,
    수신기; 및
    수신 신호들 중 기준 신호에서 직교 패턴(orthogonal pattern)을 제거하고,
    상기 직교 패턴이 제거된 상기 기준 신호에 기반하여, 하향링크 채널을 추정하여 정보 비트를 복구하고,
    상기 정보 비트의 복구가 실패한 경우, 상기 수신 신호들 각각을 전달하는 자원의 위치에서 복원된 데이터의 정확도(accuracy), 상기 수신 신호들 각각을 전달하는 자원의 위치 및 상기 기준 신호를 전달하는 자원의 위치 간 상관도(correlation), 및 상기 수신 신호들 각각을 전달하는 자원의 위치에서 추정된 채널의 평균 오차(average error) 중 적어도 하나에 기반하여 가상 기준 신호를 선택하고,
    상기 선택된 가상 기준 신호에 기반하여, 상기 하향링크 채널을 추정하는 프로세서를 포함하는 것을 특징으로 하는 장치.
  10. 제9항에 있어서,
    상기 프로세서는,
    상기 수신 신호들 중 가장 높은 복원된 데이터의 정확도 및 가장 높은 상관도를 갖는 신호를 상기 가상 기준 신호로서 선택하는 것을 특징으로 하는 장치.
  11. 제10항에 있어서,
    상기 가장 높은 복원된 데이터의 정확도 및 상기 가장 높은 상관도를 갖는 상기 신호를 전달하는 자원의 위치는 하기 수학식에 의해 결정되는 것을 특징으로 하는 장치.
    Figure 112021024963461-pat00097

    상기 첫 번째 항(term)은 상기 복원된 데이터의 정확도를 나타내고, 상기 두 번째 항은 상기 상관도를 나타내고, 상기
    Figure 112021024963461-pat00098
    는 전송 신호의 전력을 나타내고, i는 사용자 인덱스를 나타내고, d1은 첫 번째 사용자의 데이터 신호를 나타내고, λi는 i번째 사용자의
    Figure 112021024963461-pat00099
    를 나타냄.
  12. 제9항에 있어서,
    상기 프로세서는,
    상기 추정된 채널의 평균 오차가 가장 작은 신호를 상기 가상 기준 신호로서 선택하는 것을 특징으로 하는 장치.
  13. 제12항에 있어서,
    상기 추정된 채널의 평균 오차가 가장 작은 상기 신호를 전달하는 자원의 위치는 하기 수학식에 의해 결정됨을 특징으로 하는 장치.
    Figure 112021024963461-pat00100

    상기
    Figure 112021024963461-pat00101
    는 전송 신호의 전력을 나타내고, h1은 첫 번째 사용자의 채널을 나타내고, g1은 첫 번째 사용자의 가상 기준 신호에 관련된 자원 위치의 채널을 나타냄.
  14. 제9항에 있어서,
    상기 직교 패턴이 제거된 기준 신호
    Figure 112021024963461-pat00121
    는 하기 수학식에 의해 나타냄을 특징으로 하는 장치.
    Figure 112021024963461-pat00103

    상기 p1은 첫 번째 자원에 할당된 기준 신호를 나타내고, 상기 p2는 두 번째 자원에 할당된 기준 신호를 나타내고, 상기 y1은 첫 번째 사용자의 수신 신호를 나타내고, 상기
    Figure 112021024963461-pat00104
    는 전송 신호의 전력을 나타내고, 상기 h1은 첫 번째 사용자의 채널을 나타내고, 상기 w1은 첫 번째 사용자의 프리코딩 벡터를 나타내고, 상기 n1은 첫 번째 사용자의 가우시안 잡음을 나타냄.
  15. 제9항에 있어서,
    상기 프로세서는, 상기 가상 기준 신호로부터 다른 사용자의 간섭 신호 및 데이터 신호를 제거하여 정제하고, 상기 정제된 가상 기준 신호
    Figure 112021024963461-pat00122
    은 하기 수학식과 같이 나타냄을 특징으로 하는 장치.
    Figure 112021024963461-pat00106

    상기
    Figure 112021024963461-pat00107
    는 전송 신호의 전력을 나타내고, 상기 j는 사용자 인덱스를 나타내고, 상기
    Figure 112021024963461-pat00108
    는 다중 사용자 검출기를 통해 검출된 다른 사용자, 일례로 j번째 사용자의 신호를 나타내고, 상기
    Figure 112021024963461-pat00109
    는 유효 채널
    Figure 112021024963461-pat00110
    를 나타내고, 상기
    Figure 112021024963461-pat00111
    는 이전 채널 추정 과정에서 얻어진 다른 사용자, 일례로 j번째 사용자의 채널 값을 나타내고, 상기 v1은 가상 기준 신호에 관련된 위치에서의 잡음 신호를 나타냄.
  16. 제9항에 있어서,
    상기 선택된 가상 기준 신호를 기반으로 상기 하향링크 채널을 추정하는 동작은 상기 정보 비트의 복구가 성공할 때까지 반복되거나, 미리 정해진 복호 반복 횟수만큼 반복되는 것을 특징으로 하는 장치.
KR1020150062106A 2015-04-30 2015-04-30 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법 KR102244207B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150062106A KR102244207B1 (ko) 2015-04-30 2015-04-30 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법
PCT/KR2016/004541 WO2016175609A1 (ko) 2015-04-30 2016-04-29 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법
EP16786795.1A EP3291498A4 (en) 2015-04-30 2016-04-29 Apparatus and method for estimating downlink channel in wireless communication system
US15/570,647 US10367659B2 (en) 2015-04-30 2016-04-29 Apparatus and method for estimating downlink channel in wireless communication system
CN201680025009.5A CN107624235B (zh) 2015-04-30 2016-04-29 用于估计无线通信系统中的下行链路信道的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150062106A KR102244207B1 (ko) 2015-04-30 2015-04-30 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20160129628A KR20160129628A (ko) 2016-11-09
KR102244207B1 true KR102244207B1 (ko) 2021-04-26

Family

ID=57199570

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150062106A KR102244207B1 (ko) 2015-04-30 2015-04-30 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법

Country Status (5)

Country Link
US (1) US10367659B2 (ko)
EP (1) EP3291498A4 (ko)
KR (1) KR102244207B1 (ko)
CN (1) CN107624235B (ko)
WO (1) WO2016175609A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057834A1 (ko) * 2015-09-30 2017-04-06 엘지전자 주식회사 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
KR101779584B1 (ko) * 2016-04-29 2017-09-18 경희대학교 산학협력단 복잡도 감소에 기반한 ds-cdma 시스템에서의 원신호 복원 방법
KR102416491B1 (ko) * 2017-06-19 2022-07-05 삼성전자 주식회사 무선 통신 시스템에서 데이터 디코딩 방법 및 장치
US10790930B2 (en) * 2017-08-16 2020-09-29 Qualcomm Incorporated Techniques for distortion correction at a receiver device
CN108964864B (zh) * 2018-08-21 2020-11-13 电子科技大学 一种scma多址系统中的非正交导频与信号传输方法
US10778300B2 (en) * 2018-12-03 2020-09-15 Samsung Electronics Co., Ltd Method and apparatus for high rank multiple-input multiple-output (MIMO) symbol detection
US10972201B2 (en) 2019-05-03 2021-04-06 Samsung Electronics Co., Ltd Method and apparatus for providing enhanced reference signal received power estimation
TWI759920B (zh) * 2020-10-22 2022-04-01 國立清華大學 非正交多重接取系統中的功率分配方法及使用所述方法的基地台
CN115776424B (zh) * 2022-11-16 2023-08-01 南通大学 一种去蜂窝大规模mimo共生通信系统信道估计方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564525B1 (ko) 2007-03-21 2015-10-29 인터디지탈 테크날러지 코포레이션 전용 기준 신호 모드에 기초하여 리소스 블록 구조를 전송 및 디코딩하는 mimo 무선 통신 방법 및 장치
KR100967058B1 (ko) 2008-11-21 2010-06-29 성균관대학교산학협력단 무선통신 시스템에서의 개량된 채널 추정 방법 및 채널 추정기
KR101109383B1 (ko) 2009-11-25 2012-01-30 서울대학교산학협력단 직교주파수 분할다중 기반 무선통신 시스템에서 전용 파일럿 신호를 이용한 채널추정 방법 및 장치
KR20140037692A (ko) * 2012-09-19 2014-03-27 주식회사 케이티 하향링크 채널 추정 방법, 상향링크 채널 추정 방법, 기지국 장치 및 통신 시스템
EP2807777B1 (en) * 2013-04-04 2016-01-20 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication network for joint iterative detection/estimation
US20150103801A1 (en) 2013-09-02 2015-04-16 Electronics And Telecommunications Research Institute Method and apparatus for transmitting signal for downlink channel estimation
KR20150026949A (ko) * 2013-09-02 2015-03-11 한국전자통신연구원 하향 링크 채널 추정을 위한 신호 전송 방법 및 그 장치
US9413563B2 (en) * 2014-12-09 2016-08-09 Mbit Wireless, Inc. Method and apparatus for channel estimation using localized SINR in wireless communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. Park 외 3인 "Virtual Pilot Signal for Massive MIMO-OFDM Systems" IEEE. (2014.02.14.) 1부.*

Also Published As

Publication number Publication date
EP3291498A4 (en) 2018-07-18
CN107624235B (zh) 2020-08-28
US20180294997A1 (en) 2018-10-11
US10367659B2 (en) 2019-07-30
CN107624235A (zh) 2018-01-23
EP3291498A1 (en) 2018-03-07
WO2016175609A1 (ko) 2016-11-03
KR20160129628A (ko) 2016-11-09

Similar Documents

Publication Publication Date Title
KR102244207B1 (ko) 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법
KR102191290B1 (ko) 이동통신 시스템에서 통신 채널 추정 방법 및 장치
KR100842569B1 (ko) 다중 입출력 통신시스템에서 신호 수신 방법 및 장치
US11711155B2 (en) Self-adaptive MIMO detection method and system
TWI591973B (zh) A signal detection method and device
US9634879B2 (en) Demodulator apparatus and demodulation method
US20180287828A1 (en) Successive interference cancellation and multi-user minimum mean square channel estimation based on soft decoding information
JP2006005791A (ja) 通信路推定及びデータ検出方法
US9374175B2 (en) Joint spatial processing for space frequency block coding and/or non space frequency block coding channels
US9066247B2 (en) Communication devices and methods for signal detection
JP6180333B2 (ja) 無線周波数受信機において信号を復号化する方法
WO2008151518A1 (fr) Procédé et dispositif de détection d'information dans un système ofdm
CN102983933B (zh) 信号发送方法、信号解码方法、装置和系统
EP2555479A1 (en) Apparatus and method for estimating a channel coefficient of a data subchannel of a radio channel
KR20080059095A (ko) 다중 안테나 무선통신 시스템에서 채널 추정 장치 및 방법
CN108418619B (zh) 一种信号检测方法及装置
KR100960418B1 (ko) 통신 시스템에서 신호 수신 장치 및 방법
KR101731723B1 (ko) 다중 안테나 시스템에서 연판정 검출 방법 및 장치
KR100945101B1 (ko) 통신 시스템에서 신호 수신 장치 및 방법
Park et al. Soft decision-directed channel estimation for multiuser MIMO systems
EP2930872B1 (en) Method, user device and computer-readable medium for receiving a signal
WO2017204007A1 (ja) 無線通信装置及び無線通信方法
JP2011139294A (ja) 送信装置および受信装置
KR101521887B1 (ko) 다중안테나 시스템에서 로그우도비를 생성하는 장치 및방법
Yoo et al. Iterative Robust MMSE Receiver for STBC under Channel Information Errors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant