KR102219058B1 - Mmc의 수명 진단방법 - Google Patents

Mmc의 수명 진단방법 Download PDF

Info

Publication number
KR102219058B1
KR102219058B1 KR1020200124732A KR20200124732A KR102219058B1 KR 102219058 B1 KR102219058 B1 KR 102219058B1 KR 1020200124732 A KR1020200124732 A KR 1020200124732A KR 20200124732 A KR20200124732 A KR 20200124732A KR 102219058 B1 KR102219058 B1 KR 102219058B1
Authority
KR
South Korea
Prior art keywords
value
mean
average
temperature
module
Prior art date
Application number
KR1020200124732A
Other languages
English (en)
Inventor
조수억
Original Assignee
서일대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서일대학교산학협력단 filed Critical 서일대학교산학협력단
Priority to KR1020200124732A priority Critical patent/KR102219058B1/ko
Application granted granted Critical
Publication of KR102219058B1 publication Critical patent/KR102219058B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • G01P21/025Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers for measuring speed of fluids; for measuring speed of bodies relative to fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • G01R31/2612Circuits therefor for testing bipolar transistors for measuring frequency response characteristics, e.g. cut-off frequency thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • G01R31/2619Circuits therefor for testing bipolar transistors for measuring thermal properties thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 구동 발열에 의한 열화율이 커서 사용 수명이 상대적으로 짧은 MMC를 실시간으로 진단해서 사용 수명을 예측하는 것으로, MMC에 구성된 컨버터별 R상과 S상과 T상 각각의 서브모듈과, 인버터별 U상과 V상과 W상 각각의 서브모듈에 장착된 방열판의 시정수 동안, 진단모듈이 상기 서브모듈의 전류와 스위칭 주파수에 대한 평균손실값을 생성하는 단계; 상기 진단모듈이 서브모듈별 정격부하에 지정비율을 연산해서 평균손실값의 최대치와 최소치를 생성하는 단계; 체크모듈이 상기 시정수 동안 서브모듈의 연속 운전 여부를 확인하는 제1체크 단계; 상기 체크모듈이 서브모듈의 히팅을 확인하고, 제1온도센서가 유입 냉각수의 온도인 제1온도실측치를 생성해서 진단모듈이 시정수 동안의 유입 냉각수의 기준온도와 제1온도실측치 간의 차를 계산하는 냉각수 온도변화값 확인 단계; 상기 평균손실값이 최대치, 최소치와 중간치 중 어느 하나인 경우, 상기 제2온도센서가 방열판의 온도인 제2온도실측치를 상별로 각각 생성하고, 상기 진단모듈이 제2온도실측치를 냉각수 온도변화값에 따라 보정해서 시정수 동안의 평균을 상별로 각각 계산하는 히팅 온도실측치 평균값 확인 단계; 상기 체크모듈이 평균손실값의 중간치 여부를 확인하는 제2체크 단계; 상기 진단모듈이 컨버터와 인버터 각각의 상별 서브모듈의 히팅 온도실측치 평균값을 연산해서 각각의 측정치 전체평균값과 계산치 전체평균값을 계산하는 전체 평균값 확인 단계; 상기 체크모듈이 컨버터와 인버터 각각의 상별 서브모듈의 측정치 전체평균값 또는 계산치 전체평균값에 상위 지정비율과 하위 지정비율을 각각 연산해서 최대 기준값과 최소 기준값을 확인하고, 히팅 온도실측치 평균값이 최대 기준값과 최소 기준값의 범위 이내에 속하면 해당 서브모듈은 정상으로 판정하는 계산치 전체평균값의 지정범위 확인 단계;를 포함한다.

Description

MMC의 수명 진단방법{METHOD FOR MEASURING LIFETIME OF MMC}
본 발명은 구동 발열에 의한 열화율이 커서 사용 수명이 상대적으로 짧은 MMC를 실시간으로 진단해서 사용 수명을 예측하는 MMC의 수명 진단방법에 관한 것이다.
전력 변환기의 일종인 모듈라 멀티 레벨 컨버터(MMC, Modular Multi-level Converter)는 전압형 초고압직류송전(HVDC, High voltage direct current) 시스템에 적합한 회로 구조로 알려졌다 MMC는 인버터와 컨버터 등의 전자부품을 구성하며, 산업계를 비롯하여 특정 제품에도 전력의 스위칭 및 변환 등의 속도 제어 수단으로 널리 활용되고 있다.
MMC의 회로 구조를 좀 더 설명하면, MMC는 스위칭 소자로서 절연 게이트 양극성 트랜지스터(IGBT, Insulated gate bipolar transistor)를 사용하여 서브모듈이라고 불리는 단위 구조를 캐스케이드로 연결하는 형태를 가지므로, 기존의 MMC의 응용분야였던 중간 전압 구동(Medium Voltage Drive)용 전력 변환 장치보다 훨씬 많은 레벨을 가진다. 일반적으로 MMC에서 펄스폭변조(PWM, Pulse width modulation)를 하기 위해서는 캐리어(Carrier)를 사용하게 되는데, 이는 캐리어를 사용하는 방식이 벡터를 사용하는 방식보다 구현이 간단하기 때문이다.
도 1(전압형 컨버터의 한 종류인 모둘라 멀티 레벨 컨버터를 사용한 초고압 직류송전 시스템에 대한 회로도)에서 'A' 부분은 인버터 스테이션(Inverter station)이라고 하며, 'B' 부분은 렉티파이어 스테이션(Rectifier station), 즉 컨버터 스테이션이라고 한다. 이 두 개의 스테이션은 동일한 회로로 구성되어 있으며, 제어 기능에 따라 인버터인지 컨버터인지가 결정된다.
참고로, 주지된 바와 같이 3상 멀티 레벨 컨버터는 도 1과 같이 R상, S상 및 T상으로 표현될 수 있다. 각 상에서 교류 그리드(AC grid)와 연결되는 점을 기준으로 위 회로를 상부 암(Upper arm)이라고 하며, 아래 회로를 하부 암(Lower arm)이라고 칭할 수 있다. 각 상과 각 암(Arm)에는 서브모듈(100, Sub-module, SM)로 명칭되는 회로가 직렬 형태로 연결될 수 있다. 그리고 이러한 서브모듈(100)이 N개 있을 경우, 이러한 컨버터를 (N+1) 레벨 멀티 레벨 컨버터라고 칭할 수 있다.
파워 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)/IPD(Intelligent Power Device)와 다이오드, IGBT(Insulated Gate Bipolar Transistor), 파워 모듈, 바이폴라 트랜지스터, SiC(실리콘 카바이드) 등을 일반적으로 구성한 MMC는, 구동 발열에 의한 기능 손실이 크고 자체 열화로 인한 사용 수명도 감퇴하기 때문에, 구동 발열을 냉각시키기 위한 냉각 기구가 구성되어야 한다.
한편, MMC 운용 중에 일부 서브모듈(100)에 고장이 발생하면 이를 구성한 해당 HDVC 시스템 전체가 동작이 정지되므로, 산업체에서는 HDVC 시스템 정지로 인한 송전이 중단되고, 이에 따른 막대한 경제적 손실을 초래하는 문제가 있었다. 따라서 관련 산업체에서는 HDVC 시스템에 구성된 MMC를 관리하며 유지 보수에 많은 노력을 기울여왔다.
그런데 종래에는 HDVC 시스템을 동작하는 중에 MMC의 이상 유무를 판별하기가 어려웠고, HDVC 시스템 자체의 이상 유무를 확인할 수 있어도 대상이 되는 MMC의 서브모듈(100)을 빠르게 검출할 수 없었다. 또한, MMC의 구동 수명도 경제적으로 판단하여 예측 및 진단할 수 없었다.
따라서 MMC의 구동 수명을 사전에 예측 및 진단하여 교체할 수 있고, HDVC 시스템 동작 중에 이루어지는 상기 예측 및 진단 또한 효율적이면서 경제적으로 수행할 수 있는 기술의 도입 및 개발이 필요한 실정이다.
선행기술문헌 1. 특허공개번호 제10-2019-0127424호(2019.11.13 공개)
이에 본 발명은 상기의 문제를 해소하기 위한 것으로, MMC 등의 전력 변환기와 같이 구동 발열에 의한 열화율이 큰 전자부품을 진단하고 사용 수명을 예측하는 MMC의 수명 진단방법의 제공을 목적으로 한다.
상기의 과제를 달성하기 위하여 본 발명은,
MMC에 구성된 컨버터별 R상과 S상과 T상 각각의 서브모듈과, 인버터별 U상과 V상과 W상 각각의 서브모듈에 장착된 방열판의 시정수 동안, 진단모듈이 상기 서브모듈의 전류와 스위칭 주파수에 대한 평균손실값을 생성하는 단계;
상기 진단모듈이 서브모듈별 정격부하에 지정비율을 연산해서 평균손실값의 최대치와 최소치를 생성하는 단계;
체크모듈이 상기 시정수 동안 서브모듈의 연속 운전 여부를 확인하는 제1체크 단계;
상기 체크모듈이 서브모듈의 히팅을 확인하고, 제1온도센서가 유입 냉각수의 온도인 제1온도실측치를 생성해서 진단모듈이 시정수 동안의 유입 냉각수의 기준온도와 제1온도실측치 간의 차를 계산하는 냉각수 온도변화값 확인 단계;
상기 평균손실값이 최대치, 최소치와 중간치 중 어느 하나인 경우, 제2온도센서가 방열판의 온도인 제2온도실측치를 상별로 각각 생성하고, 상기 진단모듈이 제2온도실측치를 냉각수 온도변화값에 따라 보정해서 시정수 동안의 평균을 상별로 각각 계산하는 히팅 온도실측치 평균값 확인 단계;
상기 체크모듈이 평균손실값의 중간치 여부를 확인하는 제2체크 단계;
상기 진단모듈이 컨버터와 인버터 각각의 상별 서브모듈의 히팅 온도실측치 평균값을 연산해서 각각의 측정치 전체평균값과 계산치 전체평균값을 계산하는 전체 평균값 확인 단계; 및
상기 체크모듈이 컨버터와 인버터 각각의 상별 서브모듈의 측정치 전체평균값 또는 계산치 전체평균값에 상위 지정비율과 하위 지정비율을 각각 연산해서 최대 기준값과 최소 기준값을 확인하고, 히팅 온도실측치 평균값이 최대 기준값과 최소 기준값의 범위 이내에 속하면 해당 서브모듈은 정상으로 판정하는 계산치 전체평균값의 지정범위 확인 단계;
를 포함하는 MMC의 수명 진단방법이다.
상기의 본 발명은, MMC 등과 같이 구동 발열에 의한 열화율이 큰 전자부품을 진단하고 사용 수명을 사전에 예측할 수 있으므로 MMC의 사전 교체가 가능하고, MMC에 구성된 서브모듈 단위로 이상 여부를 체크할 수 있으므로 이상이 확인된 서브모듈만의 교체가 가능한 경제적 효과가 있다.
도 1은 전압형 컨버터의 한 종류인 모둘라 멀티 레벨 컨버터를 사용한 초고압 직류송전 시스템에 대한 회로도이고,
도 2은 본 발명에 따른 진단장치의 진단 대상인 MMC와 냉각챔버가 일부 분해된 일 실시 예를 도시한 사시도이고,
도 3은 본 발명에 따른 진단장치의 구성 블록도이고,
도 4는 도 3에 도시한 MMC와 냉각챔버를 통하는 냉각수의 개략적인 이동 모습을 일 실시 예로 도시한 평면도이고,
도 5는 본 발명에 따른 진단방법의 동작 알고리즘의 일 실시 예를 도시한 플로차트이고,
도 6은 방열판 시정수 동안 MMC의 히팅 상태와 쿨링 상태의 온도 그래프를 개략적으로 보인 이미지이고,
도 7은 본 발명에 따른 진단방법의 제2체크 단계 이후에 이루어지는 일 실시 예를 도시한 플로차트이고,
도 8은 본 발명에 따른 진단방법의 제3체크 단계 이후에 이루어지는 일 실시 예를 도시한 플로차트이고,
도 9는 본 발명에 따른 진단방법의 제1체크 단계 이후에 이루어지는 일 실시 예를 도시한 플로차트이다.
상술한 본 발명의 특징 및 효과는 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 분명해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 출원에서 사용한 용어는 단지 특정한 실시 예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.
이하, 본 발명을 구체적인 내용이 첨부된 도면에 의거하여 상세히 설명한다.
도 2은 본 발명에 따른 진단장치의 진단 대상인 MMC와 냉각챔버가 일부 분해된 일 실시 예를 도시한 사시도이고, 도 3는 본 발명에 따른 진단장치의 구성 블록도이고, 도 4은 도 2에 도시한 MMC와 냉각챔버를 통하는 냉각수의 개략적인 이동 모습을 일 실시 예로 도시한 평면도이다.
도 2 내지 도 4을 참조하면, 본 발명의 진단장치(200)는 MMC의 상태를 진단하고 수명을 예측한다. 이를 위해 진단장치(200)는 해당 MMC가 설치된 냉각챔버(100)와 연동한다.
본 실시 예에서 진단장치(200)의 진단 대상인 MMC는 컨버터(C)를 구성하는 다수의 서브모듈(C1)과, 인버터(IN)를 구성하는 다수의 서브모듈(IN1)과, 컨버터(C)와 인버터(IN)를 전기적으로 연결하는 커넥터(CT)로 구성된다. MMC의 컨버터(C)는 서브모듈(C1)이 R상, S상, T상별로 구성되고, 인버터(IN)는 서브모듈(IN1)이 U상, V상, W상별로 구성된다. 냉각챔버(100)의 방열판(140)은 서브모듈(C1, IN1)별로 각각 접촉해서 서브모듈(C1, IN1)에서 발하는 열을 개별적으로 방열시킨다. 본 실시 예에서 컨버터(C)의 서브모듈(C1)과 인버터(IN)의 서브모듈(IN1)은 커넥터(CT)에 구성된 슬롯(SL1, SL2)에 접속한다.
진단장치(200)와 연동하는 본 실시 예의 냉각챔버(100)는, MMC를 냉각하도록 수용하는 냉각부(110)와, 냉각수가 방열판(140)을 경유해 순환하도록 배관된 냉각순환로(130)와, 서브모듈(C1, IN1) 각각에 밀착되어서 냉각수와 서브모듈(C1, IN1) 간의 열교환을 일으키는 방열판(140)으로 이루어진다. 여기서 냉각부(110)는 MMC를 수용하는 수용함(111)과, 수용함(111)을 덮는 측벽(112, 113)과, 수용함(111)을 폐구하는 커버(114)로 구성된다. 또한 순환로(130)는, 수용함(111) 안으로 냉각수가 유입되는 유입구(131)와, 수용함(111)으로부터 냉각수가 유출되는 유출구(132)와, 유입구(131)와 유출구(132)와 각각 연결되어서 냉각수 라인(134)을 서브모듈(C1, IN1)별로 배관하는 어댑터(133)와, 냉각수와 방열판(140) 간의 열교환이 이루어지도록 방열판(140)에 밀착하게 장착되는 냉각수 라인(134)으로 구성된다. 냉각수 라인(134)은 어댑터(133)의 호스(1331)와 연결하기 위해 서브모듈(C1, IN1)별로 접속로(1341, 1341', 1342)를 구성한다.
결국, 도 4와 같이 유입구(131)를 통해 냉각챔버(100)로 유입된 냉각수는, 어댑터(133) 및 냉각수 라인(134)를 따라 다수의 서브모듈(C1, IN1)별로 분배되고, 냉각수 라인(134)을 매개로 방열판(140)과 접촉하며, 유출구(132)를 통해 수용함(111)으로부터 배출된다. 참고로, 도 4는 다수의 서브모듈(C1, IN1, C1', IN1', C1", IN1"; 이하 'C1, IN1')이 중첩된 모습이고, 유입구(131)와 유출구(132)가 서브모들(C1, IN1)별로 구성되고, 냉각수 라인(134)이 서브모듈(C1, IN1)별로 구성되며, 제1온도센서(210)와 유속센서(230)가 냉각수 라인(134)별로 설치된 모습은 도면에 생략되었다.
냉각챔버(100)의 배관 구조와 MMC의 구성은 본 실시 예에 한정하지 않으며, 이하의 권리범위를 벗어나지 않는 한도 내에서 다양하게 변형 실시되어질 수 있다.
본 발명의 진단장치(200)는, MMC 냉각용 유입 냉각수의 온도 실측을 통해 제1온도실측치를 생성하도록 다수의 서브모듈(C1, IN1)별 냉각수 라인(134)에 설치되는 제1온도센서(210); 서브모듈(C1, IN1)에 장착된 방열판(140)의 온도 실측을 위해 방열판(140)에 설치되는 제2온도센서(220); 냉각수 라인(134)에 흐르는 냉각수의 유속 실측을 위해 냉각수 라인(134)에 설치되는 유속센서(230); 시간을 체크하는 타이머(240); MMC의 연속 운전 여부를 체크해서 MMC의 히팅 상태와 쿨링 상태를 판별하고, 하기 진단모듈(260)이 확인한 평균손실값의 중간치 여부를 체크하고, 하기 히팅 온도실측치 평균값과 계산치 전체평균값 간의 차가 온도계산치의 지정비율 이하임을 확인하는 체크모듈(250); 서브모듈(C1, IN1)별 방열판 시정수 동안 해당 서브모듈(C1, IN1)의 전류와 스위칭 주파수에 대한 평균손실값을 생성하고, 서브모듈(C1, IN1)의 정격부하에 지정비율을 연산해서 평균손실값의 최대치와 최소치를 생성하고, 기준온도와 상기 제1온도실측치 간의 차를 계산해서 냉각수 온도변화값을 확인하고, 상기 제2온도실측치를 냉각수 온도변화값에 따라 보정해서 시정수 동안의 히팅 온도실측치 평균값 확인하고, 상기 평균손실값이 최소치 이하인 경우의 히팅 온도실측치 평균값과 최대치와 최소치와 평균손실값이 최대치 이상인 경우의 히팅 온도실측치 평균값을 연산해서 계산치 전체평균값을 확인하는 진단모듈(260)을 포함한다.
본 발명의 진단장치(200)에 관한 보다 구체적인 동작 알고리즘은 이하의 진단방법에서 후술한다.
도 5는 본 발명에 따른 진단방법의 동작 알고리즘의 일 실시 예를 도시한 플로차트이고, 도 6는 방열판 시정수 동안 MMC의 히팅 상태와 쿨링 상태의 온도 그래프를 개략적으로 보인 이미지이다.
도 3 내지 도 6를 참조하면, 본 발명의 진단방법은, MMC에 구성된 컨버터(C)별 R상과 S상과 T상 각각의 서브모듈(C1)과, 인버터(IN)별 U상과 V상과 W상 각각의 서브모듈(IN1)에 장착된 방열판(140)의 시정수 동안, 진단모듈(260)이 서브모듈(C1, IN1)의 전류와 스위칭 주파수에 대한 평균손실값(PL_mean_R(n), PL_mean_S(n), PL_mean_T(n), PL_mean_U(n), PL_mean_V(n), PL_mean_W(n); 이하 'PL_mean')을 생성하는 단계(S10); 진단모듈(260)이 서브모듈(C1, IN1)별 정격부하에 지정비율을 연산해서 평균손실값(PL_mean)의 최대치(PL_mean_max_R(n), PL_mean_max_S(n), PL_mean_max_T(n), PL_mean_U(n), PL_mean_V(n), PL_mean_W(n); 이하 'PL_mean_max')와 최소치(PL_mean_min_R(n), PL_mean_min_S(n), PL_mean_min_T(n), PL_mean_U(n), PL_mean_V(n), PL_mean_W(n); 이하 'PL_mean_min')를 생성하는 단계(S20); 체크모듈(250)이 상기 시정수 동안 서브모듈(C1, IN1)의 연속 운전 여부를 확인하는 제1체크 단계(S30, S40); 체크모듈(250)이 서브모듈(C1, IN1)의 히팅을 확인하고, 제1온도센서(210)가 유입 냉각수의 온도인 제1온도실측치(Thw1)를 생성해서 진단모듈(260)이 시정수 동안의 유입 냉각수의 기준온도(Thwr)와 제1온도실측치(Thw1) 간의 차를 계산하는 냉각수 온도변화값(Thwd) 확인 단계(S50); 평균손실값(PL_mean)이 최대치(PL_mean_max), 최소치(PL_mean_min)와 중간치 중 어느 하나인 경우, 제2온도센서(220)가 방열판(140)의 온도인 제2온도실측치(Th1_mea_R(n), Th1_mea_S(n), Th1_mea_T(n), Th2_mea_R(n), Th2_mea_S(n), Th2_mea_T(n), Thn_mea_R(n), Thn_mea_S(n), Thn_mea_T(n), Th1_mea_U(n), Th1_mea_V(n), Th1_mea_W(n), Th2_mea_U(n), Th2_mea_V(n), Th2_mea_W(n), Thn_mea_U(n), Thn_mea_V(n), Thn_mea_W(n); 이하 'Th1_mea, Th2_mea, Thn_mea')를 상별로 각각 생성하고, 진단모듈(260)이 제2온도실측치(Th1_mea, Th2_mea, Thn_mea)를 냉각수 온도변화값(Thwd)에 따라 보정(Th1_mea_r_R(n), Th1_mea_r_S(n), Th1_mea_r_T(n), Th2_mea_r_R(n), Th2_mea_r_S(n), Th2_mea_r_T(n), Thn_mea_r_R(n), Thn_mea_r_S(n), Thn_mea_r_T(n), Th1_mea_r_U(n), Th1_mea_r_V(n), Th1_mea_r_W(n), Th2_mea_r_U(n), Th2_mea_r_V(n), Th2_mea_r_W(n), Thn_mea_r_U(n), Thn_mea_r_V(n), Thn_mea_r_W(n); 이하 'Th1_mea_r, Th2_mea_r, Thn_mea_r')해서 시정수 동안의 평균을 상별로 각각 계산하는 히팅 온도실측치 평균값(Th1_mea_mean_R(n), Th1_mea_mean_S(n), Th1_mea_mean_T(n), Th2_mea_mean_R(n), Th2_mea_mean_S(n), Th2_mea_mean_T(n), Thn_mea_mean_R(n), Thn_mea_mean_S(n), Thn_mea_mean_T(n), Th1_mea_mean_U(n), Th1_mea_mean_V(n), Th1_mea_mean_W(n), Th2_mea_mean_U(n), Th2_mea_mean_V(n), Th2_mea_mean_W(n), Thn_mea_mean_U(n), Thn_mea_mean_V(n), Thn_mea_mean_W(n); 이하 'Th1_mea_mean, Th2_mea_mean, Thn_mea_mean') 확인 단계(S60); 체크모듈(250)이 평균손실값(PL_mean)의 중간치 여부를 확인하는 제2체크 단계(S70); 체크모듈(250)이 평균손실값(PL_mean)이 중간치임을 확인하면, 진단모듈(260)이 평균손실값(PL_mean)이 최소치(PL_mean_min)와 최대치(PL_mean_max) 이상인 경우 상별 서브모듈(C1, IN1) 각각의 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)과, 최대치(PL_mean_max)와, 최소치(PL_mean_min)를 상호 연산하는 히팅 온도계산치 평균값(Thn_cal_mean_R(n), Thn_cal_mean_S(n), Thn_cal_mean_T(n), Thn_cal_mean_U(n), Thn_cal_mean_V(n), Thn_cal_mean_W(n); 이하 'Thn_cal_mean') 확인 단계(S75); 진단모듈(260)이 컨버터(C)와 인버터(IN) 각각의 상별 서브모듈(C1, IN1)의 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)과 히팅 온도계산치 평균값(Thn_cal_mean)을 연산해서 각각의 측정치 전체평균값(Th1_mea_mean_R(total), Th2_mea_mean_R(total), Thn_mea_mean_R(total), Th1_mea_mean_S(total), Th2_mea_mean_S(total), Thn_mea_mean_S(total), Th1_mea_mean_T(total), Th2_mea_mean_T(total), Thn_mea_mean_T(total), Th1_mea_mean_U(total), Th2_mea_mean_U(total), Thn_mea_mean_U(total), Th1_mea_mean_V(total), Th2_mea_mean_V(total), Thn_mea_mean_V(total), Th1_mea_mean_W(total), Th2_mea_mean_W(total), Thn_mea_mean_W(total); 이하 'Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total')과 계산치 전체평균값(Thn_cal_mean_R(total), Thn_cal_mean_S(total), Thn_cal_mean_T(total), Thn_cal_mean_U(total), Thn_cal_mean_V(total), Thn_cal_mean_W(total); 이하 'Thn_cal_mean_total')을 계산하는 전체 평균값 확인 단계(S80); 체크모듈(250)이 컨버터(C)와 인버터(IN) 각각의 상별 서브모듈(C1, IN1)의 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total) 또는 계산치 전체평균값(Thn_cal_mean_total)에 상위 지정비율과 하위 지정비율을 각각 연산해서 최대 기준값과 최소 기준값을 확인하고, 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)이 최대 기준값과 최소 기준값의 범위 이내에 속하면 해당 서브모듈(C1, IN1)은 정상으로 판정하는 계산치 전체평균값의 지정범위 확인 단계(S90);로 구성된다.
또한, 본 발명의 진단방법은, 평균손실값(PL_mean)이 최대치(PL_mean_max)와 최소치(PL_mean_min) 사이의 중간치로 확인된 경우, 체크모듈(250)이 히팅 온도실측치 평균값(Thn_mea_mean)과 계산치 전체평균값(Thn_cal_mean_total) 간의 차가 계산치 전체평균값(Thn_cal_mean_total)의 지정비율 이하임을 확인하면, 진단모듈(260)은 진단 프로세스를 종료하는 계산치 전체평균값의 지정비율 이하 여부 확인 단계(S100)를 더 포함한다.
본 발명의 진단장치와 진단방법은, 계산치 전체평균값(Thn_cal_mean_total)에 연산하는 상기 상위 지정비율과 하위 지정비율의 범위를, 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)에 연산하는 상기 상위 지정비율과 하위 지정비율의 범위보다 좁게 해서, 계산치 전체평균값(Thn_cal_mean_total)의 정확성을 높였다.
측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)은 [수학식 1]과 같이 컨버터(C)의 R상, S상, T상별 서브모듈(C1)과, 인버터(IN)의 U상, V상, W상별 서브모듈(IN1) 각각의 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)을 합산하고 상별 서브모듈(C1, IN1)의 개수로 각각 나누어서 계산한 평균값이다.
[수학식 1]
R상 서브모듈(C1)의 경우,
Thn_mea_mean_R(total) = (Thn_mea_mean_R(1) + Thn_mea_mean_R(2) + ..... + Thn_mea_mean_R(n))/n
S상, T상, U상, V상, W상의 서브모듈(C1, IN1)도 동일
이에 반해 계산치 전체평균값(Thn_cal_mean_total)은 [수학식 2]와 같이 컨버터(C)의 R상, S상, T상별 서브모듈(C1)과, 인버터(IN)의 U상, V상, W상별 서브모듈(IN1) 각각의 히팅 온도계산치 평균값(Thn_cal_mean)을 합산하고 상별 서브모듈(C1, IN1)의 개수로 각각 나누어서 계산한 평균값이다.
[수학식 2]
R상 서브모듈(C1)의 경우,
Thn_cal_mean_R(total) = (Thn_cal_mean_R(1) + Thn_cal_mean_R(2) + ..... + Thn_cal_mean_R(n))/n
S상, T상, U상, V상, W상의 서브모듈(C1, IN1)도 동일
상기의 각 단계를 좀 더 구체적으로 설명한다.
S10; 평균손실값 생성 단계
MMC에 구성된 컨버터(C)별 R상과 S상과 T상 각각의 서브모듈(C1)과, 인버터(IN)별 U상과 V상과 W상 각각의 서브모듈(IN1)에 장착된 방열판(140)의 시정수 동안, 진단모듈(260)이 서브모듈(C1, IN1)의 전류와 스위칭 주파수에 대한 평균손실값(PL_mean)을 생성한다. 전류와 스위칭 주파수에 대한 손실(Power loss)은 룩업테이블(Look_up Table)에서 확인해 계산한다. 본 실시 예에서 방열판(140)의 시정수 기간은 60분이므로, 진단모듈(260)은 60분동안 변하는 손실을 확인하여 평균손실값(PL_mean)을 생성한다.
본 실시 예에서 MMC의 평균손실값(PL_mean)을 생성하기 위한 대상으로 MMC의 전류와 스위칭 주파수를 예시했으나, 이외에도 MMC의 전압과 온도와 DUTY 등이 더 포함될 수 있다.
S20; 평균손실값의 최대값과 최소값 생성 단계
진단모듈(260)이 서브모듈(C1, IN1)별 정격부하에 지정비율을 연산해서 평균손실값(PL_mean)의 최대치(PL_mean_max)와 최소치(PL_mean_min)를 생성한다. MMC에 구성된 서브모듈(C1, IN1) 각각에는 정격부하가 설정되어 있으므로, 진단모듈(260)에 입력된 해당 서브모듈(C1, IN1)의 정격부하를 확인해서 지정비율로 연산한다. 본 실시 예에서 최소치(PL_mean_min) 생성을 위해 정격부하에 연산하는 지정비율은 '0.1'이고, 최대치((PL_mean_max) 생성을 위해 정격부하에 연산하는 지정비율은 '1.1'이다. 즉, 평균손실값(PL_mean)의 최소치(PL_mean_min)는 정격부하의 10%인 값이고, 최대치(PL_mean_max)sms 110%인 값이다.
상기 지정비율의 크기는 MMC의 종류, 정격부하의 크기, 진단 정확성 등, 기타 다양한 이유에 맞춰 조정될 수 있다.
참고로, 상기 정격부하에 지정비율을 연산해 수집한 평균손실값(PL_mean)의 최대치(PL_mean_max)와 최소치(PL_mean_min)는, 본 발명의 진단방법이 MMC를 진단하고 수명을 예측하기 위해 최초에 적용되는 초기값이다. 따라서 평균손실값(PL_mean)의 최대치(PL_mean_max)와 최소치(PL_mean_min)는 MMC의 실측 등을 통해 업데이트되면서 가변된다.
S30, S40; MMC 운전 체크 단계(제1체크 단계)
체크모듈(250)이 상기 시정수 동안 서브모듈(C1, IN1)의 연속 운전 여부를 확인한다. 체크모듈(250)은 MMC의 서브모듈(C1, IN1)별 온도를 체크해서 방열판(140) 각각의 시정수 동안 온도변화율을 확인하고, 운전 여부를 확인한다. 확인 결과 상기 시정수 동안 서브모듈(C1, IN1)이 운전하고, 온도변화율이 도 6와 같은 표준온도 변화율에 상응할 경우, 체크모듈(250)은 서브모듈(C1, IN1)의 히팅을 간주한다.
S50; 냉각수 온도변화값 확인 단계
체크모듈(250)이 서브모듈(C1, IN1)의 히팅을 확인하고, 제1온도센서(210)가 유입 냉각수의 온도인 제1온도실측치(Thw1)를 생성해서 진단모듈(260)이 시정수 동안의 유입 냉각수의 기준온도(Thwr)와 제1온도실측치(Thw1) 간의 차를 계산한다. 본 실시 예에서 제1온도센서(210)는 냉각수 라인(134)에 설치되어서 서브모듈(C1, IN1)로의 유입 이전의 냉각수 온도를 실측하도록 했으나, 이외에도 유입구(131)에 설치될 수도 있다. 결국 제1온도센서(210)는 열교환 이전에 냉각수의 온도를 실측할 수 있는 위치라면 본 실시 예에 한정됨 없이 설치될 수 있다.
계속해서, 진단모듈(260)은 상기 시정수 동안의 유입 냉각수의 기준온도(Thwr)와 제1온도실측치(Thw1) 간의 차인 냉각수 온도변화값(Thwd)을 확인한다. 냉각수 라인(134)을 따라 순환하는 냉각수는 냉각챔버(100)의 외부 환경과 순환 횟수 및 기타 다양한 외적 요인에 의해 온도가 가변한다. 따라서 냉각수는 냉각챔버(100) 및 MMC의 표준 환경에서 확인한 기준온도(Thwr)가 설정되고, 진단모듈(260)은 현재 실측한 제1온도실측치(Thw1)와의 차를 확인해서 냉각수 온도변화값(Thwd)을 계산한다. 결국, 냉각수 온도변화값(Thwd)은 보정값으로서, MMC과 냉각챔버(100)의 현재 환경에서 향후 측정되는 냉각수의 온도를 보정하는데 활용된다.
S60; 온도실측치 평균값 확인 단계
체크모듈(250)에 의한 히팅 모드 확인 이후에 진단모듈(260)은, 평균손실값(PL_mean)이 최대치(PL_mean_max), 최소치(PL_mean_min)와 중간치 중 어느 하나인 경우, 제2온도센서(220)가 방열판(140)의 온도인 제2온도실측치(Th1_mea, Th2_mea, Thn_mea)를 R상과 S상과 T상과 U상과 V상과 W상별로 생성한다. 방열판(140)의 온도를 실측하기 위해서 제2온도센서(220)는 서브모듈(C1, IN1)에 접촉한 방열판(140)에 설치된다.
즉, 진단모듈(260)이 확인한 평균손실값(PL_mean)이 최대치(PL_mean_max) 이상인 경우에 제2온도센서(220)가 실측한 방열판(140)의 제2온도실측치(Th2_mea)를 냉각수 온도변화값(Thwd)에 따라 보정(Th2_mea_r)해서 시정수 동안의 평균인 히팅 온도실측치 평균값(Th2_mea_mean)을 연산해 확인하고, 평균손실값(PL_mean)이 최소치(PL_mean_min) 이하인 경우에 제2온도센서(220)가 실측한 방열판(140)의 제2온도실측치(Th1_mea)를 냉각수 온도변화값(Thwd)에 따라 보정(Th1_mea_r)해서 시정수 동안의 평균인 히팅 온도실측치 평균값(Th1_mea_mean)을 연산해 확인하며, 평균손실값(PL_mean)이 중간치인 경우에 제2온도센서(220)가 실측한 방열판(140)의 제2온도실측치(Thn_mea)를 냉각수 온도변화값(Thwd)에 따라 보정(Thn_mea_r)해서 시정수 동안의 평균인 히팅 온도실측치 평균값(Thn_mea_mean)을 연산해 확인하는 것이다.
S70; 평균손실값의 중간치 확인 단계(제2체크 단계)
체크모듈(250)이 평균손실값(PL_mean)의 중간치 여부를 확인한다. '평균손실값의 최대값과 최소값 생성 단계(S20)'에서와 같이 평균손실값(PL_mean)의 최대치(PL_mean_max)와 최소치(PL_mean_min)가 확인되고, '온도실측치 평균값 확인 단계(S60)'에서와 같이 진단모듈(260)이 히팅 모드 이후의 해당 MMC의 전류와 스위칭 주파수에 대한 평균손실값(PL_mean)을 재확인한다.
체크모듈(250)은 이렇게 확인된 평균손실값(PL_mean)을 초기값으로 지정된 최대치(PL_mean_max)와 최소치(PL_mean_min)에 비교해서 중간치에 속하는지 여부를 체킹한다.
S75; 온도계산치 평균값 확인 단계
체크모듈(250)이 평균손실값(PL_mean)이 중간치임을 확인하면, 진단모듈(260)이 평균손실값(PL_mean)이 최소치와 최대치 이상인 경우 각각의 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean)과, 최대치(PL_mean_max)와, 최소치(PL_mean_min)를 상호 연산해서 히팅 온도계산치 평균값(Thn_cal_mean) 확인한다.
본 실시 예에서는 진단모듈(260)에 [수학식 3] 알고리즘이 설정되고, 진단모듈(260)은 해당 알고리즘에 따라 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean)과 최대치(PL_mean_max)와 최소치(PL_mean_min)를 상호 연산해서 히팅 온도계산치 평균값(Thn_cal_mean)을 확인한다.
[수학식 3]
Thn_cal_mean = Th1_mea_mean + (PL_mean - PL_mean_min) / (PL_mean_max - PL_mean_min) * (Th2_mea_mean - Th1_mea_mean)
- Thn_cal_mean: 히팅 온도계산치 평균값
- Th1_mea_mean: 평균손실값이 최소치 이하인 경우 히팅 온도실측치 평균값
- Th2_mea_mean: 평균손실값이 최대치 이상인 경우 히팅 온도실측치 평균값
- PL_mean: 평균손실값
- PL_mean_min: 평균손실값이 최소치
- PL_mean_max: 평균손실값이 최대치
S80; 전체 평균값 확인 단계
진단모듈(260)이 컨버터(C) 각각의 R상과 S상과 T상별 서브모듈(C1)과 인버터(IN) 각각의 U상과 V상과 W상별 서브모듈(IN1)의 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)을 연산해서 각각의 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total) 또는 계산치 전체평균값(Thn_cal_mean_total)을 계산한다.
측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)은 본 실시 예에서 [수학식 1]과 같이 서브모듈(C1, IN1)별 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)을 합산하고 서브모듈(C1, IN1)별 개수로 나누어서 평균한 값이다.
또한, 계산치 전체평균값(Thn_cal_mean_total)은 본 실시 예에서 [수학식 2]와 같이 서브모듈(C1, IN1)별 히팅 온도계산치 평균값(Thn_cal_mean)을 합산하고 서브모듈(C1, IN1)별 개수로 나누어서 평균한 값이다.
S90; 히팅 온도실측치 평균값의 지정범위 확인 단계
체크모듈(250)이 컨버터(C)와 인버터(IN) 각각의 상별 서브모듈(C1, IN1)의 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total) 또는 계산치 전체평균값(Thn_cal_mean_total)에 상위 지정비율과 하위 지정비율을 각각 연산해서 최대 기준값과 최소 기준값을 확인하고, 히팅 온도실측치 평균값(Th1_mea_mean, Th2_mea_mean, Thn_mea_mean)이 최대 기준값과 최소 기준값의 범위 이내에 속하면 해당 서브모듈(C1, IN1)은 정상으로 판정한다.
따라서 평균손실값(PL_mean)이 최대치(PL_mean_max)인 경우 컨버터(C) 또는 인버터(IN)의 R상 서브모듈(C1, IN1)의 히팅 온도실측치 평균값(Th2_mea_mean_R(n))이 R상 측정치 전체평균값(Th2_mea_mean_total)의 0.90 값과 R상 측정치 전체평균값(Th2_mea_mean_total)의 1.10 사이이면 해당 R상 서브모듈(C1, IN1)은 정상인 것으로 판정하고, 상기 범위를 벗어나면 해당 R상 서브모듈(C1, IN1)은 비정상인 것으로 판정한다.
본 실시 예에서 상기 상위 지정비율은 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)의 0.90으로 하고, 상기 하위 지정비율은 1.10으로 한다. 이에 반해 본 실시 예에서 계산치 전체평균값(Thn_cal_mean_total)의 상위 지정비율은 0.95로 하고, 상기 하위 지정비율은 1.05로 한다. 따라서 계산치 전체평균값(Thn_cal_mean_total)의 최대 기준값과 최소 기준값 간의 범위는 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)의 최대 기준값과 최소 기준값 간의 범위보다 좁아져서 서브모듈(C1, IN1)의 호기별 정상 여부 판단의 정확성을 높였다.
본 실시 예에서 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)의 상위 지정비율과 하위 지정비율은 각각 '0.90'과 '1.10'이고, 계산치 전체평균값(Thn_cal_mean_total)의 상위 지정비율과 하위 지정비율은 각각 '0.95'과 '1.05'로 했으나, 이에 한정하지 않고 전술한 바와 같이 MMC의 종류, 정격부하의 크기, 진단 정확성 등, 기타 다양한 이유에 맞춰 조정될 수 있다. 더 나아가 계산치 전체평균값(Thn_cal_mean_total)의 상위 지정비율과 하위 지정비율 간의 폭이 측정치 전체평균값(Th1_mea_mean_total, Th2_mea_mean_total, Thn_mea_mean_total)의 상위 지정비율과 하위 지정비율 간의 폭보다 좁다면 이하의 권리범위를 벗어나지 않는 한도 내에서 다양하게 변형 실시될 수 있다.
S100; 계산치 전체평균값의 지정비율 이하 여부 확인 단계(제3체크 단계)
평균손실값(PL_mean)이 최대치(PL_mean_max)와 최소치(PL_mean_min) 사이의 중간치로 확인된 경우, 체크모듈(250)이 히팅 온도실측치 평균값(Thn_mea_mean)과 계산치 전체평균값(Thn_cal_mean_total) 간의 차가 계산치 전체평균값(Thn_cal_mean_total)의 지정비율 이하임을 확인하면, 진단모듈(260)은 진단 프로세스를 종료한다.
전술한 [수학식 3]에 의해 연산 확인된 계산치 전체평균값(Thn_cal_mean_total)은 서브모듈(C1, IN1)의 상태 등을 확인하는 기준값으로, 히팅 온도실측치 평균값(Thn_mea_mean)과 계산치 전체평균값(Thn_cal_mean_total)의 차, 즉 실제 표준치와 실측치의 차가 계산치 전체평균값(Thn_cal_mean_total)의 지정비율 이하이면 서브모듈(C1, IN1)은 정상인 것으로 판단한다.
본 실시 예에서 계산치 전체평균값(Thn_cal_mean_total)의 지정비율은 '0.05'이며, 계산치 전체평균값(Thn_cal_mean_total)의 5%을 확인하기 위한 상수이다.
본 실시의 지정비율의 크기는 전술한 바와 같이 서브모듈(C1, IN1)의 종류, 정격부하의 크기, 진단 정확성 등, 기타 다양한 이유에 맞춰 조정될 수 있다.
도 7은 본 발명에 따른 진단방법의 제2체크 단계 이후에 이루어지는 일 실시 예를 도시한 플로차트이다.
도 2 내지 도 7을 참조하면, 상기 제2체크 단계에서 체크모듈(250)이 평균손실값(PL_mean)이 최소치(PL_mean_min) 미만임을 확인하면(S71), 진단모듈(260)이 기존 최소치(PL_mean_min)를 평균손실값(PL_mean)이 최소치 이하인 경우의 히팅 온도실측치 평균값(Th1_mea_mean)으로 업데이트 한다(S72).
즉, 진단모듈(260)이 히팅 모드 이후의 해당 MMC의 서브모듈(C1, IN1)별 전류와 스위칭 주파수에 대해 재확인한 평균손실값(PL_mean)이 최소치(PL_mean_min) 미만이면, 히팅 온도실측치 평균값(Th1_mea_mean) 또한 이전 버전의 최소치(PL_mean_min)보다 작으므로 기존 최소치(PL_mean_min)를 히팅 온도실측치 평균값(Th1_mea_mean)으로 업데이트 하는 것이다.
한편, 상기 제2체크 단계에서 체크모듈(250)이 평균손실값(PL_mean)이 최대치(PL_mean_max) 초과임을 확인하면(S73), 진단모듈(260)이 기존 최ㄷ대(PL_mean_max)를 평균손실값(PL_mean)이 최대치(PL_mean_max) 이상인 경우의 히팅 온도실측치 평균값(Th2_mea_mean)으로 업데이트한다(S74).
즉, 진단모듈(260)이 히팅 모드 이후의 해당 서브모듈(C1, IN1)의 전류와 스위칭 주파수에 대해 재확인한 평균손실값(PL_mean)이 최대치(PL_mean_max) 초과이면, 히팅 온도실측치 평균값(Th2_mea_mean) 또한 이전 버전의 최대치(PL_mean_max)보다 크므로 기존 최대치(PL_mean_max)를 히팅 온도실측치 평균값(Th2_mea_mean)으로 업데이트 하는 것이다.
도 8은 본 발명에 따른 진단방법의 제3체크 단계 이후에 이루어지는 일 실시 예를 도시한 플로차트이다.
도 3 내지 도 8을 참조하면, 유속센서(230)가 방열판(140)을 경유하는 냉각수의 유속치(Vw)를 확인하는 유속실측 단계(S10'); 진단모듈(260)이 방열판(140)의 유속치(Vw)의 실측 평균유속값(Vw_mean(n-1), Vw_mean(n))을 시정수 동안의 주기 단위로 확인하고, 방열판(140)에 대한 냉각수의 정격 평균유속값을 확인하는 평균유속값(Vw_mean_r) 확인 단계(S20');를 포함한다.
유속센서(230)는 냉각수 라인(134)에 설치되어서 냉각수의 유속을 센싱하고, 유속실측 단계(S10')와 평균유속값(Vw_mean_r) 확인 단계(S20')는 방열판(140)의 시정수 동안 별도로 진행된다.
계속해서, 상기 제3체크 단계에서 체크모듈(250)이 히팅 온도실측치 평균값(Thn_mea_mean)과 계산치 전체평균값(Thn_cal_mean_total) 간의 차가 계산치 전체평균값(Thn_cal_mean_total)의 지정비율을 초과함을 확인하면, 체크모듈(250)이 전주기 실측 평균유속값(Vw_mean(n-1))과 현주기 실측 평균유속값(Vw_mean(n)) 간의 차가 정격 평균유속값(Vw_mean_r)의 지정비율 초과 여부를 확인하는 제4체크 단계(S91); 제4체크 단계(S91)에서 체크모듈(250)이 전주기 실측 평균유속값(Vw_mean(n-1))과 현주기 실측 평균유속값(Vw_mean(n)) 간의 차가 정격 평균유속값(Vw_mean_r)의 지정비율 초과임을 확인하면, 진단모듈(260)이 냉각수의 유속 불량을 확인하는 유속 불량 판단 단계(S92);를 포함한다.
여기서 정격 평균유속값(Vw_mean_r)은 지정된 조건하에서 허용된 변화의 범위이므로, 전주기 실측 평균유속값(Vw_mean(n-1))과 현주기 실측 평균유속값(Vw_mean(n))의 차가 허용범위인 정격 평균유속값(Vw_mean_r)의 지정비율을 초과하면 냉각수의 유속치(Vw)가 허용한도를 벗어나 급격한 변화를 일으킨 것이므로, 냉각수의 평균 유속이 불량한 것으로 판단하는 것이다.
한편, 상기 제4체크 단계에서 체크모듈(250)이 전주기 실측 평균유속값(Vw_mean(n-1))과 현주기 실측 평균유속값(Vw_mean(n)) 간의 차가 정격 평균유속값(Vw_mean_r)의 지정비율 이하임을 확인하면, 체크모듈(250)은 해당 서브모듈(C1, IN1)의 구동횟수가 기준횟수 미만 여부를 확인하는 제5체크 단계(S93); 상기 제5체크 단계(S93)에서, 체크모듈(250)이 해당 서브모듈(C1, IN1)의 구동횟수가 기준횟수 미만임을 확인하면 진단모듈(260)이 서브모듈(C1, IN1)의 서멀구리스 열저항 증가로 판정하고(S94), 해당 서브모듈(C1, IN1)의 구동횟수가 기준횟수 초과임을 확인하면 진단모듈(260)이 서브모듈(C1, IN1)의 노화를 판정한다(S95).
상기 구동횟수는 해당 서브모듈(C1, IN1)이 운전한 횟수이고, 상기 기준횟수는 노화 여부를 판정하는 기준치이다. 따라서 서브모듈(C1, IN1)의 현재 구동횟수가 기준횟수 미만이면, 서브모듈(C1, IN1) 자체의 노화는 아니고 서멀구리스의 열저항이 증가하여 발생한 노화로 판정하고 서멀구리스의 보수를 통지할 수 있다.
반면, 서브모듈(C1, IN1)의 현재 구동횟수가 기준횟수 초과이면, 해당 서브모듈(C1, IN1)이 노화한 것으로 판정하고 교체를 통지할 수 있다.
도 9은 본 발명에 따른 진단방법의 제1체크 단계 이후에 이루어지는 일 실시 예를 도시한 플로차트이다.
도 3 내지 도 7과 도 9를 참조하면, 유속센서(230)가 방열판(140)을 경유하는 냉각수의 유속치(Vw)를 확인하는 유속실측 단계(S10'); 진단모듈(260)이 방열판(140)의 유속치(Vw)의 실측 평균유속값(Vw_mean(n-1), Vw_mean(n))을 시정수 동안의 주기 단위로 확인하고, 방열판(140)에 대한 냉각수의 정격 평균유속값을 확인하는 평균유속값(Vw_mean_r) 확인 단계(S20');를 포함한다.
유속센서(230)는 방열판(140)별로 구성된 냉각수 라인(134)에 설치되어서 냉각수의 유속을 센싱하고, 유속실측 단계(S10')와 평균유속값(Vw_mean_r) 확인 단계(S20')는 방열판(140)의 시정수 동안 별도로 진행된다.
한편, 제1체크 단계(S40)에서 체크모듈(250)이 전자부품의 연속 운전 중단을 방열판 시정수 기간(실시 예; 1시간)에서 확인하면 MMC를 쿨링 상태로 간주하고, 진단모듈(260)이 쿨링온도 패턴함수에 따라 시작 온도부터 시정수 동안의 쿨링 온도 평균값을 계산한다. 히팅 상태에서와 같이 쿨링 상태도 시정수 동안 유입 냉각수의 기준온도(Thwr)와 제1온도실측치(Thw1) 사이에 차가 있으므로, 기준온도(Thwr)와 제1온도실측치(Thw1)의 차인 온도변화의 평균값(이하 '냉각수 온도변화값(Thwd)')을 확인하고, 상기 쿨링 온도 평균값을 냉각수 온도변화값(Thwd)에 따라 보정해서 쿨링 온도계산치 평균값(Tcn_cal_mean)으로 생성한다.
또한, 쿨링 상태에서 진단모듈(260)은 제2온도센서(220)가 실측한 방열판(140)의 온도인 제2온도실측치(Tcn_mea)의 평균값을 계산하고, 해당 평균값을 냉각수 온도변화값(Thwd)에 따라 보정해서 쿨링 온도실측치 평균값(Tcn_mea_mean)으로 생성한다.
쿨링 온도계산치 평균값(Tcn_cal_mean)과 쿨링 온도실측치 평균값(Tcn_mea_mean)이 생성되면, 체크모듈(250)은 쿨링 온도실측치 평균값(Tcn_mea_mean)과 쿨링 온도계산치 평균값(Tcn_cal_mean) 간의 차를 확인하고, 상기 차가 쿨링 온도계산치 평균값(Tcn_cal_mean)의 지정비율 초과 여부를 확인한다(S42; 제6체크 단계).
결국, 본 실시 예에서는 체크모듈(250)이 쿨링 상태에서 방열판(250)의 온도 실측치와 계산치의 차가 기준치의 10%를 초과하는지 확인해서, 초과하지 않으면 해당 서브모듈(C1, IN1)의 이상 없음으로 판정하고, 초과이면 다음 체크 과정을 진행한다. 쿨링 온도계산치 평균값(Tcn_cal_mean)의 10%를 계산하기 위한 '지정비율'의 크기는 전술한 바와 같이 서브모듈(C1, IN1)의 종류, 정격부하의 크기, 진단 정확성 등, 기타 다양한 이유에 맞춰 조정될 수 있다.
제6체크 단계(S42)에서 체크모듈(250)이 쿨링 온도실측치 평균값(Tcn_mea_mean)과 쿨링 온도계산치 평균값(Tcn_cal_mean) 간의 차가 기준온도의 지정비율 초과임을 확인하면, 체크모듈(250)은 현주기 실측 평균유속값(Vw_mean(n))이 정격 평균유속값(Vw_mean_r)의 지정비율 미만인지 여부를 확인한다(S43; 제7체크 단계).
제6체크 단계(S42)에서와 같이 온도 실측치와 계산치의 차가 기준치의 10%를 초과할 경우에는 방열판에 대한 시정수 동안의 온도 변화가 비정상적이므로, 비정상적인 원인을 구체적으로 판단해야 한다. 따라서 체크모듈(250)은 현주기 실측 평균유속값(Vw_mean(n))의 크기가 정격 평균유속값(Vw_mean_r)의 90% 즉, 유속 변화에 대한 허용크기의 90%보다 작은지 여부를 확인해서 이를 기준으로 판정한다.
제7체크 단계(S43)에서, 체크모듈(250)이 현주기 실측 평균유속값(Vw_mean(n))이 정격 평균유속값(Vw_mean_r)의 지정비율 미만임을 확인하면, 진단모듈(260)은 냉각수 유속의 저하 불량을 판정한다(S44).
이에 반해 상기 제7체크 단계(S43)에서 체크모듈(250)이 현주기 실측 평균유속값(Vw_mean(n))이 정격 평균유속값(Vw_mean_r)의 지정비율 이상임을 확인하면, 진단모듈(260)은 냉각수의 품질 불량을 판정한다(S45). 다시 말해서 냉각수의 유속은 기준치 이상의 정상임에도 불구하고 열교환이 충분하지 않으므로, 서브모듈(C1, IN1)의 온도의 높은 온도는 냉각수의 품질 불량으로 판단하는 것이다.
이상 설명한 진단방법과 진단장치를 통해 MMC와 MMC에 구성된 컨버터(C)와 인버터(IN)별 서브모듈(C1, IN1)을 실시간으로 진단하고, 불량 시 그 원인을 파악하며 수명 상태를 정확히 체크할 수 있다.
한편, 'S41 단계'에서 진단모듈(260)이 상별로 쿨링 온도계산치 평균값(Tcn_cal_mean)을 연산하면, 제6체크 단계(S42)의 진행과 더불어 쿨링 상태의 측정치 전체평균값(Tcn_mea_mean_total)과 계산치 전체 평균값(Tcn_cal_mean_total)을 상별로 연산한다(S42'). 쿨링 상태의 측정치 전체평균값(Tcn_mea_mean_total)과 계산치 전체 평균값(Tcn_cal_mean_total)은 [수학식 1]과 [수학식 2]에 각각 쿨링 온도실측치 평균값(Tcn_mea_mean)과 쿨링 온도계산치 평균값(Tcn_cal_mean)이 삽입되어 이루어진다.
참고로, [수학식 1] 내지 [수학식 3]의 변수는 히팅 상태를 예시하였으므로, 그 표기가 'Th...'로 되었으나, 쿨링 상태의 경우에는 'Tc...'로 변경된다.
따라서 쿨링 상태에서 [수학식 1]은
R상 서브모듈(C1)의 경우,
Tcn_mea_mean_R(total) = (Tcn_mea_mean_R(1) + Tcn_mea_mean_R(2) + ..... + Tcn_mea_mean_R(n))/n
이고,
쿨링 상태에서 [수학식 2]은
R상 서브모듈(C1)의 경우,
Tcn_cal_mean_R(total) = (Tcn_cal_mean_R(1) + Tcn_cal_mean_R(2) + ..... + Tcn_cal_mean_R(n))/n
로 변경된다.
체크모듈(250)은 해당 서브모듈(C1, IN1)의 쿨링 온도실측치 평균값(Tcn_mea_mean)과 쿨링 상태의 계산치 전체 평균값(Tcn_cal_mean_total) 간의 차를 확인하고, 상기 차가 쿨링 상태의 계산치 전체평균값(Tcn_cal_mean_total)의 지정비율 초과 여부를 확인한다(S43'; 제8체크 단계).
쿨링 온도실측치 평균값(Tcn_mea_mean)과 쿨링 상태의 계산치 전체평균값(Tcn_cal_mean_total) 간의 차가 쿨링 상태의 계산치 전체평균값(Tcn_cal_mean_total)의 지정비율을 초과한 것으로 확인되면, 쿨링 온도실측치 평균값(Tcn_mea_mean)의 해당 서브모듈(C1, IN1)은 불량한 것으로 판단한다(S44'). 그러나 쿨링 상태의 계산치 전체평균값(Tcn_cal_mean_total)의 지정비율 이하인 것으로 확인되면 해당 서브모듈(C1, IN1)은 정상으로 판단하고 체크를 종료한다. 본 실시 예에서 상기 지정비율은 '0.1'로 했으나, 상기 지정비율에 한정하는 것은 아니다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예들을 참조해 설명했지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100; 냉각챔버 110; 냉각부 111; 수용함
130; 순환로 131; 유입구 132; 유출구
133; 어댑터 134; 냉각수 라인 140; 방열판
200; 진단장치 210; 제1온도센서 220; 제2온도센서
230; 유속센서 240; 타이머 250; 체크모듈
260; 진단모듈 C; 컨버터 C1; 서브모듈
IN; 인버터 IN1; 서브모듈

Claims (7)

  1. MMC에 구성된 컨버터별 R상과 S상과 T상 각각의 서브모듈과, 인버터별 U상과 V상과 W상 각각의 서브모듈에 장착된 방열판의 시정수 동안, 진단모듈이 상기 서브모듈의 전류와 스위칭 주파수에 대한 평균손실값을 생성하는 단계;
    상기 진단모듈이 서브모듈별 정격부하에 지정비율을 연산해서 평균손실값의 최대치와 최소치를 생성하는 단계;
    체크모듈이 상기 시정수 동안 서브모듈의 연속 운전 여부를 확인하는 제1체크 단계;
    상기 체크모듈이 서브모듈의 히팅을 확인하고, 제1온도센서가 유입 냉각수의 온도인 제1온도실측치를 생성해서 진단모듈이 시정수 동안의 유입 냉각수의 기준온도와 제1온도실측치 간의 차를 계산하는 냉각수 온도변화값 확인 단계;
    상기 평균손실값이 최대치, 최소치와 중간치 중 어느 하나인 경우, 제2온도센서가 방열판의 온도인 제2온도실측치를 상별로 각각 생성하고, 상기 진단모듈이 제2온도실측치를 냉각수 온도변화값에 따라 보정해서 시정수 동안의 평균을 상별로 각각 계산하는 히팅 온도실측치 평균값 확인 단계;
    상기 체크모듈이 평균손실값의 중간치 여부를 확인하는 제2체크 단계;
    상기 체크모듈이 평균손실값이 중간치임을 확인하면, 상기 진단모듈이 평균손실값이 최소치와 최대치 이상인 경우 상별 서브모듈 각각의 히팅 온도실측치 평균값과, 최대치와, 최소치를 상호 연산하는 히팅 온도계산치 평균값 확인 단계;
    상기 진단모듈이 컨버터와 인버터 각각의 상별 서브모듈의 히팅 온도실측치 평균값의 측정치 전체평균값을 계산하고, 상기 히팅 온도계산치 평균값의 계산치 전체평균값을 계산하는 전체 평균값 확인 단계; 및
    상기 체크모듈이 컨버터와 인버터 각각의 상별 서브모듈의 측정치 전체평균값 또는 계산치 전체평균값에 상위 지정비율과 하위 지정비율을 각각 연산해서 최대 기준값과 최소 기준값을 확인하고, 히팅 온도실측치 평균값이 최대 기준값과 최소 기준값의 범위 이내에 속하면 해당 서브모듈은 정상으로 판정하는 계산치 전체평균값의 지정범위 확인 단계;
    를 포함하는 것을 특징으로 하는 MMC의 수명 진단방법.
  2. 제 1 항에 있어서, 상기 계산치 전체평균값의 지정범위 확인 단계 이후,
    상기 평균손실값이 최대치와 최소치 사이의 중간치로 확인된 경우, 상기 체크모듈이 히팅 온도실측치 평균값과 계산치 전체평균값 간의 차가 계산치 전체평균값의 지정비율 이하임을 확인하면, 상기 진단모듈은 진단 프로세스를 종료하는 계산치 전체평균값의 지정비율 이하 여부 확인 단계;
    를 더 포함하는 것을 특징으로 하는 MMC의 수명 진단방법.
  3. 제 1 항에 있어서,
    상기 히팅 온도계산치 평균값은
    Thn_cal_mean = Th1_mea_mean + (PL_mean - PL_mean_min) / (PL_mean_max - PL_mean_min) * (Th2_mea_mean - Th1_mea_mean)
    - Thn_cal_mean: 온도계산치 평균값
    - Th1_mea_mean: 평균손실값이 최소치 이하인 경우 히팅 온도실측치 평균값
    - Th2_mea_mean: 평균손실값이 최대치 이상인 경우 히팅 온도실측치 평균값
    - PL_mean: 평균손실값
    - PL_mean_min: 평균손실값이 최소치
    - PL_mean_max: 평균손실값이 최대치
    에 의해 연산되는 것을 특징으로 하는 MMC의 수명 진단방법.
  4. 제 1 항에 있어서,
    유속센서가 상기 방열판을 경유하는 냉각수의 유속치를 확인하는 유속실측 단계; 상기 진단모듈이 방열판의 유속치의 실측 평균유속값을 시정수 동안의 주기 단위로 확인하고, 상기 방열판에 대한 냉각수의 정격 평균유속값을 확인하는 평균유속값 확인 단계;
    를 더 포함하는 것을 특징으로 하는 MMC의 수명 진단방법.
  5. 제 4 항에 있어서,
    상기 제1체크 단계에서 서브모듈의 연속 운전 중단을 확인하면, 상기 체크모듈이 MMC를 쿨링 상태로 간주하고, 상기 진단모듈이 쿨링온도 패턴함수에 따라 시작 온도부터 시정수 동안 컨버터와 인버터 각각의 상별 서브모듈의 쿨링 온도계산치 평균값을 계산하며, 상기 제2온도센서가 방열판을 실측한 쿨링 온도실측치 평균값을 계산하는 단계; 및
    상기 체크모듈이 쿨링 온도실측치 평균값과 쿨링 온도계산치 평균값 간의 차를 확인하고, 상기 차가 쿨링 온도계산치 평균값의 지정비율 초과 여부를 확인해서, 초과하지 않으면 해당 서브모듈의 이상 없음을 판정하는 제6체크 단계;
    를 더 포함하는 것을 특징으로 하는 MMC의 수명 진단방법.
  6. 제 5 항에 있어서,
    상기 제6체크 단계에서, 상기 체크모듈이 쿨링 온도실측치 평균값과 쿨링 온도계산치 평균값 간의 차가 지정비율을 초과하면, 현주기 실측 평균유속값이 정격 평균유속값의 지정비율 미만인지 여부를 확인하는 제7체크 단계;
    상기 제7체크 단계에서, 상기 체크모듈이 현주기 실측 평균유속값이 정격 평균유속값의 지정비율 미만임을 확인하면 진단모듈이 냉각수 유속의 저하 불량을 판정하고, 상기 현주기 실측 평균유속값이 정격 평균유속값의 지정비율 이상임을 확인하면 진단모듈은 냉각수의 품질 불량을 판정하는 단계;
    를 더 포함하는 것을 특징으로 하는 MMC의 수명 진단방법.
  7. 제 4 항에 있어서,
    상기 제1체크 단계에서 서브모듈의 연속 운전 중단을 확인하면, 상기 체크모듈이 MMC를 쿨링 상태로 간주하고, 상기 진단모듈이 쿨링온도 패턴함수에 따라 시작 온도부터 시정수 동안 컨버터와 인버터 각각의 상별 서브모듈의 쿨링 온도계산치 평균값을 계산하며, 상기 제2온도센서가 방열판을 실측한 쿨링 온도실측치 평균값을 계산하는 단계;
    상기 진단모듈이, 서브모듈별 쿨링 온도실측치 평균값을 합산해서 서브모듈의 개수로 나눈 쿨링 상태의 측정치 전체평균값과, 서브모듈별 쿨링 온도계산치 평균값을 합산해서 서브모듈의 개수로 나눈 쿨링 상태의 계산치 전체평균값을 각각 생성하는 단계;
    상기 체크모듈이, 해당 서브모듈의 쿨링 온도실측치 평균값과 쿨링 상태의 계산치 전체 평균값 간의 차를 확인해서, 상기 차가 쿨링 상태의 계산치 전체평균값의 지정비율 초과 여부를 확인하는 제8체크 단계;
    상기 제8체크 단계에서, 상기 차가 쿨링 상태의 계산치 전체평균값의 지정비율을 초과한 것으로 확인되면, 상기 쿨링 온도실측치 평균값의 해당 서브모듈은 불량한 것으로 판단하고, 상기 차가 쿨링 상태의 계산치 전체평균값의 지정비율 이하인 것으로 확인되면, 상기 쿨링 온도실측치 평균값의 해당 서브모듈은 정상으로 판단하는 단계;
    를 더 포함하는 것을 특징으로 하는 MMC의 수명 진단방법.


KR1020200124732A 2020-09-25 2020-09-25 Mmc의 수명 진단방법 KR102219058B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200124732A KR102219058B1 (ko) 2020-09-25 2020-09-25 Mmc의 수명 진단방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200124732A KR102219058B1 (ko) 2020-09-25 2020-09-25 Mmc의 수명 진단방법

Publications (1)

Publication Number Publication Date
KR102219058B1 true KR102219058B1 (ko) 2021-02-24

Family

ID=74689115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200124732A KR102219058B1 (ko) 2020-09-25 2020-09-25 Mmc의 수명 진단방법

Country Status (1)

Country Link
KR (1) KR102219058B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065507A (ko) * 2012-11-15 2014-05-30 삼성전기주식회사 반도체 소자의 시험 장치 및 반도체 소자의 시험 방법
KR101625864B1 (ko) * 2014-09-26 2016-06-13 국민대학교산학협력단 저전압 dc-dc 컨버터를 위한 통합형 고장진단 제어장치 및 방법, 그리고 이를 위한 컴퓨터로 판독가능한 기록매체
KR101651883B1 (ko) * 2014-12-31 2016-08-29 주식회사 효성 모듈형 컨버터의 커패시터 상태진단방법
KR20190041259A (ko) * 2017-10-12 2019-04-22 주식회사 엘지화학 컨택터 코일 전류를 이용한 컨택터 수명 진단 시스템 및 방법
KR20190127424A (ko) 2018-05-04 2019-11-13 엘지전자 주식회사 사용 수명 예측 및 예측 결과 확인이 가능한 전력 제어장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065507A (ko) * 2012-11-15 2014-05-30 삼성전기주식회사 반도체 소자의 시험 장치 및 반도체 소자의 시험 방법
KR101625864B1 (ko) * 2014-09-26 2016-06-13 국민대학교산학협력단 저전압 dc-dc 컨버터를 위한 통합형 고장진단 제어장치 및 방법, 그리고 이를 위한 컴퓨터로 판독가능한 기록매체
KR101651883B1 (ko) * 2014-12-31 2016-08-29 주식회사 효성 모듈형 컨버터의 커패시터 상태진단방법
KR20190041259A (ko) * 2017-10-12 2019-04-22 주식회사 엘지화학 컨택터 코일 전류를 이용한 컨택터 수명 진단 시스템 및 방법
KR20190127424A (ko) 2018-05-04 2019-11-13 엘지전자 주식회사 사용 수명 예측 및 예측 결과 확인이 가능한 전력 제어장치 및 방법

Similar Documents

Publication Publication Date Title
US8638576B2 (en) Voltage source converter and a method for fault handling thereof
JP6704293B2 (ja) インバータ制御装置および電力変換装置
JP5646752B2 (ja) 系統連系インバータ装置およびその制御方法
US10379070B2 (en) Power module
KR20180069954A (ko) 파워모듈의 정션온도 측정 방법
EP1665535A1 (en) Failure prediction for parallel mosfets
JP2012170211A (ja) 異常判定装置、異常素子検出装置および車両駆動システム
JP2017184298A (ja) 電力変換装置
WO2018132236A1 (en) Rotating switching strategy for power converters
KR102219058B1 (ko) Mmc의 수명 진단방법
JP2015095970A (ja) 電力変換装置
Arifujjaman et al. Reliability comparison of power electronic converters used in grid-connected wind energy conversion system
KR20180136564A (ko) 전력 변환 장치의 온도 이상 검출 방법 및 전력 변환 장치의 온도 이상 검출 장치
JP5959457B2 (ja) パワーモジュール
Ugur et al. An investigation on diagnosis-based power switch lifetime extension strategies for three-phase inverters
US20180076642A1 (en) Method for the reformation of an electrolytic capacitor in a converter and converter with such
KR101950190B1 (ko) 전압형 컨버터 시스템의 이상 진단 장치 및 방법
CN109270422B (zh) 一种igbt器件的评价方法及装置
Aly et al. Design and validation of SVPWM algorithm for thermal protection of T-type three-level inverters
JP5182243B2 (ja) パワーモジュール
KR102207332B1 (ko) 전자부품의 사용 수명 진단장치와 진단방법
JP6886764B2 (ja) 電力変換装置
Farias et al. Redundancy design for modular multilevel converter based STATCOMs
JP2020198662A (ja) 電力変換装置
Falck et al. Active methods to improve reliability in power electronics

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant