KR102164222B1 - 무인이동체 기반 철도 시설물 점검 방법 - Google Patents

무인이동체 기반 철도 시설물 점검 방법 Download PDF

Info

Publication number
KR102164222B1
KR102164222B1 KR1020200018336A KR20200018336A KR102164222B1 KR 102164222 B1 KR102164222 B1 KR 102164222B1 KR 1020200018336 A KR1020200018336 A KR 1020200018336A KR 20200018336 A KR20200018336 A KR 20200018336A KR 102164222 B1 KR102164222 B1 KR 102164222B1
Authority
KR
South Korea
Prior art keywords
information
light
computer
facility
camera
Prior art date
Application number
KR1020200018336A
Other languages
English (en)
Inventor
박미연
나용현
Original Assignee
주식회사 승화기술정책연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 승화기술정책연구소 filed Critical 주식회사 승화기술정책연구소
Priority to KR1020200018336A priority Critical patent/KR102164222B1/ko
Application granted granted Critical
Publication of KR102164222B1 publication Critical patent/KR102164222B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • B64C2201/127
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명은 무인이동체인 드론(drone)(20)을 이용한 철도 시설물의 영상 점검 방법에 관한 것으로, 점검 대상 시설물을 촬영하는 카메라(30)와 영상내 수광점을 형성하는 3점레이저발광기(41)를 드론(20)에 장착하여, 영상내 균열의 실제 길이를 정확하게 파악할 수 있도록 한 것이다.
본 발명을 통하여, 철도 교량 또는 산간 철도 시설물 등 점검원의 직접 접근이 어려운 시설물에 대한 효율적이고 간편하며 정밀한 점검이 가능하며, 이로써 철도 시설물 점검의 편의성 및 정확성을 획기적으로 향상시킬 수 있다.

Description

무인이동체 기반 철도 시설물 점검 방법{RAILROAD STRUCTURE INSPECTION METHOD USING DRON}
본 발명은 무인이동체인 드론(drone)(20)을 이용한 철도 시설물의 영상 점검 방법에 관한 것으로, 점검 대상 시설물을 촬영하는 카메라(30)와 영상내 수광점을 형성하는 3점레이저발광기(41)를 드론(20)에 장착하여, 영상내 균열의 실제 길이를 정확하게 파악할 수 있도록 한 것이다.
철도는 여타의 육상 운송수단에 비하여 수송 능력 및 효율이 월등한 장점이 있으나, 사고 발생시 막대한 피해가 수반되므로 운용상 고도의 안전 관리가 요구된다.
특히, 철도는 운행 특성상 일반 도로에 비하여 엄격한 선형(線形)상 제약이 불가피하며, 이로 인하여 전체 연장 중 교량 및 터널 구간이 상당한 비율을 차지할 수 밖에 없고, 국가 기반 교통 시설물로서, 벽오지(僻奧地)를 비롯한 국토 전반에 대한 구축이 요구되는 바, 유지 관리 및 점검에 막대한 인원, 시간 및 비용이 소요된다.
철도 시설물 중 대부분을 차지하는 콘크리트 구조물에 있어서, 핵심 점검 사항은 균열 검사라 할 수 있는데, 콘크리트 구조물 균열 검사의 전통적인 방식은 검사 대상 구조물을 전문 기술자가 육안으로 관찰함으로써 균열의 발생 여부 및 형태 등을 파악하고, 균열 부위를 주기적으로 촬영함으로써 균열의 진행 양상을 추정하는 방식인 바, 검사원의 현장 답사 및 검사 대상 시설물에 대한 근거리 접근이 전제될 수 밖에 없다.
따라서, 시설물의 연장이 장대하거나 대형 교각 등 근거리 접근이 어려운 경우 균열 검사에 장기간이 소요될 뿐 아니라, 대규모의 인력 및 장비가 소요됨은 물론, 검사시 통행 차단으로 인한 심각한 불편이 초래될 수 밖에 없었다.
특히, 전술한 바와 같이, 철도 시설물의 점검에 있어서는 교량 시설물 또는 산간 시설물 등 점검원의 직접 접근이 어려운 점검 대상 시설물이 상당 비율을 차지하는 바, 이러한 접근 취약 철도 시설물에 대한 점검이 효율적이고 정밀하게 수행될 수 있는 수단이 절실하게 요구되는 실정이다.
이에, 콘크리트 구조물의 균열 검사에 컴퓨터 영상 처리 기법을 도입하여 검사의 신속성 및 편의성을 도모한 공개특허 제2003-83359호 등의 기술이 개발되어 활용되고 있으며, 이로써 검사원의 근거리 접근 및 직접 육안 관찰 없이도 컴퓨터 영상 처리를 통하여 구조물의 균열 부위에 대한 신속한 검출이 가능하게 되었다.
공개특허 제2003-83359호를 비롯한 종래의 컴퓨터 영상 처리 적용 콘크리트 구조물 균열 검사 기술은 기본적으로 콘크리트 구조물 표면을 촬영하여 디지털 이미지인 영상을 획득하고, 획득된 영상을 컴퓨터 알고리즘을 이용하여 처리함으로써 해당 촬영 부위에 균열이 존재하는 지 여부를 판단하는 것으로, 카메라에서 획득된 촬상정보를 명암(明暗)에 따라 명부(明部)에서 암부(暗部)로 균일 증감하는 수치를 부여하고, 이를 이진화(二進化) 처리함으로써 주로 명부인 배경과 극명하게 대비되는 암부를 검출하게 된다.
즉, 카메라를 통하여 획득된 원시 촬상정보의 각 픽셀(pixel)에 그레이스케일(gray scale)로 통용되는 0 내지 255의 수치를 설정하는 것으로, 최암부(最暗部)와 최명부(最明部)에 각각 0과 225를 부여함으로써 각 픽셀의 명암을 수치화한 후, 일정 기준치를 상회하는 픽셀과 하회하는 픽셀에 단일 수치를 일괄 부여하는 이진화를 실시함으로써, 예컨데 전체 픽셀의 그레이스케일 수치를 평균하여 평균치를 기준치로 설정한 후 기준치를 상회하는 픽셀에는 0을 부여하고 기준치를 하회하는 픽셀에는 1을 부여하는 방식으로 촬상정보를 처리하는 것이다.
이렇듯 이진화 처리된 촬상정보에서는 배경과 명확하게 대비되는 암부인 균열 부위가 촬영된 픽셀에는 1이 부여되고, 상대적으로 명부라 할 수 있는 비균열 부위의 표면이 촬영된 픽셀에는 0이 부여되는 바, 이를 통하여 컴퓨터가 균열의 발생 여부 및 형상을 파악할 수 있게 된다.
한편, 이진화 처리있어 상기에서 예시한 픽셀별 부여 수치인 1과 0은 정보를 이분(二分)함에 있어서 전산 처리상 편의를 위하여 부여되는 논리값일 뿐 일반적인 그레이스케일에서 설정되는 0 내지 225의 수치와 등치되는 것은 아니며, 1과 0 대신 0과 225 등 다양한 수치가 적용될 수도 있다.
전술한 공개특허 제2003-83359호를 비롯한 종래의 컴퓨터 영상 처리 적용 콘크리트 구조물 균열 검사 기술을 통하여, 균열 검사의 신속성, 편의성 및 안전성을 확보할 수 있게 되었으나, 이러한 종래기술은 기본적으로, 차량을 이용한 접근이 가능한 지점에 대한 검사일 뿐 아니라, 균열이 포함된 영상을 획득하고, 영상내 균열의 상대적 길이는 검출할 수는 있으나, 균열의 절대적 길이는 산출함에 있어서는 별도의 보조적 측정 또는 처리가 요구되는 한계가 있었다.
종래기술에서는 촬상된 영상을 전술한 이진화 기법을 적용함으로써 가용한 영상 정보로 처리하고, 이로써 균열의 존재 여부 및 균열의 총 길이를 산출할 수는 있으나, 여기서 산출된 균열의 총 길이는 당해 영상 내에서 균열이 차지하는 상대적인 길이일 뿐 실제 균열의 절대적인 길이는 아닌 것이다.
즉, 철도 시설물에 대한 영상 점검에서는 이동중 촬영이 수행될 수 밖에 없는 바, 촬영 장비와 피사체 표면간 거리가 수시로 변동될 수 밖에 없으며, 따라서 촬영 장비의 화각과 피사체와 촬영 장비간 거리에 따라 화면상 거리와 실제 거리의 비율이 수시로 변동될 수 밖에 없는 것이다.
따라서, 종래기술에서는 촬상된 영상내 균열의 존재 여부 파악은 컴퓨터 영상처리 기법을 통한 자동 수행이 가능하였으나, 균열의 실제 치수를 기초로 수행되는 균열의 진행 여부 또는 진행 속도 등에 대한 판단은 사후 처리 또는 인력에 의한 처리가 반드시 요구되는 한계가 있었다.
본 발명은 전술한 문제점을 감안하여 촬상된 영상내 균열의 실제 위치 및 길이 등을 정확하게 파악할 수 있도록 창안된 것으로, 무인이동체인 드론(20)에는 카메라(30)와 3점레이저발광기(41)가 장착되고, 드론(20)에 장착된 카메라(30)는 컴퓨터(50)와 무선통신으로 연결되어 카메라(30)의 촬상정보가 컴퓨터(50)로 무선 전송되며, 상기 3점레이저발광기(41)는 상호 평행하게 이격된 3개의 레이저 광선을 발광하고, 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하는 촬상단계(S10)와, 카메라(30)가 촬상된 원시정보(原始情報)인 촬상정보를 무선통신을 통하여 컴퓨터(50)로 전송하는 전송단계(S20)와, 컴퓨터(50)가 촬상정보를 수신하여 기억장치에 저장하는 저장단계(S30)와, 컴퓨터(50)가 저장된 촬상정보를 인출하고 촬상정보를 이진화하여 명부(明部)인 3개의 수광점(P0, P1, P2)을 추출하는 측점단계(S41)와, 컴퓨터(50)가 수광점간 거리 및 수광점 연결 선분의 각도를 이용하여 회전각 및 배율을 산출하는 산출단계(S42)와, 컴퓨터(50)가 산출된 회전각 및 배율을 이용하여 촬상정보를 보정하여 보정정보를 생성하는 보정단계(S43)와, 컴퓨터(50)가 보정정보를 이진화하여 암부(暗部)인 균열부(C)를 추출하는 판별단계(S51)와, 컴퓨터(50)가 균열부(C)의 총 길이를 산출하는 검측단계(S52)로 이루어짐을 특징으로 하는 무인이동체 기반 철도 시설물 점검 방법이다.
또한, 상기 무인이동체인 드론(20)에는 2색발광기(42)가 장착되어, 촬상단계(S10)에서는 2색발광기(42)의 제1조명이 점등된 상태에서 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하여 제1촬상정보가 생성된 후, 상기 제1조명은 소등되고 2색발광기(42)의 제2조명이 점등된 상태에서 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하여 제2촬상정보가 생성되며, 전송단계(S20)에서는 카메라(30)가 촬상된 원시정보(原始情報)인 상기 제1촬상정보 및 제2촬상정보를 무선통신을 통하여 컴퓨터(50)로 전송하고, 저장단계(S30)에서는 컴퓨터(50)가 상기 제1촬상정보 및 제2촬상정보를 수신하여 기억장치에 저장하며, 촬상정보로서 상기 제1촬상정보가 적용되어 상기 측점단계(S41), 산출단계(S42) 및 보정단계(S43)가 수행됨으로써 제1보정정보가 생성되고, 촬상정보로서 상기 제2촬상정보가 적용되어 상기 측점단계(S41), 산출단계(S42) 및 보정단계(S43)가 수행됨으로써 제2보정정보가 생성되며, 판별단계(S51)에서는 상기 제1보정정보 및 제2보정정보를 각각 이진화하여 제1이진정보 및 제2이진정보를 생성하고, 제1이진정보 및 제2이진정보의 픽셀별 논리값을 논리곱 방식으로 연산하여 차분정보를 생성함으로써 암부(暗部)인 균열부(C)를 추출함을 특징으로 하는 무인이동체 기반 철도 시설물 점검 방법이다.
본 발명을 통하여, 철도 교량 또는 산간 철도 시설물 등 점검원의 직접 접근이 어려운 시설물에 대한 효율적이고 간편하며 정밀한 점검이 가능하며, 이로써 철도 시설물 점검의 편의성 및 정확성을 획기적으로 향상시킬 수 있다.
또한, 무인이동체에 의하여 촬영된 영상에 있어서 균열의 절대 길이를 정확하게 파악할 수 있으므로, 균열의 진행 여부 및 진행 속도 등 당해 시설물의 건전성 판단에 있어서 요구되는 핵심 정보를 정확하게 수립할 수 있다.
특히, 상기와 같은 균열의 절대 길이 산출을 영상내 포함 정보를 통하여 자동으로 수행할 수 있는 바, 점검은 물론 사후 처리에 있어서의 효율성 및 신속성을 제고할 수 있다.
도 1은 본 발명의 수행 상황 설명도
도 2는 본 발명의 촬영 방식 설명도
도 3은 본 발명의 흐름도
도 4는 본 발명의 영상정보 예시도
도 5는 본 발명의 영상정보 처리 과정 설명도
도 6은 2색발광기가 적용된 본 발명의 일 실시예 촬영 방식 설명도
도 7은 도 6 실시예의 보정정보 처리 과정 설명도
본 발명의 상세한 구성을 첨부된 도면을 통하여 설명하면 다음과 같다.
우선 도 1은 본 발명의 수행 상황을 예시한 도면으로서, 점검 대상 철도 시설물로 철도 교량의 교각이 적용되어, 점검원의 직접 접근이 불가능한 교각 상부 및 코핑(coping) 등에 대한 영상 점검이 이루어지는 상황을 표현하고 있다.
본 발명에 있어서, 무인이동체인 드론(20)에는 도 2에서와 같이, 카메라(30)와 3점레이저발광기(41)가 장착되고, 드론(20)에 장착된 카메라(30)는 컴퓨터(50)와 무선통신으로 연결되어 카메라(30)의 촬상정보가 컴퓨터(50)로 무선 전송되며, 상기 3점레이저발광기(41)는 상호 평행하게 이격된 3개의 레이저 광선을 발광한다.
드론(20)에 탑재되는 카메라(30)로는 통상의 촬영용 드론(20)에서와 같이, 고해상도 디지털 촬상 소자가 적용된 카메라(30)가 활용될 수 있으며, 카메라(30)와 컴퓨터(50)간에는 무선통신로가 개설되어 카메라(30)에서 촬영된 영상정보가 컴퓨터(50)로 전송된다.
즉, 본 발명에 적용되는 드론(20)은 통상의 촬영용 드론(20)과 같이, 드론(20)과 분리된 별도의 컴퓨터(50)와 드론(20)에 탑재된 카메라(30)간의 무선통신이 가능한 것으로, 이하 본 발명의 기재에 있어서, 카메라(30)와 컴퓨터(50)간 무선통신은 카메라(30) 자체에 무선통신 기능이 부여될 수 있음은 물론 드론(20)에 장착된 별도의 무선통신장비와 카메라(30)가 연결되어 결과적으로 카메라(30)와 컴퓨터(50)간 무선통신이 수행되는 구성도 망라하는 것이다.
또한, 카메라(30)와 컴퓨터(50)간의 무선통신은 카메라(30)의 영상정보를 컴퓨터(50)로 전송하기 위한 것으로서, 블루투스 등 통상의 근거리 무선통신은 물론 무선랜 무선통신 또는 이동통신망 기반 무선통신 등 다양한 규격의 무선통신이 적용될 수 있으며, 이러한 무선통신 방식은 본 발명 기술분야에서 통상의 지식을 가진 당업자가 선택 적용할 수 있는 사항이므로 청구범위의 구체적인 한정은 하지 않는다.
본 발명에 있어서, 카메라(30)와 동반하여 드론(20)에 탑재되는 3점레이저발광기(41)는 그 사전적 의미에서와 같이, 3개의 레이저 광선을 발광하는 레이저발광기로서, 통상의 레이저발광기 3개를 조합하거나, 레이저 발광 소자가 3개 장착된 레이저발광기가 적용될 수 있으며, 3점레이저발광기(41)에서 발광되는 각각의 레이저 광선은 상호 평행하게 이격되어 발광된다.
따라서, 3점레이저발광기(41)에서 발광되는 레이저 광선은 측면상 또는 평면상 상호 이격된 다수의 수평 평행선을 형성하게 되며, 레이저 광선의 직진성 및 비확산성에 의하여, 레이저 광선이 직각으로 조사되는 경우, 레이저 광선이 조사되는 시설물 표면과 3점레이저발광기(41)간 거리와 관계 없이 일정한 거리로 이격된 수광점을 형성하게 된다.
이러한 본 발명은 도 3에서와 같이, 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하는 촬상단계(S10)로 개시된다.
전술한 바와 같이, 3점레이저발광기(41)에서 발광되는 3개의 레이저 광선은 비확산 직진하게 되므로, 피사체인 시설물과 드론(20)과의 거리와 관계 없이 직교 입사시 시설물 표면상 수광점(P0, P1, P2)은 일정한 거리로 이격되어 형성되고, 따라서 원거리 촬영의 경우 촬상된 영상내 수광점이 밀집 형성되고 근거리 촬영의 경우 수광점이 분산 형성된다.
다만, 드론(20)의 비행 과정에서 드론(20) 기체의 요동 또는 경도가 이루어질 수 있으므로, 실제 레이저 광선의 입사각이 변동될 수 있는데, 이는 후술할 회전각 보정을 통하여 극복할 수 있다.
촬상단계(S10)가 완료되면 카메라(30)가 촬상된 원시정보(原始情報)인 촬상정보를 무선통신을 통하여 컴퓨터(50)로 전송하는 전송단계(S20)가 수행되고, 이어서 컴퓨터(50)가 도 5의 좌상단에 도시된 바와 같은 촬상정보를 수신하여 기억장치에 저장하는 저장단계(S30)가 수행되어, 촬영된 촬상정보가 컴퓨터(50)의 기억장치에 안전하게 수록될 수 있다.
이후, 컴퓨터(50)가 저장된 촬상정보를 인출하고 촬상정보를 이진화하여 명부(明部)인 3개의 수광점(P0, P1, P2)을 추출하는 측점단계(S41)가 수행되는데, 이로써 컴퓨터(50)가 촬상정보내 수광점의 위치를 정확하게 파악할 수 있다.
이어서, 컴퓨터(50)가 수광점간 거리 및 수광점 연결 선분의 각도를 이용하여 회전각 및 배율을 산출하는 산출단계(S42)가 수행되는데, 도 4에 예시된 바와 같이, 드론(20)이 정확한 수평 자세로 비행하는 조건에서 촬영이 진행되는 경우 배율의 조정만으로 소기의 영상정보 즉, 영상정보내 피사체의 실제 형상 및 크기를 산출할 수 있는 정배율(定倍率)의 영상정보를 획득할 수 있으나, 드론(20)의 비행 거동상 정확한 수평 유지에는 한계가 있으므로, 도 5에서와 같이, 수광점 연결 선분의 각도를 추출하고 이를 통하여 해당 영상정보의 회전각 즉, 드론(20)의 자세에 따른 각도 교정치를 산출한다.
이러한 영상정보의 회전각 산출은 통상의 이미지프로세싱 기법을 적용하여 수행될 수 있으며, 이미 다수의 상용 프로그램 또는 상용 부프로그램이 보급되어 있는 바, 세부 기법에 대한 청구범위의 구체적인 한정은 하지 않는다.
산출단계(S42)가 완료되면, 역시 도 5에서와 같이, 컴퓨터(50)가 산출된 회전각 및 배율을 이용하여 촬상정보를 보정하여 보정정보를 생성하는 보정단계(S43)가 수행되며, 이로써 마치 일정한 거리에서 정확한 수평 자세로 촬영한 것과 동일한 조건 및 상태의 영상정보를 획득할 수 있다.
이후, 도 5의 하단부에서와 같이, 컴퓨터(50)가 보정정보를 이진화하여 암부(暗部)인 균열부(C)를 추출하는 판별단계(S51)와, 컴퓨터(50)가 균열부(C)의 총 길이를 산출하는 검측단계(S52)가 수행됨으로써, 철도 시설물에 발생된 균열의 절대 길이 즉, 실제 길이를 파악할 수 있다.
이렇듯, 철도 시설물에 형성된 균열의 절대 길이를 산출함으로써, 균열의 길이가 사전 설정된 기준치를 초과하는지 여부를 파악할 수 있음은 물론, 전술한 본 발명을 주기적으로 수행한 후, 시점(時點)별 균열의 절대 길이를 대조함으로써, 균열의 진행 여부 및 속도를 정확하고 간편하게 확인할 수 있다.
한편, 도 6 및 도 7은 2색발광기(42)가 적용된 실시예를 도시한 것으로서, 도 6에서와 같이, 무인이동체인 드론(20)에는 2색발광기(42)가 장착되는데, 여기서 2색발광기(42)란 카메라(30)의 촬영용 조명으로서, 단색광이 아닌 2색광을 순차 발광하는 조명이며, 독립적으로 개별 발광되는 제1조명 및 제2조명으로 구성되어 각기 다른 색상의 조명을 피사체에 조사하는 것이다.
예를 들면 2색발광기(42)의 제1조명은 적색광이 적용되고 제2조명은 황색광이 적용되는 방식으로서, 이들 제1조명 및 제2조명은 동시에 점등되지 않고 교호(交互)로 점등된다.
2색 조명의 적용은 점검 대상 시설물에 오염물이 침착되거나 부착물이 부착되어 일종의 암부인 이물부(D)를 형성함에 따라, 이를 균열부(C)로 오판하는 현상을 방지하기 위한 것으로, 표면에 형성된 얼룩 또는 부착물 등의 이물질은 조명의 색상에 따라 그 명암 또는 주변부와의 대비가 변동되는 반면, 균열 부위는 조명의 색상에 관계 없이 상시 암부로 관측되는 원리를 이용한 것이다.
이러한 본 발명의 2색발광기(42) 적용 실시예에서는 특정 검사 지점에 드론(20)이 일시 정지 즉, 호버링(hovering)하는 상태 또는 저속 비행하는 상태에서 동일한 지점에 대하여 제1조명의 점등 상태와 제2조명의 점등 상태 각각에 대한 촬영을 실시하게 된다.
즉, 전술한 촬상단계(S10)를 수행함에 있어서, 2색발광기(42)의 제1조명이 점등된 상태에서 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하여 제1촬상정보가 생성된 후, 상기 제1조명은 소등되고 2색발광기(42)의 제2조명이 점등된 상태에서 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하여 제2촬상정보가 생성되는 것이다.
상기 촬상단계(S10)는 제1조명 및 제2조명이 순차로 점등 및 소등되고 2회의 카메라(30) 촬영이 수행되는 등 다수의 단계로 구성되어 있으나, 이러한 일련의 절차는 전기적으로 자동 제어되는 카메라(30)와 2색발광기(42)에 의하여 순간적으로 수행되는 바, 점검원이 체감하지 못할 정도의 단시간에 일괄 수행될 수 있으며, 따라서 장시간이 호버링이 요구되지는 않고, 정지 비행이 아닌 저속 비행상태에서도 무리 없이 수행될 수 있다.
이러한 2색발광기(42)의 교호 발광 및 각 발광 상황에서의 카메라(30)의 순간 촬영은 카메라(30)에 자체 내장된 제어장치에 의하여 수행되거나 카메라(30)와 별도로 구성되어 드론(20)에 탑재되는 제어장치에 의하여 수행될 수 있는데, 고속 플래시 촬영 등 인공조명의 발광 및 카메라(30)의 동조 제어는 통상의 디지털 카메라(30)에 있어서 널리 통용되는 기술인 바, 이에 대한 청구범위의 구체적인 한정은 하지 않는다.
이후, 전송단계(S20)에서는 카메라(30)가 촬상된 원시정보(原始情報)인 상기 제1촬상정보 및 제2촬상정보를 무선통신을 통하여 컴퓨터(50)로 전송하고, 저장단계(S30)에서는 컴퓨터(50)가 상기 제1촬상정보 및 제2촬상정보를 수신하여 기억장치에 저장한다.
즉, 2색발광기(42) 가동 조건에서, 2회 촬영이 이루어짐에 따라 제1촬상정보 및 제2촬상정보가 생성되고, 이들 각각의 촬상정보에 대하여 전술한 전송단계(S20) 내지 저장단계(S30)가 수행되는 것이다.
이어서, 촬상정보로서 상기 제1촬상정보가 적용되어 상기 측점단계(S41), 산출단계(S42) 및 보정단계(S43)가 수행됨으로써 제1보정정보가 생성되고, 촬상정보로서 상기 제2촬상정보가 적용되어 상기 측점단계(S41), 산출단계(S42) 및 보정단계(S43)가 수행됨으로써 제2보정정보가 생성된다.
이후 수행되는 판별단계(S51)에서는 도 7에서와 같이, 컴퓨터(50)가 상기 제1보정정보 및 제2보정정보를 각각 이진화하여 제1이진정보 및 제2이진정보를 생성하고, 컴퓨터(50)가 제1이진정보 및 제2이진정보의 픽셀별 논리값을 논리곱 방식으로 연산하여 차분정보를 생성함으로써 암부(暗部)인 균열부(C)를 추출하게 되는데, 이로써 점검 대상 시설물에 오염물이 침착되거나 부착물이 부착되어 외형상 균열과 혼동될 수 있는 부분이 존재하는 경우에도, 실제 균열에 대한 정확한 검출이 가능하게 된다.
도 7의 상단부에 예시된 바와 같은 제1보정정보 및 제2보정정보에 대한 이진화 처리 과정을 설명하면, 우선 제1보정정보 및 제2보정정보 각각에 대하여 전체 픽셀에 대한 명도 평균치를 산출하여 이를 상회하는 픽셀과 하회하는 픽셀로 2분하여 표시함으로써 제1이진정보 및 제2이진정보를 생성하며, 이들 제1이진정보 및 제2이진정보가 도 7의 중간부에 예시되어 있다.
제1조명 및 제2조명으로서 전술한 적색광 및 황색광을 각각 적용하고 콘크리트 시설물에 진흙 등의 오염물이 침착되어 이물부(D)를 형성하는 상황을 상정하면, 백색에 근접한 회색조의 콘크리트 시설물 표면과 적색조의 진흙 오염물에서는 제1조명인 적색광이 다량 반사되고 균열부(C)에서는 균열 내부로 조사된 광선이 반사되지 않으므로 암부를 형성하는 반면, 황색광인 제2조명에서는 콘크리트 시설물 표면에서만 다량 반사가 이루어질 뿐, 이물부(D)와 균열부(C) 모두에서 미미한 반사가 이루어짐에 따라, 이물부(D)가 일종의 암부를 형성하게 된다.
결국, 제1조명에서는 이물부(D)가 명부로 감지되는 반면, 제2조명에서는 이물부(D)가 암부로 감지되는 것으로, 이러한 결과를 논리 연산하여 조명 조건과 무관하게 암부로 감지되는 부분만 균열부(C)로 처리함으로써, 오판을 방지하는 것이다.
상기 과정을 전산 처리상 수행되는 논리 연산 관점에서 설명하면, 명도 평균치 이하의 명도 정보가 부여된 픽셀에는 논리값으로 1을 부여하여 암부로 처리하고, 명도 평균치를 초과하는 명도 정보가 부여된 픽셀에는 논리값으로 0을 부여하여 명부로 처리하는 방식으로 제1이진정보와 제2이진정보를 각각 생성한 후, 이들 제1이진정보와 제2이진정보의 동위(同位) 픽셀 논리값을 논리곱(∧) 즉, 두 논리값이 동일하면 그 논리값이 유지되고, 상이하면 논리값으로 0이 부여되는 방식으로 처리하여 도 7의 하단부에 예시된 바와 같은 차분정보를 생성하는 것이다.
따라서, 이진화 및 차분 처리를 거쳐 최종 생성되는 차분정보에는 균열부(C)만이 표시될 뿐, 이물부(D)는 표시되지 않게 되며, 이로써 오판을 방지하고 점검의 정확도를 획기적으로 향상시킬 수 있다.
20 : 드론
30 : 카메라
41 : 3점레이저발광기
42 : 2색발광기
50 : 컴퓨터
S10 : 촬상단계
S20 : 전송단계
S30 : 저장단계
S41 : 측점단계
S42 : 산출단계
S43 : 보정단계
S51 : 판별단계
S52 : 검측단계

Claims (2)

  1. 무인이동체인 드론(20)에는 카메라(30)와 3점레이저발광기(41)가 장착되고, 드론(20)에 장착된 카메라(30)는 컴퓨터(50)와 무선통신으로 연결되어 카메라(30)의 촬상정보가 컴퓨터(50)로 무선 전송되며, 상기 3점레이저발광기(41)는 상호 평행하게 이격된 3개의 레이저 광선을 발광하고, 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하는 촬상단계(S10)와, 카메라(30)가 촬상된 원시정보(原始情報)인 촬상정보를 무선통신을 통하여 컴퓨터(50)로 전송하는 전송단계(S20)와, 컴퓨터(50)가 촬상정보를 수신하여 기억장치에 저장하는 저장단계(S30)와, 컴퓨터(50)가 저장된 촬상정보를 인출하고 촬상정보를 이진화하여 명부(明部)인 3개의 수광점(P0, P1, P2)을 추출하는 측점단계(S41)와, 컴퓨터(50)가 수광점간 거리 및 수광점 연결 선분의 각도를 이용하여 회전각 및 배율을 산출하는 산출단계(S42)와, 컴퓨터(50)가 산출된 회전각 및 배율을 이용하여 촬상정보를 보정하여 보정정보를 생성하는 보정단계(S43)와, 컴퓨터(50)가 보정정보를 이진화하여 암부(暗部)인 균열부(C)를 추출하는 판별단계(S51)와, 컴퓨터(50)가 균열부(C)의 총 길이를 산출하는 검측단계(S52)로 이루어지는 무인이동체 기반 철도 시설물 점검 방법에 있어서,
    상기 무인이동체인 드론(20)에는 2색발광기(42)가 장착되어,
    촬상단계(S10)에서는 2색발광기(42)의 제1조명이 점등된 상태에서 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하여 제1촬상정보가 생성된 후, 상기 제1조명은 소등되고 2색발광기(42)의 제2조명이 점등된 상태에서 3점레이저발광기(41)가 가동되어 점검 대상 시설물 표면에 3개의 수광점(P0, P1, P2)이 형성되고 카메라(30)가 전체 수광점이 포함되도록 시설물을 촬영하여 제2촬상정보가 생성되며;
    전송단계(S20)에서는 카메라(30)가 촬상된 원시정보(原始情報)인 상기 제1촬상정보 및 제2촬상정보를 무선통신을 통하여 컴퓨터(50)로 전송하고;
    저장단계(S30)에서는 컴퓨터(50)가 상기 제1촬상정보 및 제2촬상정보를 수신하여 기억장치에 저장하며;
    촬상정보로서 상기 제1촬상정보가 적용되어 상기 측점단계(S41), 산출단계(S42) 및 보정단계(S43)가 수행됨으로써 제1보정정보가 생성되고, 촬상정보로서 상기 제2촬상정보가 적용되어 상기 측점단계(S41), 산출단계(S42) 및 보정단계(S43)가 수행됨으로써 제2보정정보가 생성되며;
    판별단계(S51)에서는 상기 제1보정정보 및 제2보정정보를 각각 이진화하여 제1이진정보 및 제2이진정보를 생성하되, 명도 평균치 이하의 명도 정보가 부여된 픽셀에는 논리값으로 1을 부여하여 암부로 처리하고, 명도 평균치를 초과하는 명도 정보가 부여된 픽셀에는 논리값으로 0을 부여하여 명부로 처리함으로써 제1이진정보와 제2이진정보를 각각 생성하고,
    제1이진정보 및 제2이진정보의 픽셀별 논리값을 논리곱 방식으로 연산하여 두 논리값이 동일하면 그 논리값이 유지되고, 상이하면 논리값으로 0이 부여되도록 처리하여 차분정보를 생성함으로써 암부(暗部)인 균열부(C)를 추출함을 특징으로 하는 무인이동체 기반 철도 시설물 점검 방법.
  2. 삭제
KR1020200018336A 2020-02-14 2020-02-14 무인이동체 기반 철도 시설물 점검 방법 KR102164222B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200018336A KR102164222B1 (ko) 2020-02-14 2020-02-14 무인이동체 기반 철도 시설물 점검 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200018336A KR102164222B1 (ko) 2020-02-14 2020-02-14 무인이동체 기반 철도 시설물 점검 방법

Publications (1)

Publication Number Publication Date
KR102164222B1 true KR102164222B1 (ko) 2020-10-12

Family

ID=72886312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200018336A KR102164222B1 (ko) 2020-02-14 2020-02-14 무인이동체 기반 철도 시설물 점검 방법

Country Status (1)

Country Link
KR (1) KR102164222B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145597A1 (ko) * 2020-12-31 2022-07-07 한국공항공사 비행체를 이용한 항공 등화 점검 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235005A (ja) * 1999-02-15 2000-08-29 Nidec Tosok Corp 卵検査装置
KR20070000956A (ko) * 2005-06-28 2007-01-03 후지쯔 가부시끼가이샤 촬상 장치
KR20170100990A (ko) * 2016-02-26 2017-09-05 울산과학기술원 콘크리트 균열 탐지 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235005A (ja) * 1999-02-15 2000-08-29 Nidec Tosok Corp 卵検査装置
KR20070000956A (ko) * 2005-06-28 2007-01-03 후지쯔 가부시끼가이샤 촬상 장치
KR20170100990A (ko) * 2016-02-26 2017-09-05 울산과학기술원 콘크리트 균열 탐지 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145597A1 (ko) * 2020-12-31 2022-07-07 한국공항공사 비행체를 이용한 항공 등화 점검 방법 및 장치

Similar Documents

Publication Publication Date Title
KR102100496B1 (ko) 드론 및 레이저스캐너를 이용한 콘크리트 구조물 균열 검사 시스템 및 방법
KR102091165B1 (ko) 터널 균열 검사 장치
US20150371094A1 (en) A road marking analyser and a method of analysis of road markings and an apparatus and method for detecting vehicle weave
WO2017068743A1 (ja) 路面状態判定装置、撮像装置、撮像システムおよび路面状態判定方法
CN105784710A (zh) 一种基于数字图像处理的混凝土桥梁裂缝检测装置
JP6633454B2 (ja) 変状部の検出方法
CN104986129B (zh) 专用车作业状态的监测系统及其方法
JP5074998B2 (ja) 透明フィルムの外観検査方法およびその装置
KR20080103820A (ko) 하이브리드 터널 스캐닝 장치
KR100742003B1 (ko) 표면 결함 검사 방법 및 장치
CN107798293A (zh) 一种道路裂缝检测装置
JP6333307B2 (ja) 劣化部位検知装置、劣化部位検知方法およびプログラム
US11796377B2 (en) Remote contactless liquid container volumetry
CN102565062B (zh) 基于图像灰度检测的液体浑浊度测试方法
KR102164222B1 (ko) 무인이동체 기반 철도 시설물 점검 방법
KR102265145B1 (ko) 영상정보 기반 철도 콘크리트 도상 균열 검측 방법
CN110024010A (zh) 用于探测位于停车场内的突起对象的方法和系统
Hautière et al. Estimation of the visibility distance by stereovision: A generic approach
US11157752B2 (en) Degraded feature identification apparatus, degraded feature identification system, degraded feature identification method, degraded feature identification program, and computer-readable recording medium recording degraded feature identification program
KR20120011533A (ko) 레이저 센서와 카메라를 이용한 차선 인식 시스템
JP4318579B2 (ja) 表面欠陥検査装置
JP2021179441A (ja) 滑走路照明灯の検査装置及び滑走路照明灯の検査方法
JP7043787B2 (ja) 対象物検知システム
JP3612565B2 (ja) 路面状況判定方法
KR101901918B1 (ko) 관로 내 주행체의 이동거리 측정 시스템 및 그 방법

Legal Events

Date Code Title Description
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]