KR102229413B1 - 유도무기 조종날개 실시간 부하 인가 시스템 및 방법 - Google Patents

유도무기 조종날개 실시간 부하 인가 시스템 및 방법 Download PDF

Info

Publication number
KR102229413B1
KR102229413B1 KR1020190128512A KR20190128512A KR102229413B1 KR 102229413 B1 KR102229413 B1 KR 102229413B1 KR 1020190128512 A KR1020190128512 A KR 1020190128512A KR 20190128512 A KR20190128512 A KR 20190128512A KR 102229413 B1 KR102229413 B1 KR 102229413B1
Authority
KR
South Korea
Prior art keywords
control
wing
real
guided weapon
weapon
Prior art date
Application number
KR1020190128512A
Other languages
English (en)
Inventor
조현진
황준호
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020190128512A priority Critical patent/KR102229413B1/ko
Application granted granted Critical
Publication of KR102229413B1 publication Critical patent/KR102229413B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/006Guided missiles training or simulation devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

다수개의 조종날개와 구동장치가 장착된 유도무기 몸체를 그대로 사용하여 부하 시험을 수행할 수 있는 유도무기 조종날개 실시간 부하 인가 시스템을 제공한다. 상기 유도무기 조종날개 실시간 부하 인가 시스템은, 미리 설정되는 시험 시나리오에 따라 유도 무기를 조종하여 상기 유도 무기의 조종 날개를 동작시키는 실시간 처리 장치, 및 상기 유도 무기의 몸체 및 조종 날개들이 장착되며, 동작에 따른 상기 조종 날개의 날개각을 측정하고 부하를 인가할 수 있는 시뮬레이터를 포함하는 것을 특징으로 한다.

Description

유도무기 조종날개 실시간 부하 인가 시스템 및 방법{Real-time load applying System and Method for control fin of guided weapons}
본 발명은 유도무기 조종 기술에 관한 것으로서, 더 상세하게는 4개의 조종날개와 구동장치가 장착된 유도무기 몸체를 그대로 사용하여 부하 시험을 할 수 있는 시스템 및 방법에 대한 것이다.
일반적으로 고속으로 기동하는 유도 무기의 조종날개에는 유체에 의한 큰 외란 부하가 걸리게 된다. 이 부하는 조종 성능 저하, 조종날개 및 이를 구동하는 구동장치 고장 및 파손, 과다한 연료 소모의 원인이 된다. 따라서, 조종날개와 구동장치에 부하를 인가하여 성능을 평가하기 위해 다양한 부하시험장치가 개발되었다.
이러한 부하시험장치로서 모터, 또는 구동기(모터 + 기어류)에 회전부하를 인가하는 방식이 개시되어있다. 부연하면, 구동장치의 모터와 연결된 회전 출력축에 기존의 고정 비틀림 바(Torsion bar) 대신 비틀림 부하를 인가할 수 있는 모터 및 기어를 적용한 부하인가장치를 제안하고 있다. 그러나, 실제 시스템의 부하가 조종날개에 걸리는데 반하여 이 장치는 구동장치 출력 회전축에만 부하를 인가할 수 있는 구조로 되어 있어 조종날개에 걸리는 부하 회전축부터 조종날개 사이의 연결기구(Linkage)를 포함하는 전체 구동장치에 대한 부하 특성 평가가 곤란하다는 단점이 있다.
특히, 회전형이 아닌 직진형(Linear) 구동장치의 시험은 불가능하다는 한계를 지니고 있다. 즉, 이 방식의 경우, 조종날개에 직접 부하를 인가하여 유도무기 시스템 차원에서 성능을 평가하는 방식이 아니다. 이런 연유로 이러한 방식의 경우, 조종날개 및 구동장치가 유도무기에 장착된 상태로는 부하시험을 할 수 없는 취약점을 갖고 있다.
다른 부하시험장치로서, 위에서 제시한 방식을 통해 시험을 하더라도 별도의 지그를 제작하여 유도무기의 상하좌우의 4축 중 1축에 장착된 조종 날개나 유사한 구동장치를 장착하여 날개에 걸리는 부하를 측정하기 위한 방식이 개시되어 있다. 부연하면, 조종날개에 토크 측정을 위해 크랭크, 플라이 휠 등으로 저항력 형태의 외력 부하를 인가하는 유사점도 있으나 조종날개에 걸리는 구동 토크를 인가하는 것이 아니라 토크를 측정하는 방식이다. 시험을 위해서는 별도의 지그를 제작하여 상하좌우의 4축 중 1축의 조종날개와 유사한 구동장치를 장착하여 날개 부하를 측정하는 방식이다.
이러한 방식의 경우, 4축 동시 구동부하 시험을 통한 상하좌우 각 조종날개 및 구동장치간의 상호 영향의 분석이 곤란하다는 문제점이 있다. 뿐만 아니라, 시험대상이 되는 유도무기의 크기와 형상이 바뀔 때마다 부하인가장치의 많은 구성부를 수정 또는 다시 제작해야 하는 불편을 감수해야 한다.
또한, 조종날개와 구동장치가 유도무기에 장착된 상태로는 부하시험을 할 수 없는 취약점을 갖고 있다. 또한, 4축 동시 구동부하 시험을 통한 상하좌우 각 조종날개 및 구동장치간의 상호 영향의 분석이 곤란할 뿐만 아니라 시험대상이 되는 유도무기의 크기와 형상이 바뀔 때마다 지그 등의 구성부를 수정 또는 다시 제작해야 하는 불편을 감수해야 한다.
그런데, 이 불편보다 더 문제가 되는 것은 구동장치의 제어기와 구동기, 연결기구, 조종날개 등의 지그에서의 장착 위치와 실제 유도무기 몸체에서의 배치가 완전히 같을 수 없다는 점이다. 이럴 경우, 날개 부하가 1축의 구동장치와 연결기구, 몸체 간에 미치는 변형 등의 영향을 알 수 없다는 문제점이 있다.
뿐만 아니라 유도무기 몸체 내/외부의 상하좌우에 배치된 4개의 구동장치 및 조종날개의 동시 작동에 의한 상호 간의 기구적/전기적 간섭 등의 영향 분석도 어렵게 된다.
그러므로 날개에 걸리는 부하 영향에 의한 구동장치의 오차 특성 분석도 곤란하다는 문제점이 있다. 또한, 실제 운용 환경에서처럼 4축의 조종날개에 부하가 인가됨으로써 파생될 수 있는 유도무기 동특성 변화, 구동장치 소모 전력 추정, 유도제어 성능 변화 등과 같은 시스템 차원에서의 분석은 더더욱 힘들게 된다.
1. 미국공개특허번호 제2006/0070457A호 2. 한국특허등록번호 제10-1389351호
본 발명은 위 배경기술에 따른 문제점을 해소하기 위해 제안된 것으로서, 다수개의 조종날개와 구동장치가 장착된 유도무기 몸체를 그대로 사용하여 부하 시험을 수행할 수 있는 유도무기 조종날개 실시간 부하 인가 시스템 및 방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 구동장치의 제어기와 구동기, 연결기구, 조종날개 등의 지그에서의 장착 위치와 실제 유도무기 몸체에서의 배치가 다르더라도 날개 부하가 1축의 구동장치와 연결기구, 몸체 간에 미치는 변형 등의 영향을 분석할 수는 유도무기 조종날개 실시간 부하 인가 시스템 및 방법을 제공하는데 다른 목적이 있다.
또한, 본 발명은 날개에 걸리는 부하 영향에 의한 구동장치의 오차 특성 분석을 가능하게 하는 유도무기 조종날개 실시간 부하 인가 시스템 및 방법을 제공하는데 또다른 목적이 있다.
본 발명은 위에서 제시된 과제를 달성하기 위해, 다수개의 조종날개와 구동장치가 장착된 유도무기 몸체를 그대로 사용하여 부하 시험을 수행할 수 있는 유도무기 조종날개 실시간 부하 인가 시스템을 제공한다.
상기 유도무기 조종날개 실시간 부하 인가 시스템은,
미리 설정되는 시험 시나리오에 따라 유도 무기를 조종하여 상기 유도 무기의 조종 날개의 동작 및 날개 각도 명령값을 생성시키는 실시간 처리 장치; 및 상기 유도 무기의 몸체 및 조종 날개들이 장착되며, 동작에 따른 상기 조종 날개의 날개각을 측정하는 시뮬레이터;를 포함하는 것을 특징으로 한다.
또한 상기 실시간 처리 장치는, 상기 시험 시나리오에 따른 조종 제어 명령 및 속도, 자세, 위치 등을 포함하는 운동 변수 계산값을 이용하여 상기 조종 날개를 구동하는 날개 각도 명령값을 산출하는 것을 특징으로 한다.
또한, 상기 실시간 처리 장치는, 산출된 날개 각도 명령값 또는 상기 유도 무기에서 측정되는 제 1 날개각 변위값 또는 상기 시뮬레이터에서 실제로 측정되는 제 2 날개각 변위값을 이용하여 상기 유도 무기의 속도, 자세, 위치를 포함하는 운동 변수 계산값을 산출하는 것을 특징으로 한다. 오차가 없는 이상적인 시스템이라 가정하면 날개 각도 명령값에 따라 실제 움직인 날개각 변위값(m1,m2)은 똑 같은 값이 된다. m1과 m2의 차이는 날개각을 측정하는 위치가 다르다.
또한, 상기 유도무기 조종날개 실시간 부하 인가 시스템은, 미리 설정되는 타각 및 부하를 인가하여 측정되는 상기 제 1 날개각 변위값 및 제 2 날개각 변위값이 서로 다르면 인가 및 측정을 5회 내지 6회 반복하는 분석 장치;를 포함하는 것을 특징으로 한다.
또한, 상기 분석 장치는 상기 반복후, 미리 설정되는 타각 및 무부하를 인가하여 측정되는 상기 제 1 날개각 변위값 및 제 2 날개각 변위값이 서로 같으면, 구동계의 기어 백래쉬에 의한 변형으로 판정하고, 상기 제 1 날개각 변위값 및 제 2 날개각 변위값이 서로 다르면, 연결기구 또는 날개뿌리의 비틀림에 의한 변형으로 판정하는 것을 특징으로 한다.
또한, 상기 시뮬레이터는 상기 몸체를 그대로 장착하는 유도 무기 장착판 및 상기 조종 날개들을 그대로 장착하는 정렬 블록들로 이루어진 장착 테이블을 포함하는 것을 특징으로 한다.
또한, 상기 정렬 블록들은 상기 조종 날개에 부하 토크를 인가하는 구동기 조립체가 장착되는 구동기 장착판을 포함하는 것을 특징으로 한다.
또한, 상기 정렬 블록들은 상기 유도 무기의 크기 또는 조종 날개들의 부착 위치가 달라져도 상기 구동기 조립체를 조종 날개들중 어느 하나와 평행 방향으로 이동하여 장착가능한 이동형 블록인 것을 특징으로 한다.
또한, 상기 구동기 장착판에는 상기 조종 날개들의 움직인 날개 각도를 측정하는 포텐셔미터 및 상기 조종 날개들에 걸리는 토크를 측정하는 토크미터가 설치되는 것을 특징으로 한다.
또한, 상기 구동기 장착판에는 상기 조종 날개들과의 연결을 위한 연결 어댑터가 설치되는 것을 특징으로 한다.
또한, 상기 구동기 장착판은 중심에서 밖으로 향하는 반경 방향으로 이동 설치가 가능한 것을 특징으로 한다.
또한, 상기 장착 테이블은 장착 테이블 지지대와 상기 장착 테이블 지지대상에 위치되는 평판 플레이트를 포함하는 것을 특징으로 한다.
또한, 상기 유도무기 장착판은 상기 유도 무기의 몸체의 후부를 고정 지지하는 것을 특징으르 한다.
또한, 상기 분석 장치는 상기 시험 시나리오의 변경에 따라 상기 조종 날개들에 걸리는 부하로 인해 생성되는 전류 및 전압을 이용하여 상기 유도무기의 소모전력을 산출하는 것을 특징으로 한다.
다른 한편으로, 본 발명의 다른 일실시예는, (a) 실시간 처리 장치가 미리 설정되는 시험 시나리오에 따라 유도 무기를 조종하여 상기 유도 무기의 조종 날개 의 동작 및 날개 각도 명령을 생성시키는 단계; 및 (b) 상기 유도 무기의 몸체 및 조종 날개들이 장착되는 시뮬레이터가 동작에 따른 상기 조종 날개(320)의 날개각을 측정하는 단계;를 포함하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 방법을 제공한다.
본 발명에 따르면, 상하좌우 4축 조종날개의 동시 부하 시험이 가능하다.
또한, 본 발명의 다른 효과로서는 4축의 조종날개에 동시에 실시간 부하가 인가된 상태에서 측정된 날개 각도값으로부터 유도무기 속도, 자세, 위치 등의 동특성 변수 계산으로 실제 유도무기의 주행 궤적 추정이 가능하여 고속/고기동의 주행 단계의 정밀 유도제어 성능 분석이 가능하다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 각 축이 통상 다르게 움직이는 조종날개의 작동에 따른 연료소모 추정으로 전지부의 최적 설계에 유용하며 유도무기의 최적화 설계로 소형화/고속화에 기여할 수 있다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 최적 설계에 유용하며 유도무기의 최적화 설계로 소형화/고속화에 기여할 수 있다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 큰 부하에 따른 제어기의 큰 부하 전류 발생에 의한 제어기 및 보드 상호간의 잡음 영향 분석, 연결기구 등의 변형으로 인한 기구적 간섭 분석을 가능하게 하여 유도무기의 신뢰성을 크게 향상시킬 수 있다는 점을 들 수 있다.
도 1은 본 발명의 일실시예에 따른 유도무기 조종날개 실시간 부하 인가 시스템의 구성 블럭도이다.
도 2는 도 1에 도시된 실시간 처리장치(120)의 세부 구성 블럭도이다.
도 3은 도 1에 도시된 시뮬레이터(140)의 세부 구성 블럭도이다.
도 4는 도 1에 도시된 시뮬레이터(140)의 정면도이다.
도 5는 도 1에 도시된 시뮬레이터(140)의 측면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용한다. 제 1, 제 2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.
이하 첨부된 도면을 참조하여, 본 발명의 일실시예에 따른 유도무기 조종날개 실시간 부하 인가 시스템 및 방법을 상세하게 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 유도무기 조종날개 실시간 부하 인가 시스템(100)의 구성 블럭도이다. 도 1을 참조하면, 실시간 부하 인가 시스템(100)은, 유도 무기(10), 유도 무기(10)의 동작을 제어하고 동작에 따른 측정값을 처리하는 실시간 처리 장치(120), 유도 무기(10)의 동작에 따른 측정과 부하 인가를 수행하는 시뮬레이터(140), 시뮬레이터(140)를 제어하는 제어기(130) 등을 포함하여 구성될 수 있다.
물론, 실시간 부하 인가 시스템(100)은 유도 무기(10)의 운용 통제 및/또는 분석을 실행하는 분석 장치(110)를 구성할 수 있다. 도 2에서는 제어기(130)와 시뮬레이터(140)를 분리하여 도시하였으나, 시뮬레이터(140)에 제어기(130)가 포함되어 구성될 수도 있다. 또한, 실시간 처리 장치(120)는 분석 장치(110)에 포함되어 구성될 수도 있다.
유도 무기(10)는 실제 유도 무기이며, 조종 날개들로 구성된다.
시뮬레이터(140)는 유도 무기를 그대로 직접 장착하는 구조물을 포함하여 구성된다. 또한, 시뮬레이터(140)는 움직인 조종 날개의 날개 각도 및/또는 걸리는 토크를 측정하는 기능을 수행한다.
도 2는 도 1에 도시된 실시간 처리장치(120)의 세부 구성 블럭도이다. 도 2를 참조하면, 분석 장치(110)는 유도 무기(10)의 주행 시작부터 종료에 이르는 시험 시나리오를 생성하고, 이에 따른 침로/심도 등의 조종 제어 명령을 실시간 처리 장치(120)에 인가한다. 또한, 분석 장치(110)는 실시간 처리 장치(120)로부터 받은 유도 무기(10)의 속도, 자세, 위치 등의 계산 정보값을 받아 화면에 전시하고 분석하는 기능을 수행한다. 이를 위해, 분석 장치(110)는 프로세서, 메모리, 디스플레이 등의 하드웨어와, 알고리즘, 프로그램 등을 실행하는 소프트웨어로 구성될 수 있다.
메모리는 이러한 알고리즘, 프로그램, 데이터 등을 저장하기 위해, 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD(Secure Digital) 또는 XD(eXtreme Digital) 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read Only Memory), PROM(Programmable Read Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 또한, 인터넷(internet)상에서 저장 기능을 수행하는 웹 스토리지(web storage), 클라우드 서버와 관련되어 동작할 수도 있다.
실시간 처리 장치(120)는 유도 무기(10)의 날개각 변위값(c1 또는 m2 또는 m1 값)을 입력으로 받아 유도 운동 모의기(210)에서 유도 무기(10)의 속도,자세,위치등의 운동 변수 계산값을 계산하여 분석 장치(110)와 제어기(130)로 전송한다. 또한, 조종 제어 모의기(220)는 분석 장치(110)로부터 받은 침로/심도등의 조종 제어 명령과 유도 무기 운동 모의기(210)로부터의 속도, 자세, 위치 등의 운동 변수 계산값을 이용하여 날개 각도 명령값(c1)을 계산하고 이를 제어기(130)와 시험체인 유도 무기(10)의 구동계(330)로 전송한다. 제어기(130)는 이 값을 이용하여 부하 토크 명령 생성에 이용하고 구동계(330)는 이 명령값에 따라 조종 날개(320)를 구동하게 된다. 구동계는 제어부, 구동부, 연결 기구 등으로 구성될 수 있다.
운동변수계산값의 예시는 모두 속도, 자세, 위치 등이 될 수 있다. '유도무기 운동 모의기' 안에는 운동 관련 미분 방정식이 코딩되어 있으며 조종 날개각 변위값이 입력값이 되며 출력값은 운동 변수 계산값인 각속도, 자세(롤, 피치, 요(침로)), 가속도, 속도, 위치(x,y,z(z축은 심도)) 등의 모든 유도무기 운동을 나타내는 변수들이다.
유도 무기(10)는 몸체(310) 및 독립적으로 구동하는 상하좌우 4축 또는 3축의 조종 날개(320)로 구성되며, 침로와 심도(고도)를 제어한다. 각각의 조종 날개(320)는 제어부(미도시)와 구동부(미도시)등으로 구성되는 구동계에 의해 제어된다. 제어부는 프로세서, 전자회로 등으로 구성된다. 구동부는 모터와 기어류로 구성되며, 제어부의 명령을 받아 조종 날개(320)와 직접 또는 연결기구로 연결되며 조종 날개(320)에 구동력을 제공한다.
그런데, 고속으로 기동하는 유도 무기(10)의 조종 날개(320)에는 유체에 의한 큰 외란 부하가 걸리게 된다. 이 부하는 조종 성능 저하, 조종 날개 및 이를 구동하는 구동계의 고장 및/또는 파손, 과다한 연료 소모 등이 원인이 된다.
특히, 최신 유도 무기의 고속화/소형화/경량화 발전 추세를 감안할 때 부하에 따른 구동계 및 연결기구 등의 변형과 집적화된 회로간의 상호 잡음 영향 등이 우려되는 부분이다. 그러므로, 본 발명의 일실시예에서는, 조종 날개와 구동계에 부하를 인가하여 성능을 평가한다.
제어기(130)는 실시간 처리 장치(120)로부터 유도 무기(10)의 속도, 자세, 위치 등의 값과 날개 각도 명령값(c1)을 전달받아 부하 토크 명령값을 계산하고 부하 토크 제어를 수행하며 부하 시뮬레이터(140)에서 측정된 날개 각도 측정값(m2)을 실시간 처리 장치(120)로 전달한다. 일반적으로 모터의 전류는 걸리는 외부 부하 토크에 비례한다. 그러므로 주행중에 각각 다르게 동작하는 4개의 조종날개의 작동에 따라 변동되어 걸리는 유체부하의 크기에 따라 유도무기의 구동계의 전류는 주행 중에 계속 변동되며 이는 유도무기에서 측정되어 실시간 처리 장치와 분석장치로 전달된다. 그러므로 주행 시나리오에 따른 주행 전구간에서 조종날개 소모 전력 추정이 가능하며 이는 유도무기 전원 설계를 위한 유용한 자료로 활용될 수 있다.
분석 장치(110)는 날개 각도 명령값(c1)에 따른 시뮬레이터(140)가 측정한 날개 각도 측정값(m2)과 구동계(330)에서 측정된 날개 각도 측정값(m1)을 부하가 인가된 상태에서 비교하여, 부하에 의한 위치 정확도 분석을 수행하는 기능을 한다. 또한, 분석 장치(110)는 이 오차의 원인이 구동계(330)의 기어 백래쉬에 의한 것인지 아니면 연결기구 또는 날개 뿌리의 비틀림 변형에 의한 것인지를 판단한다.
부연하면, 최대 타각 및 최대 부하 인가하여 m1과 m2값을 측정하고, 이들 측정값이 서로 다를 경우, 5 ~ 6회 반복 시험을 수행한다. 이후, 최대 타각 및 무부하 상태로 구동하여 m1과 m2값을 측정, 이들 측정값이 서로 같으면 기어 백래쉬로 판정하고, 다르면 연결기구 또는 날개뿌리의 비틀림에 의한 변형으로 판정한다.
또한, 분석 장치(110)는 실시간 처리장치에서 전송 받은, 즉 날개 각도 명령값(c1), 구동계(330)의 구동부 또는 날개뿌리에서 측정되는 날개 각도 측정값(m1), 그리고 조종날개(320)에 실시간 부하가 인가된 상태에서 측정된 날개 각도 측정값(m2)의 3가지 경우의 날개 변위값에 따른 유도무기(10)의 속도, 자세, 위치 등의 동특성 운동 변수값 분석 및/또는 실제 유도무기의 주행 궤적 추정으로 고속/고기동의 종말유도 단계에서의 정밀한 유도제어 성능을 분석하는 것이 가능하다.
부연하면, 날개 각도 측정값(m2)과 구동계(330)의 구동부 또는 날개뿌리에서 측정되는 날개 각도 측정값(m1)은 고속/고기동의 종말 유도 단계와 같이 큰 부하가 걸릴 경우, 차이가 커지게 된다. 그런데, 실제 유도 무기는 날개 움직임(m2)에 따라 기동하지만 부하 인가된 조종날개의 움직임을 부하인가장치 없이는 알 수 없다.
따라서, 구동계(330)의 내부 측정값인 m1값을 사용하여 조종 날개 제어를 수행한다. 그러므로, m1값과 실제로 움직인 조종날개 각도인 m2 값은 유체 부하가 클수록 달라질 가능성이 커지며 이에 따라 계산된 유도무기의 속도, 자세, 위치 값은 다르다. m1,m2값에 따라 자세 및/또는 위치값 등을 비교하면 유도제어 성능의 정량적인 오차 분석이 가능하다.
즉 조종날개 각도 명령인 c1값에 따라 계산된 자세 및/또는 위치가 유도무기의 요구되는 최적 자세 및 주행 경로(위치)가 되며 성능 분석의 기준 궤적이 된다. c1값과 다른 m1, m2값은 조종날개의 오차를 포함하는 날개 각도이며 이 값으로 계산된 유도무기의 운동 변수값도 달라지며 주행 궤적도 기준 궤적에서 벗어나게 된다. 결과적으로 m1, m2에 의한 주행 궤적이 기준 주행 궤적에서 벗어난 정도를 분석함으로써 유도제어 성능 평가가 가능하게 된다.
시나리오에 따라 시간 T_0에서 T_end까지 부하 시뮬레이터를 이용한 시험을 수행한다. 이때 저장된 c1, m1, m2값을 입력으로 유도무기 운동 모의기를 돌리면 유도무기 운동 변수들이 출력되며 자세 및/또는 위치(위치가 시간축에 따라 찍히면 주행 궤적임)가 다른 3개의 주행 궤적을 얻을 수 있다.
이 기록 데이터를 분석장치로 전송하여 분석한다. c1에 의한 궤적은 요구 최적 궤적, m1에 의한 궤적은 c1에 의한 것과 유사한 궤적, m2에 의한 궤적은 날개에 유체부하가 걸리는 상태에서 실제 유도무기가 움직인 궤적이다.
유도무기 운동 모의기(210) 및 조종제어 모의기(220)는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 소프트웨어 및/또는 하드웨어로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 마이크로프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 소프트웨어 구성 컴포넌트(요소), 객체 지향 소프트웨어 구성 컴포넌트, 클래스 구성 컴포넌트 및 작업 구성 컴포넌트, 프로세스, 기능, 속성, 절차, 서브 루틴, 프로그램 코드의 세그먼트, 드라이버, 펌웨어, 마이크로 코드, 데이터, 데이터베이스, 데이터 구조, 테이블, 배열 및 변수를 포함할 수 있다. 소프트웨어, 데이터 등은 메모리에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
도 3은 도 1에 도시된 시뮬레이터(140)의 세부 구성 블럭도이다. 도 3을 참조하면, 날개 부하를 시뮬레이션하기 위한 시뮬레이터(140)는 유도 무기 몸체를 그대로 장착할 수 있도록 하는 유도무기 장착판(351)과 조종날개(320)를 시뮬레이터에 그대로 장착할 수 있도록 하는 정렬 블록(352) 등이 구성되는 장착 테이블(150)을 포함한다.
정렬 블럭(352)은 유도 무기의 크기 및/또는 조종 날개의 부착 위치가 달라져도 구동기 조립체(359)를 몸체의 반경 방향 또는 조종 날개와 평행 방향으로 이동하여 장착되도록 이동형 블럭이 될 수 있다. 구동기 조립체(359)는 모터 또는 유압 방식의 실린더를 포함하여 구성될 수 있다.
또한, 구동기 장착판(353)에는 구동기 조립체(359)와 연결되며, 조종 날개의 움직인 날개 각도와 걸리는 토크를 측정하는 포텐셔미터(355)와 토크미터(356)가 구성된다. 이들 측정값들은 제어기(130)로 전달된다. 제어기(130)는 실시간 처리 장치(120)로부터 유도무기의 속도/자세 등의 값과 날개 각도 명령값(c1)을 전달받아 인가할 부하 토크 명령값을 계산하고, 부하 토크 제어를 수행하며 포텐셔미터로 측정한 날개 각도측정값(m2)을 실시간 처리 장치(120)로 전달한다.
따라서, 몸체(310)의 반경과 조종 날개(320)의 부착 위치가 다른 다양한 종류의 유도무기 몸체를 원형 그대로 장착하여 모든 조종 날개(3개 또는 4개)의 각각 다른 작동값에 맞춘 동시 부하 인가 시험이 가능하다.
또한, 시험 시나리오(즉 모의 주행 시나리오)를 변경하면, 4축 조종 날개의 각도 움직임에 따라 조종날개에는 부하가 걸리며 구동계(330)의 구동 4축의 전류가 변하게 된다. 따라서, 이로부터 주행 전구간의 구동계(330)에 대한 소모 전력 계산으로 전지의 최적 설계 및/또는 시나리오에 따른 모듈 전지 개수의 최적 선택으로 유도무기의 경량/소형 운용이 가능하게 된다.
도 4는 도 1에 도시된 시뮬레이터(140)의 정면도이다. 도 4를 참조하면, 구동기 장착판(353)은 중심에서 밖으로 향하는 반경 방향으로 이동 설치가 가능하다. 원주 방향을 비롯한 각 조립점(401)은 구동기 장착판(353)의 설치를 위한 나사 구멍이다. 물론, 볼트와 너트를 이용한 볼팅 방식도 가능하다. 연결 어댑터(354)의 말단은 단면이 요철형상으로, 조종 날개의 등에 삽입된다. 좌,우,하에는 제 1 내지 제 3 고정 장착판(420-1 내지 420-3)이 설치될 수 있다. 제 1 내지 제 3 고정 장착판(420-1 내지 420-3)도 반경 방향으로 이동 설치가 가능하며 연결 어댑터(354)가 구성된다. 도 4에서는 구동기 장착판(353)을 하나로 도시하였으나, 이는 예시에 불과하며, 상하 대칭 또는 좌우 대칭으로 2개의 구동기 장착판이 배치되는 것도 가능하다.
구동기 조립체(359)의 회전축은 커플링을 통하여 토크미터(356)의 입력축과 연결되며 토크미터(356)의 출력축은 커플링을 통하여 포텐셔미터(355)의 입력축과 연결되며 포텐셔미터(355) 출력축은 연결 어댑터(354) 축과 커플링으로 연결된다.
연결 어댑터(354)의 다른 한 쪽은 집게그립 형상이며 내부면에는 탄성체의 금속판으로 되어 있어 조종날개를 그립 사이에 끼우고 그립 외부면에 있는 4개의 고정 나사를 잠그면 탄성체 금속판이 안쪽으로 밀리면서 조종날개 면에 밀착되어 고정되는 구조이다. 또는, 포텐셔미터(355)가 구동기 조립체(359)의 위쪽에 연결되고 토크미터(356)와 연결 어댑터(354)가 직접 연결되는 것도 가능하다.
또는, 일반적인 포텐셔미터는 한쪽으로만 회전축이 돌출되어 있고 축의 강성이 약한 문제가 있어 양방향으로 축이 돌출되고 축의 강성이 우수한 제품 또는 제작하는 것도 가능하다. 또는, 연결 어댑터(354)의 축에 스플라인(기어 이빨)을 내고 기어로 포텐셔미터와 연결하는 방안도 가능하다.
도 5는 도 1에 도시된 시뮬레이터(140)의 측면도이다. 도 5를 참조하면, 장착 테이블(150)은 장착 테이블 지지대(510), 이 장착 테이블 지지대(510)상에 위치되는 평판 플레이트(520), 이 평판 플레이트(520)상에 위치되는 유도무기 장착판(351), 유도무기 장착판(351) 사이에 위치하는 정렬 블럭(352)을 포함한다. 유도 무기 장착판(351)은 몸체(310)의 후부를 고정 지지하는 부분이며, 평판 플레이트(520)의 중심에 설치될 수 있다. 또한, 유도 무기 장착판(351)의 크기 및/또는 형상은 유도 무기의 종류에 따라 달라질 수 있다.
정렬 블록(410)은 구동기 조립체(359)를 조종 날개와 평행 방향으로 이동시키는 기능을 수행한다. 또한, 정렬 블록(410)은 조종 날개의 각도에 따라 시뮬레이터의 각도를 조정하는 기능을 수행한다.
또한, 여기에 개시된 실시형태들과 관련하여 설명된 방법은, 마이크로프로세서, 프로세서, CPU(Central Processing Unit) 등과 같은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 (명령) 코드, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.
상기 매체에 기록되는 프로그램 (명령) 코드는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프 등과 같은 자기 매체(magnetic media), CD-ROM, DVD, 블루레이 등과 같은 광기록 매체(optical media) 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 (명령) 코드를 저장하고 수행하도록 특별히 구성된 반도체 기억 소자가 포함될 수 있다.
여기서, 프로그램 (명령) 코드의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
10: 유도 무기
100: 유도무기 조종날개 실시간 부하 인가 시스템
110: 분석 장치
120: 실시간 처리 장치
130: 제어기
140: 시뮬레이터
310: 몸체
320: 조종 날개
351: 유도무기 장착판 352: 정렬 블록
353: 구동기 장착판 354: 연결 어댑터
355: 포텐셔미터 356: 토크미터

Claims (14)

  1. 미리 설정되는 시험 시나리오에 따라 유도 무기(10)를 조종하여 상기 유도 무기(10)의 다수의 조종 날개(320)의 동작 및 날개 각도 명령값을 생성시키는 실시간 처리 장치(120); 및
    상기 유도 무기(10)의 몸체(310) 및 다수의 상기 조종 날개(320)가 장착되며, 동작에 따른 상기 조종 날개(320)의 날개각을 측정하는 시뮬레이터(140);를 포함하며,
    상기 실시간 처리 장치(120)는,
    상기 시험 시나리오에 따른 조종 제어 명령 및 속도, 자세, 및 위치를 포함하는 운동 변수 계산값을 이용하여 다수의 상기 조종 날개(320)를 구동하는 날개 각도 명령값(c1)을 산출하며,
    상기 실시간 처리 장치(120)는,
    상기 날개 각도 명령값(c1) 또는 상기 유도 무기(10)에서 측정되는 제 1 날개각 변위값(m1) 또는 상기 시뮬레이터(140)에서 측정되는 제 2 날개각 변위값(m2)을 이용하여 상기 유도 무기(10)의 상기 속도, 상기 자세, 및 상기 위치를 포함하는 상기 운동 변수 계산값을 산출하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  2. 삭제
  3. 삭제
  4. 제 1 항에 있어서,
    미리 설정되는 타각 및 부하를 인가하여 측정되는 상기 제 1 날개각 변위값(m1) 및 상기 제 2 날개각 변위값(m2)이 서로 다르면 인가 및 측정을 5회 내지 6회 반복하는 분석 장치(110);를 포함하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  5. 제 4 항에 있어서,
    상기 분석 장치(110)는 상기 반복후, 미리 설정되는 타각 및 무부하를 인가하여 측정되는 상기 제 1 날개각 변위값(m1) 및 상기 제 2 날개각 변위값(m2)이 서로 같으면, 구동계(330)의 기어 백래쉬에 의한 변형으로 판정하고, 상기 제 1 날개각 변위값(m1) 및 제 2 날개각 변위값(m2)이 서로 다르면, 연결기구 또는 날개뿌리의 비틀림에 의한 변형으로 판정하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  6. 제 1 항에 있어서,
    상기 시뮬레이터(140)는 상기 몸체(310)를 장착하는 유도 무기 장착판(351) 및 다수의 상기 조종 날개(320)를 장착하는 다수의 정렬 블록(352)으로 이루어진 장착 테이블(150)을 포함하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  7. 제 6 항에 있어서,
    다수의 상기 정렬 블록(352)은 상기 조종 날개(320)에 부하 토크를 인가하는 구동기 조립체(359)가 장착되는 구동기 장착판(353)을 포함하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  8. 제 7 항에 있어서,
    다수의 상기 정렬 블록(352)은 상기 유도 무기(10)의 크기 또는 다수의 상기 조종 날개(320)의 부착 위치가 달라져도 상기 구동기 조립체(359)를 다수의 상기 조종 날개(320)중 어느 하나와 평행 방향으로 이동하여 장착가능한 이동형 블록인 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  9. 제 7 항에 있어서,
    상기 구동기 장착판(353)에는 다수의 상기 조종 날개(320)의 움직인 날개 각도를 측정하는 포텐셔미터(355) 및 다수의 상기 조종 날개(320)에 걸리는 토크를 측정하는 토크미터(356)가 설치되는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  10. 제 7 항에 있어서,
    상기 구동기 장착판(353)에는 다수의 상기 조종 날개(320)와의 연결을 위한 연결 어댑터(354)가 설치되는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  11. 제 7 항에 있어서,
    상기 구동기 장착판(353)은 중심에서 밖으로 향하는 반경 방향으로 이동 설치가 가능한 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  12. 제 7 항에 있어서,
    상기 장착 테이블(150)은 장착 테이블 지지대(510)와 상기 장착 테이블 지지대(510)상에 위치되는 평판 플레이트(520)를 포함하며, 상기 유도무기 장착판(351)은 상기 유도 무기(10)의 상기 몸체(310)의 후부를 고정 지지하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  13. 제 4 항에 있어서,
    상기 분석 장치(110)는 상기 시험 시나리오의 변경에 따라 다수의 상기 조종 날개(320)에 걸리는 부하로 인해 생성되는 전류 및 전압을 이용하여 상기 유도무기(10)의 소모전력을 산출하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 시스템.
  14. (a) 실시간 처리 장치(120)가 미리 설정되는 시험 시나리오에 따라 유도 무기(10)를 조종하여 상기 유도 무기(10)의 다수의 조종 날개(320)의 동작 및 날개 각도 명령값을 생성시키는 단계; 및
    (b) 상기 유도 무기(10)의 몸체(310) 및 다수의 상기 조종 날개(320)가 장착되는 시뮬레이터(140)가 동작에 따른 다수의 상기 조종 날개(320)의 날개각을 측정하는 단계;를 포함하며,
    상기 실시간 처리 장치(120)는,
    상기 시험 시나리오에 따른 조종 제어 명령 및 속도, 자세, 및 위치를 포함하는 운동 변수 계산값을 이용하여 다수의 상기 조종 날개(320)를 구동하는 날개 각도 명령값(c1)을 산출하며,
    상기 실시간 처리 장치(120)는,
    상기 날개 각도 명령값(c1) 또는 상기 유도 무기(10)에서 측정되는 제 1 날개각 변위값(m1) 또는 상기 시뮬레이터(140)에서 측정되는 제 2 날개각 변위값(m2)을 이용하여 상기 유도 무기(10)의 상기 속도, 상기 자세, 및 상기 위치를 포함하는 운동 변수 계산값을 산출하는 것을 특징으로 하는 유도무기 조종날개 실시간 부하 인가 방법.
KR1020190128512A 2019-10-16 2019-10-16 유도무기 조종날개 실시간 부하 인가 시스템 및 방법 KR102229413B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190128512A KR102229413B1 (ko) 2019-10-16 2019-10-16 유도무기 조종날개 실시간 부하 인가 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190128512A KR102229413B1 (ko) 2019-10-16 2019-10-16 유도무기 조종날개 실시간 부하 인가 시스템 및 방법

Publications (1)

Publication Number Publication Date
KR102229413B1 true KR102229413B1 (ko) 2021-03-18

Family

ID=75232367

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190128512A KR102229413B1 (ko) 2019-10-16 2019-10-16 유도무기 조종날개 실시간 부하 인가 시스템 및 방법

Country Status (1)

Country Link
KR (1) KR102229413B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008424A (ko) * 2021-07-07 2023-01-16 국방과학연구소 접이식 날개 펼침속도 측정치구

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060070457A (ko) 2004-12-20 2006-06-23 미츠비시 가스 가가쿠 가부시키가이샤 플라스틱 시트
KR101389351B1 (ko) 2013-11-22 2014-04-25 주식회사 풍산 유도형 탄의 조종날개 구동토크 측정방법 및 그 장치
KR101862714B1 (ko) * 2017-11-17 2018-07-05 엘아이지넥스원 주식회사 유도발사체의 비행 제어를 위한 제어 변수 결정 장치 및 이를 포함한 유도 제어 장치
KR101892900B1 (ko) * 2018-04-26 2018-08-28 국방과학연구소 유도탄 조종날개의 위치정확도 측정장치 및 측정방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060070457A (ko) 2004-12-20 2006-06-23 미츠비시 가스 가가쿠 가부시키가이샤 플라스틱 시트
KR101389351B1 (ko) 2013-11-22 2014-04-25 주식회사 풍산 유도형 탄의 조종날개 구동토크 측정방법 및 그 장치
KR101862714B1 (ko) * 2017-11-17 2018-07-05 엘아이지넥스원 주식회사 유도발사체의 비행 제어를 위한 제어 변수 결정 장치 및 이를 포함한 유도 제어 장치
KR101892900B1 (ko) * 2018-04-26 2018-08-28 국방과학연구소 유도탄 조종날개의 위치정확도 측정장치 및 측정방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008424A (ko) * 2021-07-07 2023-01-16 국방과학연구소 접이식 날개 펼침속도 측정치구
KR102630319B1 (ko) * 2021-07-07 2024-01-30 국방과학연구소 접이식 날개 펼침속도 측정치구

Similar Documents

Publication Publication Date Title
CN107901037B (zh) 一种机器人关节动力学模型修正方法
CN111546336B (zh) 一种用于机器人系统的灰箱模型参数辨识方法及系统
CN109583093A (zh) 一种考虑关节弹性的工业机器人动力学参数辨识方法
US8013560B2 (en) Method for compensating for angular transmission error of an actuator
US20170199102A1 (en) System and method to quantify viscous damping steering feel of a vehicle equipped with an electric power steering system
KR102229413B1 (ko) 유도무기 조종날개 실시간 부하 인가 시스템 및 방법
CN112179551B (zh) 机器人的关节电机转矩系数与摩擦力同步测试方法和装置
CN111323045A (zh) 一种光电稳定平台通用测试平台及方法
Bertolino et al. Robust Design of a Test Bench for PHM Study of Ball Screw Drives
RU2696508C1 (ru) Промышленный робот-манипулятор с системой двойных энкодеров и способ его позиционирования
Tjahjowidodo et al. Nonlinear modelling and identification of torsional behaviour in harmonic drives
US10753817B2 (en) Testing apparatus, computer readable medium, and method for minimizing runout
CN116638547A (zh) 工业机器人故障诊断实验台及故障诊断方法
CN114833828B (zh) 二自由度系统的惯性参数辨识方法、设备和介质
CN114396345B (zh) 运载火箭推力矢量控制系统的刚度测量方法、装置、系统
JP5920203B2 (ja) 変速機の部品の試験装置及び方法
JP4013174B2 (ja) モータトルクリップル測定装置
He et al. Mathematical Modeling and Simulation Analysis of an Electric Servo Mechanism of a Certain Type of Missile
Liu et al. Hybrid dynamic modeling of a high-speed ball-screw drive system
Bulhões et al. Platform and simulator with three degrees of freedom for testing quadcopters
WO2023173420A1 (en) Fixing platform for use with industrial robot and method of automatically measuring backlash of gear
CN116408786A (zh) 机械臂动力学解析及建模方法、机器人、设备与介质
CN115291527B (zh) 一种随动控制方法、系统、设备及存储介质
US11982587B2 (en) Testing system for an intermediate steering shaft
Ceccarelli et al. A fairly simple method to identify the curvature of a cam profile

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant