KR102091629B1 - 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법 - Google Patents

실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법 Download PDF

Info

Publication number
KR102091629B1
KR102091629B1 KR1020160125888A KR20160125888A KR102091629B1 KR 102091629 B1 KR102091629 B1 KR 102091629B1 KR 1020160125888 A KR1020160125888 A KR 1020160125888A KR 20160125888 A KR20160125888 A KR 20160125888A KR 102091629 B1 KR102091629 B1 KR 102091629B1
Authority
KR
South Korea
Prior art keywords
metal
silicon
silicon carbide
less
single crystal
Prior art date
Application number
KR1020160125888A
Other languages
English (en)
Other versions
KR20180035594A (ko
Inventor
이호림
정찬엽
고정민
박만식
김대성
이성수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160125888A priority Critical patent/KR102091629B1/ko
Publication of KR20180035594A publication Critical patent/KR20180035594A/ko
Application granted granted Critical
Publication of KR102091629B1 publication Critical patent/KR102091629B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

일 실시예에 따른 실리콘계 용융 조성물은 실리콘카바이드 단결정을 형성하기 위한 용액 성장법에 이용되며, 실리콘, 그리고 서로 다른 제1 금속(M1), 제2 금속(M2) 및 제3 금속(M3)을 포함하는 하기 식 (1)로 표현되고, 상기 제1 금속(M1)은 티타늄(Ti), 크롬(Cr) 및 바나듐(V)을 포함하는 군으로부터 선택된 1종 이상이며, 상기 제2 금속(M2)은 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu) 및 아연(Zn)을 포함하는 군으로부터 선택된 1종 이상이고, 상기 제3 금속(M3)은 알루미늄(Al), 주석(Sn) 및 저마늄(Ge)을 포함하는 군으로부터 선택된 1종 이상이다.
SiaM1bM2cM3d (식 1)
상기 a는 0.4 초과 0.8 미만이고, 상기 d은 0.01 초과 0.1미만이고, 상기 (b+c)는 0.2 초과 0.6 미만이다.

Description

실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법{SILICON BASED MELTING COMPOSITION AND MANUFACTURING METHOD FOR SILICON CARBIDE SINGLE CRYSTAL USING THE SAME}
본 발명은 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법에 관한 것이다.
전력 반도체 소자는 전기 자동차, 전력 시스템, 고주파 이동통신 등 전기 에너지를 사용하는 차세대 시스템에 있어서 핵심 소자이다. 이를 위해서는 고전압, 대전류, 고주파수 등에 적합한 소재의 선정이 필요하다. 실리콘 단결정이 전력 반도체 물질로 사용되어 왔으나 물성적인 한계로 인해, 에너지 손실이 적고 보다 극한 환경에서 구동될 수 있는 실리콘카바이드 단결정이 주목받고 있다.
실리콘카바이드 단결정의 성장을 위해서는, 일 예로 실리콘카바이드를 원료로 하여 2000도(℃) 이상의 고온에서 승화시켜 단결정을 성장시키는 승화법, 결정 인상법을 응용한 용액 성장법, 그리고 기체 소스를 사용하는 화학적 기상 증착법 등이 사용되고 있다.
그러나 화학적 기상 증착법을 이용하는 경우 두께가 제한된 박막 수준으로만 성장시킬 수 있으며, 승화법을 이용하는 경우 마이크로 파이프 및 적층 결함과 같은 결함이 발생할 가능성이 많아 생산 단가적 측면에서 한계가 있다. 이에 결정 성장 온도가 승화법에 비해 낮고 대구경화 및 고품질화에 유리한 것으로 알려진 용액 성장법에 대한 연구가 진행되고 있다.
본 발명은 실리콘카바이드 단결정의 석출량이 증가되고 공정 조건이 안정적이며 석출된 실리콘카바이드 단결정의 품질이 향상되는 실리콘계 용융 조성물 및 이를 포함하는 실리콘카바이드 단결정의 제조 방법을 제공하고자 한다.
또한, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 과제를 달성하기 위한 실리콘계 용융 조성물은 실리콘카바이드 단결정을 형성하기 위한 용액 성장법에 이용되며, 실리콘, 그리고 서로 다른 제1 금속(M1), 제2 금속(M2) 및 제3 금속(M3)을 포함하는 하기 식 (1)로 표현되고, 상기 제1 금속(M1)은 티타늄(Ti), 크롬(Cr) 및 바나듐(V)을 포함하는 군으로부터 선택된 1종 이상이며, 상기 제2 금속(M2)은 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu) 및 아연(Zn)을 포함하는 군으로부터 선택된 1종 이상이고, 상기 제3 금속(M3)은 알루미늄(Al), 주석(Sn) 및 저마늄(Ge)을 포함하는 군으로부터 선택된 1종 이상이다.
SiaM1bM2cM3d (식 1)
상기 a는 0.4 초과 0.8 미만이고, 상기 d은 0.01 초과 0.1미만이고, 상기 (b+c)는 0.2 초과 0.6 미만이다.
상기 제1 금속(M1)은 실리콘 결정에 대한 탄소의 치환 에너지(Csi sol)가 0. 8eV 이하일 수 있다.
상기 제2 금속(M2)의 융점이 1600도 이하일 수 있다.
상기 제1 금속(M1) 및 상기 제2 금속(M2)에 대한 제1 금속(M1)의 함량(at%) 비율은 0.4 초과 0.6 미만일 수 있다.
상기 제1 금속(M1)에 대한 상기 제2 금속(M2)의 함량(at%) 비율은 0.2 초과 5 미만일 수 있다.
일 실시예에 따른 실리콘카바이드 단결정의 제조 방법은 실리콘카바이드 종결정을 준비하는 단계, 실리콘(Si), 서로 다른 제1 금속(M1), 제2 금속(M2) 및 제3 금속(M3)을 포함하는 실리콘계 용융 조성물을 준비하는 단계, 상기 실리콘계 용융 조성물에 탄소(C)를 추가하여 용융액을 형성하는 단계, 그리고 상기 용융액을 과냉각시켜 상기 종결정 상에 실리콘카바이드 단결정을 성장시키는 단계를 포함하고, 상기 실리콘계 용융 조성물은 하기 식 (1)로 표현되며 상기 제1 금속(M1)은 티타늄(Ti), 크롬(Cr) 및 바나듐(V)을 포함하는 군으로부터 선택된 1종 이상이고, 상기 제2 금속(M2)은 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu) 및 아연(Zn)을 포함하는 군으로부터 선택된 1종 이상이고, 상기 제3 금속(M3)은 알루미늄(Al), 주석(Sn) 및 저마늄(Ge)을 포함하는 군으로부터 선택된 1종 이상이다.
SiaM1bM2cM3d (식 1)
상기 a는 0.4 초과 0.8 미만이고, 상기 d은 0.01 초과 0.1미만이고, 상기 (b+c)는 0.2 초과 0.6 미만이다.
일 실시예에 따른 실리콘계 용융 조성물에 의하면, 실리콘계 용융 조성물에 용해되는 탄소의 용해도가 향상되고, 공정 온도가 낮아 제조 공정이 안정적으로 수행되면서, 용융액으로부터 석출되는 실리콘카바이드 단결정의 석출량이 증가될 수 있으며, 석출된 실리콘카바이드 단결정의 품질이 우수할 수 있다.
도 1은 일 실시예에 따른 실리콘카바이드 단결정의 제조 장치의 개략적인 단면도이다.
도 2는 실시예 1, 비교예 1 및 비교예 2에 대한 XRD 분석 그래프이다.
도 3a는 실시예 1에 따른 실리콘카바이드 단결정의 석출 이미지이고, 도 3b 및 도 3c는 각각 비교예 1 및 비교예 2에 따른 실리콘카바이드 단결정의 석출 이미지이다.
도 4는 제1 금속 및 제2 금속의 함량 변경에 따른 실리콘카바이드 단결정의 검출량 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.
본 기재를 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로 본 기재가 반드시 도시된 바에 한정되지 않는다.
이하에서는 일 실시예에 따른 실리콘계 용융 조성물에 대해 설명한다.
일 실시예에 따른 실리콘계 용융 조성물은 실리콘(Si), 서로 다른 제1 금속(M1), 제2 금속(M2) 및 제3 금속(M3)을 포함할 수 있다. 실리콘계 용융 조성물은 하기 식 (1)로 표현될 수 있다.
SiaM1bM2cM3d (식 1)
식 (1)에서 상기 a는 0.4 초과 0.8 미만일 수 있고, 상기 (b+c)는 0.2 초과 0.6 미만일 수 있고 상기 c/b는 0.2 초과 5 미만일 수 있고 상기 d는 0.01 초과 0.1 미만일 수 있으며 상기 a+b+c+d는 1이다. 또한 상기 b/(b+c)는 0.4 초과 0.6 미만일 수 있다.
다시 말해, 실리콘계 용융 조성물에서 실리콘의 함량은 40 at% 초과 80 at% 미만일 수 있고 제1 금속(M1)과 제2 금속(M2)의 함량의 합은 20 at% 초과 60 at% 미만일 수 있다. 제1 금속(M1)과 제2 금속(M2)의 함량의 합이 20 at% 이하인 경우 실리콘계 용융 조성물에 대한 탄소의 용해도가 낮아진다. 따라서 결정 성장 속도가 현저히 감소한다. 또한 제1 금속(M1)과 제2 금속(M2)의 함량의 합이 80 at% 이상인 경우 금속과 실리콘의 화합물이 생성되거나 지나치게 높은 탄소 용해도로 인해 실리콘카바이드의 다결정화가 일어나 실리콘카바이드 결정의 품질이 저하될 수 있다.
제1 금속(M1)에 대한 제2 금속(M2)의 함량 비율은 0.2 초과 5 미만일 수 있다. 제1 금속(M1)에 대한 제2 금속(M2)의 함량 비율이 0.2 이하 또는 5 이상인 경우, 실리콘계 용융 조성물에 대한 탄소의 용해도가 낮아지거나 융점이 높아져 공정에 소요되는 비용이 증가할 수 있다.
제3 금속(M3)의 함량은 1 at% 초과 10 at% 미만일 수 있다. 제3 금속(M3)은 상기 함량으로 포함됨으로써 단결정이 성장되는 표면 전체를 균일하게 활성화시킬 수 있다. 결정핵의 비균일한 발생을 억제하고 표면 전체에 걸쳐 결정핵을 균일하게 발생시킨다. 안정적이고 평탄한 형태의 단결정의 성장이 유도될 수 있다. 제3 금속(M3)은 소정의 함량으로 포함됨으로써 실리콘 카바이드 단결정의 품질을 향상시킬 수 있다.
또한 제1 금속(M1)과 제2 금속(M2)에 대한 제1 금속(M1)의 함량 비율은 0.4 초과 0.6 미만일 수 있다. 제1 금속(M1)과 제2 금속(M2)에 대한 제1 금속(M1)의 함량 비율이 0.4 초과 및 0.6 미만인 경우 빠른 결정 성장을 제공할 수 있어 실리콘카바이드 단결정의 수득률이 우수할 수 있다.
제1 금속(M1)은 티타늄(Ti), 크롬(Cr) 및 바나듐(V)을 포함하는 군에서 선택된 1종 이상일 수 있다.
제1 금속(M1)은 이에 제한되지 않고 실리콘 결정에 대한 탄소 원자의 치환 에너지(Csi sol)가 0.8 eV 이하인 금속일 수 있다. 실리콘 결정에 대한 탄소 원자의 치환 에너지가 0.8 eV 이하인 경우 용융액에 대한 탄소의 용해도가 증가할 수 있다. 제1 금속(M1)은 실리콘계 용융 조성물에 대한 탄소(C)의 용해도를 향상시킬 수 있다. 디펙트-프리(defect-free) 실리콘 결정에 대한 탄소 원자의 치환 에너지(Csi sol)는 1.5 eV이므로 상기 값보다 낮은 값을 가지는 금속을 이용하는 경우, 실리콘만 포함하는 용융액보다 실리콘계 용융액에 대한 탄소 용해도를 향상시킬 수 있다. 특히 0.8 eV 이하인 경우 실리콘계 용융액에 대한 탄소 용해도를 상당히 향상시킬 수 있으며 결정 성장 속도를 높일 수 있다.
한편 탄소 원자의 치환 에너지는 하기 식 (1)로 정의될 수 있다.
Csi sol = A - B + μ12 식 (1)
상기 식에서, A는 금속 원자 및 탄소 원자를 포함하는 실리콘 결정 격자에서, 실리콘 원자, 탄소 원자 및 금속 원자를 포함하는 제1 평가 격자가 갖는 제1 에너지(A)이고, B는 금속 원자를 포함하는 실리콘 결정 격자에서, 실리콘 원자 및 금속 원자를 포함하는 제2 평가 격자가 갖는 제2 에너지(B)이고, μ1은 다이아몬드 결정 구조의 실리콘의 총 에너지를 단위 격자 내 존재하는 실리콘 원자수로 나눈 화학 포텐셜로써 -5.422의 상수이고, μ2는 다이아몬드 결정 구조의 탄소의 총 에너지를 단위 격자 내 존재하는 탄소 원자수로 나눈 화학 포텐셜로써 -9.097의 상수이다.
상기 제1 평가 격자 내에서 상기 실리콘 원자, 상기 탄소 원자 및 상기 금속 원자에 작용하는 원자간 힘이 ±0.01 eV/Å 이하일 수 있다. 상기 제2 평가 격자 내에서 상기 실리콘 원자 및 상기 금속 원자에 작용하는 원자간 힘이 ±0.01 eV/Å 이하일 수 있다.
상기 제1 에너지는 실리콘 결정 격자에서 실리콘 원자를 상기 금속 원자로 치환하는 단계, 및 실리콘 원자를 상기 탄소 원자로 치환하여 상기 제1 평가 격자를 형성하는 단계를 통해 도출될 수 있다. 상기 제2 에너지는 실리콘 결정 격자에서 실리콘 원자를 상기 금속 원자로 치환하여 제2 평가 격자를 형성하는 단계를 통해 도출될 수 있다.
상기 금속 원자는 서로 다른 제1 금속 원자 및 제2 금속 원자를 포함하고, 상기 제1 금속 원자와 상기 제2 금속 원자 사이의 거리는 5 Å 이하일 수 있다. 상기 제1 평가 격자는 상기 탄소 원자를 기준으로 반경 6Å 이내에 위치하는 상기 탄소 원자, 상기 실리콘 원자 및 상기 금속 원자를 포함할 수 있다.
상기 제2 평가 격자는 상기 금속 원자와 인접하게 위치하는 상기 실리콘 원자를 기준으로 반경 6Å 이내에 위치하는 실리콘 원자 및 상기 금속 원자를 포함할 수 있다.
상기 제1 에너지, 상기 제2 에너지, 상기 제1 상수 및 상기 제2 상수는 VASP 코드를 이용한 범밀도 함수 방법(DFT, Density Functional Theory)을 사용하여 도출할 수 있으나 이에 제한되는 것은 아니다.
제2 금속(M2)은 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu) 및 아연(Zn)을 포함하는 군에서 선택된 1 종 이상일 수 있다. 제2 금속(M2)은 융점이 약 1600도(℃) 이하인 금속일 수 있다. 제2 금속(M2)은 상대적으로 낮은 온도에서 녹을 수 있으며 이에 따라 낮은 공정 온도 조건에서 실리콘카바이드 단결정의 석출을 도와 공정 비용을 낮출 수 있다. 또한 제1 금속(M1)에 제2 금속(M2)을 첨가함으로써 각 금속이 단독으로 존재할 때보다 더 많은 실리콘카바이드의 석출이 가능하므로 실리콘카바이드 단결정의 수득률을 높일 수 있다.
제3 금속(M3)은 알루미늄(Al), 주석(Sn) 및 저마늄(Ge)을 포함하는 군에서 선택된 적어도 1종 일 수 있다. 제3 금속(M3)은 실리콘카바이드 단결정의 성장 공정에서 다결정의 생성을 억제시키고 실리콘카바이드 단결정의 결정성을 향상시킬 수 있다. 제3 금속(M3)을 첨가함으로써 성장 표면 전체에 걸쳐 균일한 결정핵을 제공하고, 이에 따라 평탄한 형상을 가지는 실리콘카바이드 단결정을 수득할 수 있다. 성장 표면이 불균일한 결정핵을 포함하게 되는 경우 실리콘카바이드의 다결정이 성장하게 된다.
일 실시예에 따른 실리콘계 용융 조성물은 실리콘(Si) 및 제3 금속(일 예로, 알루미늄)뿐만 아니라 제1 금속(M1) 및 제2 금속(M2)을 포함할 수 있다. 이에 따른 실리콘계 용융 조성물은 상기 조성물에 대한 탄소의 용해도를 향상시킬 수 있으며 낮은 공정 온도에서 용융액을 제공하여 안정적인 조건에서 공정이 실시될 수 있다.
이와 달리 제1 금속 및 제2 금속 중 어느 하나만 포함하는 실리콘계 용융 조성물의 경우, 상기 조성물에 대한 탄소의 용해도가 낮아 실리콘카바이드 단결정의 석출량이 적거나 공정 온도가 높아 공정 제어가 어려운 문제가 있을 수 있다.
도 1은 일 실시예에 따른 실리콘계 용융 조성물을 이용하여 실리콘카바이드 단결정을 성장시킬 때 사용하는 제조 장치의 구성을 설명하기 위한 도면이다. 도 1은 일 실시예에 따른 실리콘카바이드 단결정의 제조 장치의 개략적인 단면도이다.
도 1을 참조하면, 일 실시예에 따른 실리콘카바이드 단결정 제조 장치는 반응 챔버(100), 반응 챔버(100) 내부에 위치하는 도가니(300), 도가니(300) 내부로 연장되는 종결정(210), 종결정(210)과 연결되는 종결정 지지부(230) 및 이동 부재(250)와 도가니(300)를 가열하는 가열 부재(400)를 포함할 수 있다.
반응 챔버(100)는 빈 내부 공간을 포함하는 밀폐된 형태이고 그 내부가 일정한 압력 등의 분위기로 유지될 수 있다. 도시되지 않았으나 반응 챔버(100)에 진공 펌프 및 분위기 제어용 가스 탱크가 연결될 수 있다. 진공 펌프 및 분위기 제어용 가스 탱크를 이용하여 반응 챔버(100) 내부를 진공상태로 만든 후 아르곤 기체와 같은 비활성 기체를 충전할 수 있다.
실리콘카바이드 종결정(210)은 종결정 지지부(230) 및 이동 부재(250)에 연결되어 도가니(300) 내측으로 위치할 수 있으며 특히 도가니(300) 내부에 제공되는 용융액과 접촉하도록 배치될 수 있다.
일 실시예에 따르면 실리콘카바이드 종결정(210)의 표면과 용융액 사이에 메니스커스가 형성될 수 있다. 메니스커스란 실리콘카바이드 종결정(210)의 하부면이 용융액과 접촉한 이후 살짝 들어올려지면서 발생하는 표면 장력에 의해 용융액 상에 형성되는 곡면을 지칭한다. 메니스커스를 형성하여 실리콘카바이드 단결정을 성장시키는 경우 다결정의 발생을 억제하여 보다 고품질의 단결정을 수득할 수 있다.
실리콘카바이드 종결정(210)은 실리콘카바이드 단결정으로 이루어진다. 실리콘카바이드 종결정(210)의 결정 구조는 제조하려는 실리콘카바이드 단결정의 결정 구조와 같다. 예를 들어, 4H 다형의 실리콘카바이드 단결정을 제조하는 경우, 4H 다형의 실리콘카바이드 종결정(210)을 이용할 수 있다. 4H 다형의 실리콘카바이드 종결정(210)을 이용하는 경우, 결정 성장면은 (0001)면 또는 (000-1)면이거나, (0001)면 또는 (000-1)면으로부터 8도 이하의 각도로 경사진 면일 수 있다.
종결정 지지부(230)는 실리콘카바이드 종결정(210)과 이동 부재(250)를 연결한다. 종결정 지지부(230)의 일단은 이동 부재(250)에 연결되고 타단은 종결정(210)에 연결될 수 있다.
종결정 지지부(230)는 이동 부재(250)에 연결되어 도가니(300)의 높이 방향을 따라 상하 방향으로 이동할 수 있다. 구체적으로 종결정 지지부(230)는 실리콘카바이드 단결정의 성장 공정을 위해 도가니(300) 내측으로 이동되거나 실리콘카바이드 단결정의 성장 공정이 종료된 이후 도가니(300) 외측으로 이동될 수 있다. 또한 본 명세서는 종결정 지지부(230)가 상하 방향으로 이동하는 실시예를 설명하였으나, 이에 제한되지 않고 어떠한 방향으로도 이동하거나 회전할 수 있으며, 이를 위한 공지의 수단을 포함할 수 있다.
종결정 지지부(230)는 이동 부재(250)에 탈착될 수 있다. 실리콘카바이드 단결정을 수득하기 위해 이동 부재(250)에 결합되어 도가니(300) 내측으로 제공될 수 있으며, 단결정의 성장 공정이 종료된 이후에는 이동 부재(250)로부터 분리될 수 있다.
이동 부재(250)는 구동부(미도시)에 연결되어 챔버(100) 내부를 이동하거나 회전할 수 있다. 이동 부재(250)는 상하 이동하거나 회전하기 위한 공지의 수단을 포함할 수 있다.
도가니(300)는 반응 챔버(100) 내부에 구비되며 상측이 개방된 용기 형태일 수 있으며 상부면을 제외한 외주면(300a) 및 하부면(300b)을 포함할 수 있다. 도가니(300)는 전술한 형태에 제한 없이 실리콘카바이드 단결정을 형성하기 위한 어떠한 형태도 가능함은 물론이다. 도가니(300)는 실리콘 또는 실리콘카바이드 분말과 같은 용융 원료가 장입되어 수용될 수 있다.
도가니(300)는 그라파이트, 실리콘카바이드와 같이 탄소를 함유하는 재질일 수 있으며, 이와 같은 재질의 도가니(300) 자체는 탄소 원료의 공급원으로 활용될 수 있다. 또는 이에 제한되지 않고 세라믹 재질의 도가니를 사용할 수 있으며, 이때 탄소를 제공할 물질 또는 공급원 별도로 제공할 수 있다.
가열 부재(400)는 도가니(300)를 가열하여 도가니(300)에 수용된 물질을 용융시키거나 가열할 수 있다.
가열 부재(400)는 저항식 발열 수단 또는 유도 가열식 발열 수단을 사용할 수 있다. 구체적으로 가열 부재(400) 자체가 발열하는 저항식으로 형성되거나 가열 부재(400)가 인덕션 코일로 형성되고 인덕션 코일에 고주파 전류를 흐르게 함으로써 도가니(300)를 가열하는 유도 가열 방식으로 형성될 수도 있다. 그러나 전술한 방법에 제한되지 않고 어떠한 가열 부재도 사용될 수 있음은 물론이다.
일 실시예에 따른 실리콘카바이드 제조 장치는 회전 부재(500)를 더 포함할 수 있다. 회전 부재(500)는 도가니(300)의 하측면에 결합되어 도가니(300)를 회전시킬 수 있다. 도가니(300) 회전을 통해 균일한 조성의 용융액 제공이 가능한 바 실리콘카바이드 종결정(210)에서 고품질의 실리콘카바이드 단결정이 성장될 수 있다.
이하에서는 전술한 실리콘계 용융 조성물 및 실리콘카바이드 단결정의 제조 장치를 이용하는 실리콘카바이드 단결정의 제조 방법에 대해 설명한다.
우선, 전술한 실리콘계 용융 조성물 및 탄소를 포함하는 초기 용융 원료를 도가니(300) 내에 투입한다. 초기 용융 원료는 분말 형태일 수 있으나, 이에 제한되지 않는다.
초기 용융 원료를 실장하고 있는 도가니(300)를 아르곤 기체와 같은 비활성 분위기에서 가열 부재(400)을 이용하여 가열한다. 가열에 따라 도가니(300) 내의 초기 용융 원료는 탄소(C), 실리콘(Si) 및 금속(제1 금속, 제2 금속 및 제3 금속)을 포함하는 용융액으로 변한다.
도가니(300)가 소정의 온도에 도달한 이후, 도가니(300) 내의 용융액의 온도는 서서히 저하되어 가고, 용융액 내의 탄소의 용해도가 작아진다. 이 때문에, 종결정(210) 부근에서 실리콘카바이드 과포화 상태가 되면, 이 과포화도를 구동력으로 하여 종결정(210) 상에 실리콘카바이드 단결정이 성장한다.
실리콘카바이드 단결정이 성장함에 따라 용융액으로부터 실리콘카바이드를 석출하는 조건이 변할 수 있다. 이때 시간의 경과에 따라 용융액의 조성에 맞도록 실리콘 및 탄소를 첨가하여 용융액을 일정 범위 내의 조성으로 유지할 수 있다. 첨가되는 실리콘 및 탄소는 연속적으로 또는 비연속적으로 투입될 수 있다.
이하에서는 도 2 내지 도 4를 참조하여 실시예 및 비교예를 살펴본다. 도 2는 실시예 1, 비교예 1 및 비교예 2에 대한 XRD 분석 그래프이고, 도 3a는 실시예 1에 따른 실리콘카바이드 단결정의 석출 이미지이고, 도 3b 및 도 3c는 각각 비교예 1 및 비교예 2에 따른 실리콘카바이드 단결정 석출 이미지이고, 도 4는 제1 금속 및 제2 금속의 함량 변경에 따른 실리콘카바이드 단결정의 검출량 그래프이다.
우선 도 2를 참조하면, 실시예 1은 Si0 .56Cr0 .2Ni0 .2Al0 . 04을 포함하고 비교예 1은 Si0 .56Cr0 .4Al0 . 04을 포함하고 비교예 2는 Si0 .56Ni0 .4Al0 . 04을 포함한다. 이러한 실시예 1, 비교예 1 및 비교예 2 각각에 탄소(C) 30 at%를 알루미나 도가니에 추가로 장입하고, 이후 도가니에 장입된 원료는 가열 및 용융된 후 냉각된다. 냉각된 원료는 파쇄되어 분말로 형성되고, 상기 분말을 XRD로 분석하였다.
도 2에 따르면 실시예 1에 따른 경우 실리콘카바이드(SiC)를 나타내는 35.68 도(degree)에서 피크 강도(peak intensity)가 2543이고 피크 면적(peak area)이 8.987임을 알 수 있다. 한편 비교예 1은 35.63 도(degree)에서 약 1956의 피크 강도와 6.028의 피크 면적을 나타낸다. 비교예 2는 35.73 도(degree)에서 약 1564의 피크 강도와 4.773의 피크 면적을 나타낸다.
실시예 1은 비교예 1 및 비교예 2 대비 약 1.30 내지 1.63 배의 피크 강도를 가지고 약 1.49 내지 1.88 배의 피크 면적을 나타낸다. 실시예 1은 비교예 1 및 비교예 2 대비 큰 피크 강도 및 피크 면적을 가지며 이에 따라 실시예 1을 통해 가장 많은 양의 실리콘카바이드가 석출됨을 알 수 있다.
실시예 1은 제1 금속(M1)에 해당하는 크롬(Cr)과 제2 금속(M2)에 해당하는 니켈(Ni)을 포함하는 것에 비해, 비교예 1은 제1 금속(M1)만을 포함하고 제2 금속(M2)은 포함하지 않으며 비교예 2는 제2 금속(M2)을 포함하고 제1 금속(M1)은 포함하지 않는다. 제1 금속(M1) 및 제2 금속(M2) 중 어느 하나만 포함하는 경우가 아니라, 제1 금속(M1) 및 제2 금속(M2)을 모두 포함하는 실리콘계 용융 조성물의 경우, 실리콘카바이드 석출량이 향상됨을 확인하였다.
다음, 도 3a 내지 도 3b를 참조하여 설명한다. 도 3a는 전술한 실시예 1 (Si0.56Cr0.2Ni0.2Al0.04)에 탄소를 10 at% 첨가한 후, 이를 1900도에서 2시간 동안 가열 및 냉각시켜 실리콘카바이드의 석출 정도를 확인한 결과이다. 도 3b는 전술한 비교예 1(Si0 .56Cr0 .4Al0 .04)에 탄소를 10 at% 첨가한 후 실시예 1과 동일한 공정을 통해 석출된 실리콘카바이드를 확인한 결과이다. 도 3c는 비교예 2(Si0 .56Ni0 .4Al0 .04)에 탄소를 10 at% 첨가한 후 실시예 1과 동일한 공정을 통해 석출된 실리콘카바이드를 확인한 결과이다.
도 3a 내지 도 3c 각각에 나타난 바와 같이 실시예 1, 비교예 1 및 비교예 2에 따라 육안으로 확인 가능한 정도의 실리콘카바이드 단결정이 석출되었으며 특히 비교예 1 및 2에 비해 실시예 1에 따른 실리콘카바이드의 석출량이 많음을 확인할 수 있었다.
다음 도 4를 참조하면, 실리콘계 용융 조성물이 실리콘(Si)을 56 몰(mol), 제1 금속(M1) 및 제2 금속(M2)을 총 40 몰(mol), 알루미늄(Al)을 4 몰(mol) 포함하고 이에 탄소(C) 30 몰(mol)을 추가한 용융액에서, 제1 금속(M1)과 제2 금속(M2)의 비율에 따른 실리콘카바이드의 석출량을 계산한 결과이다. 공정 온도는 각각 1800도(℃), 1900도(℃) 및 2000도(℃)일 수 있다.
도 4에 도시된 바와 같이 공정 온도가 1800도(℃), 1900도(℃) 및 2000도(℃)인 경우에 따른 그래프들의 프로파일(profile)은 유사하다. 다만 각 공정 온도에서 제1 금속(M1)과 제2 금속(M2)이 소정의 비율을 가지는 경우, 공정 온도가 1800도(℃)일 때 실리콘카바이드의 수득률이 가장 클 수 있으며, 공정 온도가 1900도(℃), 2000도(℃)인 순으로 실리콘카바이드의 수득률이 감소하였다.
또한 도 4에 도시된 바와 같이 공정 온도에 관계 없이 각 공정 온도에서 제1 금속/(제1 금속 + 제2 금속)의 값이 약 0.4 내지 0.6인 경우 실리콘카바이드가 최대로 석출될 수 있음을 확인하였다.
즉, 제1 금속/(제1 금속 + 제2 금속)의 값이 0 이거나 1인 경우, 다시 말해 제1 금속만을 포함하거나 제2 금속만을 포함하는 경우 보다 제1 금속과 제2 금속이 소정의 비율로 포함되는 경우에 실리콘카바이드의 석출량이 최대임을 확인하였다. 특히 제1 금속/(제1 금속 + 제2 금속)의 값이 약 0.4 내지 0.6인 경우 실리콘카바이드 석출량이 향상됨을 알 수 있었다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
100: 챔버
210: 종결정
300: 도가니
400: 가열 부재
500: 회전 부재

Claims (10)

  1. 실리콘카바이드 단결정을 형성하기 위한 용액 성장법에 이용되며,
    실리콘, 그리고 크롬(Cr), 니켈(Ni) 및 알루미늄(Al)을 포함하는 하기 식 (1)로 표현되는 실리콘계 용융 조성물:
    SiaCrbNicAld (식 1)
    상기 a는 0.4 초과 0.8 미만이고, 상기 d은 0.01 초과 0.1미만이고, 상기 (b+c)는 0.2 초과 0.6 미만이며, c/b는 0.2 초과 5 미만이고, b/(b+c)는 0.4 초과 0.6 미만이다.
  2. 제1항에서,
    상기 크롬(Cr)은 실리콘 결정에 대한 탄소의 치환 에너지(Csi sol)가 0. 8eV 이하인 실리콘계 용융 조성물.
  3. 제1항에서,
    상기 니켈(Ni)의 융점이 1600도 이하인 실리콘계 용융 조성물.
  4. 삭제
  5. 삭제
  6. 실리콘카바이드 종결정을 준비하는 단계,
    실리콘(Si), 크롬(Cr), 니켈(Ni) 및 알루미늄(Al)을 포함하는 실리콘계 용융 조성물을 준비하는 단계,
    상기 실리콘계 용융 조성물에 탄소(C)를 추가하여 용융액을 형성하는 단계, 그리고 상기 용융액을 과냉각시켜 상기 종결정 상에 실리콘카바이드 단결정을 성장시키는 단계를 포함하고,
    상기 실리콘계 용융 조성물은 하기 식 (1)로 표현되는 실리콘카바이드 단결정의 제조 방법:
    SiaCrbNicAld (식 1)
    상기 a는 0.4 초과 0.8 미만이고, 상기 d은 0.01 초과 0.1미만이고, 상기 (b+c)는 0.2 초과 0.6 미만이며, c/b는 0.2 초과 5 미만이고, b/(b+c)는 0.4 초과 0.6 미만이다.
  7. 제6항에서,
    상기 크롬(Cr)은 실리콘 결정에 대한 탄소의 치환 에너지(Csi sol)가 0. 8eV 이하인 실리콘카바이드 단결정의 제조 방법.
  8. 제6항에서,
    상기 니켈(Ni)의 융점이 1600도 이하인 실리콘카바이드 단결정의 제조 방법.
  9. 삭제
  10. 삭제
KR1020160125888A 2016-09-29 2016-09-29 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법 KR102091629B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160125888A KR102091629B1 (ko) 2016-09-29 2016-09-29 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160125888A KR102091629B1 (ko) 2016-09-29 2016-09-29 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법

Publications (2)

Publication Number Publication Date
KR20180035594A KR20180035594A (ko) 2018-04-06
KR102091629B1 true KR102091629B1 (ko) 2020-03-20

Family

ID=61973950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160125888A KR102091629B1 (ko) 2016-09-29 2016-09-29 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법

Country Status (1)

Country Link
KR (1) KR102091629B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102609883B1 (ko) * 2018-10-29 2023-12-04 주식회사 엘지화학 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
EP4130347A1 (en) * 2021-08-05 2023-02-08 Shin-Etsu Chemical Co., Ltd. Method for producing sic single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184879A (ja) 2008-02-06 2009-08-20 Toyota Motor Corp p型SiC半導体単結晶の製造方法
JP2009249192A (ja) 2008-04-01 2009-10-29 Toyota Motor Corp 4H−SiC単結晶の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450074B2 (ja) * 2008-01-15 2010-04-14 トヨタ自動車株式会社 炭化珪素単結晶の成長方法
JP5273130B2 (ja) * 2010-11-26 2013-08-28 信越化学工業株式会社 SiC単結晶の製造方法
CN105705685A (zh) * 2013-11-12 2016-06-22 新日铁住金株式会社 SiC单晶的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184879A (ja) 2008-02-06 2009-08-20 Toyota Motor Corp p型SiC半導体単結晶の製造方法
JP2009249192A (ja) 2008-04-01 2009-10-29 Toyota Motor Corp 4H−SiC単結晶の製造方法

Also Published As

Publication number Publication date
KR20180035594A (ko) 2018-04-06

Similar Documents

Publication Publication Date Title
KR102313257B1 (ko) 탄화규소의 결정 성장 방법
US8685163B2 (en) Method for growing silicon carbide single crystal
TWI554659B (zh) SiC單晶的製造方法
KR101976122B1 (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
JP5273130B2 (ja) SiC単結晶の製造方法
US20150013590A1 (en) Seed crystal holding shaft for use in single crystal production device, and method for producing single crystal
KR102091629B1 (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
KR102136269B1 (ko) 실리콘카바이드 단결정의 제조 장치
KR20180036388A (ko) 실리콘카바이드 단결정의 제조 장치 및 제조 방법
KR102142424B1 (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
JP6424806B2 (ja) SiC単結晶の製造方法
KR20180091344A (ko) 실리콘카바이드 단결정의 제조 방법
KR102158624B1 (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
CN110914485B (zh) 基于硅的熔融组合物和使用其的碳化硅单晶的制造方法
WO2019088740A2 (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
KR102609883B1 (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant