KR102095672B1 - 미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 - Google Patents
미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 Download PDFInfo
- Publication number
- KR102095672B1 KR102095672B1 KR1020187030654A KR20187030654A KR102095672B1 KR 102095672 B1 KR102095672 B1 KR 102095672B1 KR 1020187030654 A KR1020187030654 A KR 1020187030654A KR 20187030654 A KR20187030654 A KR 20187030654A KR 102095672 B1 KR102095672 B1 KR 102095672B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal plate
- plate
- fixture
- fluid
- die
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/228—Gas flow assisted PVD deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/85938—Non-valved flow dividers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Micromachines (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
유기 증기 제트 인쇄 디바이스와 같은 미세유체 운반 시스템과 함께 사용하기 위한 미세유체 디바이스는, 이중 양극 접합을 경유하여 미세가공된 다이 및 금속 플레이트에 직접적으로 접합되는, 유리층을 포함한다. 이중 양극 접합은, 미세가공된 다이와 유리층의 인터페이스에 제1 양극 접합을 형성하고 금속 플레이트와 유리층의 인터페이스에 제2 양극 접합을 형성함에 의해 형성되고, 제2 양극 접합은 제1 양극 접합을 형성하기 위해 사용되는 전압 보다 낮은 전압을 사용하여 형성된다. 제2 양극 접합은 유리층과 제1 양극 접합의 형성에 관해 역전되는 전압의 극성과 더불어 형성된다. 이중 양극 접합은 양 유리층 표면 모두에 밀봉된 인터페이스를 제공한다. 금속 플레이트는 고정체로부터의 미세유체 디바이스의 제거를 허용하는 부착 형상부들(attachment features)을 포함한다.
Description
본 발명은, 양극 접합 및, 유기 증기 제트 인쇄 시스템에 사용되는 것과 같은, 미세유체 디바이스들을 제조하는 구조들 및 방법들에 관한 것이다.
다양한 기술들이, 유기 발광 다이오드들(OLEDs), 유기 광트렌지스터들, 유기 광전지 셀들, 또는 유기 광검출기들 같은, 유기 광전자 디바이스들을 제작하는데 사용하기 위한 기판 상에 유기 재료들을 증착 및/또는 패터닝 하는 것에 대해, 개발되어 왔다. 이러한 기술들은, 잉크젯 인쇄, 노즐 인쇄, 열 증기 제트 인쇄, 및 유기 증기 제트 인쇄(OVJP)와 같은 인쇄 기술들과 더불어, 진공 열 증착, 용액 처리 공정, 및 유기 기상 증착을 포함한다. 이러한 기술들의 일부는, 전형적으로 대량의 재료들이 제공되고 저장되는 거시적인 수준에서 재료들이 효과적으로 활용될 수 있는 미시적인 수준까지 크기에 관해 범위 한정될 수 있는, 다양한 구성요소 및 구성요소들 사이의 인터페이스들을 통해 고온 유체들 및/또는 고압 유체들을 유동시키는 것을 포함한다. 하나 이상의 밀봉부재가 유체 누설을 방지하기 위해 이러한 인터페이스들에 제공될 수 있을 것이다.
유기 증기 제트 프린터들을 위한 인쇄 헤드는 때때로, 시간의 흐름에 따른 마모, 손상 또는 일부 다른 이유로 인한 교체를 요구한다. 그러한 인쇄 헤드들은 전형적으로 접착제를 사용하여 고정체(fixture)에 직접적으로 부착되고 밀봉되며, 여기서 고정체는 인쇄 공정에 사용되는 고온 기체들의 소스이다. 접착제는 고온에서 접합 강도를 유지할 수 있는 에폭시 또는 유사한 접착제일 수 있을 것이다. 접착식으로 부착되는 인쇄 헤드를 교체하기 위해, 접착성 접합이 부서져야 한다. 이는 종종, 다른 인쇄 헤드 부착을 위한 준비에서 고정체 장착 표면의 모래 분사(sand-blasting) 또는 다른 연마재 클리닝(other abrasive cleaning)이 뒤따르게 되는, 고정체로부터 접착제 및/또는 인쇄 헤드를 도려내는 것(chiseling) 또는 그렇지 않은 경우 파괴적으로 제거하는 것을 요구한다.
본 발명의 일 양태에 따르면, 고정체로부터의 유체를 받아들이기 위한 미세유체 디바이스가 제공된다. 미세유체 디바이스는, 유체 배출 포트를 포함하는 표면을 구비하는 금속 플레이트 및 유입측면과 반대편의 배출측면을 구비하는 유리층을 포함한다. 유리층은, 유입측면이 금속 플레이트의 표면에 접합되고, 그를 통한 유체 유동을 허용하도록 유리층의 유입측면과 배출측면을 상호연결하는, 유체 통로를 구비한다. 유리층 유체 통로의 적어도 일부분은 금속 플레이트의 유체 배출 포트의 적어도 일부분과 정렬되며, 그로 인해 금속 플레이트의 유체 배출 포트에서 나오는 가압 유체가 유체 통로로 진입할 수 있도록 하고 유리층의 배출측면과 연통될 수 있도록 한다. 미세유체 디바이스는 또한 유입측면을 구비하는 미세가공 다이를 포함한다. 다이는, 유입측면이 유리층의 배출측면에 접합되고, 그를 통한 유체 유동을 허용하는 유체 통로를 포함한다. 다이의 유체 통로의 적어도 일부분은 유리층의 유체 통로의 적어도 일부분과 정렬되며, 그로 인해 유리층의 배출측면과 연통되는 가압 유체가 다이의 유체 통로로 진입할 수 있도록 한다. 유리층은 양극 접합을 경유하여 금속 플레이트에 직접적으로 접합된다. 일부 실시예에서, 유리층은 또한, 미세유체 디바이스가 이중 양극 접합을 포함하도록, 제2 양극 접합을 경유하여 다이에 직접적으로 접합될 수 있다.
본 발명의 다른 양태에 따르면, 압력 하에서 고온 기체들을 공급하기 위한 유체 배출 포트들을 구비하는 고정체 및 고정체에 체결되는 금속 플레이트를 포함하는, 유기 증기 제트 인쇄 디바이스가 제공된다. 금속 플레이트는, 고온 기체들을 받아들이기 위해 고정체의 유체 배출 포트들 중 하나와 각각 정렬되는, 유체 유입 포트들을 포함한다. 인쇄 디바이스는 또한, 인쇄 디바이스 밖으로의 고온 기체들의 누설을 방지하기 위해 고정체 배출 포트들과 플레이트 유입 포트들의 인터페이스에 위치하게 되는, 밀봉부재를 포함한다. 인쇄 디바이스는 부가적으로, 금속 플레이트에 접합되고 다이의 유체 유입 포트들과 유체 연통되는 유체 유입 포트들 및 노즐들을 구비하는, 실리콘 기반 다이를 포함한다. 금속 플레이트는 또한, 금속 플레이트의 유입 포트들과 유체 연통되며 다이의 유체 유입 포트들과 유체 연통되는, 유체 배출 포트들을 포함하여, 고온 기체들이 고정체로부터, 밀봉부재를 통해, 금속 플레이트를 통해 그리고 실리콘 기반 다이의 노즐들로 안내될 수 있도록 한다.
본 발명의 다른 양태에 따르면, 이중 양극 접합을 형성하기 위한 방법이 제공된다.
방법은, (a) 유리 플레이트를 실리콘 기반 플레이트 및 금속 플레이트 중 하나와 함께, 각 플레이트의 평평한 표면들이 인터페이스에서 서로 접촉하도록, 적층하는 단계; (b) 적층된 플레이트들을 가로질러 전압을 인가함에 의해 인터페이스에 양극 접합을 형성하는 단계; (c) 실리콘 기반 플레이트 및 금속 플레이트 중 다른 하나를 접합된 플레이트들과 함께, 유리 플레이트가 실리콘 기반 플레이트와 금속 플레이트 사이에 놓이도록, 적층하는 단계; 및 (d) 이중 양극 접합을 형성하도록 적층된 금속 플레이트, 유리 플레이트 및 실리콘 기반 플레이트를 가로질러, 전압의 극성이 (b) 단계에서 접합되는 플레이트들에 대해 (b) 단계에서 인가되는 전압과 역전되는, 전압을 인가하는 단계를 포함한다.
본 발명의 바람직한 예시적인 실시예들이, 동일한 지시가 동일한 요소들을 표시하는, 이하에서 첨부되는 도면과 함께 설명될 것이다.
도 1은, 고온 기체들을 디바이스에 공급할 수 있는 고정체로부터 분리된 미세유체 인쇄 헤드 구성요소들을 도시하는, 일 실시예에 따른 유기 증기 제트 인쇄(OVJP) 조립체의 부분들에 대한 부분적 분해 도면;
도 2는 일 실시예에 따른 고정체에 제거가능하게 체결되는 미세유체 인쇄 헤드를 포함하는, 도 1의 OVJP 조립체의 조립된 부분의 단면도;
도 3은 일 실시예에 따른 양극 접합 공정을 받는 유리 플레이트 및 실리콘 기반 플레이트의 단면도;
도 4는 일 실시예에 따른 이중 양극 접합 공정을 받는 도 3의 플레이트들의 단면도;
도 5는 양극 접합을 위한 준비 이후에 금속 플레이트의 접합 표면의 원자간력 현미경 사진;
도 6은 유리 플레이트의 반대편 표면이 실리콘 기반 플레이트에 양극식으로 접합된 이후에, 유리 플레이트의 표면의 원자간력 현미경 사진; 및
도 7은 RCA 클리닝 공정 이후에 도시되는 도 6의 유리 플레이트의 표면의 원자간력 현미경 사진이다.
도 1은, 고온 기체들을 디바이스에 공급할 수 있는 고정체로부터 분리된 미세유체 인쇄 헤드 구성요소들을 도시하는, 일 실시예에 따른 유기 증기 제트 인쇄(OVJP) 조립체의 부분들에 대한 부분적 분해 도면;
도 2는 일 실시예에 따른 고정체에 제거가능하게 체결되는 미세유체 인쇄 헤드를 포함하는, 도 1의 OVJP 조립체의 조립된 부분의 단면도;
도 3은 일 실시예에 따른 양극 접합 공정을 받는 유리 플레이트 및 실리콘 기반 플레이트의 단면도;
도 4는 일 실시예에 따른 이중 양극 접합 공정을 받는 도 3의 플레이트들의 단면도;
도 5는 양극 접합을 위한 준비 이후에 금속 플레이트의 접합 표면의 원자간력 현미경 사진;
도 6은 유리 플레이트의 반대편 표면이 실리콘 기반 플레이트에 양극식으로 접합된 이후에, 유리 플레이트의 표면의 원자간력 현미경 사진; 및
도 7은 RCA 클리닝 공정 이후에 도시되는 도 6의 유리 플레이트의 표면의 원자간력 현미경 사진이다.
예시된 실시예는 그러나, 여기서의 개시로부터 이익을 얻을 수 있는 미세유체 운반 시스템의 일 예로서, 유기 증기 제트 인쇄(OVJP)에 관한 것이다. 아래에 설명되는 구성들 및 방법들을 활용하여, 미세유체 디바이스들은 용이하게 교체할 수 있도록 또는 교환할 수 있도록 제작될 수 있으며, 따라서 예를 들어 인쇄 헤드들과 같은 마모된 디바이스들이 용이하게 교체될 수 있거나, 따라서 동일한 유체 공급원 또는 소스로부터의 상이한 유체들이, 디바이스 내부에 형성되는 하나 이상의 유체 회로를 따르는 기판 또는 다른 구성요소 상으로의 미세증착을 위해 유체들의 상이한 혼합물들을 운반하도록, 상이한 방식으로 혼합될 수 있도록 한다. 이러한 유연성은, 유리의 반대편 측면들 또는 디바이스의 다른 층 상에서 탁월한 계면 밀봉을 제공할 수 있는, 이중 양극 접합 기술의 발전에 의해 부분적으로 가능해진다. 첨부된 도면들은 반드시 축적에 맞아야 하는 것은 아니며, 그리고 도시된 임의의 교차 해칭은 상이한 구성요소들 사이에서의 구별의 명확함을 위해 제공되는 것으로서 각 구성요소와 함께 사용될 수 있는 재료들의 유형을 제한하기 위한 의도가 아니라는 것을 알아야 한다.
도 1을 참조하면, 미세유체 운반 시스템이 OVJP 인쇄 디바이스(10)의 형태로 도시된다. 예시된 디바이스(10)는 고정체(12) 및 고정체에 부착하기 위한 (분해 도면으로 도시된) 미세유체 디바이스(14)를 포함한다. 미세유체 디바이스(14)는 예시된 실시예에서 미세유체 인쇄 헤드이다. 고정체(12)는, 임의의 수의 형태들 또는 구성들로 제공될 수 있고, 일반적으로 고정체에 부착될 때 미세유체 디바이스(14)에 하나 이상의 유체를 제공하는 임의의 구성요소로서 설명될 것이다. 예시된 실시예에서, 고정체(12)는, 부착되는 미세유체 디바이스(14)로 고온 및/또는 고압 기체들 또는 다른 유체들을 운송 또는 운반하기 위한 여러 개의 도관들(22) 및 포트들(24)과 더불어, 내부에 형성되는 유체 배출 포트들(18) 및 부착 형상부들(attachment features)(20)을 구비하는 장착 표면(16)을 포함한다. 예를 들어, 도관들(22)로 공급되는 유기 재료들 및 도관들(22)은 유기 재료들을 기화하기 위해 가열될 수 있을 것이다. 동일한 또는 상이한 유기 재료들이 각각의 개별적인 도관(22)에 배치될 수 있다. 일 예에서, 반도체 주 재료(host material)가 하나의 도관에 배치될 수 있고 반도체 불순물(dopant)이 상이한 도관에 배치될 수 있을 것이다. 포트들(24)은, 유기 재료들과 반응하지 않는 질소 또는 다른 기체와 같은, 운반 기체를 인쇄 조립체(10)로 도입하기 위해 사용될 수 있을 것이다. 운반 기체는 도관들(22)을 통해, 그 내부에서 생성되는 증기와 혼합하기 위해 그리고 인쇄 헤드(14)로 유기 증기를 운반하기 위해, 흐른다. 예시된 실시예에서, 고정체(12)는 고온 기체들을 배출 포트들(18)을 통해 인쇄 헤드(14)로 운반한다. 고정체(12)는 물론, 여기에 도시되거나 설명되지 않는, 임의의 수의 다른 구성요소들을 포함할 것이다. 예시적인 OVJP 디바이스들, 구성요소들, 및 그들의 작동에 대한 더욱 상세한 설명이, 그의 전체 내용이 참조로 여기에 통합되는, 미국 특허공개번호 제2010/0245479A1호 및 제2010/0247766A1호에서 확인될 수 있다.
인쇄 헤드(14)는 OVJP 조립체(10)의 단부에 위치하는, 일 단부에서 고정체(12)로부터 하나 이상의 유체를 받아서 일반적으로 미크론 단위(예를 들어, 대략 1 내지 500㎛)인 개구부들 또는 채널들을 통해 반대편 단부에 유체(들)를 운반하는, 구성요소이다. 도면들에 도시된 바와 같이, 인쇄 헤드(14)는 금속 플레이트(26), 유리층(28) 및 미세가공 다이(30)를 포함할 것이다. 설명될 것으로서, 이러한 구성요소들은 각각, 유입측면과 배출측면 및, 구성요소의 유입측면과 배출측면을 상호연결하도록 구성요소 내에 형성되는, 하나 이상의 유체 통로를 포함한다. 각 유체 통로는 하나 이상의 포트와 유체 연통상태에 있고, 각 구성요소들은 하나 이상의 포트들을 경유하여 서로 유체 연통상태에 있다. 특정 유체 통로들은 하나 이상의 노즐을 포함할 수 있고, 유체 통로에 대한 일부 실시예가 이하에 설명될 것이다. 상세한 노즐 구성들, 치수들, 및 인쇄 헤드와 그의 다양한 구성요소들의 제조 방법을 포함하는, 예시적인 인쇄 헤드 구성요소들에 대한 더욱 상세한 설명이 또한, 이상에서 참조로 통합되는 미국 특허공개 문헌들에서 확인될 수 있을 것이다.
인쇄 헤드(14)는, 인쇄 헤드(14)가 배출 포트들(18)을 통해 고정체(12)로부터 유체를 받을 수 있도록, 고정체(12)에 부착될 것이다. 예시된 실시예에서, 나사가공 체결부재들(32)(단지 하나만 도 1에 도시됨)이 고정체(12)에 인쇄 헤드(14)를 제거가능하게 체결하기 위해 포함된다. 더욱 구체적으로, 체결부재들(32)은, 금속 플레이트(26) 내에 관통하도록 형성되는, 부착 형상부들(34)을 통과하고, 고정체(12)의 장착 표면에 형성되는, 부착 형상부(20) 속으로 더 들어간다. 여기서 사용되는 바와 같은, 부착 유형 또는 체결부재를 설명하기 위해 사용되는 바와 같은, 용어 "제거가능한" 및 그의 파생어들은, 부착이 의도적으로, 부착 및 부착된 구성요소의 실질적인 손상 또는 변형을 야기함 없이 부착이 해제되거나 반전될 수 있도록, 구성된다는 것을 지시한다. 임의의 제거불가능한 부착은 영구적인 부착으로 언급될 수 있을 것이다. 스냅 끼워맞춤 형상부들, 압입 끼워맞춤 형상부들, 클램프들, 클립들, 자석들, 등과 같은, 다른 적당한 부착 형상부들이, 고정체(12)에 인쇄 헤드(14)를 제거가능하게 부착하기 위해 사용될 수 있을 것이다. 이러한 경우에, 부착 형상부들(20, 34)은, 그들의 개별적인 구성요소 내에 형성되고 체결부재(32)를 수용하도록 정렬되는, 나사가공되거나 나사가공되지 않은 관통홀들 또는 관통구멍들이다. 여기서 사용되는 바와 같은, 임의의 부착 또는 접합은, 부착되는 구성요소들이 물리적으로 서로 접촉하는, 직접적인 부착 또는, 부착되는 구성요소들이 이들 사이에 위치하게 되는 하나 이상의 구성요소들의 적어도 부분들을 구비하는, 간접적인 부착일 것이다. 예를 들어, 인쇄 헤드(14)가 고정체(12)에 조립될 때, 미세가공 다이(30)가 고정체에 부착될 것으로 - 더욱 구체적으로 간접적으로 부착될 것으로 - 생각된다.
도 2를 참조하면, 고정체(12)에 제거가능하게 체결되는 인쇄 헤드(14)가 도시된다. O-링 밀봉부재(15)와 같은 하나 이상의 밀봉부재가, 인쇄 헤드들로부터의 고온 기체들 또는 다른 유체들의 누설을 방지하기 위해, 금속 플레이트(26)와 장착 표면(16)의 인터페이스에 제공된다. 분리된 O-링 밀봉부재들이 각각의 유체 배출 포트들(18) (및 금속 플레이트(26)의 상응하는 유입 포트들) 둘레에 위치하게 되는 이러한 특정의 실시예에서, 밀봉부재들은 인쇄 헤드로부터 유체들이 누설되는 것을 방지할 뿐만 아니라, 개별적인 유체 소스 또는 헤드와 고정체의/포트와 포트의 인터페이스들로부터 유체들이 누설되는 것을 방지하는 역할을 한다. 이러한 예에서, 장착 표면(16)은, 조립 도중에 O-링(15)을 위치시키는 것을 돕기 위해 내부에 그 형성되는, 밀봉 형상부(25)[예를 들어, 도시된 바와 같은 카운터 보어(counter-bore)]를 더 포함한다. 밀봉 형상부들은 부가적으로 또는 선택적으로 금속 플레이트(26)의 상응하는 부분에 형성될 수도 있을 것이다. 일 실시예에서, 밀봉 형상부들은 오목한 형상부들 대신에 볼록한 형상부일 수 있을 것이고, 또는 플레이트(26)가 장착 표면(16) 상에 또는 내에 형성되는 상응하는 형상부들 속으로 또는 둘레에 끼워맞춤되는 형상부들을 구비할 수도 있을 것이다. 일부 경우에서, 밀봉 형상부는, 적당한 표면 마감, 재료, 및/또는 밀봉 접촉 영역이 이용가능한 밀봉부재로서, 두 겹이 될 수도 있을 것이다. 압축성 O-링 밀봉부재들(15)을 포함하는 실시예들에서, 고온 안정성으로 인해 플루오르 탄성중합체 재료들이 적당할 수 있을 것이다. 퍼플루오르 탄성중합체들은, 플레이트와 고정체의 인터페이스에서의 사용에 적당할 수 있는, 플로오로 탄성중합체의 일 유형이다. 듀폰사로부터 입수할 수 있는 칼레즈(Kalrez) 퍼플루오르 O-링들은 밀봉부재들(15)로서의 사용에 적당할 것이다. 비-유기 재료들이, 바람직하게, 밀봉부재들의 표면들이 플레이트(26) 및 고정체(12)와의 유체 밀봉을 형성하기에 충분히 높은 품질인, 알루미늄 또는 스테인리스강과 같은 연성 금속들이, 또한 밀봉부재들(15)을 제조하기 위해 사용될 수 있을 것이다.
지금부터 도 1 및 도 2를 참조하면, 금속 플레이트(26)에 부착되는 미세가공 다이(30)가 도시된다. 이러한 실시예에서, 다이(30)는, 금속 플레이트(26)와 다이(30) 사이에 놓이는, 유리층(28)을 경유하여 금속 플레이트(26)에 간접적으로 부착된다. 일 실시예에서, 금속 플레이트(26)와 유리층(28) 사이에 형성되는 인터페이스에서의 직접적인 부착은 영구적 접합(36)이며, 유리층(28)과 미세가공 다이(30) 사이에 형성되는 인터페이스에서의 직접적인 부착은 영구적 접합(38)이다. 직접적인 영구적 접합들은, 양극 접합, 금 확산 용접, 천이 액상 접합(transient liquid phase bonding), 특정 접착제들의 도포 또는, 또한 접합에 유체 밀봉을 형성할 수 있는, 다른 적당한 기술들에 의해, 인접한 구성요소들 사이에 형성될 수 있을 것이다. 일 실시예에서, 접합들(36, 38)은, 모두 양극 접합들이며, 금속 플레이트(26) 및 다이(30)에 유리층(28)의 대향하는 측면들을 접합하는 이중 양극 접합을 함께 형성한다.
금속 플레이트(26)는, 고정체(12)와 더욱 부서지기 쉬운 유리층(28) 또는 다이(30) 사이의 접합을 부술 필요 없이 다이(30)가 고정체로부터 용이하게 제거될 수 있도록 미세가공 다이(30) 및/또는 유리층(28)이 자체에 부착될 수 있는, 구성요소이다. 달리 표현하면, 제거가능한 인쇄 헤드(14)가 고정체(12)로부터 분리될 때, 금속 플레이트(26)는 인쇄 헤드(14)와 함께 머무른다. 앞서 설명된 요소들에 부가하여, 예시된 실시예에서의 금속 플레이트(26)는 유입측면(40), 배출측면(42) 및 적어도 하나의 유체 통로(44)를 포함한다. 이러한 실시예에서 유입측면(40)은 고정체(12)에 가장 가까운 플레이트(26)의 표면이고, 배출측면(42)은 유입측면 반대편의 표면이다. 유체 통로(44)는 플레이트(26)의 유입측면과 배출측면을 유체 상호연결하여, 유체가 유입측면과 배출측면 사이에서 그리고 플레이트(26)를 통해 흐를 수 있도록 한다. 각 유체 통로(44)는 유입측면(40)의 유체 유입 포트(46)와 배출측면(42)의 유체 배출 포트(48: 도 1 참조)를 상호연결한다. 이러한 경우에, 각 유체 통로(44)는 포트들(46, 48)과 정렬 상태에 있는 축 방향의 직접 관통 통로이다. 여기서 사용되는 바와 같은, 포트들은, 구성요소 외부의 위치로부터의 구성요소 내에 형성되는 통로로의 및 통로로부터의 유동 접속을 제공하며 그리고 내부에 통로가 형성되는 구성요소의 표면(즉, 통로와 구성요소 표면의 교차부)에 한정되는, 개구부들이다. 유체 통로(44)를 갖는 경우와 같은 일부 경우에, 포트들(46, 48)은, 실질적으로 동일한 크기이며, 통로의 나머지 부분과 정렬된다. 이는 또한, 세장형 슬롯이 인쇄 헤드의 플레이트 또는 층을 완전히 관통하여 형성되는, 경우일 수 있을 것이다. 다른 경우에서, 포트는, 유체 통로가 구성요소 내부에서 방향을 변경하는, 구성요소 내에 형성되는 유체 통로로의 접속을 제공할 것이다.
금속 플레이트(26)는, 철-니켈-코발트 합금, 티타늄 또는, 충분히 낮은 및/또는 일정한 열팽창 계수를 구비하는, 다른 금속을 포함하는, 다양한 재료로 제작될 수 있을 것이다. 특히, 유리층(28)의 열팽창 계수와 조화를 이루는 열팽창 계수들을 갖도록 조제되는 합금들이 바람직하다. 금속 플레이트(26) 용도에 적당한 철-니켈-코발트 합금이 상표명 코바(Kovar)로 입수 가능하다. 플레이트(26)를 제작하기 위해 사용되는 금속은, 사용 도중의 더욱 균일한 팽창 및 수축을 위해 플레이트(26)의 내부 응력을 최소화하도록, 열간 압연 및/또는 어닐링될 수 있을 것이다. 금속 플레이트(26)는 약 1mm 내지 약 3mm 또는 보다 큰 두께의 범위일 것이다. 양극 접합이 금속 플레이트(26)의 표면에 구성요소들을 결합하기 위해 사용되는 경우에, 낮은 표면 거칠기가 더 좋은 결합 표면[이 경우에, 배출측면(42)]은, 평균 또는 RMS 표면 거칠기가 약 20nm 이하가 되도록, 표면을 처리함에 의해 접합을 위해 준비되는 것이 바람직하다. 연마 클리닝, 혁신적으로 더욱 미세한 폴리싱 및 산세척(pickling)의 조합이 접합을 위해 적당히 낮은 표면 거칠기를 달성할 수 있도록 한다.
유리층(28)은, 금속 플레이트(26)와 미세가공 다이(30) 사이에 놓이는 층이며, 플레이트(26)와 다이(30) 사이에서 단열재로서 역할을 할 것이다. 일부 실시예에서, 유리층은 대안적으로 그의 하나 이상의 가능한 기능을 설명하기 위해, 단열층, 채널층 또는 유체회로층으로 알려질 수도 있으며, 숙련된 기술자들은 유리와 다른 재료들을 활용하는 제작을 고안할 수도 있을 것이다. 예시된 실시예에서, 유리층(28)은 유입측면(50), 배출측면(52) 및 적어도 하나의 유체 통로(54)를 포함할 것이다. 이러한 실시예에서 유입측면(50)은 고정체(12)에 가장 가까운 층(28)의 표면이며, 배출측면(52)은 유입측면 반대편의 표면이다. 유체 통로들(54)은 층(28)의 유입측면과 배출측면을 유체 상호연결하여, 유체가 유입측면과 배출측면 사이에서 그리고 층(18)을 관통하여 흐를 수 있도록 한다. 각 유체 통로(54)는 유입측면(50)의 유체 유입 포트(56)와 배출측면(52)의 적어도 하나의 유체 배출 포트(58)를 상호연결한다. 이러한 경우에, 유리층(28)의 유체 유입 포트들(56)은 금속 플레이트의 유체 배출 포트들(48)과, 이들이 동일한 크기이고 서로 정렬되며 그리고 대향하는 표면들을 통해 밀접한 접촉 상태로 형성됨에 따라, 일치한다. 그러나, 항상 모든 실시예에서의 경우는 아닐 것이다. 또한 이러한 예에서, 유체 배출 포트들(58)은 유리층 단독으로 한정되지 않는 반면, 층(28)의 개방된 유체 통로(54)와의 다이(30)의 유입 포트들(30)의 인터페이스에 의해 한정된다. 도 2를 참조하면, 유체 통로(54)는 부분적으로 유리층의 배출측면(52)의 표면을 따라 형성되는 채널로 한정된다. 다이(30)와 조립되지 않았을 때, 통로들(54)은 폐쇄된 통로들이 아니며, 대신에 이들은 이들의 길이를 따라 개방된다. 통로들(54)은 도 1에서 유리층(28)의 배출측면(52) 상의 선들로 나타난다. 통로들(54)의 각각의 가시적 부분의 단부들은 유입 포트들(56)의 위치들을 나타낸다.
도 1 및 도 2를 다시 참조하면, 도 1은 유리층(28)의 배출측면에 형성되는 복수의 유체 통로(54)를 도시하고, 도 2는 단일 통로(54)를 관통하는 단면도이다. 도 2에 도시된 유체 통로(54)는, 도 2에서 별개의 도관들(22, 22')로 나타나는 상이한 유체 소스들과 개별적으로 유체 연통되는 2개의 유체 유입 포트가 연결됨에 따라, 혼합 챔버의 예이다. 유리층(28) 내의 하나 이상의 유체 통로(54)는 대안적으로, 다이(30)의 2 이상의 분리된 유입 포트들로 공급하도록, 고정체(12)의 동일한 도관(22)으로부터의 유체 유동을 분할할 수도 있을 것이다. 하나 이상의 유체 통로들은 또한, 자체를 통과하여 흐르는 유체를 합치지도 않고 분할하지도 않을 수도 있을 것이다. 따라서, 여러 개의 유체 통로(54) 구성들이, 들어오는 유체들을 분배 및/또는 혼합하도록 하기 위해 또는 들어오는 유체들을 요구에 따라 배출측면(58)으로 직접적으로 통과하도록 허용하기 위해, 유리층(28)에 사용될 수 있을 것이다. 다수의 분리된 유체 통로(54)가 적어도 부분적으로, 어떻게 들어오는 유체들이 인쇄 헤드(14)에서 나오기 이전에 처리될 것인지를 결정하는, 유체 회로들을 한정할 수 있을 것이다. 일 실시예에서, 다수의 분리된 유체 통로(54)는, 주 재료가 분리된 통로들 각각에서 상이한 불순물과 혼합되도록, 구성될 수 있을 것이다. 이는, 결과적으로 생성되는 OLED들에 의해 방출되는 빛의 색상에서의 그들의 영향을 위해 선택되는 개별적인 불순물들이 인쇄 헤드 내부에서 동일한 주 재료와 또는 상이한 주 재료들과 혼합되는, 복수 색상 OLED 인쇄 헤드의 제조를 위해 유용할 것이다. 다른 예에서, 하나의 제거가능한 인쇄 헤드가, 특정 색상의 빛을 방출하는 OLED를 패터닝 또는 인쇄하기 위해 유기 반도체 주 재료를 하나의 유형의 불순물과 혼합하는, 유체 회로를 포함할 것이다. 그러한 특정 인쇄 헤드는, 제거될 수 있을 것이고, 유리층의 상이한 유입 포트를 주 재료가 흐르는 유입 포트와 유체 연결함에 의해 상이한 색상의 빛을 방출하는 OLED를 패터닝 또는 인쇄하도록, 동일한 주 재료를 상이한 유형의 불순물과 혼합하는 유체 회로를 포함하는 상이한 인쇄 헤드로 교체될 수 있을 것이다. 또한, 유사한 혼합 챔버들 또는 유동 분할기가 다이(30)의 유입 표면에 형성되도록 또는 상보적 형상부들이 다이(30)의 유입 표면 및 유리층(28)의 배출측면(52) 모두에 형성되도록 할 수 있다. 유리층(28)은 파이렉스(Pyrex)와 같은 붕규산 유리(borosilicate glass)로 또는 가열된 고정체를 다이(30)로부터 절연하는 것을 돕기 위한 다른 유형의 단열 유리 재료들로 제작될 수 있을 것이다. 유리는 요구되는 양극 접합을 용이하게 하기 위해 고용체(solid solution) 내에 이온 알칼리 금속 산화물 화합물(ionic alkali metal oxide compound)을 포함하는 것이 바람직하다. 일 실시예에서, 유리층(28)은 약 500㎛의 두께이고, 유리층의 표면에 형성되는 채널들은 약 100 내지 200㎛의 깊이일 것이다. 물론 이러한 값들은 비제한적이며, 단지 하나의 특정 실시예를 설명할 목적으로 그리고 미세유체 디바이스들의 대략적인 크기 규모의 시현을 위해 개시된다.
미세가공 다이(30)는, 유체를 받아서 궁극적으로 기판 또는 다른 구성요소 상으로 또는 이들을 향해 증착하거나 그렇지 않으면 살포하는, 구성요소이다. 용어 "미세가공"은, 다이의 일부 형상부들이 형성되는 치수적 규모를 언급한다. 다이(30)의 특정 형상부들은 약 1㎛ 내지 500㎛의 치수 범위일 수 있으며, 특정 유체 통로 형상부들은 대략 10 내지 100㎛ 범위 이내의 치수들을 구비할 것이다. 인쇄 헤드(14)의 다른 층들과 마찬가지로, 미세가공 다이(30)는 유입측면(60), 배출측면(62) 및, 다이(30)의 유입측면과 배출측면을 유체 상호연결하는, 적어도 하나의 유체 통로(64)를 포함한다. 더욱 구체적으로, 유동 통로들(64)은 유입 포트들(65)[유리층(28)의 배출 포트들(58)과 일치함]과 배출 포트들(66)을 유체 상호연결한다. 각각의 유동 통로(64)는, 자체의 상응하는 유입 포트(65)와 비교하여 감소된 단면적을 구비하는, 노즐(68)을 포함할 것이다. 이미 공지된 바와 같이, 가능한 노즐 구성들의 일부 및 하나 이상의 노즐을 포함하는 미세가공 다이를 제작하는 방법이, 앞서 참조로 통합된 미국 특허공개 문헌들에 더욱 상세하게 개시된다. 다수의 노즐이 노즐 배열을 한정하기 위해 다이(30)를 가로지르는 패턴에서 함께 그룹화될 것이다. 각각의 노즐이 동일한 또는 상이한 기화된 유기 재료들의 혼합물을 받아들이거나, 노즐들의 일부가 재료들의 동일한 제1 혼합물을 받아들이고 나머지 노즐들이 재료들의 동일한 제2 혼합물을 받아들일 것이며, 이들 모두 유체 회로의 구성에 의존한다. 일 실시예에서, 다이(30)는, 실리콘 또는 실리콘 기반 재료(자체의 주 구성성분으로 실리콘을 구비하는 재료)로 제작될 수 있을 것이고, 실리콘 기반 플레이트로 언급될 수 있을 것이다. 뿐만 아니라, 적당한 처리 기술들이 미세가공을 달성하기 위해 이용될 수 있는, 금속 또는 세라믹 재료들이 사용될 수 있을 것이다.
이상에서 설명된 바와 같이 구성되는 유기 증기 제트 인쇄 헤드(14) 또는 다른 미세유체 디바이스는, 교체 도중에 자체의 부착을 포함하는, 임의의 구성요소를 물리적으로 부수거나 손상시킬 필요 없이 인쇄 헤드 교체를 허용할 수 있다. 또한, 상이한 인쇄 헤드가 부착되기 이전에, 인쇄 헤드가 부착되는 고정체의 장착 표면을 재생할 필요를 감소시키거나 제거한다. 상기한 인쇄 헤드 구성들은 교환가능성의 부가적인 장점을 제공하여, 인쇄 헤드가, 자체의 가용 수명의 끝에 도달되기 이전에, 제거될 수 있고 다른 인쇄 헤드로 교환될 수 있으며, 이어서 이후의 추가적인 사용을 위해 재설치될 수 있도록 한다. 예를 들어, 상이한 인쇄 라인 간격, 상이한 노즐 형상들, 상이한 노즐 배열 패턴들 및/또는, 동일한 소스 재료들을 상이하게 혼합하는, 상이한 유체 회로를 구비하는 인쇄 헤드들이, 용이하게 서로 교체될 수 있을 것이다. 부가적으로, 구성요소들 사이의 여러 인터페이스들에서의 유기 접착 재료들의 부존재는, 이러한 유형의 재료들이 고온에서 기체를 배출하거나 기화될 수 있고 잠재적으로 인쇄 헤드를 통과하여 흐르는 유체를 오염시킬 수 있음에 따라, 유익할 것이다.
도 3 및 도 4를 참조하여, 지금부터 이중 양극 접합을 형성하는 예시적인 방법이 설명될 것이고, 이 방법은 도 1 및 도 2의 실시예를 제작하기 위해 또는 미세유체 디바이스 또는 다른 디바이스에 대한 하나 이상의 다른 실시예를 제작하기 위해 사용될 것이다. 일 실시예에 따르면, 방법은 일반적으로 적어도 양 전극 및 음 전극을 사용하여 플레이트 적층체를 가로질러 전압을 인가하는 단계를 포함하며, 여기서 음 전극은 플레이트 적층체의 실리콘 기반 플레이트와 접촉한다. 이러한 방법 단계는, 음 전극이 아니라 전압 소스로부터의 양 전극이 일반적으로 실리콘 웨이퍼와 접촉하는, 실리콘 웨이퍼에 대한 전형적인 양극 접합 공정들에 배치된다. 아래에 설명되는 특정 실시예에서, 방법은, 금속 플레이트(126), 유리 플레이트(128) 및 실리콘 기반 플레이트(130)를 포함하는, 도 1 및 도 2에서와 같은 3개의 플레이트의 플레이트 적층체를 제공하는 것을 포함한다. 유리 플레이트(128) 및 실리콘 기반 플레이트(130)와 같은 2개의 플레이트는, 플레이트 적층체를 가로질러 인가되는 전압을 사용하여 적당한 방법으로 형성되는 양극 접합을 경유하여 함께 접합될 수 있고, 이어서 제3의 플레이트가 유리 플레이트의 남아있는 노출된 측면 상에 적층된다. 이어서, 세 번째 플레이트[예를 들어, 금속 플레이트(126)]와 유리 플레이트(128) 사이의 접합인, 두 번째 양극 접합이, 첫 번째 양극 접합을 형성하기 위해 사용되는 전압과 반대인 극성을 갖는 전압을 인가함에 의해, 형성된다. 이러한 방법 단계는, 플레이트 적층체의 실리콘 기반 플레이트에 음 전극 측의 전위를 인가하는 것 이전에 및/또는 이후에 실행되는, 부가적인 단계들을 구비하는 공정의 일부일 수 있을 것이다.
더욱 구체적으로, 도 3에 도시된 바와 같이, 유리 플레이트(128)는 도시된 바와 같이 실리콘 기반 플레이트(130)와 함께, 각 플레이트의 표면들이 인터페이스(138)에서 서로 대향하도록, 적층될 것이다. 전압(V1)이, 실리콘 기반 플레이트(130)와 접촉하는 양 전극(또는 캐소드)(100) 및 유리 플레이트(128)와 접촉하는 음 전극(어노드)(200)에 의해, 적층된 플레이트들을 가로질러 인가될 것이다. 인가되는 전압은 약 1000V 또는 약 800V 내지 1200V 사이일 수 있을 것이다. 더 높은 전압은, 더 빠른 양극 접합을 인터페이스에 형성할 것이다. 뿐만 아니라, 온도, 챔버 압력, 및 적층된 플레이트들의 반대편 측면들에 인가되는 압력 또는 클램핑력과 같은, 다른 전형적인 양극 접합 공정 매개변수들이 제어될 수 있을 것이다. 인터페이스(138)에서의 충분히 강한 양극 접합이 약 1000V의 전압에서 약 5 내지 10분 내에 형성될 수 있을 것이다.
도 4에 도시된 바와 같이, 금속 플레이트(126)가 이어서, 금속 플레이트(126)의 표면이 인터페이스(136)에서 유리 플레이트(126)의 노출된 표면과 대향하도록, 양극식으로 접합된 유리 플레이트(128) 및 실리콘 기반 플레이트(130)와 함께 적층된다. 이상에서 설명된 바와 같이, 유리 플레이트(128)와 접합될 금속 플레이트(126)의 표면은 금속 플레이트 접합 표면의 표면 거칠기가 충분히 낮은 것을 보장함에 의해 접합을 위해 준비될 것이다. 부가적으로, 비록 전형적인 양극 접합 공정들이 유리 플레이트(128)의 표면이 준비될 것을 요구하지 않지만, 일부 표면 준비가 실리콘 기반 플레이트와의 양극 접합이 형성된 이후에 유리 플레이트(128)의 노출된 표면에 대해 필요할 수도 있을 것이다. 양극 접합 공정 도중의 유리 플레이트(128) 내부에서의 이온 이송으로 인해, 표면층 또는 NaO와 같은 알칼리 산화물의 석출물(precipitate)이 유리 플레이트(128)의 노출된 측면에 존재할 수 있을 것이다. 일 실시예에서, RCA 클리닝 공정이 유리 플레이트 상에 금속 플레이트(126)를 배치시키기 이전에 유리 플레이트의 노출된 표면을 세척하기 위해 사용될 수 있을 것이다. 물론, 다른 클리닝 공정들이 사용될 수도 있을 것이다.
도 5 내지 도 7은 양극 접합에서의 사용에 적당할 수 있는 예시적인 금속 플레이트(126) 및 유리 플레이트(128) 표면들을 예시한다. 도 5는 양극 접합을 위해 준비된 금속 플레이트의 하나의 표면의 원자간력 현미경사진(AFM)이다. 도 5에 도시된 특정 금속 플레이트 표면은, 약 14nm의 RMS 표면 거칠기를 달성하도록 어닐링, 연마, 랩핑(lapping), 폴리싱(polishing), 및 산세척 단계들을 포함하는 공정에 의해 준비되었다. 도 6은 반대편 표면이 실리콘 기반 플레이트에 양극식으로 접합된 이후에 유리 플레이트의 노출된 표면의 원자간력 현미경사진이다. 예시된 표면의 RMS 표면 거칠기는 약 3.0 내지 3.5nm이며, 표면을 따라 도시되는 광점들(light spots)은 NaO 석출물들인 것으로 생각된다. 도 7은 RCA 클리닝 절차 이후의 도 6의 유리 플레이트의 노출된 표면의 원자간력 현미경사진이다. 예시된 표면의 RMS 표면 거칠기는 약 3.0 내지 3.5nm이거나, 대략 RCA 클리닝 이전의 거칠기와 동일한 것이지만, 석출물들이 제거되었다.
도 4를 다시 참조하면, 접합된 유리 플레이트(128)와 실리콘 기반 플레이트(130) 및 금속 플레이트(126)를 포함하는 플레이트 적층체가 전극들(100, 200) 사이에 다시 위치하게 되고, 전압(V2)이 인터페이스(136)에 양극 접합을 형성하기 위해 적층체를 가로질러 인가되며, 그로 인해 이중 양극 접합의 형성을 완성한다. 그러나, 이러한 두번째 양극 접합 단계에서, 전압의 극성이 역전된다. 즉, 실리콘 기반 플레이트(130)와 접촉하는 전극이 어노드가 되고, 반대편 전극이 캐소드가 된다. 양극 접합 공정이 유리 표면을 대향하는 표면에 공유결합으로 접합하기 위해 접합 표면으로 산소 음이온들을 이동시키는 것에 의존하기 때문에, 양 전극은 금속 플레이트(126)를 향해 음 이온을 끌어당기도록 배치되어야 한다. 전형적인 양극 접합 공정은 이러한 반대 방향의 전류 흐름에 실리콘과 유리의 인터페이스를 노출시키지 않는다.
제2 양극 접합을 형성하기 위해 전압의 극성이 역전되는 것에 부가하여, 실리콘 기반 재료의 절연 파괴(dielectric breakdown) 및/또는 인터페이스(138)에서의 양극 접합의 부분적 또는 완전한 제거를 회피하도록 하기 위해, 뿐만 아니라 전압(V2)은 전압(V1) 보다 낮을 것이다. 일 실시예에서, 제2 양극 접합 단계에서 플레이트 적층체를 가로질러 인가되는 전압은 약 800V 이하일 것이고, 초기에 인가되는 전압(V2)은 약 500V 이하와 같이 더욱 낮을 것이다. 이중 양극 접합의 제2 접합을 형성하는데 필요한 시간은 따라서 제1 양극 접합을 형성하는데 필요한 시간보다 더 길다. 제2 양극 접합을 형성하기 위한 시간은, 예를 들어 700 내지 800V의 인가 전압에서, 약 30 내지 약 60분의 범위일 것이다.
다른 실시예에서, 전압(V2)은 가변 전압으로 인가된다. 예를 들어, 전압(V2)의 초기값은 약 400V 내지 600V의 범위 이내이며, 최종값은 800V 내지 1000V의 범위 이내일 것이다. 제2 양극 접합의 형성 도중에 전압 증가 속도는 분당 10 내지 20V의 범위 이내일 것이며, 따라서 500V의 시작 전압(V2)으로부터 1000V에 도달하기 위해 약 25 내지 50분이 필요하게 된다. 전압(V2)은 연속적으로 증가하게 될 수도 있고, 또는 불연속적인 단계들에서 증가하게 될 수도 있을 것이다. 제2 양극 접합을 형성하기 위한 전압(V2)의 이러한 점진적인 인가는, 제1 양극 접합 단계로 인한 유리 플레이트 내에서의 이온들의 불균일한 분포를 적어도 부분적으로 균등하게 하기 위한, 시간을 허용하기 위해 고려된다. 전압과 시간의 조합들은 비제한적이며, 특정 재료들 및 접합되는 구성요소들의 크기에 의존하여 변할 수 있을 것이다. 예를 들어, 이상의 범위들은 약 15mm 내지 약 25mm 범위 이내인 자체의 접합 표면들을 가로지르는 직경 또는 평균 폭을 구비하는 플레이트들 또는 층들에 대해 적용가능할 것이다. 일부 실시예들은 하나의 특정 실행에서 약 50 내지 100mm 또는 약 75 내지 80mm의 범위 이내의 직경들 또는 평균 폭들을 구비하는 플레이트들을 접합하는 것을 포함한다. 더 큰 치수들을 구비하는 플레이트들과 함께하는 충분한 접합들을 형성하기 위해 요구되는 시간은, 접합 표면의 증가된 표면적 및 형성될 개별적인 원자 결합의 수의 연관된 증가로 인해, 더 길 것이다.
이상에서 제공되는 미세유체 디바이스 실시예들에서 설명되는 유리층(28)과 같은, 유리 플레이트의 반대편 측면들에 이중 양극 접합을 형성하는 것은 디바이스의 여러 층들 사이의 인터페이스에서 우수한 밀봉들을 허용한다. 양극 접합들은 접합 강도에 거의 영향을 미치지 않고, 전형적으로 대략 300℃ 의, OVJP와 연관되는 높은 작동 온도들을 견딜 수 있다. 부가적으로, 양극 접합은 고분자 또는 다른 유기계열 밀봉제/접착제 재료들에 걸쳐 장점들을 제공할 것이다. 대부분의 유기 재료들은 그러한 높은 작동 온도들에서 파괴되거나 분해되기 시작할 것이다. 고온에서의 용도로 평가되며 그리고 일반적으로 고온에서 화학적 안정성을 유지할 수 있는, 심지어 고분자 재료들도 기체를 배출하는 경향이 있을 수 있다. 즉, 저분자량 물질들, 첨가제들 또는 잔류하는 반응하지 않은 단량체가 재료 밖으로 나올 수 있다. OVJP 적용에서, 이는, 기체 배출되는 유기물들은 기판에 증착되어야 할 증기들과 혼합될 수 있고, 그로 인해 바람직한 유기 재료들을 오염시키며 그리고 결과적으로 생성되는 광전자 디바이스의 성능을 감소시키기 때문에, 특히 해로울 수 있다.
상기한 설명은 본 발명의 하나 이상의 실시예라는 것이 이해되어야 한다. 본 발명은 여기에 개시되는 특정의 실시예(들)에 제한되지 않는 반면, 이하의 오로지 특허청구범위에 의해 한정된다. 나아가, 상기한 설명들에 포함되는 진술들은, 개시된 실시예(들)에 관한 것이며, 용어 또는 구절이 이상에서 표현적으로 한정되는 것을 제외하고, 본 발명의 범위에 대한 또는 특허청구범위에서 사용되는 용어들의 정의에 대한 제한으로서 이해되어서는 안된다. 다양한 다른 실시예들 및 개시된 실시예(들)에 대한 다양한 변화들 및 수정들이 당업자에게 명백해질 것이다.
본 명세서 및 특허청구범위에서 사용되는 바와 같은, 하나 이상의 구성요소들 또는 다른 아이템들의 목록과 함께 사용될 때, 용어들 "예를 들어", "예컨대", "예로서", "와 같은", 및 "등등", 그리고 동사들 "포함하는", "구비하는", "갖는" 및 이들의 다른 동사 형태들은 각각 끝이 열려있는 것으로서 이해되어야 하며, 그 의미는, 목록이, 다른, 부가적인 구성요소들 또는 아이템들을 배제하는 것으로서 생각되어서는 안될 것이다. 다른 용어들은, 상이한 해석을 요구하는 문맥에 사용되지 않는 한, 그들의 가장 넓은 타당한 의미를 사용하는 것으로 이해되어야 할 것이다.
Claims (13)
- 유기 증기 제트 인쇄 디바이스로서,
압력 하에서 고온 기체를 공급하기 위한 개별적인 복수의 유체 통로 및 고정체 부착 형상부를 구비하는 고정체로서, 상기 복수의 유체 통로는, 상이한 불순물(dopant)들을 동일한 주 재료들(host materials)과, 또는 상이한 불순물들을 상이한 주 재료들과 개별적으로 혼합하기 위해 제공되도록 구성되는 것인, 고정체;
상기 고정체에 체결되는 금속 플레이트로서, 상기 금속 플레이트는, 혼합된 불순물 및 주 재료의 고온 기체를 받아들이기 위해 고정체의 복수의 유체 배출 포트와 각각 정렬되는 복수의 유체 유입 포트, 및 상기 고정체 부착 형상부에 상응하는 부착 형상부를 구비하고, 상기 부착 형상부 및 상기 고정체 부착 형상부는 관통홀 또는 관통 구멍이며 체결 부재를 수용하도록 정렬되는 것인, 금속 플레이트; 및
상기 금속 플레이트에 접합되는 실리콘 기반 다이로서, 유체 유입 포트들, 및 상기 다이의 유체 유입 포트들과 유체 연통되는 노즐들을 구비하는, 실리콘 기반 다이
를 포함하고, 상기 금속 플레이트는, 상기 금속 플레이트의 유체 유입 포트와 유체 연통되며 상기 다이의 유체 유입 포트와 유체 연통되는, 유체 배출 포트를 구비하여, 상기 고온 기체가 상기 고정체로부터 상기 금속 플레이트를 통해 상기 실리콘 기반 다이의 노즐들로 안내되는 것인 유기 증기 제트 인쇄 디바이스. - 제1항에 있어서, 상기 금속 플레이트는 상기 고정체에 제거가능하게 체결되며, 상기 실리콘 기반 다이는 상기 금속 플레이트에 영구적으로 접합되는 것인 유기 증기 제트 인쇄 디바이스.
- 제1항에 있어서, 상기 다이와 상기 금속 플레이트 사이에 놓이는 유리층을 더 포함하며,
상기 금속 플레이트는 상기 유리층을 경유하여 상기 다이에 접합되고, 상기 유리층은 이중 양극 접합을 통해 상기 금속 플레이트 및 상기 다이에 직접적으로 접합되는 것인 유기 증기 제트 인쇄 디바이스. - 제1항에 있어서, 상기 인쇄 디바이스 밖으로의 고온 기체의 누설을 방지하기 위해 상기 고정체의 배출 포트와 상기 플레이트의 유입 포트들의 인터페이스에 위치하는 밀봉부재를 더 포함하는 유기 증기 제트 인쇄 디바이스.
- 제1항에 있어서, 분리된 밀봉부재가 상기 금속 플레이트의 각 유체 입구 포트를 둘러싸는 것인 유기 증기 제트 인쇄 디바이스.
- 삭제
- 삭제
- 이중 양극 접합을 형성하는 방법으로서,
(a) 유리 플레이트를 실리콘 기반 플레이트 및 금속 플레이트 중 하나와 함께, 각 플레이트의 평평한 표면들이 인터페이스에서 서로 접촉하도록, 적층하는 단계;
(b) 적층된 플레이트들을 가로질러 전압을 인가함으로써 상기 인터페이스에 양극 접합을 형성하는 단계;
(c) 상기 유리 플레이트가 상기 실리콘 기반 플레이트와 상기 금속 플레이트 사이에 놓이도록, 상기 실리콘 기반 플레이트 및 상기 금속 플레이트 중 다른 하나를 접합된 플레이트들과 함께 적층하는 단계; 및
(d) 이중 양극 접합을 형성하도록, 적층된 금속 플레이트, 유리 플레이트 및 실리콘 기반 플레이트를 가로질러 전압을 인가하는 단계로서, 전압의 극성이 (b) 단계에서 접합되는 플레이트들에 대해 (b) 단계에서 인가되는 전압과 역전되는 것인, 전압을 인가하는 단계
를 포함하는 이중 양극 접합을 형성하는 방법. - 제8항에 있어서, (b) 단계의 양극 접합은 상기 유리 플레이트와 상기 실리콘 기반 플레이트 사이에 형성되고, (d) 단계는 음의 전극을 상기 실리콘 기반 플레이트와 접촉 상태로 배치하는 것을 포함하는 것인 이중 양극 접합을 형성하는 방법.
- 제8항에 있어서, (c) 단계 이전에 RCA 클리닝 공정을 사용하여, 접합된 표면 반대편의 상기 유리 플레이트의 표면을 클리닝하는 단계를 더 포함하는 이중 양극 접합을 형성하는 방법.
- 제8항에 있어서, 상기 금속 플레이트를 상기 유리 플레이트와 접합하기 이전에 접합 표면의 표면 거칠기가 약 20nm 이하가 되도록, 상기 금속 플레이트의 접합 표면을 준비하는 단계를 더 포함하는 이중 양극 접합을 형성하는 방법.
- 제8항에 있어서, (d) 단계에 인가되는 전압은 (b) 단계에 인가되는 전압 보다 낮은 것인 이중 양극 접합을 형성하는 방법.
- 제8항에 있어서, (d) 단계는 인가되는 전압을 점진적으로 증가시키는 것을 포함하는 것인 이중 양극 접합을 형성하는 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/235,981 US9873939B2 (en) | 2011-09-19 | 2011-09-19 | Microfluidic device and method using double anodic bonding |
US13/235,981 | 2011-09-19 | ||
PCT/US2012/055758 WO2013043540A2 (en) | 2011-09-19 | 2012-09-17 | Microfluidic device and method using double anodic bonding |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147010444A Division KR102081872B1 (ko) | 2011-09-19 | 2012-09-17 | 미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180121660A KR20180121660A (ko) | 2018-11-07 |
KR102095672B1 true KR102095672B1 (ko) | 2020-04-01 |
Family
ID=47879424
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147010444A KR102081872B1 (ko) | 2011-09-19 | 2012-09-17 | 미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 |
KR1020187030654A KR102095672B1 (ko) | 2011-09-19 | 2012-09-17 | 미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147010444A KR102081872B1 (ko) | 2011-09-19 | 2012-09-17 | 미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 |
Country Status (3)
Country | Link |
---|---|
US (3) | US9873939B2 (ko) |
KR (2) | KR102081872B1 (ko) |
WO (1) | WO2013043540A2 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9873939B2 (en) | 2011-09-19 | 2018-01-23 | The Regents Of The University Of Michigan | Microfluidic device and method using double anodic bonding |
US9315375B2 (en) * | 2013-12-27 | 2016-04-19 | Innovative Micro Technology | Method using glass substrate anodic bonding |
JP6259781B2 (ja) * | 2015-02-09 | 2018-01-10 | アズビル株式会社 | 三層基板の接合方法 |
KR20180020408A (ko) * | 2016-08-18 | 2018-02-28 | 나노바이오시스 주식회사 | 미세유체 칩의 입출구 구조 및 그의 밀봉 방법 |
US20190386256A1 (en) | 2018-06-18 | 2019-12-19 | Universal Display Corporation | Sequential material sources for thermally challenged OLED materials |
US10676350B2 (en) * | 2018-09-21 | 2020-06-09 | ColdQuanta, Inc. | Reversible anodic bonding |
KR102421512B1 (ko) | 2022-03-14 | 2022-07-15 | 정현인 | 휴대용 입체촬영 카메라 및 시스템 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215099A (ja) * | 2008-03-10 | 2009-09-24 | Konica Minolta Holdings Inc | 陽極接合方法及び液滴吐出ヘッドの製造方法 |
JP2009220381A (ja) * | 2008-03-17 | 2009-10-01 | Ricoh Co Ltd | 画像形成装置 |
WO2010111386A1 (en) * | 2009-03-25 | 2010-09-30 | The Regents Of The University Of Michigan | Compact organic vapor jet printing print head |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1138401A (en) * | 1965-05-06 | 1969-01-01 | Mallory & Co Inc P R | Bonding |
JPS5543819A (en) * | 1978-09-22 | 1980-03-27 | Hitachi Ltd | Pressure detecting equipment |
JP2750125B2 (ja) | 1988-07-12 | 1998-05-13 | 日本発条株式会社 | サーマルヘッドの基板構造 |
US5619239A (en) * | 1993-11-29 | 1997-04-08 | Canon Kabushiki Kaisha | Replaceable ink tank |
US6041805A (en) * | 1998-07-07 | 2000-03-28 | Imation Corp. | Valve assembly for a removable ink cartridge |
JP4466825B2 (ja) * | 2003-12-04 | 2010-05-26 | ブラザー工業株式会社 | インクジェットプリンタヘッド |
US7387370B2 (en) | 2004-04-29 | 2008-06-17 | Hewlett-Packard Development Company, L.P. | Microfluidic architecture |
US7347533B2 (en) | 2004-12-20 | 2008-03-25 | Palo Alto Research Center Incorporated | Low cost piezo printhead based on microfluidics in printed circuit board and screen-printed piezoelectrics |
JP4506717B2 (ja) * | 2005-07-20 | 2010-07-21 | セイコーエプソン株式会社 | 液滴吐出ヘッド及び液滴吐出装置 |
KR101402084B1 (ko) * | 2007-01-16 | 2014-06-09 | 삼성전자주식회사 | 잉크 공급유닛과 프린트헤드 조립체 및 화상형성장치 |
CN101888931B (zh) | 2007-12-10 | 2012-09-05 | 柯尼卡美能达控股株式会社 | 喷墨头及静电吸引型喷墨头单元 |
JP4608629B2 (ja) * | 2008-07-18 | 2011-01-12 | セイコーエプソン株式会社 | ノズルプレート、ノズルプレートの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法および液滴吐出装置 |
US8931431B2 (en) | 2009-03-25 | 2015-01-13 | The Regents Of The University Of Michigan | Nozzle geometry for organic vapor jet printing |
US9873939B2 (en) | 2011-09-19 | 2018-01-23 | The Regents Of The University Of Michigan | Microfluidic device and method using double anodic bonding |
-
2011
- 2011-09-19 US US13/235,981 patent/US9873939B2/en active Active
-
2012
- 2012-09-17 KR KR1020147010444A patent/KR102081872B1/ko active IP Right Grant
- 2012-09-17 WO PCT/US2012/055758 patent/WO2013043540A2/en active Application Filing
- 2012-09-17 KR KR1020187030654A patent/KR102095672B1/ko active IP Right Grant
-
2017
- 2017-12-13 US US15/841,171 patent/US11021785B2/en active Active
-
2021
- 2021-05-03 US US17/306,665 patent/US11761076B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215099A (ja) * | 2008-03-10 | 2009-09-24 | Konica Minolta Holdings Inc | 陽極接合方法及び液滴吐出ヘッドの製造方法 |
JP2009220381A (ja) * | 2008-03-17 | 2009-10-01 | Ricoh Co Ltd | 画像形成装置 |
WO2010111386A1 (en) * | 2009-03-25 | 2010-09-30 | The Regents Of The University Of Michigan | Compact organic vapor jet printing print head |
Also Published As
Publication number | Publication date |
---|---|
WO2013043540A2 (en) | 2013-03-28 |
WO2013043540A3 (en) | 2013-06-13 |
KR20140068214A (ko) | 2014-06-05 |
US20210254207A1 (en) | 2021-08-19 |
US9873939B2 (en) | 2018-01-23 |
US20130068165A1 (en) | 2013-03-21 |
KR102081872B1 (ko) | 2020-02-26 |
US20180105923A1 (en) | 2018-04-19 |
US11021785B2 (en) | 2021-06-01 |
KR20180121660A (ko) | 2018-11-07 |
US11761076B2 (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102095672B1 (ko) | 미세유체 디바이스 및 이중 양극 접합을 사용하는 방법 | |
CN211700228U (zh) | 结合层结构 | |
TWI686503B (zh) | 具有減少的背側電漿點火的噴淋頭 | |
US20110198034A1 (en) | Gas distribution showerhead with coating material for semiconductor processing | |
US10770329B2 (en) | Gas flow for condensation reduction with a substrate processing chuck | |
TW201715567A (zh) | 使用耐電漿原子層沉積塗層以延長蝕刻室中聚合物元件之壽命 | |
US20040123800A1 (en) | Showerheads | |
US20100177454A1 (en) | Electrostatic chuck with dielectric inserts | |
KR101897012B1 (ko) | 워크처리장치 | |
KR20160062065A (ko) | 통합된 정전 척을 갖는 기판 캐리어 | |
US20190211448A1 (en) | Atomic layer deposition apparatus and atomic layer deposition method | |
EP3020683B1 (en) | Apparatus for manufacturing micro-channel and method for manufacturing micro-channel using same | |
KR100550019B1 (ko) | 아크 방지용 에지 돌출부를 갖는 세라믹 정전척 장치 및그 제조 방법 | |
US11024529B2 (en) | System and method for residual voltage control of electrostatic chucking assemblies | |
KR20230025013A (ko) | 극저온 응용들을 위한 정전 척 조립체 | |
JP2013021151A (ja) | 静電チャック及び半導体製造装置 | |
KR20210133302A (ko) | 높은 종횡비 홀들 및 높은 홀 밀도를 갖는 가스 분배 플레이트 | |
CN109075109B (zh) | 全区域逆流热交换基板支撑件 | |
KR102642160B1 (ko) | 대면적 디스플레이 제조용 기판 처리 장치 및 그의 구동 방법 | |
KR102187532B1 (ko) | 기판처리장치의 진공 처킹 서셉터 | |
US20130344285A1 (en) | Adhesive material used for joining chamber components | |
US20120012253A1 (en) | Plasma shield for electrode | |
KR101724917B1 (ko) | 기생플라즈마 방지가 가능한 반도체 원자층 증착용 챔버 및 이를 사용하는 원자층 증착장치 | |
JP2020102620A (ja) | 静電チャック | |
JP2020102614A (ja) | 静電チャック |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |