KR102236920B1 - 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법 - Google Patents

전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법 Download PDF

Info

Publication number
KR102236920B1
KR102236920B1 KR1020160150360A KR20160150360A KR102236920B1 KR 102236920 B1 KR102236920 B1 KR 102236920B1 KR 1020160150360 A KR1020160150360 A KR 1020160150360A KR 20160150360 A KR20160150360 A KR 20160150360A KR 102236920 B1 KR102236920 B1 KR 102236920B1
Authority
KR
South Korea
Prior art keywords
formula
carbon atoms
compound
alkyl
aryl
Prior art date
Application number
KR1020160150360A
Other languages
English (en)
Other versions
KR20180053037A (ko
Inventor
공진삼
한효정
김슬기
이은정
이충훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160150360A priority Critical patent/KR102236920B1/ko
Publication of KR20180053037A publication Critical patent/KR20180053037A/ko
Application granted granted Critical
Publication of KR102236920B1 publication Critical patent/KR102236920B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64082Tridentate ligand
    • C08F4/6411Monoanionic ligand
    • C08F4/64113NNN
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Abstract

본 발명은 전이금속 화합물 및 디알킬아연 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법에 관한 것으로, 본 발명에 따른 촉매 조성물은 고결정성, 고밀도 및 고분자량을 가지는 올레핀계 중합체의 제조에 있어 높은 코모노머 혼성(comonomer incorporation) 효과를 가지는 전이금속 화합물, 및 디알킬아연 화합물을 포함하므로, 중합체의 사슬 이동(chain transfer)으로 인해 높은 용융지수(MI)를 나타내는 중합체를 제조할 수 있다.

Description

전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법{CATALYSTIC COMPOSITION COMPRISING TRANSITION METAL COMPOUND, AND FOR PREPARING POLYMERS USING THE SAME}
본 발명은 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법에 관한 것으로, 보다 구체적으로는 전이금속 화합물 및 디알킬아연 화합물을 포함하여 중합체 제조시 사슬 이동(chain transfer)이 이루어질 수 있는 촉매 조성물 및 이를 이용한 중합체의 제조방법에 관한 것이다.
다우(Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2 (Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데(미국 특허 등록 제5,064,802호), 에틸렌과 알파-올레핀의 공중합 반응에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며, (2) 1-헥센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다. 그 외에도 중합 반응 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 중합 촉매로 사용하고자 하는 노력이 학계 및 산업계에서 활발히 이루어졌다.
그 중 하나의 접근 방법으로 실리콘 브릿지 대신에 다른 다양한 브릿지 및 질소 치환체가 도입된 금속 화합물의 합성과 이의 중합이 시도되었다. 최근까지 알려진 대표적인 금속 화합물들을 열거하면 하기 화합물 (1) 내지 (4) 와 같다 (Chem. Rev. 2003, 103, 283).
Figure 112016110472387-pat00001
상기 화합물 (1) 내지 (4) 는 CGC 구조의 실리콘 브릿지 대신에 포스포러스(1), 에틸렌 또는 프로필렌(2), 메틸리덴(3), 및 메틸렌(4) 브릿지가 각각 도입되어 있으나, 에틸렌 중합 또는 알파-올레핀과의 공중합 적용시에 CGC 대비하여 활성도 또는 공중합 성능 등의 측면에서 향상된 결과들을 얻지 못했다.
또한, 다른 접근 방법으로는 상기 CGC의 아미도 리간드 대신에 옥시도 리간드로 구성된 화합물들 많이 합성되었으며, 이를 이용한 중합도 일부 시도되었다. 그 예들을 정리하면 다음과 같다.
Figure 112016110472387-pat00002
화합물 (5)는 T. J. Marks 등에 의해 보고된 내용으로 Cp(시클로펜타디엔) 유도체와 옥시도 리간드가 오르토-페닐렌기에 의해 가교된 것이 특징이다 (Organometallics 1997, 16, 5958). 동일한 가교를 가지고 있는 화합물 및 이를 이용한 중합이 Mu 등에 의해서도 보고되었다(Organometallics 2004, 23, 540). 또한, 인데닐 리간드와 옥시도 리간드가 동일한 오르토-펜닐렌기에 의해 가교된 것이 Rothwell 등에 의해 발표되었다(Chem. Commun. 2003, 1034). 화합물 (6)은 Whitby 등이 보고한 내용으로 탄소 3개에 의해 시클로펜타니엔닐 리간드와 옥시도 리간드가 교각된 것이 특징인데(Organometallics 1999, 18, 348), 이런 촉매들이 신디오탁틱(syndiotactic) 폴리스티렌 중합에 활성을 보인다고 보고 되었다. 유사한 화합물이 또한 Hessen등에 의해서도 보고되었다(Organometallics 1998, 17, 1652). 화합물(7)은 Rau 등이 보고한 것으로 고온 및 고압(210, 150MPa)에서 에틸렌 중합 및 에틸렌/1-헥센 공중합에 활성을 보이는 것이 특징이다(J. Organomet. Chem. 2000, 608, 71). 또한, 이후 이와 유사한 구조의 촉매 합성(8) 및 이를 이용한 고온, 고압 중합이 스미토모 (Sumitomo)사에 의하여 특허 출원되었다(미국 특허 등록 제6,548,686호). 그러나, 상기 시도들 중에서 실제로 상업 공장에 적용되고 있는 촉매들은 소수이다. 따라서, 보다 향상된 중합 성능을 보여주는 촉매가 요구되며, 이러한 촉매들을 간단하게 제조하는 방법이 요구된다.
미국 특허 등록 제5,064,802호 미국 특허 등록 제6,548,686호
Chem. Rev. 2003, 103, 283 Organometallics 1997, 16, 5958 Organometallics 2004, 23, 540 Chem. Commun. 2003, 1034 Organometallics 1999, 18, 348 Organometallics 1998, 17, 1652 J. Organomet. Chem. 2000, 608, 71
본 발명의 해결하고자 하는 과제는 전이금속 화합물 및 디알킬아연 화합물을 포함하는 촉매 조성물을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는 상기 촉매 조성물을 이용한 중합체의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은
하기 화학식 1의 전이금속 화합물 및 하기 화학식 2의 디알킬아연 화합물을 포함하는 촉매 조성물을 제공한다:
Figure 112016110472387-pat00003
상기 화학식 1에 있어서,
R1 내지 R9는 각각 독립적으로 수소, 실릴, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고;
상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고;
n은 1 또는 2이고;
Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬 아미도, 탄소수 6 내지 20의 아릴 아미도, 또는 탄소수 1 내지 20의 알킬리덴이며;
M은 Ti, Zr 또는 Hf이고;
[화학식 2]
Figure 112016110472387-pat00004
상기 화학식 2에 있어서,
R10 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬이다.
상기 다른 과제를 해결하기 위하여, 본 발명은
상기 촉매 조성물을 이용한 중합체의 제조방법을 제공한다.
본 발명에 따른 촉매 조성물은 고결정성, 고밀도 및 고분자량을 가지는 올레핀계 중합체의 제조에 있어 높은 코모노머 혼성(comonomer incorporation) 효과를 가지는 전이금속 화합물, 및 디알킬아연 화합물을 포함하므로, 중합체의 사슬 이동(chain transfer)으로 인해 높은 용융지수(MI)를 나타내는 중합체를 제조할 수 있다.
본 발명에 따른 촉매 조성물은 하기 화학식 1의 전이금속 화합물 및 하기 화학식 2의 디알킬아연 화합물을 포함한다.
[화학식 1]
Figure 112016110472387-pat00005
상기 화학식 1에 있어서,
R1 내지 R9는 각각 독립적으로 수소, 실릴, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고;
상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고;
n은 1 또는 2이고;
Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬 아미도, 탄소수 6 내지 20의 아릴 아미도, 또는 탄소수 1 내지 20의 알킬리덴이며;
M은 Ti, Zr 또는 Hf이고;
[화학식 2]
Figure 112016110472387-pat00006
상기 화학식 2에 있어서,
R10 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬이다.
상기 촉매 조성물이 포함하는 상기 화학식 1의 전이금속 화합물은 사슬 셔틀링(cjain shuttling)제에 의한 사슬이동(chain transfer)이 가능하여, 함께 포함된 상기 화학식 2의 디알킬아연이 사슬 셔틀링제로 작용할 경우, 높은 용융지수(MI) 및 용융온도(Tm)를 가지는 중합체를 제조할 수 있다. 또한, 상기 화학식 1의 전이금속 화합물은 사슬 셔틀링제에 의한 사슬이동이 가능하므로, 블록 공중합체를 만들기 위한 촉매로서 사용될 수 있다.
본 발명의 일례에 따르면, 상기 화학식 1에서, 상기 Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수` 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬일 수 있다.
또한, 본 발명의 일례에 따르면, 상기 화학식 1에서, 상기 R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬일 수 있고;
상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
본 발명의 일례에 의하면, 상기 화학식 1의 화합물은 화학식들로 표시되는 화합물 중 어느 하나일 수 있다.
[화학식 1-1]
Figure 112016110472387-pat00007
[화학식 1-2]
Figure 112016110472387-pat00008
[화학식 1-3]
Figure 112016110472387-pat00009
[화학식 1-4]
Figure 112016110472387-pat00010
[화학식 1-5]
Figure 112016110472387-pat00011
[화학식 1-6]
Figure 112016110472387-pat00012
[화학식 1-7]
Figure 112016110472387-pat00013
[화학식 1-8]
Figure 112016110472387-pat00014
[화학식 1-9]
Figure 112016110472387-pat00015
[화학식 1-10]
Figure 112016110472387-pat00016
[화학식 1-11]
Figure 112016110472387-pat00017
[화학식 1-12]
Figure 112016110472387-pat00018
[화학식 1-13]
Figure 112016110472387-pat00019
[화학식 1-14]
Figure 112016110472387-pat00020
[화학식 1-15]
Figure 112016110472387-pat00021
[화학식 1-16]
Figure 112016110472387-pat00022
[화학식 1-17]
Figure 112016110472387-pat00023
[화학식 1-18]
Figure 112016110472387-pat00024
[화학식 1-19]
Figure 112016110472387-pat00025
[화학식 1-20]
Figure 112016110472387-pat00026
[화학식 1-21]
Figure 112016110472387-pat00027
[화학식 1-22]
Figure 112016110472387-pat00028
또한, 상기 화학식 2a 내지 화학식 2v 이외에 화학식 2의 화합물의 구체적인 각 치환기 및 이들의 조합을 하기 표 1 내지 5에 나타내었다.
Figure 112016110472387-pat00029
Figure 112016110472387-pat00030
Figure 112016110472387-pat00031
Figure 112016110472387-pat00032
Figure 112016110472387-pat00033
본 명세서에서 정의된 각 치환기에 대하여 상세히 설명하면 다음과 같다.
본 명세서에 사용되는 용어 '할로겐'은 다른 언급이 없으면, 불소, 염소, 브롬 또는 요오드를 의미한다.
본 명세서에 사용되는 용어 '알킬'은 다른 언급이 없으면, 직쇄 또는 분지쇄의 탄화수소 잔기를 의미한다.
본 명세서에 사용되는 용어 '알케닐'은 다른 언급이 없으면, 직쇄 또는 분지쇄의 알케닐기을 의미한다.
상기 분지쇄는 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬일 수 있다.
본 발명의 일례에 따르면, 상기 실릴기는 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴, 트리헥실실릴, 트리이소프로필실릴, 트리이소부틸실릴, 트리에톡시실릴, 트리페닐실릴, 트리스(트리메틸실릴)실릴 등이 있으나, 이들 예로만 한정되는 것은 아니다.
본 발명의 일례에 따르면, 상기 아릴기는 탄소수 6 내지 20인 것이 바람직하며, 구체적으로 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 아니솔릴 등이 있으나, 이들 예로만 한정되는 것은 아니다.
상기 알킬아릴기는 상기 알킬기에 의하여 치환된 아릴기를 의미한다.
상기 아릴알킬기는 상기 아릴기에 의하여 치환된 알킬기를 의미한다.
상기 고리(또는 헤테로 고리기)는 탄소수 5 내지 20개의 고리 원자를 가지며 1개 이상의 헤테로 원자를 포함하는 1가의 지방족 또는 방향족의 탄화수소기를 의미하며, 단일 고리 또는 2 이상의 고리의 축합 고리일 수 있다. 또한, 상기 헤테로 고리기는 알킬기로 치환되거나 치환되지 않을 수 있다. 이들의 예로는 인돌린, 테트라하이드로퀴놀린 등을 들 수 있나, 본 발명이 이들로만 한정되는 것은 아니다.
상기 알킬 아미노기는 상기 알킬기에 의하여 치환된 아미노기를 의미하며, 디메틸아미노기, 디에틸아미노기 등이 있으나, 이들 예로만 한정된 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 아릴기는 탄소수 6 내지 20인 것이 바람직하며, 구체적으로 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 아니솔릴 등이 있으나, 이들 예로만 한정되는 것은 아니다.
상기 화학식 1로 표시되는 전이금속 화합물은 하기 화학식 3으로 표시되는 리간드 화합물을 이용하여 제조될 수 있다.
[화학식 3]
Figure 112016110472387-pat00034
상기 화학식 3에서, R1 내지 R9는 각각 독립적으로 수소, 실릴, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고; 상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고; n은 1 또는 2이다.
또한, 상기 화학식 3에서, R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬일 수 있고; 상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
본 발명의 일례에 있어서, 상기 화학식 3의 리간드 화합물은 하기 화합물 중 어느 하나일 수 있다:
[화학식 3-1]
Figure 112016110472387-pat00035
[화학식 3-2]
Figure 112016110472387-pat00036
[화학식 3-3]
Figure 112016110472387-pat00037
[화학식 3-4]
Figure 112016110472387-pat00038
[화학식 3-5]
Figure 112016110472387-pat00039
[화학식 3-6]
Figure 112016110472387-pat00040
[화학식 3-7]
Figure 112016110472387-pat00041
[화학식 3-8]
Figure 112016110472387-pat00042
[화학식 3-9]
Figure 112016110472387-pat00043
[화학식 3-10]
Figure 112016110472387-pat00044
[화학식 3-11]
Figure 112016110472387-pat00045
본 발명의 리간드 화합물은 하기와 같은 제조방법을 통하여 제조될 수 있으며, 구체적으로 본 발명의 화학식 3으로 표시되는 리간드 화합물은 (1) 하기 화학식 4의 화합물과 하기 화학식 5의 화합물을 반응시켜 하기 화학식 6의 화합물을 제조하는 단계; 및 (2) 하기 화학식 6의 화합물과 하기 화학식 7의 화합물을 반응시켜 하기 화학식 3의 화합물을 제조하는 단계를 포함하는 방법에 의해 제조될 수 있다.
[화학식 3]
Figure 112016110472387-pat00046
[화학식 4]
Figure 112016110472387-pat00047
[화학식 5]
Figure 112016110472387-pat00048
[화학식 6]
Figure 112016110472387-pat00049
[화학식 6]
Figure 112016110472387-pat00050
상기 화학식 3 내지 6에서, R1 내지 R9는 각각 독립적으로 수소, 실릴, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고; 상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고; n은 1 또는 2이다.
또한, 상기 화학식 3 내지 6에서, R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬일 수 있고; 상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
(1) 화학식 4의 화합물과 화학식 5의 화합물을 반응시켜 화학식 6의 화합물을 제조하는 단계
[반응식 1]
Figure 112016110472387-pat00051
단계 (1)에서는 화학식 4의 화합물과 화학식 5의 화합물을 반응시켜 화학식 6의 화합물을 제조한다.
상기 단계 (1)의 반응은 염기 조건에서 팔라듐 촉매의 존재 하에 이루어질 수 있으며, 이때 상기 반응은 톨루엔 등의 유기 용매 중에서 이루어질 수 있다.
상기 팔라듐 촉매는 테트라키스(트리페닐포스핀)팔라듐[Pd(PPh3)4], 팔라듐클로라이드(PdCl2), 팔라듐아세테이트(Pd(OAc)2), 비스(디벤질리덴아세톤)팔라듐(Pd(dba)2) 및 Pd(tBu3P2)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 염기 조건을 이루기 위한 염기의 종류는 특별히 한정되지 않으나, 구체적인 예로는 tBuOLi, 제삼인산칼륨(K3PO4), 탄산칼륨(K2CO3), 탄산세슘(Cs2CO3), 플루오르화 칼륨(KF), 플루오르화 나트륨(NaF), 플루오르화 세슘(CsF), 테트라부틸암모늄플루오라이드(TBAF), 또는 이들의 혼합물을 들 수 있다.
상기 단계 (1)의 반응은 0℃ 내지 140℃의 온도 범위, 구체적으로 40℃ 내지 100℃의 온도 범위에서 1 내지 48 시간, 구체적으로 2 내지 12시간 동안 반응시키는 방법에 의해 수행될 수 있다.
상기 화학식 4의 화합물과 상기 화학식 5의 화합물은 우선적으로 각각 별도의 용매에 첨가된 후, 다시 혼합될 수 있으며, 혼합 이후에 팔라듐 촉매가 첨가될 수 있다. 예컨대, 상기 화학식 4의 화합물은 물과 에탄올 등의 알코올의 혼합 용매에 첨가될 수 있고, 상기 화학식 5의 화합물은 톨루엔 등의 용매에 첨가될 수 있다.
이때, 상기 화학식 4의 화합물은 하기 반응식 2로 나타내는 반응에 의해 제조될 수 있다.
[반응식 2]
Figure 112016110472387-pat00052
상기 반응식에서 R6 내지 R9 및 n은 상기 화학식 4에서 정의한 바와 같다.
화학식 4-1의 화합물을 헥산 등의 유기 용매에 넣고, -80℃ 내지 0℃의 온도 범위에서 n-BuLi을 첨가한다. 이때, 상기 n-BuLi은 상기 화학식 3-1의 화합물에 대하여 1:1 내지 1:2의 몰비로 반응될 수 있고, 구체적으로 1:1.1 내지 1:1.2의 몰비로 반응될 수 있다. n-BuLi의 첨가 후 실온에서 1 내지 48 시간 동안 반응시킨 후, 이를 여과한 다음, 얻어진 화합물에 용매를 넣고, -160℃ 내지 -20℃의 온도에서 CO2를 버블링하여 가함으로써 상기 화학식 4-2의 화합물을 얻을 수 있다. 얻어진 화학식 4-2의 화합물에 t-BuLi을 넣고, -80℃ 내지 0℃의 온도 범위에서 반응시키면 상기 화학식 4-3의 화합물을 얻을 수 있다. 상기 화학식 4-3의 화합물에 2-아이소프로필옥시-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 -150℃ 내지 -20℃의 온도에서 첨가한 후, 상온까지 서서히 승온시켜 반응을 진행하여, 상기 화학식 4의 화합물을 얻을 수 있다. 이때 HCl과 에틸아세테이트(EA)를 넣고, 유기층을 NaOH와 NaHCO3로 세척한 후, MgSO4로 수분을 건조시키는 과정이 이루어질 수 있다.
(2) 화학식 6의 화합물과 화학식 7의 화합물을 반응시켜 화학식 3의 화합물을 제조하는 단계
[반응식 3]
Figure 112016110472387-pat00053
단계 (2)에서는 화학식 6의 화합물과 화학식 7의 화합물을 반응시켜 화학식 3의 화합물을 제조한다.
상기 단계 (2)에서는 상기 화학식 6의 화합물에 화학식 7의 유기 리튬 화합물을 반응시켜 상기 화학식 6의 화합물에 R2를 도입한다.
상기 단계 (2)에서 상기 화학식 6의 화합물과 상기 화학식 7의 화합물은 1:1 내지 1:3의 몰비를 가지고 반응될 수 있고, 구체적으로 1:1 내지 1:2의 몰비로 반응될 수 있다.
상기 단계 (2)의 반응은 -160℃ 내지 -20℃의 온도 범위에서 상기 화학식 6의 화합물에 상기 화학식 7의 화합물을 가한 후 반응시키는 방법에 의해 수행될 수 있으며, 구체적으로 -120℃ 내지 -40℃의 온도 범위에서 상기 화학식 6의 화합물에 상기 화학식 7의 화합물을 가하여 반응시키는 방법에 의해 이루어질 수 있다. 상기 반응은 디에틸 에터 등의 유기 용매 중에서 이루어질 수 있고, 반응이 끝나면 NH4Cl 등으로 퀀치(quench)이 이루어질 수 있다.
상기 단계 (1) 및 (2)를 거쳐 제조된 화학식 3의 화합물은 추가적으로 (3) 재결정화 단계를 거칠 수 있으며, 따라서 상기 단계 (2) 이후, (3) 상기 화학식 3의 화합물을 재결정화 하는 단계를 추가로 포함할 수 있다.
상기 재결정화는 반응 용매와 같은 톨루엔 등의 유기 용매를 이용하여 이루어질 수 있으며, 재결정화를 통해 정제하여 순수한 화학식 3의 화합물을 얻을 수 있다.
또한, 본 발명의 화학식 1로 표시되는 전이금속 화합물은 (a) 상기 화학식 3의 리간드 화합물과 유기 리튬 화합물을 반응시켜 화학식 8의 화합물을 제조하는 단계; 및 (b) 하기 화학식 8의 화합물을 하기 화학식 9의 화합물과 반응시켜 하기 화학식 1의 화합물을 제조하는 단계를 포함하는 방법에 의해 제조될 수 있다.
[화학식 1]
Figure 112016110472387-pat00054
[화학식 3]
Figure 112016110472387-pat00055
[화학식 8]
Figure 112016110472387-pat00056
[화학식 9]
Figure 112016110472387-pat00057
상기 화학식에서,
R1 내지 R9는 각각 독립적으로 수소, 실릴, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고; 상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고; n은 1 또는 2이고;
Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬 아미도, 탄소수 6 내지 20의 아릴 아미도, 또는 탄소수 1 내지 20의 알킬리덴이고;
X는 할로겐이며;
M은 Ti, Zr 또는 Hf이다.
또한, 상기 R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬일 수 있고; 상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
또한, 본 발명의 전이금속 화합물의 제조방법은 상기 화학식 1의 화합물을 하기 화학식 10의 그리나드(grignard) 시약과 추가로 반응시키는 단계를 포함할 수 있다.
[화학식 10]
Figure 112016110472387-pat00058
상기 화학식 10에서, Q는 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬 아미도, 탄소수 6 내지 20의 아릴 아미도, 또는 탄소수 1 내지 20의 알킬리덴이다.
이때, 상기 화학식 10의 그리나드 시약과 반응이 이루어지는 상기 화학식 1의 화합물은 Q1, Q2 또는 이들 모두가 할로겐인 것일 수 있다. 즉, 본 발명의 일례에 있어서, 상기 화학식 10의 Q1, Q2, 또는 이들 모두가 할로겐일 경우, 상기 화학식 1에서 M에 결합된 Q1, Q2, 또는 이들 모두가 할로겐인 화합물이 제조되고, 이 경우 상기 화학식 10의 그리나드 시약과의 추가적인 반응을 통하여, 상기 화학식 1에서 Q1, Q2, 또는 이들 모두를 할로겐에서 상기 Q로 치환시킬 수 있다.
(a) 화학식 3의 화합물과 유기 리튬 화합물을 반응시켜 화학식 8의 화합물을 제조하는 단계
Figure 112016110472387-pat00059
단계 (a)에서는 화학식 3의 화합물과 유기 리튬 화합물을 반응시켜 화학식 8의 화합물을 제조한다.
상기 단계 (1)에서 상기 화학식 3의 화합물과 상기 유기 리튬 화합물은 1:1 내지 1:3의 몰비를 가지고 반응될 수 있고, 구체적으로 1:1 내지 1:2의 몰비로 반응될 수 있다.
상기 단계 (1)의 반응은 디에톡시에탄, 에테르와 같은 유기 용매 하에서 이루어질 수 있으며, 유기 용매 하의 상기 화학식 3의 화합물에 상기 유기 리튬 화합물을 가함으로써 이루어질 수 있다.
상기 유기 리튬 화합물은 n-부틸리튬, sec-부틸리튬, 메틸리튬, 에틸리튬, 이소프로필리튬, 사이클로헥실리튬, 알릴리튬, 비닐리튬, 페닐리튬 및 벤질리튬으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 단계 (a)의 반응은 -78℃ 내지 0℃의 온도 범위에서 상기 화학식 1의 화합물에 상기 유기 리튬 화합물을 가한 후 1 내지 6시간 동안, 구체적으로 1 내지 4시간 동안 반응시키는 방법에 의해 수행될 수 있다. 이때, 반응온도는 20℃ 미만, 구체적으로 -78℃ 내지 0℃일 수 있다.
(b) 화학식 8의 화합물을 화학식 9의 화합물과 반응시켜 화학식 1의 화합물을 제조하는 단계; 및
Figure 112016110472387-pat00060
단계 (b)에서는 단계 (a)에서 얻어진 화학식 8의 화합물을 화학식 9의 화합물과 반응시켜 화학식 1의 화합물을 제조한다.
상기 단계 (b)에서 상기 화학식 8의 화합물과 상기 화학식 9의 화합물은 1:0.8 내지 1:1.8의 몰비를 가지고 반응될 수 있고, 구체적으로 1:1 내지 1:1.2의 몰비로 반응될 수 있다.
상기 단계 (b)의 반응은 40℃ 내지 140℃의 온도 범위, 구체적으로 70℃ 내지 120℃의 온도 범위로 승온 시킨 후, 1 내지 48 시간 동안, 구체적으로 1 내지 4시간 동안 반응시키는 방법에 의해 수행될 수 있으며, 상기 단계 (a)와 상기 단계 (b)에서의 반응은 한 스텝으로 이루어질 수도 있다.
즉, 상기 단계 (a) 및 단계 (b)의 반응은 -20℃ 내지 30℃의 온도 범위에서 상기 화학식 1의 화합물에 상기 유기 리튬 화합물을 가한 후, 추가로 화학식 8의 화합물을 가한 다음, 40℃ 내지 140℃의 온도 범위, 구체적으로 70℃ 내지 120℃의 온도 범위로 승온 시킨 후, 1 내지 48 시간 동안, 구체적으로 1 내지 4시간 동안 반응시키는 방법에 의해 수행될 수 있다.
이로써, 상기 화학식 1의 전이금속 화합물을 제조할 수 있다.
또한, 상기 화학식 1의 전이금속 화합물에서 상기 Q1, Q2 또는 이들 모두가 할로겐일 때에는 상기 화학식 10의 그리나드 시약과 추가적인 반응이 이루어질 수 있다. 이때, 상기 화학식 1의 전이금속 화합물과 상기 화학식 10의 그리나드 시약과의 반응은 알려져 있는 그리나드 반응에 따라 이루어질 수 있다.
상기 추가적인 반응에 따라 제조되는 전이금속 화합물은 하기 화학식 1a 내지 1c 중 어느 하나로 나타낼 수 있다.
[화학식 1a]
Figure 112016110472387-pat00061
[화학식 1b]
Figure 112016110472387-pat00062
[화학식 1c]
Figure 112016110472387-pat00063
한편, 상기 화학식 2의 디알킬아연 화합물은 디에틸아연, 디프로필아연, 디부틸아연 및 에틸프로필아연으로 이루어진 군에서 선택된 1종 이상일 수 있고, 더욱 구체적으로 상기 화학식 2의 디알킬아연 화합물은 디에틸아연일 수 있다.
상기 화학식 2의 디알킬아연 화합물은 상기 화학식 1의 전이금속 화합물 1 당량에 대해 1 내지 200 당량의 양으로 혼합될 수 있고, 구체적으로 상기 화학식 1의 전이금속 화합물 1 당량에 대해 10 내지 100 ?韜?의 양으로 혼합될 수 있다.
상기 촉매 조성물은 조촉매를 더 포함할 수 있다. 조촉매로는 당 기술분야에 알려져 있는 것을 사용할 수 있다.
예컨대, 상기 촉매 조성물은 조촉매로서 하기 화학식 11 내지 13 중 적어도 하나를 더 포함할 수 있다.
[화학식 11]
-[Al(R12)-O]a-
상기 화학식 11에서, R12는 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며; a는 2 이상의 정수이며;
[화학식 12]
D(R12)3
상기 화학식 12에서, D는 알루미늄 또는 보론이며; R12는 각각 독립적으로 상기 화학식 11에서 정의된 대로이며;
[화학식 13]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 화학식 13에서, L은 중성 또는 양이온성 루이스 산이고; H는 수소 원자이며; Z는 13족 원소이고; A는 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이며; 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
상기 촉매 조성물은, 상기 화학식 1로 표시되는 전이금속 화합물, 상기 화학식 2로 표시되는 디알킬아연 화합물, 및 상기 화학식 11 또는 화학식 12로 표시되는 화합물을 혼합하고, 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 13으로 표시되는 화합물을 첨가하는 단계를 포함하는 제조 방법에 의해 제조될 수 있다.
또한 다르게는, 상기 촉매 조성물은 상기 화학식 1로 표시되는 전이금속 화합물, 상기 화학식 2로 표시되는 디알킬아연 화합물, 및 상기 화학식 13으로 표시되는 화합물을 혼합하고, 접촉시켜 혼합물을 얻는 단계를 포함하는 제조 방법에 의해 제조될 수 있다.
상기 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물과 상기 화학식 11 또는 화학식 12로 표시되는 화합물을 접촉시켜 혼합물을 얻는 경우, 상기 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물과 대비한 상기 화학식 11 또는 화학식 12로 표시되는 화합물의 몰비는 각각 1:2 내지 1:5,000일 수 있고, 구체적으로 1:10 내지 1:1,000일 수 있으며, 더욱 구체적으로 1:20 내지 1:500일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물 대비 상기 화학식 13으로 표시되는 화합물의 몰비는 1:1 내지 1:25일 수 있고, 구체적으로 1:1 내지 1:10일 수 있으며, 더욱 구체적으로 1:1 내지 1:5일 수 있다.
상기 화학식 1로 표시되는 전이금속 화합물 및 및 상기 화학식 2로 표시되는 디알킬아연 화합물 대비 상기 화학식 11 또는 화학식 12로 표시되는 화합물의 몰비가 1:2 미만일 경우에는 알킬화제의 양이 매우 작아 금속 화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고 1:5,000를 초과할 경우에는 금속 화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 13의 활성화제 간의 부반응으로 인하여 알킬화된 금속 화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다. 또한 상기 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물에 대비한 상기 화학식 13으로 표시되는 화합물의 비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고 1:25를 초과할 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
한편, 상기 촉매 조성물의 제조 시, 상기 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물과 상기 화학식 13으로 표시되는 화합물을 접촉시켜 혼합물을 얻는 경우, 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물에 대비한 화학식 13으로 표시되는 화합물의 몰비는 1:1 내지 1:500일 수 있고, 구체적으로 1:1 내지 1:50일 수 있으며, 더욱 구체적으로 1:2 내지 1:25일 수 있다. 상기 몰비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 1:500를 초과할 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
상기 조성물의 제조 시에 반응 용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매나, 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술 분야에서 사용 가능한 모든 용매가 사용될 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물 및 상기 화학식 2로 표시되는 디알킬아연 화합물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카나 알루미나가 사용될 수 있다.
상기 화학식 11로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않는다. 구체적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등을 들 수 있고, 더욱 구체적인 예로는 메틸알루미녹산을 들 수 있다.
상기 화학식 12로 표시되는 화합물은 특별히 한정되지 않으나 구체적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 또는 트리부틸보론을 들 수 있으며, 더욱 구체적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 또는 트리이소부틸알루미늄을 들 수 있다.
상기 화학식 13으로 표시되는 화합물의 예로는 트리에틸암모늄테트라페닐보론, 트리부틸암모늄테트라페닐보론, 트리메틸암모늄테트라페닐보론, 트리프로필암모늄테트라페닐보론, 트리메틸암모늄테트라(p-톨릴)보론, 트리메틸암모늄테트라(o,p-디메틸페닐)보론, 트리부틸암모늄테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모늄테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모늄테트라펜타플루오로페닐보론, N,N-디에틸아닐리늄테트라페닐보론, N,N-디에틸아닐리늄테트라펜타플루오로페닐보론, 디에틸암모늄테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트, 트리에틸암모늄테트라페닐알루미늄, 트리부틸암모늄테트라페닐알루미늄, 트리메틸암모늄테트라페닐알루미늄, 트리프로필암모늄테트라페닐알루미늄, 트리메틸암모늄테트라(p-톨릴)알루미늄, 트리프로필암모늄테트라(p-톨릴)알루미늄, 트리에틸암모늄테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모늄테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모늄테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모늄테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리늄테트라페닐알루미늄, N,N-디에틸아닐리늄테트라펜타플루오로페닐알루미늄, 디에틸암모늄테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모늄테트라(p-톨릴)보론, 트리에틸암모늄테트라(o,p-디메틸페닐)보론, 트리페닐카보늄테트라(p-트리플루오로메틸페닐)보론 또는 트리페닐카보늄테트라펜타플루오로페닐보론 등을 들 수 있다.
상기 화학식 1의 전이금속 화합물, 상기 화학식 2의 디알킬아연 화합물, 및 화학식 11 내지 화학식 13으로 표시되는 화합물로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 조성물을 하나 이상의 올레핀 단량체와 접촉시켜 폴리올레핀 호모 중합체 또는 공중합체를 제조할 수 있다.
상기 촉매 조성물을 이용한 가장 바람직한 제조 공정은 용액 공정일 수 있고, 또한 상기 촉매 조성물을 실리카와 같은 무기 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다.
상기 제조 공정에서 상기 활성화 촉매 조성물은 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시할 수도 있다.
상기 금속 화합물들과 조촉매를 사용하여 중합 가능한 올레핀계 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등을 들 수 있으며, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀계 단량체 또는 트리엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다.
특히, 본 발명의 제조 방법에서 상기 촉매 조성물은 90 이상의 높은 반응온도에서도 에틸렌과 1-옥텐과 같은 입체적 장애가 큰 단량체의 공중합 반응에서 높은 분자량을 가지면서도 고분자 밀도 0.91 g/cc 이하의 초저밀도 공중합체의 제조가 가능하다는 특징을 가진다.
본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.91 g/cc 미만일 수 있고, 구체적으로 0.89 g/cc 미만일 수 있으며, 더욱 구체적으로 0.884 g/cc 이하일 수 있다.
또한, 본 발명의 제조 방법에 의하여 제조된 중합체는 DSC 곡선에서 얻어지는 용융 온도(Tm)가 2개(Tm1 및 Tm2) 존재하며, 따라서 각각 다른 온도에서 결정이 용융, 결정화되기 때문에 열안정성 및 기계적 강도가 증가할 수 있다.
본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.85 내지 0.91 g/cc인 범위에서 상기 Tm1이 -30 내지 90의 범위이고, 상기 Tm2가 -10 내지 140의 범위일 수 있다.
구체적으로, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.85 내지 0.91 g/cc인 범위에서 상기 Tm1이 60 내지 117의 범위이고, 상기 Tm2가 110 내지 122의 범위일 수 있다.
본 명세서에서 사용되는 Tm은 시차주사 열량분석계 (DSC)의 온도-열류량 그래프에서 각 피크의 최고점의 온도를 의미한다.
또한, 본 발명의 제조 방법에 의하여 제조된 중합체는 DSC 곡선에서 얻어지는 결정화 온도(Tc)가 2개(Tc1 및 Tc2) 존재하며, 따라서 각각 다른 온도에서 결정이 용융, 결정화되기 때문에 열안정성 및 기계적 강도가 증가할 수 있다.
본 명세서에서, 결정화 온도는, 불규칙적이던 물질 구조가 분자/원자간 인력에 의해 그 배열이 규칙적으로 바뀌는 결정화가 일어나는 온도를 의미하며, 예를 들어, 시차 주사 열량계(DSC)를 통해 분석할 수 있다.
본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.85 내지 0.91 g/cc인 범위에서 상기 Tc1이 20 내지 80의 범위이고, 상기 Tc2가 50 내지 110의 범위일 수 있다.
구체적으로, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.85 내지 0.91 g/cc인 범위에서 상기 Tc1이 45 내지 78의 범위이고, 상기 Tc2가 75 내지 97의 범위일 수 있다.
이하, 하기 실시예에 의거하여 본 발명을 보다 구체적으로 설명한다. 이들 실시예는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
유기 시약 및 용매는 특별한 언급이 없으면 알드리치(Aldrich)사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다. 화학식 7에서 케톤류 화합물 중 R1 내지 R6가 메틸인 화합물은 문헌 [Organometallics 2002, 21, 2842-2855]에 의해 공지된 방법으로 합성하였다.
제조예 1
<리간드 화합물의 합성>
2- 메틸 -8-(4,4,5,5- 테트라메틸 -1,3,2- 디옥사보롤란 -2-일)-1,2,3,4- 테트라하이드로퀴놀린의 제조
Figure 112016110472387-pat00064
쉬렝크 플라스크에 2-메틸-THQ(10 g, 67.925 mmol, 1 eq)를 넣은 뒤 진공 건조(vacuum dry)하고 여기에 헥산(226 mL, 0.3 M)을 첨가한 후 -20℃에서 n-BuLi(29.89 mL, 74.718 mmol, 1.1 eq, 2.5 M in hexane)을 첨가하였다. 이것을 밤새 상온에서 반응시킨 뒤 리튬 화합물을 여과하여 얻었다. 이렇게 얻어진 리튬 화합물(10.40 g, 67.925 mmol, 1 eq)에 디에틸 에터(113.21 mL, 0.4 M)를 넣고 -78℃에서 CO2 버블링을 하였다. 이를 상온에 밤새 방치한 뒤 -20℃에서 THF(1.1 eq, 5.388 g, 74.72 mmol)를 첨가하였다. 여기에 t-BuLi(47.6 mL, 74.72 mmol, 1.1 eq, 1.7 M)을 넣어 -20℃에서 2시간 동안 반응시킨 뒤, 2-아이소프로필-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란(31.6g, 169.8 mmol, 2.5 eq)을 -78℃에서 첨가하였다. 상온으로 서서히 승온시킨 뒤 반응이 끝난 후 0℃에서 1M HCl 수용액과 EA를 넣었다. 유기층을 1 M NaOH와 1 M NaHCO3로 세척한 후 MgSO4로 수분을 건조시켰다. 노란색 고체인 생성물을 9.9 g, 53.4% 수율로 얻을 수 있었다.
1H-NMR (CDCl3): 7.45 (d, 1H), 7.01 (d, 1H), 6.52 (t, 1H), 5.83 (s, 1H), 3.48 (m, 1H), 2.80 (m, 2H), 1.91 (m, 1H), 1.58 (m, 1H), 1.35 (s, 12H), 1.26 (s, 3H)
N-(2,6- 디이소프로필페닐 )-1-(6-(2- 메틸 -1,2,3,4- 테트라하이드로퀴놀린 -8-일)피리딘-2-일)메탄이민의 제조
Figure 112016110472387-pat00065
상기에서 제조된 N-(2,6-디이소프로필페닐)-1-(6-브로모피리딘-2-일)메탄이민(3 g, 8.69 mmol, 1 eq)에 톨루엔(13.33 mL)을 넣고 교반하는 한편, 이와 별도로 Na2CO3(2.303 g, 21.725 mmol, 2.5 eq)와 THQ-보롤란(2.373 g, 8.69 mmol, 1 eq)을 H2O(2.66 mL)와 EtOH(2.66 mL) 1:1인 용매에 넣고 교반하였다.
Br-이민 톨루엔 용액을 THQ-보롤란의 용액으로 옮긴 뒤 여기에 Pd(PPh3)4(0.0301 g, 0.026 mmol, 0.3 mol% Pd)를 넣었다. 70℃에서 4시간 동안 교반한 뒤 실온으로 냉각시켰다. 유기층을 톨루엔/염수(brine)로 추출하고 Na2SO4로 수분을 건조시켰다. 생성물을 3.08 g, 86% 수율로 얻을 수 있었다.
1H-NMR (toluene_d8): 8.96 (s, 1H), 8.41 (s, 1H), 7.92 (d, 1H), 7.33 (d, 2H), 7.19 (t, 1H), 7.13 (m, 3H), 6.94 (d, 1H), 6.64 (m, 1H), 3.30 (m, 1H), 3.16 (m, 2H), 2.72 (m, 1H), 2.61 (m, 1H), 1.56 (m, 1H), 1.36 (m, 1H), 1.19 (m, 12H), 1.05 (d, 3H)
2,6- 디이소프로필 -N-((2- 이소프로필페닐 )(6-(2- 메틸 -1,2,3,4- 테트라하이드로퀴놀린-8-일)피리딘-2-일)메틸)아닐린의 제조
Figure 112016110472387-pat00066
1-Br-2-이소프로필벤젠(1.306 g, 6.561 mmol, 2.7 eq)에 THF(13.122 mL)를 넣고 -78℃에서 t-BuLi(8.36 mL)을 넣었다. 이것을 2시간 동안 반응시킨 뒤 상온으로 승온시켜 리튬 큐멘을 제조하였다. 상기에서 제조된 리간드 전구체인 N-(2,6-디이소프로필페닐)-1-(6-(2-메틸-1,2,3,4-테트라하이드로퀴놀린-8-일)피리딘-2-일)메탄이민(1 g, 2.43mmol, 1eq)에 디에틸 에터(24.3 mL)를 넣고 상기 리튬 큐멘을 -78℃에서 적가하였다. 상온으로 승온시켜 밤새 반응시킨 뒤 1 N NH4Cl로 퀀치(quench)하고 Ether/H2O로 워크-업(work-up) 하였다. Na2SO4로 수분을 건조시킨 뒤 회전 증발 농축기(rotavapor)로 용매를 진공 건조시켰다. 노란색 오일을 1.48 g, 정량수율로 얻을 수 있었다.
1H-NMR (toluene_d8): 8.30 - 5.60 (m, 15H), 4.73 - 2.59 (m, 10H), 1.14 - 0.84 (m, 21H)
<전이 금속 화합물의 합성>
Figure 112016110472387-pat00067
상기에서 제조된 리간드인 2,6-디이소프로필-N-((2-이소프로필페닐)(6-(2-메틸-1,2,3,4-테트라하이드로퀴놀린-8-일)피리딘-2-일)메틸)아닐린(1.21 g, 2.27 mmol, 1 eq)과 톨루엔(7.567 mL, 0.3 M)을 넣고 교반시킨 후 n-BuLi(1.907 mL, 4.767 mmol, 2.1 eq)을 적가하였다. HfCl4(0.7634 g, 2.3835 mmol, 1.05 eq)를 넣고 2시간 동안 90 내지 100℃에서 가열하였다. 반응이 끝난 후 온도를 식히고 MeMgBr(2.65 mL, 7.945 mmol, 3.5 eq, 3.0 M in DEE)을 넣어 상온에서 밤새 반응시켰다. 용매를 진공 건조(vacuum dry)시킨 후 여과하였다. 셀라이트 여과된 여액을 건조시키고 여기에 헥산을 넣고 교반한 뒤 진공 건조시킨 다음, 다시 펜탄을 넣고 교반한 뒤 진공 건조시켰다. 고체가 얻어지면 여기에 펜탄을 넣고 침전시켜 노란색 고체인 촉매를 320 mg, 19% 수율로 얻을 수 있었다.
1H-NMR (toluene_d8): 7.34 (d, 1H), 7.32 (d, 1H), 7.20 (d, 1H), 7.12 (m, 3H), 7.10 (m, 1H), 7.07 (m, 3H), 6.86 (t, 1H), 6.69 (t, 1H), 6.60 (d, 1H), 6.523 (s, 1H), 4.82 (m, 1H), 3.95 (m, 1H), 3.10 (m, 1H), 3.01 (m, 1H), 2.79 (m, 1H), 2.63 (m, 1H), 2.20 (m, 1H), 1.83 (m, 1H), 1.42 (d, 3H), 1.31 (d, 3H), 1.13 (m, 6H), 0.93 (d, 3H), 0.71 (d, 3H), 0.65 (s, 3H), 0.48 (d, 3H), 0.01 (s, 3H)
제조예 2
<리간드 화합물의 합성>
2- 메틸 -8-(4,4,5,5- 테트라메틸 -1,3,2- 디옥사보롤란 -2-일)-1,2,3,4- 테트라하이드로퀴놀린의 제조
Figure 112016110472387-pat00068
쉬렝크 플라스크에 2-메틸-THQ(10 g, 67.925 mmol, 1 eq)를 넣은 뒤 진공 건조(vacuum dry)하고 여기에 헥산(226 mL, 0.3 M)을 첨가한 후 -20℃에서 n-BuLi(29.89 mL, 74.718 mmol, 1.1 eq, 2.5 M in hexane)을 첨가하였다. 이것을 밤새 상온에서 반응시킨 뒤 리튬 화합물을 여과하여 얻었다. 이렇게 얻어진 리튬 화합물(10.40 g, 67.925 mmol, 1 eq)에 디에틸 에터(113.21 mL, 0.4 M)를 넣고 -78℃에서 CO2 버블링을 하였다. 이를 상온에 밤새 방치한 뒤 -20℃에서 THF(1.1 eq, 5.388 g, 74.72 mmol)를 첨가하였다. 여기에 t-BuLi(47.6 mL, 74.72 mmol, 1.1 eq, 1.7 M)을 넣어 -20℃에서 2시간 동안 반응시킨 뒤, 2-아이소프로필-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란(31.6g, 169.8 mmol, 2.5 eq)을 -78℃에서 첨가하였다. 상온으로 서서히 승온시킨 뒤 반응이 끝난 후 0℃에서 1M HCl 수용액과 EA를 넣었다. 유기층을 1 M NaOH와 1 M NaHCO3로 세척한 후 MgSO4로 수분을 건조시켰다. 노란색 고체인 생성물을 9.9 g, 53.4% 수율로 얻을 수 있었다.
1H-NMR (CDCl3): 7.45 (d, 1H), 7.01 (d, 1H), 6.52 (t, 1H), 5.83 (s, 1H), 3.48 (m, 1H), 2.80 (m, 2H), 1.91 (m, 1H), 1.58 (m, 1H), 1.35 (s, 12H), 1.26 (s, 3H)
N-(2,6- 디이소프로필페닐 )-1-(6-(2- 메틸 -1,2,3,4- 테트라하이드로퀴놀린 -8-일)피리딘-2-일)메탄이민의 제조
Figure 112016110472387-pat00069
상기에서 제조된 N-(2,6-디이소프로필페닐)-1-(6-브로모피리딘-2-일)메탄이민(3 g, 8.69 mmol, 1 eq)에 톨루엔(13.33 mL)을 넣고 교반하는 한편, 이와 별도로 Na2CO3(2.303 g, 21.725 mmol, 2.5 eq)와 THQ-보롤란(2.373 g, 8.69 mmol, 1 eq)을 H2O(2.66 mL)와 EtOH(2.66 mL) 1:1인 용매에 넣고 교반하였다.
Br-이민 톨루엔 용액을 THQ-보롤란의 용액으로 옮긴 뒤 여기에 Pd(PPh3)4(0.0301 g, 0.026 mmol, 0.3 mol% Pd)를 넣었다. 70℃에서 4시간 동안 교반한 뒤 실온으로 냉각시켰다. 유기층을 톨루엔/염수(brine)로 추출하고 Na2SO4로 수분을 건조시켰다. 생성물을 3.08 g, 86% 수율로 얻을 수 있었다.
1H-NMR (toluene_d8): 8.96 (s, 1H), 8.41 (s, 1H), 7.92 (d, 1H), 7.33 (d, 2H), 7.19 (t, 1H), 7.13 (m, 3H), 6.94 (d, 1H), 6.64 (m, 1H), 3.30 (m, 1H), 3.16 (m, 2H), 2.72 (m, 1H), 2.61 (m, 1H), 1.56 (m, 1H), 1.36 (m, 1H), 1.19 (m, 12H), 1.05 (d, 3H)
<리간드 화합물의 합성>
2,6- 디이소프로필 -N-((6-(2- 메틸 -1,2,3,4- 테트라하이드로퀴놀린 -8-일)피리딘-2-일)(나프틸)메틸)아닐린의 제조
Figure 112016110472387-pat00070
상기 실시예 11에서 제조된 리간드 전구체인 N-(2,6-디이소프로필페닐)-1-(6-(2-메틸-1,2,3,4-테트라하이드로퀴놀린-8-일)피리딘-2-일)메탄이민(1.5 g, 3.644 mmol, 1 eq)을 디에틸 에터(36.44 mL)에 녹이고 -78℃로 온도를 낮췄다. 1-브로모나프탈렌(2.04 g, 9.84 mmol, 2.7 eq)을 THF(19.68 mL)에 녹인 후, t-BuLi(12.53 mL, 19.68 mmol, 5.4 eq)을 넣어 리튬 치환 반응을 시켰다. 리튬 치환 반응이 완료되면 이를 N-(2,6-디이소프로필페닐)-1-(6-(2-메틸-1,2,3,4-테트라하이드로퀴놀린-8-일)피리딘-2-일)메탄이민의 용액에 옮기고, 반응이 끝나면 1 N NH4Cl로 퀀치(quench)하고 디에틸 에터와 물로 워크-업(work-up)하였다. 이를 통해 생성물인 노란색 오일을 1.93 g, 98% 수율로 수득하였다.
1H-NMR (toluene_d8): 8.401 - 5.909 (m, 17H), 4.45 - 1.20 (10H, m), 1.09 - 0.38 (m, 15H)
<전이 금속 화합물의 합성>
Figure 112016110472387-pat00071
상기에서 제조된 리간드인 2,6-디이소프로필-N-((6-(2-메틸-1,2,3,4-테트라하이드로퀴놀린-8-일)피리딘-2-일)(나프틸)메틸)아닐린(1.13 g, 2.0935 mmol, 1 eq)과 톨루엔(6.98 mL, 0.3 M)을 넣고 교반시킨 후 n-BuLi(1.76 mL, 4.396 mmol, 2.1 eq)을 적가하였다. HfCl4(0.704 g, 2.198 mmol, 1.05 eq)를 넣고 2시간 동안 90 내지 100℃에서 가열하였다.
반응이 끝난 후 온도를 식히고 MeMgBr(2.44 mL, 7.33 mmol, 3.5 eq, 3.0 M in DEE)을 넣어 상온에서 밤새 반응시켰다. 용매를 진공 건조(vacuum dry)시킨 후 여과하였다. 생성물은 노란색 고체로 210 mg, 13% 수율로 얻을 수 있었다.
1H-NMR (toluene_d8): 7.60 - 6.38 (m, 16H), 4.87 (m, 1H), 3.27 - 1.81 (m, 7H), 1.30 - 0.0 (m, 2H)
비교 제조예 1
Figure 112016110472387-pat00072
<(tert-butyl(dimethyl(2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)silyl)amino)dimethyltitanium의 합성>
100 mL 쉬렝크 플라스크에 비교예 리간드 화합물 (2.36g, 9.39mmol/1.0eq) 및 MTBE 50 mL(0.2 M)를 넣고 교반시켰다. -40℃에서 n-BuLi(7.6 mL, 19.25mmol/2.05eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40℃에서 MeMgBr (6.4 mL, 19.25 mmol/2.05eq, 3.0 M in 디에틸에터)를 천천히 적가한후, TiCl4 (9.4 mL, 9.39 mmol/1.0eq, 1.0 M in 톨루엔)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 노란색 고체를 2.52g (82%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
2.17 (s, 6H), 1.92 (s, 6H), 1.57 (s, 9H), 0.48 (s, 6H), 0.17 (s, 6H).
비교 제조예 2
<리간드 및 전이금속 화합물의 제조>
8-(1,2-디메틸-1H- 벤조[b]시클로펜타[d]티오펜 -3-일)-2- 메틸 -1,2,3,4- 테트라히드로퀴놀린 (8-(1,2-dimethyl-1H-benzo[b]cyclopenta[d]thiophen-3-yl)-2-methyl-1,2,3,4-tetrahydroquinoline) 화합물
Figure 112016110472387-pat00073
2-메틸-1,2,3,4-테트라히드로퀴놀린 (2 g, 13.6mmol)을 에테르(Ether) 10 mL에 녹인 용액에 -40 ℃에서 nBuLi(14.9mmol, 1.1 eq)을 서서히 적가하였다. 상온으로 서서히 승온 시킨뒤, 4시간동안 상온 교반하였다. 온도를 다시 -40 ℃로 낮춘 CO2(g)를 주입한 뒤 저온에서 0.5시간 동안 반응을 유지시켰다. 서서히 승온시킨 뒤, 잔여하고 있는 CO2(g)를 버블러를 통해 제거하였다. -20℃에서 THF (17.6 mmol, 1.4 mL와 tBuLi (10.4 mmol, 1.3eq)을 주입한 뒤 -20℃에서 2시간 저온 숙성시켰다. 상기 케톤(1.9 g, 8.8 mmol)을 디에틸 에테르(Diethyl ether) 용액에 녹여 서서히 적가 하였다. 12시간 동안 상온 교반 시킨 뒤 물 10 mL를 주입한 뒤, 염산 (2N, 60 mL)을 넣어 2분간 교반 시킨 뒤 유기용매를 추출한 뒤 NaHCO3 수용액에 중화시켜 유기용매를 추출하여 MgSO4로 수분을 제거하였다. 실리카 겔 컬럼을 통해 (1.83g, 60% 수율)로 노란색 오일을 얻었다.
1H NMR (C6D6): δ 1.30 (s, 3H, CH3), 1.35 (s, 3H, CH3), 1.89~1.63 (m, 3H, Cp-H quinoline-CH2), 2.62~2.60 (m, 2H, quinoline-CH2), 2.61~2.59 (m, 2H, quinoline-NCH2), 2.70~2.57 (d, 2H, quinoline-NCH2), 3.15~3.07 (d, 2H, quinoline-NCH2), 3.92 (broad, 1H, N-H), 6.79~6.76 (t, 1H, aromatic), 7.00~6.99 (m, 2H, aromatic), 7.30~7.23 (m, 2H, aromatic), 7.54~7.53 (m, 1H, aromatic), 7.62~7.60 (m, 1H, aromatic) ppm
8-(1,2-디메틸-1H- 벤조[b]시클로펜타[d]티오펜 -3-일)-2- 메틸 -1,2,3,4- 테트라히드로퀴놀린 -티타늄 디메틸 (8-(1,2- dimethyl -1H- benzo[b]cyclopenta[d]thiophen -3-yl)-2-methyl-1,2,3,4-tetrahydroquinoline-titanium dimethyl) 화합물
Figure 112016110472387-pat00074
상기 리간드 (1.0 g, 2.89 mmol)에 nBuLi (3.0 mmol, 2.1 eq)를 -20℃에서 서서히 적가하였다. 노란색 슬러리(slurry)가 형성되는 것이 관찰되었으며, 상온으로 서서히 승온시킨 뒤, 12시간 동안 상온 교반 하였다. TiCl4DME (806 mg, 2.89 mmol, 1.0 eq)를 적가한 뒤 12시간 동안 상온 교반 하였다. 용매를 제거한 뒤, 톨루엔으로 추출하여 붉은색 고체를 (700 mg, 52% 수율) 얻었다. 상기 붉은색 고체를 THF 50 mL에 녹인 용액에 메틸마그네슘브로마이드(2.0 eq.)를 상온에서 서서히 적가한 뒤 12시간 동안 상온 교반한 후 용매를 제거하고 헥산으로 추출하여 적갈색 고체를 얻었다(560 mg, 80% 수율).
1H NMR (CDCl3) 두 이성질체의 혼합물: δ ~7.1 (d, 1H, Ar-H), 6.84 (t, 1H, J=7.5Hz, Ar-H), 6.83 (t, 1H, J=7.5Hz, Ar-H), 6.98 (d, 1H, Ar-H), 2.6~2.7(m, 2H, Piperidine-CH2), 2.3~2.4(m, 2H, Piperidine-CH2), 1.63~1.69(m, 2H, Piperidine-CH2), 1.50~1.55(m, 2H, Piperidine-CH2), 1.71~1.80(m, 2H, Piperidine-CH2), 1.56~1.61(m, 2H, Piperidine-CH2), 5.42(m, 1H, Piperidine-CH), 1.15(d, 3H, J=6.5Hz, Piperidine-CH3), 1.13(d, 3H, J=6.5Hz, Piperidine-CH3), 7.84(d, 1H, J=8Hz, Ar-H), 7.83(d, 1H, J=8Hz, Ar-H), ~7.2(t, 1H, Ar-H), 6.96(t, 1H, Ar-H), 7.23(d, 1H, J=8Hz, Ar-H), 7.25(d, 1H, J=8Hz, Ar-H),2.38(s, 3H, Cp-CH3), 2.41(s, 3H, Cp-CH3), 1.72(s, 3H, Cp-CH3), 1.64(s, 3H, Cp-CH3), 0.68(s, 3H, Ti-CH3), 0.73(s, 3H, Ti-CH3), 0.18(s, 3H, Ti-CH3), 0.05(s, 3H, Ti-CH3) ppm
비교 제조예 3
<리간드 화합물의 제조>
Figure 112016110472387-pat00075
<N-tert-butyl-1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-1,1-dimethylsilanamine의 합성>
100 mL 쉬렝크 플라스크에 클로로-1-(1,2-디메틸-3H-벤조[b]시클로펜타[d]티오펜-3-일)-1,1-디메틸실란 4.65g (15.88mmol)을 정량하여 첨가한 후, 여기에 THF 80 mL를 투입하였다. 상온에서 tBuNH2(4eq, 6.68 mL)를 투입한 후, 상온에서 3일 동안 반응시켰다. 반응 후, THF를 제거한 후, 헥산으로 여과하였다. 용매 건조 후 노란색 액체를 4.50g (86%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz): 7.99 (d, 1H), 7.83 (d, 1H), 7.35 (dd, 1H), 7.24 (dd, 1H), 3.49 (s, 1H), 2.37 (s, 3H), 2.17 (s, 3H), 1.27 (s, 9H), 0.19 (s, 3H), -0.17 (s, 3H).
Figure 112016110472387-pat00076
50 mL 쉬렝크 플라스크에 상기에서 제조된 리간드 화합물(1.06g, 3.22mmol/1.0eq) 및 MTBE 16.0 mL(0.2 M)를 넣고 먼저 교반시켰다. -40℃에서 n-BuLi(2.64 mL, 6.60mmol/2.05eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40℃에서 MeMgBr(2.68 mL, 8.05 mmol/2.5eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4(2.68 mL, 3.22 mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 1.07g (82%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz): 7.99 (d, 1H), 7.68 (d, 1H), 7.40 (dd, 1H), 7.30 (dd, 1H), 3.22 (s, 1H), 2.67 (s, 3H), 2.05 (s, 3H), 1.54 (s, 9H), 0.58 (s, 3H), 0.57 (s, 3H), 0.40 (s, 3H), -0.45 (s, 3H).
비교 제조예 4
Figure 112016110472387-pat00077
비교 제조예 4의 화합물은 대한민국 공개특허 제2014-0075966호에 기재된 방법에 따라 제조하였다.
실시예 1 및 2, 비교예 1 내지 4
2L 오토클레이브 반응기에 스캐빈저로 트리이소부틸알루미늄 화합물(0.3 mmol)과 헥산 용매 및 1-옥텐을 표 6에 나타낸 양으로 가한 후, 디에틸아연을 하기 표의 촉매 투입 양에 대해 100 당량으로 넣고, 반응기의 온도를 120로 예열하였다. 그와 동시에 반응기를 에틸렌으로 미리 채워 35 bar의 압력이 되도록 하였다. 상기 반응기에 트리이소부틸알루미늄 화합물(촉매 대비 10 당량)로 처리된 상기 제조예 또는 비교제조예에서 제조된 전이금속 화합물을 하기 표 6에 표시된 종류로 하기 표 6에 나타낸 양으로 넣고, 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트(AB) 조촉매를 하기 표 6에 나타낸 양으로 차례로 고압 아르곤 압력을 가하여 반응기에 넣었다. 이어서, 공중합 반응을 10분간 진행하였다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 과량의 에탄올에 가하여 침전을 유도하였다. 침전된 고분자를 에탄올 및 아세톤으로 각각 2 내지 3회 세척한 후, 80 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.
참고예 1 및 2, 비교예 1-1 내지 4-1
상기 실시예 1 및 2, 비교예 1 내지 4에서 디에틸아연을 가하지 않은 것을 제외하고는, 마찬가지의 방법으로 공중합 반응을 진행하여 공중합체를 얻은 다음 물성을 측정하였다.
물성 평가
<고분자의 용융지수>
고분자의 용융지수(Melt Index, MI)는 ASTM D-1238(조건 E, 190, 2.16 Kg 하중)로 측정하였다.
<고분자의 결정화 온도 및 용융온도>
고분자의 결정화 온도(Tc) 및 용융온도(Tm)는 PerkinElmer사에서 제조한 시차주사열량계(DSC : Differential Scanning Calorimeter 6000)를 이용하여 측정하였다. 상세하게는 측정 용기에 시료를 약 0.5mg 내지 10mg 충전하여, 질소 가스 유량을 20 mL/min으로 하고, 상기 폴리올레핀 수지의 열이력을 동일하게 하기 위하여 시료를 0℃에서 150℃의 온도까지 20℃/min의 속도로 승온시킨 후, 다시 상기 시료를 150℃에서 -100℃의 온도까지 10℃/min의 속도로 냉각한 후 다시 상기 시료를 -100℃에서 150℃의 온도까지 10℃/min의 속도로 승온시키면서 DSC로 측정한 열류량(Heat flow)의 가열 곡선의 피크, 즉, 가열 시의 흡열 피크 온도를 용융 온도로 하여 측정할 수 있다.
<고분자의 밀도>
고분자의 밀도(Density)는 샘플을 190 ℃ 프레스 몰드(Press Mold)로 두께 3 mm, 반지름 2 cm의 시트를 제작하고 상온에서 24시간 어닐링 후 메틀러(Mettler) 저울에서 측정하였다.
Cat.
(화합물)
(μmol)
디에틸
아연
(μmol)
1-옥텐의 투입량
(mL)
밀도
(g/cc)
용융지수
(g/10min)
실시예 1 제조예 1
(4)
400 170 0.884 4.12
참고예
1
제조예 1
(4)
- 170 0.877 0.03
실시예 2 제조예 2
(4)
400 200 0.883 3.20
참고예 2 제조예 2
(4)
- 200 0.873 0.08
비교예
1
비교제조예 1
(1)
100 200 0.888 0.23
비교예
1-1
비교제조예 1
(1)
- 200 0.889 0.80
비교예
2
비교제조예 2
(1)
100 170 0.866 0.01
비교예
2-1
비교제조예 2
(1)
- 170 0.864 0.02
비교예 3 비교제조예 3
(1)
100 200 0.879 0.05
비교예 3-1 비교제조예 3
(1)
- 200 0.879 0.14
비교예 4 비교제조예 4
(1)
100 170 0.864 11.10
비교예 4-1 비교제조예 4
(1)
- 170 0.862 19.67
중합조건: 헥산 (1.0 L), 에틸렌 (35 bar), 120℃, Tc: 결정화 온도, Tm: 용융 온도, MWD: 분자량 분포(중량평균분자량/수평균분자량)
상기 표 6에 나타난 바와 같이, 실시예 1 및 2는 제조예 1에서 제조된 촉매와 디에틸아연을 함께 사용한 결과, 밀도가 높고, 용융지수가 높은 공중합체를 제조할 수 있었다. 반면 비교예 1 내지 4에서 제조된 공중합체는 실시예 1 및 2에서 제조된 공중합체와 비교할 때 밀도가 유사한 경우, 용융지수가 낮거나, 용융지수가 유사한 경우, 밀도가 낮았다.
상기 실시예 1 및 2에서 제조된 공중합체가 높은 밀도와 높은 값의 용융지수를 함께 가지는 이유는 상기 디에틸아연이 사슬 셔틀링제로 작용하여 제조되는 중합체의 사슬이동이 이루어졌기 때문으로 판단되며, 이를 통해 실시예 1 및 2에서 사용된 제조예 1 및 2에서 얻어진 전이금속 화합물은 사슬이동이 가능하다는 점을 확인할 수 있었다.
상기와 같은 제조예 1 및 2에서 얻어진 전이금속 화합물이 사슬이동이 가능하다는 증거는 참고예 1 및 2, 비교예 1-1 내지 4-1의 결과를 함께 비교함으로써 확인할 수 있다.
실시예 1과 참고예 1은 동일한 촉매(제조예 1의 화합물)를 사용하고, 다른 중합 조건이 동일하며, 디에틸아연의 사용여부에만 차이가 있는데, 디에틸아연을 함께 사용한 실시예 1의 경우, 디에틸아연을 사용하지 않은 참고예 1에 비해 밀도가 상승하고, 용융지수가 크게 상승하였음을 볼 수 있다. 이러한 경향은 제조예 2의 화합물을 촉매로 사용한 실시예 2와 참고예 2의 결과에서도 마찬가지였다.
반면, 이와 대비하여 비교예 1과 비교예 1-1의 경우, 마찬가지로 동일한 촉매(비교제조예 1의 화합물)을 사용하고, 다른 중합 조건이 동일하며, 디에틸아연의 사용여부에만 차이가 있지만, 디에틸아연을 사용한 비교예 1-1의 경우 디에틸아연을 사용하지 않은 비교예 1에 비해 오히려 밀도가 감소하고 용융지수가 줄어들었음을 볼 수 있다. 한편, 비교예 2와 비교예 2-1의 경우를 보면 디에틸아연을 사용한 비교예 2-1의 경우 디에틸아연을 사용하지 않은 비교예 2에 비해 밀도가 소폭 증가하고 용융지수가 줄어들었음을 볼 수 있으며, 비교예 3과 비교예 3-1의 경우에는 밀도에는 변화가 없고 용융지수는 줄어들었음을 확인할 수 있다. 또한, 비교예 4와 비교예 4-1의 경우, 밀도가 소폭 증가하고 용융지수가 줄어들었다.
상기 용융지수가 상승하였다는 것은 중합체의 분자량이 감소하였음을 나타내는 지표이며, 상기 실시예 1 및 2에서와 같은 용융지수의 큰 폭의 상승은 디에틸아연의 첨가에 따라 디에틸아연이 사슬 셔틀링제로서 작용하여 중합체 제조시 사슬 이동이 일어남에 따른 것이다.
이를 통하여, 사슬 셔틀링제로서 작용하는 디에틸아연은 촉매의 종류에 따라 사슬이동 효과의 발현 여부에 차이를 나타냄을 확인할 수 있었으며, 이를 통해 본 발명의 촉매 조성물이 포함하는 상기 화학식 1의 전이금속 화합물 및 화학식 2의 디알킬아연의 조합은 촉매와 샤슬 셔틀링제로서 작용할 수 있음을 확인할 수 있었다.
이와 같이, 본 발명의 촉매 조성물은 사슬 셔틀링제에 의한 중합체의 사슬이동이 가능하므로 블록 공중합체를 만들기 위한 촉매로서도 사용될 수 있을 것이다.

Claims (14)

  1. 하기 화학식 1로 표시되는 전이금속 화합물 및 하기 화학식 2로 표시되는 디알킬아연 화합물을 포함하는 폴리올레핀 중합용 촉매 조성물:
    [화학식 1]
    Figure 112020138292045-pat00078

    상기 화학식 1에 있어서,
    R1 내지 R9는 각각 독립적으로 수소, 실릴, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고;
    상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
    상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고;
    n은 1 또는 2이고;
    Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬 아미도, 탄소수 6 내지 20의 아릴 아미도, 또는 탄소수 1 내지 20의 알킬리덴이며;
    M은 Ti, Zr 또는 Hf이고;
    [화학식 2]
    Figure 112020138292045-pat00079

    상기 화학식 2에 있어서,
    R10 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬이다.
  2. 제 1 항에 있어서,
    상기 Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬인, 촉매 조성물.
  3. 제 1 항에 있어서,
    상기 R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 또는 탄소수 7 내지 20의 아릴알킬이고;
    상기 R1 내지 R8 중 서로 인접하는 2 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
    상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있는, 촉매 조성물.
  4. 제 1 항에 있어서,
    상기 화학식 1의 화합물은 하기 화학식들로 표시되는 화합물 중 어느 하나인 촉매 조성물.
    [화학식 1-1]
    Figure 112016110472387-pat00080

    [화학식 1-2]
    Figure 112016110472387-pat00081

    [화학식 1-3]
    Figure 112016110472387-pat00082

    [화학식 1-4]
    Figure 112016110472387-pat00083

    [화학식 1-5]
    Figure 112016110472387-pat00084

    [화학식 1-6]
    Figure 112016110472387-pat00085

    [화학식 1-7]
    Figure 112016110472387-pat00086

    [화학식 1-8]
    Figure 112016110472387-pat00087

    [화학식 1-9]
    Figure 112016110472387-pat00088

    [화학식 1-10]
    Figure 112016110472387-pat00089

    [화학식 1-11]
    Figure 112016110472387-pat00090

    [화학식 1-12]
    Figure 112016110472387-pat00091

    [화학식 1-13]
    Figure 112016110472387-pat00092

    [화학식 1-14]
    Figure 112016110472387-pat00093

    [화학식 1-15]
    Figure 112016110472387-pat00094

    [화학식 1-16]
    Figure 112016110472387-pat00095

    [화학식 1-17]
    Figure 112016110472387-pat00096

    [화학식 1-18]
    Figure 112016110472387-pat00097

    [화학식 1-19]
    Figure 112016110472387-pat00098

    [화학식 1-20]
    Figure 112016110472387-pat00099

    [화학식 1-21]
    Figure 112016110472387-pat00100

    [화학식 1-22]
    Figure 112016110472387-pat00101
  5. 제 1 항에 있어서,
    상기 화학식 2로 표시되는 디알킬아연 화합물은 디에틸아연, 디프로필아연, 디부틸아연 및 에틸프로필아연으로 이루어진 군에서 선택된 1종 이상인, 촉매 조성물.
  6. 제 1 항에 있어서,
    상기 화학식 2로 표시되는 디알킬아연 화합물은 상기 화학식 1의 전이금속 화합물 1 당량에 대해 1 내지 200 당량의 양으로 혼합되는, 촉매 조성물.
  7. 제 1 항에 있어서,
    상기 촉매 조성물이 1 종 이상의 조촉매를 추가로 포함하는, 촉매 조성물.
  8. 제 7 항에 있어서,
    상기 조촉매는 하기 화학식 11 내지 13으로 표시되는 화합물 중에서 선택되는 하나 이상을 포함하는 것인 촉매 조성물.
    [화학식 11]
    -[Al(R12)-O]a-
    상기 화학식 11에서, R12는 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며; a는 2 이상의 정수이며;
    [화학식 12]
    D(R12)3
    상기 화학식 12에서, D는 알루미늄 또는 보론이며; R12는 각각 독립적으로 상기 화학식 11에서 정의된 대로이며;
    [화학식 13]
    [L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
    상기 화학식 13에서, L이 중성 또는 양이온성 루이스 산이고; H가 수소 원자이며; Z가 13족 원소이고; A는 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이며; 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
  9. 제 1 항에 있어서,
    상기 촉매 조성물은 반응 용매를 더 포함하는 것인 촉매 조성물.
  10. 제 1 항에 따른 촉매 조성물이 담체에 담지된 담지 촉매.
  11. 제 1 항에 따른 촉매 조성물을 이용한 중합체의 제조방법.
  12. 제 11 항에 있어서,
    상기 중합체는 폴리올레핀의 호모중합체 또는 공중합체인 중합체의 제조방법.
  13. 제 10 항에 따른 담지 촉매를 이용한 중합체의 제조방법.
  14. 삭제
KR1020160150360A 2016-11-11 2016-11-11 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법 KR102236920B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160150360A KR102236920B1 (ko) 2016-11-11 2016-11-11 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160150360A KR102236920B1 (ko) 2016-11-11 2016-11-11 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법

Publications (2)

Publication Number Publication Date
KR20180053037A KR20180053037A (ko) 2018-05-21
KR102236920B1 true KR102236920B1 (ko) 2021-04-07

Family

ID=62453353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160150360A KR102236920B1 (ko) 2016-11-11 2016-11-11 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법

Country Status (1)

Country Link
KR (1) KR102236920B1 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
SG99905A1 (en) 2000-06-21 2003-11-27 Sumitomo Chemical Co Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
KR101307493B1 (ko) * 2010-04-23 2013-09-11 주식회사 엘지화학 내열성 및 탄성이 우수한 올레핀 중합체 및 그 제조 방법

Also Published As

Publication number Publication date
KR20180053037A (ko) 2018-05-21

Similar Documents

Publication Publication Date Title
KR101637982B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101719064B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101603016B1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
KR101847702B1 (ko) 올레핀계 중합체
KR102140690B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101910701B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102223718B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
US20190106513A1 (en) Transition metal compound and catalyst composition including the same
KR102054466B1 (ko) 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR102236921B1 (ko) 전이금속 화합물 및 알킬알루미녹산을 포함하는 촉매 조성물, 이를 이용한 중합체의 제조방법, 및 이를 이용하여 제조된 중합체
KR101910232B1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물
KR102236920B1 (ko) 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR102036664B1 (ko) 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물 및 이를 이용한 올레핀계 공중합체의 제조방법
KR102223719B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101931234B1 (ko) 신규한 리간드 화합물 및 전이금속 화합물
KR102423660B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102217767B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102095007B1 (ko) 신규한 리간드 화합물 및 전이금속 화합물의 제조방법
KR102091779B1 (ko) 헤테로 아로마틱 리간드가 도입된 신규한 전이금속 화합물 및 이를 이용한 중합체의 제조방법
KR102034807B1 (ko) 신규한 전이금속 화합물
KR102077756B1 (ko) 신규한 전이금속 화합물의 제조방법
KR102029087B1 (ko) 신규한 전이금속 화합물
KR102128569B1 (ko) 신규한 전이금속 화합물
KR101982190B1 (ko) 올레핀계 공중합체의 제조방법 및 이에 의해 제조된 올레핀계 공중합체
KR20160131708A (ko) 리간드 화합물 및 전이금속 화합물의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant