KR102084905B1 - Electroless plating process - Google Patents

Electroless plating process Download PDF

Info

Publication number
KR102084905B1
KR102084905B1 KR1020197024866A KR20197024866A KR102084905B1 KR 102084905 B1 KR102084905 B1 KR 102084905B1 KR 1020197024866 A KR1020197024866 A KR 1020197024866A KR 20197024866 A KR20197024866 A KR 20197024866A KR 102084905 B1 KR102084905 B1 KR 102084905B1
Authority
KR
South Korea
Prior art keywords
nickel
electroless
plating
film
plating process
Prior art date
Application number
KR1020197024866A
Other languages
Korean (ko)
Other versions
KR20190102097A (en
Inventor
토모히토 카토
히데토 와타나베
Original Assignee
고지마 가가쿠 야쿠힌 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고지마 가가쿠 야쿠힌 가부시키가이샤 filed Critical 고지마 가가쿠 야쿠힌 가부시키가이샤
Publication of KR20190102097A publication Critical patent/KR20190102097A/en
Application granted granted Critical
Publication of KR102084905B1 publication Critical patent/KR102084905B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • C23C18/1694Sequential heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76874Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/81444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/073Displacement plating, substitution plating or immersion plating, e.g. for finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0789Aqueous acid solution, e.g. for cleaning or etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

구리재의 표면에 니켈 도금 피막과 금도금 피막을 순서대로 형성하는 경우, 니켈 도금 피막의 막 두께를 얇게 할 수 있으며, 뛰어난 실장 특성을 구비한 피막을 얻을 수 있는 무전해 도금 프로세스를 제공하는 것을 목적으로 한다. 상기 과제를 해결하기 위해서, 무전해 도금법에 따라 구리재의 표면에 니켈 도금 피막과 금도금 피막을 순서대로 형성하는 무전해 도금 프로세스로서, 무전해 스트라이크 도금법에 따라 구리재의 표면에 니켈 도금 피막을 형성하는 공정 및 환원형 무전해 도금법에 따라 금도금 피막을 형성하는 공정을 구비하는 것을 특징으로 한다.In the case where the nickel plated film and the gold plated film are formed in order on the surface of the copper material, the purpose of the present invention is to provide an electroless plating process in which the film thickness of the nickel plated film can be reduced and a film having excellent mounting characteristics can be obtained. do. In order to solve the above problems, an electroless plating process of sequentially forming a nickel plating film and a gold plating film on the surface of a copper material by an electroless plating method, and a step of forming a nickel plating film on the surface of a copper material by an electroless strike plating method. And forming a gold plated film according to a reduced electroless plating method.

Description

무전해 도금 프로세스Electroless plating process

본원 발명은 무전해 도금법에 따라 구리재의 표면에 금도금 피막을 형성하는 무전해 도금 프로세스에 관한 것이다.The present invention relates to an electroless plating process for forming a gold plated film on the surface of a copper material by an electroless plating method.

최근, 전자 기기의 고기능화나 다기능화에 대한 요구가 높아지는 한편, 이러한 전자 기기에 이용되는 수지 기판, 세라믹 기판, 웨이퍼 기판 등의 전자 회로 기판은 경박단소(輕薄短小)화가 더욱 요구되고 있다. 이 경박단소화에 대응하려면 고밀도 실장이 필요하기 때문에, 고밀도 실장을 실현할 수 있는 표면 처리 기술이 요구되고 있다. 그리고, 전자 회로 기판의 기술 분야에서는 실장 부품을 접합하는 기술로서 땜납이나 와이어 본딩를 이용한 실장 기술이 확립되어 있다. In recent years, while the demand for high functionalization and multifunctionalization of electronic devices has increased, electronic circuit boards such as resin substrates, ceramic substrates, and wafer substrates used in such electronic devices have been required to be light and small in size. In order to cope with this light and small size, high-density mounting is required, and thus a surface treatment technique capable of realizing high-density mounting is required. In the technical field of electronic circuit boards, a mounting technique using solder or wire bonding has been established as a technique for joining mounting components.

실장시의 접속 신뢰성을 확보하려는 목적으로, 전자 회로 기판상의 회로 패턴의 실장 부분인 배선 패드에 표면 처리로서 도금 처리가 실시되고 있다. 예를 들면, 낮은 저항의 구리 등의 금속에 의해 형성된 회로 패턴상에, 도금 처리에 의해 니켈 도금 피막과 금도금 피막을 순서대로 형성한다. 이하, 니켈 도금 피막 및 금도금 피막이 순서대로 형성된 피막을 「Ni/Au 피막」으로 기재한다. 니켈 도금 피막은 금도금 피막으로의 구리의 확산을 막기 위해 형성되며, 금도금 피막은 양호한 실장 특성을 얻기 위해 형성된다. In order to ensure the connection reliability at the time of mounting, the plating process is performed as a surface treatment to the wiring pad which is the mounting part of the circuit pattern on an electronic circuit board. For example, a nickel plating film and a gold plating film are formed in order on the circuit pattern formed of metals, such as low resistance copper, by plating process. Hereinafter, the film in which the nickel plating film and the gold plating film were formed in order is described as "Ni / Au film." The nickel plated film is formed to prevent diffusion of copper into the gold plated film, and the gold plated film is formed to obtain good mounting characteristics.

또한, 니켈 도금 피막과 금도금 피막 사이에 팔라듐 피막을 형성하는 기술도 알려져 있다. 이하, 니켈 도금 피막, 팔라듐 도금 피막 및 금도금 피막이 순서대로 형성된 피막을 「Ni/Pd/Au 피막」으로 기재한다. 팔라듐 피막은 도금 기판의 열처리시에 금도금 피막으로의 니켈의 확산을 막기 위해 형성된다. 니켈 도금 피막상에 팔라듐 피막을 형성한 경우에는 니켈 도금 피막의 박막화가 가능해진다. Moreover, the technique of forming a palladium film between a nickel plating film and a gold plating film is also known. Hereinafter, the film in which the nickel plating film, the palladium plating film, and the gold plating film were formed in order is described as "Ni / Pd / Au film." The palladium film is formed to prevent diffusion of nickel into the gold plated film during the heat treatment of the plated substrate. When the palladium film is formed on the nickel plated film, the nickel plated film can be thinned.

상기 도금 처리로서는 전해 도금 프로세스가 주류이지만, 전해 도금 프로세스로 대응할 수 없는 것에 대해서는 무전해 도금 프로세스가 적용되고 있다. As said plating process, although electrolytic plating process is mainstream, the electroless plating process is applied about the thing which cannot cope with an electrolytic plating process.

종래, 구리의 표면에 Ni/Pd/Au 피막을 형성하는 무전해 도금 프로세스로서, 예를 들면, 특허문헌 1에는 도 10에 나타낸 바와 같이 구리재에 대해서 탈지 공정(스텝(이하, 「S」로 기재함.) 11) 및 에칭(S12)을 행하고, 구리재의 표면에 팔라듐 촉매를 부여한(S14) 후, 무전해 니켈(Ni) 도금(S15), 무전해 팔라듐(Pd) 도금(S16) 및 무전해 금(Au) 도금(S17)을 행하는 것이 개시되어 있다. 특허문헌 1에는 기재되어 있지 않지만, 에칭(S12)과 팔라듐 촉매 부여 처리(S14) 사이에 디스머트(S13)를 실시하는 것이 일반적이다. 팔라듐 촉매 부여 처리(S14)는 무전해 니켈 도금(S15)시에 니켈 석출을 진행하기 위해 통상 필수이다. Conventionally, as an electroless plating process for forming a Ni / Pd / Au film on the surface of copper, for example, Patent Document 1 discloses a degreasing step (step (hereinafter, "S") with respect to a copper material as shown in FIG. 11) and etching (S12), giving a palladium catalyst to the surface of the copper material (S14), then electroless nickel (Ni) plating (S15), electroless palladium (Pd) plating (S16) and electroless It is disclosed to perform gold plating (Au) plating (S17). Although it is not described in patent document 1, it is common to perform a dismert (S13) between etching (S12) and a palladium catalyst provision process (S14). The palladium catalyzing treatment (S14) is usually essential in order to proceed with nickel precipitation during electroless nickel plating (S15).

특허문헌 1에 개시된 무전해 니켈 도금(S15)에서는, 황산니켈·6수화물 22.5g/L(니켈 환산으로 5g/L), 환원제로서 차아인산나트륨, 착화제로서 사과산 및 호박산을 포함함과 함께, 안정제로서 납염, 비스무트염, 황 화합물 등을 포함하고, pH가 4.6, 욕온이 60~90℃로 조정된 무전해 니켈 도금액이 이용되고 있다. 환원제로서 차아인산나트륨 대신 디메틸아민보란을 사용하는 것도 가능하다. 그리고, 무전해 니켈 도금(S15)에 의해 막 두께 0.1~15μm의 니켈 도금 피막을 형성하고, 무전해 팔라듐 도금(S16)에 의해 막 두께 0.001~2μm의 팔라듐 도금 피막을 형성하고, 무전해 금도금(S17)에 의해 막 두께 0.001~1μm의 금도금 피막을 형성한다고 되어있다. In the electroless nickel plating disclosed in Patent Document 1 (S15), 22.5 g / L of nickel sulfate hexahydrate (5 g / L in terms of nickel), sodium hypophosphite as a reducing agent, malic acid and succinic acid as complexing agents, As the stabilizer, an electroless nickel plating solution containing lead salts, bismuth salts, sulfur compounds and the like and having a pH of 4.6 and a bath temperature of 60 to 90 ° C is used. It is also possible to use dimethylamine borane instead of sodium hypophosphite as the reducing agent. Then, a nickel plating film having a thickness of 0.1 to 15 µm is formed by electroless nickel plating (S15), a palladium plating film having a thickness of 0.001 to 2 µm is formed by electroless palladium plating (S16), and an electroless gold plating ( According to S17), a gold plated film having a thickness of 0.001 to 1 µm is formed.

Ni/Au 피막 또는 Ni/Pd/Au 피막에서 더욱 고밀도 실장을 실현하기 위해서는 니켈 도금 피막을 더욱 박막화하는 것이 바람직하다. In order to realize higher density mounting in the Ni / Au film or the Ni / Pd / Au film, it is preferable to further thin the nickel plated film.

일본 특허 공개 제2008-174774호 공보Japanese Patent Publication No. 2008-174774

그러나, 상술한 무전해 니켈 도금(S15)에 의해, 막 두께가 예를 들면 0.01μm 이하인 매우 얇은 니켈 도금 피막을 형성한 경우에는, 피복이 불충분하여 니켈 도금 피막의 표면에 미세한 홈(구멍)이 생기는 경우가 있다. 그리고, 후속의 무전해 금도금(S17)을 행하였을 때, 상기 홈이 부식하여 니켈 도금 피막을 관통하는 관통홀이 생기는 경우가 있다. 이 현상을 「니켈 국부 부식 현상」이라고 칭한다. 이 경우, Ni/Au 피막 또는 Ni/Pd/Au 피막에서 우수한 실장 특성을 얻을 수 없다는 문제점이 있다. However, when the above-mentioned electroless nickel plating (S15) forms a very thin nickel plated film having a film thickness of, for example, 0.01 μm or less, the coating is insufficient, and fine grooves (holes) are formed on the surface of the nickel plated film. It may occur. When the subsequent electroless gold plating S17 is performed, the grooves may corrode to generate through holes penetrating the nickel plating film. This phenomenon is called "nickel local corrosion phenomenon." In this case, there is a problem that excellent mounting characteristics cannot be obtained in the Ni / Au film or the Ni / Pd / Au film.

본원 발명의 과제는, 구리재의 표면에 니켈 도금 피막과 금도금 피막을 순서대로 형성할 때, 니켈 도금 피막의 막 두께를 얇게 할 수 있으며, 우수한 실장 특성을 구비한 피막을 얻을 수 있는 무전해 도금 프로세스를 제공하는 것을 목적으로 한다. An object of the present invention is an electroless plating process in which when the nickel plated film and the gold plated film are sequentially formed on the surface of a copper material, the film thickness of the nickel plated film can be reduced and a film having excellent mounting characteristics can be obtained. The purpose is to provide.

본원 발명에 따른 무전해 도금 프로세스는, 무전해 도금법에 따라 구리재의 표면에 니켈 도금 피막과 금도금 피막을 순서대로 형성하는 무전해 도금 프로세스로서, 무전해 스트라이크 도금법에 따라 구리재의 표면에 니켈 도금 피막을 형성하는 공정; 및 환원형 무전해 도금법에 따라 금도금 피막을 형성하는 공정;을 구비하는 것을 특징으로 한다. The electroless plating process according to the present invention is an electroless plating process in which a nickel plating film and a gold plating film are sequentially formed on the surface of a copper material by an electroless plating method, and a nickel plating film is formed on the surface of a copper material by an electroless strike plating method. Forming step; And forming a gold plated film according to a reduced electroless plating method.

본원 발명에 따른 무전해 도금 프로세스에서, 상기 무전해 스트라이크 도금법은, 니켈 환산으로 0.002~1g/L의 수용성 니켈염; 카르복시산 또는 그 염; 및 디메틸아민보란, 트리메틸아민보란, 히드라진, 히드라진 유도체로 이루어진 군으로부터 선택되는 1종 이상의 환원제;를 포함하고, pH가 6~10, 욕온이 20~55℃로 조정된 무전해 니켈 스트라이크 도금액을 이용하여, 상기 무전해 니켈 스트라이크 도금액에 상기 구리재를 침지함으로써 행하는 것인 것이 바람직하다. In the electroless plating process according to the present invention, the electroless strike plating method, 0.002 ~ 1g / L water-soluble nickel salt in terms of nickel; Carboxylic acids or salts thereof; And at least one reducing agent selected from the group consisting of dimethylamine borane, trimethylamine borane, hydrazine and hydrazine derivatives, wherein the pH is 6-10 and the bath temperature is adjusted to 20-55 ° C. using an electroless nickel strike plating solution. In this case, the copper material is preferably immersed in the electroless nickel strike plating solution.

그리고, 상기 무전해 니켈 스트라이크 도금액은, 상기 수용성 니켈염, 상기 카르복시산 또는 그 염 및 물을 혼합하여 교반함으로써 니켈 착체를 포함하는 수용액을 조제한 후, 상기 수용액에 상기 환원제를 혼합하여 교반함으로써 조제된 것인 것이 바람직하다.The electroless nickel strike plating solution is prepared by mixing and stirring the water-soluble nickel salt, the carboxylic acid or its salt, and water to prepare an aqueous solution containing a nickel complex, and then mixing and stirring the reducing agent in the aqueous solution. Is preferably.

본원 발명에 따른 무전해 도금 프로세스에서, 상기 니켈 도금 피막을 형성하는 공정은 막 두께가 0.005~0.3μm인 니켈 도금 피막을 형성하는 것인 것이 바람직하다. In the electroless plating process according to the present invention, the step of forming the nickel plated film is preferably to form a nickel plated film having a film thickness of 0.005 ~ 0.3μm.

또한, 본원 발명에 따른 무전해 도금 프로세스는, 구리재의 표면에 니켈 도금 피막, 팔라듐 도금 피막 및 금도금 피막을 순서대로 형성하는 것으로, 상기 니켈 도금 피막을 형성하는 공정과 상기 금도금 피막을 형성하는 공정 사이에, 환원형 무전해 도금법에 따라 팔라듐 도금 피막을 형성하는 공정을 구비하는 것인 것이 바람직하다.In addition, the electroless plating process according to the present invention is to form a nickel plated film, a palladium plated film and a gold plated film in order on the surface of the copper material, between the step of forming the nickel plated film and the process of forming the gold plated film It is preferable to provide a process for forming a palladium plating film according to the reduction type electroless plating method.

본원 발명에 따른 무전해 도금 프로세스에서는, 무전해 스트라이크 도금법을 채용함으로써, 종래의 무전해 도금 프로세스에서 행하여지고 있던 팔라듐 촉매 부여 처리(S14)를 행하지 않아도, 구리재의 표면에 니켈 도금 피막을 직접 형성할 수 있다. 또한, 막 두께가 얇아도 구리재의 표면을 확실히 피복하고, 구리재에 대한 밀착성이 우수한 니켈 도금 피막을 형성할 수 있다. 그 때문에, 본원 발명에 따른 무전해 도금 프로세스에 의하면, 니켈 도금 피막의 박막화를 실현할 수 있다. 그리고, 본원 발명에 따른 무전해 도금 프로세스에서는, 환원형 무전해 도금법을 채용함으로써 그 전에 형성된 피막의 금속을 용출시키지 않고 금도금 피막 또는 팔라듐 도금 피막을 형성할 수 있다. 그리하여, 본원 발명에 따른 무전해 도금 프로세스에 의하면, 실장 특성이 우수한 Ni/Au 피막 또는 Ni/Pd/Au 피막을 얻을 수 있다. In the electroless plating process according to the present invention, by adopting the electroless strike plating method, a nickel plating film can be directly formed on the surface of the copper material even without performing the palladium catalyzed treatment (S14) performed in the conventional electroless plating process. Can be. Moreover, even if the film thickness is thin, the surface of the copper material can be reliably covered, and a nickel plated film excellent in adhesion to the copper material can be formed. Therefore, according to the electroless plating process which concerns on this invention, thin film formation of a nickel plating film can be implement | achieved. In the electroless plating process according to the present invention, by adopting a reduced electroless plating method, a gold plated film or a palladium plating film can be formed without eluting the metal of the film formed before. Therefore, according to the electroless plating process which concerns on this invention, the Ni / Au film or Ni / Pd / Au film excellent in the mounting characteristic can be obtained.

도 1은 본 실시 형태의 무전해 도금 프로세스를 나타내는 흐름도이다.
도 2는 실시예 1의 무전해 도금 프로세스에서 얻어진 니켈 도금 피막의 SEM 사진이다.
도 3은 비교예 1의 무전해 도금 프로세스에서 얻어진 니켈 도금 피막의 SEM 사진이다.
도 4는 비교예 2의 무전해 도금 프로세스에서 얻어진 니켈 도금 피막의 SEM 사진이다.
도 5는 실시예 1 및 비교예 1의 무전해 도금 프로세스에서 얻어진 니켈 도금 피막에 대하여 저전위 전해를 행한 결과를 나타내는 그래프이다.
도 6은 실시예 1 및 비교예 1의 무전해 도금 프로세스에서 얻어진 Ni/Pd/Au 피막의 땜납 퍼짐성을 나타내는 그래프이다.
도 7은 실시예 1 및 비교예 1의 무전해 도금 프로세스에서 얻어진 Ni/Pd/Au 피막의 땜납 볼 전단 강도를 나타내는 그래프이다.
도 8은 실시예 1 및 비교예 1의 무전해 도금 프로세스에서 얻어진 Ni/Pd/Au 피막의 와이어 본딩 강도를 나타내는 그래프이다.
도 9는 실시예 1 및 비교예 1의 무전해 도금 프로세스에서 얻어진 Ni/Pd/Au 피막의 금 와이어 파단 모드를 나타내는 그래프이다.
도 10은 종래 기술의 무전해 도금 프로세스를 나타내는 흐름도이다.
1 is a flowchart showing an electroless plating process of the present embodiment.
FIG. 2 is an SEM photograph of the nickel plated film obtained in the electroless plating process of Example 1. FIG.
3 is an SEM photograph of the nickel plated film obtained in the electroless plating process of Comparative Example 1. FIG.
4 is an SEM photograph of the nickel plated film obtained in the electroless plating process of Comparative Example 2. FIG.
5 is a graph showing the results of low potential electrolysis of the nickel plated film obtained in the electroless plating processes of Example 1 and Comparative Example 1. FIG.
6 is a graph showing solder spreadability of the Ni / Pd / Au film obtained in the electroless plating processes of Example 1 and Comparative Example 1. FIG.
7 is a graph showing the solder ball shear strength of the Ni / Pd / Au coatings obtained in the electroless plating processes of Example 1 and Comparative Example 1. FIG.
8 is a graph showing wire bonding strengths of Ni / Pd / Au films obtained in the electroless plating processes of Example 1 and Comparative Example 1. FIG.
9 is a graph showing a gold wire breaking mode of the Ni / Pd / Au film obtained in the electroless plating processes of Example 1 and Comparative Example 1. FIG.
10 is a flow chart illustrating a prior art electroless plating process.

다음으로, 본원 발명에 따른 무전해 도금 프로세스의 실시 형태를 설명한다. 본 실시 형태의 무전해 도금 프로세스는, 예를 들면, 수지 기판, 세라믹 기판, 웨이퍼 기판 등의 절연 기재의 표면에 마련된 전극이나 배선 등의 구리재의 표면에 무전해 도금법에 따라 니켈 도금 피막과 금도금 피막을 순서대로 형성하는 무전해 도금 프로세스이다. 구체적으로는, 무전해 스트라이크 도금법에 따라 구리재의 표면에 니켈 도금 피막을 형성하는 공정 및 환원형 무전해 도금법에 따라 금도금 피막을 형성하는 공정을 구비하는 무전해 도금 프로세스이다. 이하, 구리재의 표면에 니켈 도금 피막과 팔라듐 도금 피막과 금도금 피막을 순서대로 형성함으로써, 구리재의 표면에 Ni/Pd/Au 피막을 형성하는 무전해 도금 프로세스에 대해 설명한다. Next, an embodiment of the electroless plating process according to the present invention will be described. The electroless plating process of this embodiment is a nickel plating film and a gold plating film according to the electroless plating method on the surface of copper materials, such as an electrode and wiring provided in the surface of insulating base materials, such as a resin substrate, a ceramic substrate, and a wafer substrate, for example. It is an electroless plating process that forms in order. Specifically, it is an electroless plating process including a step of forming a nickel plated film on the surface of a copper material by an electroless strike plating method and a step of forming a gold plated film by a reduced type electroless plating method. Hereinafter, an electroless plating process for forming a Ni / Pd / Au film on the surface of the copper material by forming a nickel plating film, a palladium plating film and a gold plating film on the surface of the copper material in order will be described.

본 실시 형태의 무전해 도금 프로세스에서는, 도 1에 나타낸 바와 같이 우선, 니켈 도금 피막을 형성하기 전의 전처리로서, 탈지 공정(S1), 에칭 공정(S2) 및 디스머트 공정(S3)을 행한다. 그 후, 무전해 니켈(Ni) 스트라이크 도금 공정(S4)에 의해 구리재의 표면에 니켈 도금 피막을 형성한다. 계속해서, 무전해 팔라듐(Pd) 도금 공정(S5)에 의해 팔라듐 도금 피막을 형성하고, 무전해 금(Au) 도금 공정(S6)에 의해 금도금 피막을 형성한다. 각 공정 후에는 수세 처리를 행한다. 수세 처리는 3회 행하는 것이 바람직하다. In the electroless plating process of this embodiment, as shown in FIG. 1, first, as a pretreatment before forming a nickel plating film, a degreasing process (S1), an etching process (S2), and a dimmer process (S3) are performed. Thereafter, a nickel plating film is formed on the surface of the copper material by the electroless nickel (Ni) strike plating step (S4). Subsequently, a palladium plating film is formed by an electroless palladium (Pd) plating process (S5), and a gold plating film is formed by an electroless gold (Au) plating process (S6). After each process, a water washing process is performed. It is preferable to perform a water washing process three times.

1. 탈지 공정(S1) 1. Degreasing process (S1)

탈지 공정(S1)에서는 구리재를 산성 용액에 침지함으로써 구리재의 표면에 부착되는 유지분을 제거한다. In the degreasing step (S1), the fat or oil adhering to the surface of the copper material is removed by dipping the copper material in an acidic solution.

2. 에칭 공정(S2) 2. Etching Process (S2)

에칭 공정(S2)에서는 탈지 공정(S1)이 실시된 구리재를 과황산계, 과산화수소계, 티올계 등의 에칭액에 침지함으로써 구리재의 표면에 형성되어 있는 구리산화막을 제거한다. In the etching step (S2), the copper oxide film formed on the surface of the copper material is removed by immersing the copper material subjected to the degreasing step (S1) in an etching solution such as persulfate, hydrogen peroxide, or thiol.

3. 디스머트 공정(S3) 3. Dismute process (S3)

디스머트 공정(S3)에서는 에칭 공정(S2)이 실시된 구리재를, 예를 들면 10% 황산에 침지함으로써 구리재의 표면에 부착되어 있는 스머트를 제거한다. In the dimmer process S3, the smut adhering to the surface of the copper material is removed by immersing the copper material subjected to the etching step S2 in, for example, 10% sulfuric acid.

4. 무전해 니켈 스트라이크 도금 공정(S4) 4. Electroless Nickel Strike Plating Process (S4)

무전해 니켈 스트라이크 도금 공정(S4)에서는, 무전해 스트라이크 도금법에 따라 전처리된 구리재의 표면에 니켈 도금 피막을 형성한다. 무전해 스트라이크 도금법은 디스머트 공정(S3)이 실시된 구리재를 무전해 니켈 스트라이크 도금액에 침지함으로써 행한다. In the electroless nickel strike plating step (S4), a nickel plating film is formed on the surface of the copper material pretreated by the electroless strike plating method. The electroless strike plating method is carried out by immersing the copper material subjected to the discharging step (S3) in an electroless nickel strike plating solution.

무전해 니켈 스트라이크 도금액: Electroless Nickel Strike Plating Solution :

무전해 니켈 스트라이크 도금액은 수용성 니켈염; 카르복시산 또는 그 염; 및 디메틸아민보란, 트리메틸아민보란, 히드라진, 히드라진 유도체로 이루어진 군으로부터 선택되는 1종 이상의 환원제;를 포함한다. 본원 명세서에서 「1종 이상」이란, 1종만일 수도 있으며, 2종 이상의 복수종일 수도 있음을 의미한다. The electroless nickel strike plating solution is a water-soluble nickel salt; Carboxylic acids or salts thereof; And at least one reducing agent selected from the group consisting of dimethylamine borane, trimethylamine borane, hydrazine, and hydrazine derivatives. In this specification, "one or more types" means only 1 type may be sufficient as 2 or more types.

수용성 니켈염: Water Soluble Nickel Salt:

무전해 니켈 스트라이크 도금액에 이용하는 수용성 니켈염으로서, 예를 들면, 황산 니켈, 염화 니켈, 탄산 니켈이나, 아세트산 니켈, 차아인산 니켈, 설파민산 니켈, 구연산 니켈 등의 유기산 니켈을 들 수 있다. 이들은 단독으로 사용할 수 있으며, 2종 이상을 조합하여 사용할 수도 있다. 본원 발명에서는 수용성 니켈염으로서 황산니켈 6수화물을 이용하는 것이 가장 바람직하다. As a water-soluble nickel salt used for an electroless nickel strike plating liquid, organic acid nickel, such as nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, nickel hypophosphite, nickel sulfamate, nickel citrate, is mentioned, for example. These can be used independently and can also be used in combination of 2 or more type. In the present invention, it is most preferable to use nickel sulfate hexahydrate as the water-soluble nickel salt.

무전해 니켈 스트라이크 도금액은 수용성 니켈염의 니켈 환산 함유량으로 0.002~1g/L의 범위인 것이 바람직하다. 이는, 종래 기술의 무전해 도금 프로세스의 무전해 니켈 도금(S15)에서 이용되는 무전해 니켈 도금액의 니켈 농도 5g/L의 1/5 이하이며 상당히 저농도이다. 무전해 니켈 스트라이크 도금액은, 수용성 니켈염의 니켈 환산 함유량이 상기 범위인 것에 의해, 무전해 스트라이크 도금법을 실현하여 팔라듐 촉매가 부여되어 있지 않은 구리재의 표면에 니켈 도금 피막을 직접 형성할 수 있다. It is preferable that an electroless nickel strike plating liquid is 0.002-1 g / L in nickel conversion content of water-soluble nickel salt. This is not more than 1/5 of the nickel concentration of 5 g / L of the electroless nickel plating solution used in the electroless nickel plating (S15) of the prior art electroless plating process, and the concentration is very low. When the electroless nickel strike plating solution has a nickel equivalent content of the water-soluble nickel salt in the above range, the electroless strike plating method can be realized to form a nickel plating film directly on the surface of the copper material to which the palladium catalyst is not applied.

수용성 니켈염의 니켈 환산 함유량이 0.002g/L 미만이면 석출 속도가 과도하게 느려지기 때문에, 원하는 막 두께의 니켈 도금 피막을 얻으려면 침지 시간을 길게 할 필요가 있으며, 공업적 생산성을 만족시킬 수 없기 때문에 바람직하지 않다. 한편, 수용성 니켈염의 니켈 환산 함유량이 1g/L를 넘으면 석출 속도가 과도하게 빨라져, 표면이 균일한 니켈 도금 피막을 얻을 수 없는 경우가 있어 바람직하지 않다. 수용성 니켈염의 니켈 환산 함유량은 0.01~0.5g/L의 범위가 보다 바람직하고, 0.03~0.1g/L의 범위가 가장 바람직하다. If the nickel conversion content of the water-soluble nickel salt is less than 0.002 g / L, the precipitation rate is excessively slowed. Therefore, in order to obtain a nickel plated film having a desired film thickness, it is necessary to lengthen the immersion time, and the industrial productivity cannot be satisfied. Not desirable On the other hand, when the nickel conversion content of water-soluble nickel salt exceeds 1 g / L, precipitation rate will become excessively fast and a nickel plating film with a uniform surface may not be obtained, and it is unpreferable. The nickel conversion content of the water-soluble nickel salt is more preferably in the range of 0.01 to 0.5 g / L, and most preferably in the range of 0.03 to 0.1 g / L.

카르복시산 또는 그 염: Carboxylic acid or its salts:

무전해 니켈 스트라이크 도금액은 카르복시산 또는 그 염을 포함한다. 이들은 착화제나 pH 조정제로서 작용한다. 카르복시산으로서 예를 들면, 모노카르복시산(포름산, 아세트산, 프로피온산, 부티르산 등), 디카르복시산(옥살산, 말론산, 호박산, 글루콘산, 아디핀산, 푸말산, 말레인산, 호박산 등), 트리카르복시산(아코니트산 등), 히드록시카르복시산(구연산, 젖산, 사과산), 방향족 카르복시산(벤조산, 프탈산, 살리실산 등), 옥소카르복시산(피루빈산 등) 및 아미노산(아르기닌, 아스파라긴, 아스파라긴산, 시스테인, 글루타민산, 글리신 등)으로부터 선택되는 1종 이상을 이용할 수 있다. Electroless nickel strike plating solutions include carboxylic acids or salts thereof. These act as complexing agents or pH adjusters. As the carboxylic acid, for example, monocarboxylic acid (formic acid, acetic acid, propionic acid, butyric acid, etc.), dicarboxylic acid (oxalic acid, malonic acid, succinic acid, gluconic acid, adipic acid, fumaric acid, maleic acid, succinic acid, etc.), tricarboxylic acid (aconic acid) Etc.), hydroxycarboxylic acids (citric acid, lactic acid, malic acid), aromatic carboxylic acids (benzoic acid, phthalic acid, salicylic acid, etc.), oxocarboxylic acids (pyruvic acid, etc.) and amino acids (arginine, asparagine, aspartic acid, cysteine, glutamic acid, glycine, etc.) One or more types selected can be used.

카르복시산 또는 그 염은, 그 합계가 0.5~5g/L인 범위에서 이용하는 것이 바람직하고, 0.8~2g/L의 범위가 보다 바람직하다. 본 실시 형태의 무전해 니켈 스트라이크 도금액은, 종래 기술의 무전해 도금 프로세스의 무전해 니켈 도금(S15)에서 이용되는 무전해 니켈 도금액과 비교하여 니켈 함유량이 낮은 것으로부터, 카르복시산 또는 그 염의 함유량을 낮게 설정하고 있다. 카르복시산 또는 그 염은, 그 종류에도 의존하지만, 함유량이 0.5g/L 미만이면 무전해 니켈 스트라이크 도금액중의 니켈 이온의 착체 형성이 불충분해져 침전이 생길 수 있기 때문에 바람직하지 않다. 한편, 카르복시산 또는 그 염의 함유량이 5g/L를 넘어도 특별한 효과를 얻을 수 없을 뿐만 아니라, 자원 낭비가 되어 바람직하지 않다. It is preferable to use carboxylic acid or its salt in the range whose total is 0.5-5 g / L, and the range of 0.8-2 g / L is more preferable. The electroless nickel strike plating solution of the present embodiment has a lower nickel content compared to the electroless nickel plating solution used in the electroless nickel plating (S15) of the electroless plating process of the prior art, so that the content of carboxylic acid or its salt is lowered. Setting. Although carboxylic acid or its salt also depends on the kind, when content is less than 0.5 g / L, it is unpreferable since complex formation of the nickel ion in an electroless nickel strike plating liquid may become inadequate and precipitation may occur. On the other hand, even if the content of the carboxylic acid or its salt exceeds 5 g / L, not only a special effect is obtained, but also a waste of resources is not preferable.

환원제: reducing agent:

무전해 니켈 스트라이크 도금액은, 디메틸아민보란, 트리메틸아민보란, 히드라진, 히드라진 유도체로 이루어진 군으로부터 선택되는 1종 이상의 환원제를 포함한다. 무전해 니켈 스트라이크 도금액은 환원제로서 이들 물질을 이용함으로써, 팔라듐 촉매가 부여되어 있지 않은 구리재의 표면으로의 니켈 석출을 실현할 수 있다. 인체에 대한 안전성의 관점에서, 디메틸아민보란, 트리메틸아민보란이 보다 바람직하다. The electroless nickel strike plating solution contains at least one reducing agent selected from the group consisting of dimethylamine borane, trimethylamine borane, hydrazine and hydrazine derivatives. By using these substances as the reducing agent in the electroless nickel strike plating solution, nickel deposition on the surface of the copper material to which the palladium catalyst is not provided can be realized. From the viewpoint of safety to the human body, dimethylamine borane and trimethylamine borane are more preferable.

환원제는 2~10g/L의 범위에서 이용하는 것이 바람직하고, 4~8g/L의 범위가 보다 바람직하다. 상기 환원제의 함유량이 2g/L 미만이면 충분한 환원 작용이 얻어지지 않으며, 구리 표면으로의 니켈 석출이 진행되지 않을 수 있어 바람직하지 않다. 상기 환원제의 함유량이 10g/L를 넘으면 구리 이외의 표면(절연 기재의 표면)에 니켈이 이상 석출되거나 무전해 니켈 스트라이크 도금액의 욕 분해가 생길 수 있어 바람직하지 않다. It is preferable to use a reducing agent in the range of 2-10 g / L, and the range of 4-8 g / L is more preferable. If the content of the reducing agent is less than 2 g / L, a sufficient reducing action is not obtained, and nickel precipitation on the copper surface may not proceed, which is not preferable. When the content of the reducing agent exceeds 10 g / L, nickel is abnormally precipitated on surfaces other than copper (the surface of the insulating substrate) or bath decomposition of the electroless nickel strike plating solution may occur, which is not preferable.

무전해 니켈 스트라이크 도금액은 상술한 성분을 물에 혼합하고 교반하여 용해시킴으로써 조제된다. 상기 무전해 니켈 스트라이크 도금액은 상기 수용성 니켈염, 상기 카르복시산 또는 그 염 및 물을 혼합하여 교반함으로써 니켈 착체를 포함하는 수용액을 조제한 후, 상기 수용액에 상기 환원제를 혼합하여 교반함으로써 조제된 것인 것이 더 바람직하다. 이와 같이 하여 조제된 무전해 니켈 스트라이크 도금액은 니켈 착체가 장기간 안정적으로 존재할 수 있어, 우수한 욕 안정성을 얻을 수 있다. The electroless nickel strike plating solution is prepared by mixing the above components with water, stirring and dissolving them. The electroless nickel strike plating solution is prepared by mixing and stirring the water-soluble nickel salt, the carboxylic acid or its salt, and water to prepare an aqueous solution containing a nickel complex, and then mixing and stirring the reducing agent in the aqueous solution. desirable. In the electroless nickel strike plating solution prepared in this way, the nickel complex can be stably present for a long time, and excellent bath stability can be obtained.

무전해 니켈 스트라이크 도금액은 상술한 성분 이외에, 황산염, 붕산, 염화물염 등의 성분을 포함할 수 있다. The electroless nickel strike plating solution may contain components such as sulfate, boric acid, chloride salt, etc. in addition to the above components.

pH: pH :

무전해 니켈 스트라이크 도금액은 pH가 6~10인 중성 영역으로 조정되는 것이 바람직하다. pH가 6 미만이면 니켈 석출 속도가 저하되어 니켈 도금 피막의 성막성이 저하되고, 니켈 도금 피막의 표면에 구멍이나 홈이 생길 수 있어 바람직하지 않다. 한편, pH가 10을 넘으면 니켈 석출 속도가 과도하게 빨라져 니켈 도금 피막의 막 두께 제어가 곤란해지거나, 석출되는 니켈의 결정 상태를 치밀화할 수 없는 경우가 있어 바람직하지 않다. The electroless nickel strike plating liquid is preferably adjusted to a neutral region having a pH of 6 to 10. If the pH is less than 6, the nickel deposition rate is lowered and the film forming property of the nickel plated film is lowered, which may cause holes or grooves on the surface of the nickel plated film, which is not preferable. On the other hand, when the pH exceeds 10, the nickel deposition rate is excessively high, which makes it difficult to control the film thickness of the nickel plated film, or the crystal state of precipitated nickel cannot be densified, which is undesirable.

욕온: Bath temperature :

무전해 니켈 스트라이크 도금액은 욕온이 20~55℃로 조정되는 것이 바람직하다. 이는, 종래 기술의 무전해 니켈 도금(S15)에서 이용되는 무전해 니켈 도금액의 욕온 60~90℃보다 낮은 값이다. 욕온이 20℃ 미만이면 니켈 석출 속도가 저하되어 니켈 도금 피막의 성막성이 저하되고, 니켈 도금 피막의 표면에 구멍이나 홈이 생기거나, 니켈이 석출되지 않을 수 있어 바람직하지 않다. 한편, 욕온이 55℃를 넘으면 무전해 니켈 스트라이크 도금액의 욕 안정성이 저하되어 무전해 스트라이크 도금법을 실현할 수 없는 경우가 있어 바람직하지 않다. It is preferable that bath temperature of an electroless nickel strike plating liquid is adjusted to 20-55 degreeC. This is a value lower than the bath temperature of 60-90 degreeC of the electroless nickel plating liquid used by the electroless nickel plating (S15) of a prior art. If bath temperature is less than 20 degreeC, nickel deposition rate will fall and the film-forming property of a nickel plating film will fall, and a hole or a groove | channel may arise in the surface of a nickel plating film, or nickel may not precipitate, which is unpreferable. On the other hand, when bath temperature exceeds 55 degreeC, the bath stability of an electroless nickel strike plating liquid will fall, and an electroless strike plating method may not be implement | achieved, and it is unpreferable.

막 두께: Film thickness :

니켈 도금 피막의 막 두께는 무전해 니켈 스트라이크 도금액에 대한 침지 시간에 의해 조정된다. 니켈 도금 피막의 막 두께는 구리의 확산을 막는 것이 가능한 범위에서 가능한 한 얇은 것이 바람직하고, 0.005~0.3μm인 것이 바람직하다. 니켈 도금 피막의 막 두께가 0.005μm 미만이면 구리재 표면의 피복이 불충분해져 니켈 도금 피막의 표면에 미세한 홈이 생기고, 그 결과, 후속의 무전해 금도금 공정(S6)을 행하였을 때 니켈 국부 부식 현상이 생기거나, 구리나 니켈이 금도금 피막 표면에 확산될 수 있어 바람직하지 않다. 한편, 막 두께가 0.3μm를 넘는 니켈 도금 피막을 형성하는 것도 가능하나, 니켈 도금 피막의 유연성이 저하될 뿐만 아니라 자원의 낭비가 되므로 바람직하지 않다. The film thickness of the nickel plating film is adjusted by the immersion time in the electroless nickel strike plating solution. It is preferable that the film thickness of a nickel plating film is as thin as possible in the range which can prevent the diffusion of copper, and it is preferable that it is 0.005-0.3 micrometer. If the thickness of the nickel plated film is less than 0.005 μm, the coating on the surface of the copper material is insufficient, resulting in minute grooves on the surface of the nickel plated film. As a result, nickel local corrosion phenomenon occurs when the subsequent electroless gold plating process (S6) is performed. This is undesirable, since copper or nickel may diffuse onto the surface of the gold plated film. On the other hand, it is also possible to form a nickel plated film having a thickness of more than 0.3 μm, but it is not preferable because the flexibility of the nickel plated film is not only degraded, but also waste of resources.

본 실시 형태의 무전해 니켈 스트라이크 도금 공정(S4)에 의하면, 종래의 무전해 니켈 도금(S15)에서는 곤란하였던 니켈 도금 피막의 박막화를 실현할 수 있으며, 막 두께가 0.005~0.3μm인 니켈 도금 피막을 얻을 수 있다. 또한, 양호한 실장 특성을 확보하면서 박막화를 실현하기 위해서는, 무전해 니켈 스트라이크 도금 공정(S4)에 의해 형성되는 니켈 도금 피막의 막 두께가 0.007~0.1μm인 것이 보다 바람직하다. According to the electroless nickel strike plating process (S4) of this embodiment, the thinning of the nickel plating film which was difficult in the conventional electroless nickel plating (S15) can be realized, and the nickel plating film whose film thickness is 0.005-0.3 micrometers is used. You can get it. Moreover, in order to realize thin film while ensuring favorable mounting characteristics, it is more preferable that the film thickness of the nickel plating film formed by an electroless nickel strike plating process (S4) is 0.007-0.1 micrometer.

본 실시 형태의 무전해 니켈 스트라이크 도금 공정(S4)에서는, 무전해 니켈 스트라이크 도금액에 포함되는 디메틸아민보란, 트리메틸아민보란, 히드라진, 히드라진 유도체로 이루어진 군으로부터 선택되는 1종 이상의 물질이 환원제로서 작용하여, 팔라듐 촉매가 부여되어 있지 않은 구리재의 표면에 니켈을 석출할 수 있다. 그리고, 무전해 니켈 스트라이크 도금액의 니켈 함유량이 낮은데다, pH가 6~10, 욕온이 20~55℃로 조정되어 있다. 이에 따라, 니켈의 석출 속도를 느리게 하고 무전해 스트라이크 도금법을 실현하여, 구리재의 표면에 니켈 도금 피막을 직접 형성할 수 있다. 이때, 니켈의 석출 속도가 느리기 때문에, 구리재의 표면에서 일정하게 니켈을 석출시킬 수 있고, 그 결과, 막 두께가 균일하고, 막 두께가 얇아도 구리재의 표면을 확실하게 피복하는 니켈 도금 피막을 형성할 수 있다. 얻어진 니켈 도금 피막은 종래의 무전해 도금 프로세스에서 얻어진 니켈 도금 피막과 비교하여, 구리재에 대한 밀착성이 우수함과 함께, 구리의 확산을 막는 배리어 특성이 뛰어나다. In the electroless nickel strike plating step (S4) of the present embodiment, at least one substance selected from the group consisting of dimethylamine borane, trimethylamine borane, hydrazine and hydrazine derivatives contained in the electroless nickel strike plating solution acts as a reducing agent. Nickel can be deposited on the surface of the copper material to which the palladium catalyst is not provided. And the nickel content of an electroless nickel strike plating liquid is low, pH is 6-10, and bath temperature is adjusted to 20-55 degreeC. As a result, the deposition rate of nickel is slowed, the electroless strike plating method is realized, and a nickel plating film can be directly formed on the surface of the copper material. At this time, since the deposition rate of nickel is slow, nickel can be uniformly deposited on the surface of the copper material. As a result, even if the film thickness is uniform, a nickel plated film which reliably covers the surface of the copper material is formed. can do. The obtained nickel plating film is excellent in adhesiveness with respect to a copper material, and is excellent in the barrier property which prevents the diffusion of copper compared with the nickel plating film obtained by the conventional electroless plating process.

이에 대해, 종래 기술의 무전해 도금 프로세스에서 행해지는 무전해 니켈 도금(S15)에서는, 팔라듐 촉매 부여 처리(S14)에 의해 구리재의 표면에 부여된 팔라듐이 촉매로서 작용하여 니켈 석출이 진행된다. 그 때문에, 구리재 표면의 팔라듐 촉매가 부여된 영역과 부여되어 있지 않은 영역은, 형성되는 니켈 도금 피막의 막 두께에 편차가 생겨 균일한 막 두께의 니켈 도금 피막을 얻기 어렵다. 또한, 무전해 니켈 도금(S15)에서 이용되는 무전해 니켈 도금액은 니켈 함유량이나 욕온이 높아 니켈의 석출 속도가 빠르기 때문에, 구리재에 대한 밀착성이 우수한 니켈 도금 피막을 얻기 어렵다. On the other hand, in the electroless nickel plating (S15) performed by the electroless plating process of the prior art, palladium provided to the surface of a copper material by a palladium catalyst provision process (S14) acts as a catalyst, and nickel precipitation advances. Therefore, the area | region to which the palladium catalyst was given and the area | region not provided to the copper material surface generate | occur | produce a deviation in the film thickness of the nickel plating film formed, and it is difficult to obtain a nickel plating film of uniform film thickness. In addition, the electroless nickel plating solution used in the electroless nickel plating (S15) has a high nickel content and a high bath temperature, so the deposition rate of nickel is high, so that a nickel plating film excellent in adhesion to the copper material is hardly obtained.

본 실시 형태의 무전해 니켈 스트라이크 도금 공정(S4)에 의하면, 환원제로서 디메틸아민보란, 트리메틸아민보란을 이용한 경우에는, 니켈과 붕소의 합금(니켈-붕소 합금)으로 이루어지는 니켈 도금 피막을 얻을 수 있다. 이 니켈 도금 피막은 붕소 함유량이 매우 적고(예를 들면, 0.1% 이하), 실질적으로 순니켈로 이루어지는 니켈 도금 피막이다. 또한, 환원제로서, 히드라진, 히드라진 유도체를 이용한 경우에는, 순니켈로 이루어지는 니켈 도금 피막을 얻을 수 있다. According to the electroless nickel strike plating process (S4) of this embodiment, when dimethylamine borane and trimethylamine borane are used as a reducing agent, the nickel plating film which consists of an alloy of nickel and boron (nickel-boron alloy) can be obtained. . This nickel plating film is a nickel plating film which is extremely low in boron content (for example, 0.1% or less), and consists of pure nickel substantially. In addition, when hydrazine and a hydrazine derivative are used as a reducing agent, the nickel plating film which consists of pure nickel can be obtained.

또한, 무전해 니켈 스트라이크 도금 공정(S4)에서는, 상기 무전해 니켈 스트라이크 도금액에서의 수용성 니켈염의 함유량이 0.002~1g/L로 낮다. 그 때문에, 종래 기술의 무전해 도금 프로세스의 무전해 니켈 도금(S15)에서 이용되는 납염, 비스무트염 등의 안정제를 사용하지 않아도, 욕 분해가 생기는 것을 막을 수 있다. 또한, 상기 무전해 니켈 스트라이크 도금액은, 납염, 비스무트염 등의 안정제를 포함하지 않기 때문에, 납이나 비스무트 등의 중금속을 포함하지 않는 니켈 도금 피막을 얻을 수 있다. In addition, in the electroless nickel strike plating step (S4), the content of the water-soluble nickel salt in the electroless nickel strike plating solution is as low as 0.002 to 1 g / L. Therefore, bath decomposition can be prevented from occurring without using a stabilizer such as lead salt or bismuth salt used in the electroless nickel plating (S15) of the electroless plating process of the prior art. In addition, since the electroless nickel strike plating solution does not contain stabilizers such as lead salt and bismuth salt, a nickel plating film containing no heavy metal such as lead or bismuth can be obtained.

5. 무전해 팔라듐 도금 공정(S5) 5. Electroless Palladium Plating Process (S5)

무전해 팔라듐 도금 공정(S5)에서는, 환원형 무전해 도금법에 의해 상기 니켈 도금 피막의 표면에 팔라듐 도금 피막을 형성한다. 치환형 무전해 도금법에 따라 팔라듐 피막을 형성하는 경우, 니켈 국부 부식 현상, 즉, 니켈이 용출되어 니켈 도금 피막을 관통하는 관통홀이 생길 수 있기 때문에, 환원형 무전해 도금법을 채용한다. In an electroless palladium plating process (S5), a palladium plating film is formed in the surface of the said nickel plating film by the reduction type electroless plating method. When the palladium film is formed by the substitutional electroless plating method, a nickel local corrosion phenomenon, that is, nickel may be eluted and a through hole penetrating the nickel plated film may be formed, so a reduced electroless plating method is employed.

무전해 팔라듐 도금 공정(S5)에 이용하는 환원형 무전해 팔라듐 도금액으로서 공지의 것을 이용할 수 있다. 예를 들면, 팔라듐 화합물 0.001~0.1mol/L, 아민 화합물 0.05~5mol/L, 무기 유황 화합물 0.01~0.1mol/L, 차아인산 또는 차아인산 화합물 0.05~1.0mol/L를 포함하는 환원형 무전해 팔라듐 도금액을 이용할 수 있다. 또는, 상기 차아인산 또는 차아인산 화합물 대신, 포름산 또는 포름산 화합물 0.001~0.1mol/L를 포함하는 환원형 무전해 팔라듐 도금액을 이용할 수 있다. A well-known thing can be used as a reduced type electroless palladium plating liquid used for an electroless palladium plating process (S5). For example, reduced electroless containing 0.001-0.1 mol / L of palladium compounds, 0.05-5 mol / L of amine compounds, 0.01-0.1 mol / L of inorganic sulfur compounds, 0.05-1.0 mol / L of hypophosphorous acid or hypophosphorous acid compounds A palladium plating liquid can be used. Alternatively, a reduced electroless palladium plating solution containing 0.001 to 0.1 mol / L of formic acid or formic acid compound may be used instead of the hypophosphorous acid or hypophosphorous acid compound.

무전해 팔라듐 도금 공정(S5)에서는, 환원형 무전해 도금법을 채용함으로써, 팔라듐 도금 피막을 형성할 때 니켈 도금 피막으로부터 니켈의 용출을 막을 수 있다. 그리고, 본 실시 형태의 무전해 도금 프로세스에서는, 무전해 니켈 스트라이크 도금 공정(S4)에 의해 형성된 니켈 도금 피막이 막 두께가 균일하여 평활성이 우수하기 때문에, 무전해 팔라듐 도금 공정(S5)에 의하면, 균일한 막 두께를 가지는 팔라듐 도금 피막을 형성할 수 있다. In the electroless palladium plating step (S5), by employing a reduced electroless plating method, it is possible to prevent elution of nickel from the nickel plating film when forming the palladium plating film. And in the electroless plating process of this embodiment, since the nickel plating film formed by the electroless nickel strike plating process (S4) is uniform in film thickness and excellent in smoothness, according to the electroless palladium plating process (S5), it is uniform. A palladium plating film having a film thickness can be formed.

6. 무전해 금도금 공정(S6) 6. Electroless Gold Plating Process (S6)

무전해 금도금 공정(S6)에서는, 환원형 무전해 도금법에 의해 상기 팔라듐 도금 피막의 표면에 금도금 피막을 형성한다. 치환형 무전해 도금법에 따라 금도금 피막을 형성하는 경우, 팔라듐이 용출되어 팔라듐 도금 피막을 관통하는 관통홀이 생길 수 있기 때문에, 환원형 무전해 도금법을 채용한다. In the electroless gold plating step (S6), a gold plated film is formed on the surface of the palladium plating film by a reduction type electroless plating method. When the gold plated film is formed by the substitutional electroless plating method, palladium is eluted and a through hole penetrating the palladium plated film may be formed. Thus, a reduced electroless plating method is employed.

무전해 금도금 공정(S6)에 이용하는 환원형 무전해 금도금액으로서 공지의 것을 이용할 수 있다. 예를 들면, 수용성 금 화합물; 구연산 또는 그 염; 에틸렌 디아민4아세트산 또는 그 염; 환원제로서 헥사메틸렌테트라민; 탄소수 3 이상의 알킬기 및 3개 이상의 아미노기를 포함하는 사슬형 폴리아민;을 포함하는 환원형 무전해 금도금액을 이용할 수 있다. A well-known thing can be used as a reduced type electroless gold plating solution used for an electroless gold plating process (S6). For example, water-soluble gold compound; Citric acid or salts thereof; Ethylene diamine tetraacetic acid or its salts; Hexamethylenetetramine as a reducing agent; A reduced type electroless gold plating solution including a chain polyamine comprising an alkyl group having 3 or more carbon atoms and 3 or more amino groups can be used.

무전해 금도금 공정(S6)에서는, 환원형 무전해 도금법을 채용함으로써 금도금 피막을 형성하는 경우에 팔라듐 도금 피막으로부터의 팔라듐의 용출을 막을 수 있다. 그리고, 본 실시 형태의 무전해 도금 프로세스에서는, 무전해 팔라듐 도금 공정(S4)에 의해 형성된 팔라듐 도금이 균일한 막 두께를 가지기 때문에, 무전해 금도금 공정(S6)에 의하면, 균일한 막 두께를 가지는 금도금 피막을 형성할 수 있다. In the electroless gold plating step (S6), the elution of palladium from the palladium plating film can be prevented when the gold plating film is formed by employing the reduced electroless plating method. In the electroless plating process of the present embodiment, since the palladium plating formed by the electroless palladium plating process S4 has a uniform film thickness, the electroless gold plating process S6 has a uniform film thickness. A gold plated film can be formed.

무전해 금도금 공정의 종료후, 수세 처리를 하고 건조시킨다. 이상과 같이, 도 1에 나타내는 무전해 도금 프로세스를 행함으로써 구리재의 표면에 Ni/Pd/Au 피막을 형성할 수 있다. After completion of the electroless gold plating process, it is washed with water and dried. As described above, the Ni / Pd / Au film can be formed on the surface of the copper material by performing the electroless plating process shown in FIG. 1.

본 실시 형태의 무전해 도금 프로세스에서는, 무전해 니켈 스트라이크 도금 공정(S4)에 의해, 팔라듐 촉매가 부여되어 있지 않은 구리재 표면에 니켈 도금 피막을 직접 형성할 수 있다. 그리고, 막 두께가 얇아도 구리재의 표면을 확실히 피복할 수 있으며, 구리재에 대한 밀착성과 배리어 특성이 우수한 니켈 도금 피막을 형성할 수 있다. 따라서, 니켈 도금 피막의 박막화를 실현할 수 있다. In the electroless plating process of this embodiment, a nickel plating film can be directly formed in the copper material surface to which the palladium catalyst is not provided by the electroless nickel strike plating process (S4). And even if a film thickness is thin, the surface of a copper material can be reliably covered, and the nickel plating film excellent in adhesiveness with respect to a copper material, and a barrier characteristic can be formed. Therefore, the thinning of the nickel plating film can be realized.

또한, 니켈 도금 피막의 막 두께를 얇게 할 수 있기 때문에, 전체 막 두께가 얇은 Ni/Pd/Au 피막을 얻을 수 있다. 또한, 무전해 니켈 스트라이크 도금 공정(S4)에 의해, 막 두께가 균일하고 평활성이 우수한 니켈 도금 피막을 얻을 수 있기 때문에, 그 위에 형성되는 팔라듐 도금 피막 및 금도금 피막 또한 균일한 막 두께로 형성할 수 있어, 막 두께의 편차가 작은 Ni/Pd/Au 피막을 형성할 수 있다. 또한, 무전해 스트라이크 도금법에 따라 형성된 니켈 도금 피막은 구리재와의 밀착성이 우수할 뿐만 아니라, 구리의 확산을 막는 배리어 특성이 뛰어나기 때문에, 우수한 실장 특성을 구비하는 Ni/Pd/Au 피막을 형성할 수 있다. Moreover, since the film thickness of a nickel plating film can be made thin, the Ni / Pd / Au film with a small total film thickness can be obtained. In addition, since the nickel plating film having a uniform film thickness and excellent smoothness can be obtained by the electroless nickel strike plating step (S4), the palladium plating film and the gold plating film formed thereon can also be formed with a uniform film thickness. The Ni / Pd / Au film can be formed with a small variation in the film thickness. In addition, the nickel plated film formed by the electroless strike plating method is excellent in adhesion to the copper material and excellent in barrier property to prevent copper diffusion, thereby forming a Ni / Pd / Au film having excellent mounting characteristics. can do.

또한, 상기 니켈 도금 피막은 막 두께가 얇은데다, 종래 기술의 무전해 니켈 도금(S15)에 의해 형성되는 니켈 도금 피막과는 달리 인을 포함하지 않는다. 이로부터, 상기 니켈 도금 피막이 우수한 유연성을 얻을 수 있기 때문에, Ni/Pd/Au 피막은 뛰어난 유연성을 얻을 수 있다. In addition, the nickel plating film is thin in thickness, and unlike the nickel plating film formed by the electroless nickel plating (S15) of the prior art, it does not contain phosphorus. From this, since the nickel plating film can obtain excellent flexibility, the Ni / Pd / Au film can obtain excellent flexibility.

또한, 본 실시 형태의 무전해 도금 프로세스에서는, 종래 기술의 무전해 도금 프로세스와는 달리, 무전해 니켈 스트라이크 도금 공정(S4) 전에 팔라듐 촉매 부여 처리(S14)를 행할 필요가 없기 때문에 공정의 수를 줄일 수 있다. In addition, unlike the electroless plating process of the prior art, in the electroless plating process of this embodiment, since it is not necessary to perform a palladium catalysis provision process (S14) before an electroless nickel strike plating process (S4), the number of processes is changed. Can be reduced.

상술한 본 실시 형태의 무전해 도금 프로세스는, 무전해 니켈 스트라이크 도금 공정(S4) 후, 무전해 팔라듐 도금 공정(S5) 및 무전해 금도금 공정(S6)을 행하는 프로세스이다. 본 실시 형태의 무전해 도금 프로세스는, 무전해 니켈 스트라이크 도금 공정(S4) 후, 무전해 팔라듐 도금 공정(S5)을 행하지 않고 무전해 금도금 공정(S6)을 행함으로써 구리재의 표면에 Ni/Au 피막을 형성하는 프로세스일 수 있다. The electroless plating process of this embodiment mentioned above is a process of performing an electroless palladium plating process S5 and an electroless gold plating process S6 after an electroless nickel strike plating process S4. In the electroless plating process of this embodiment, after performing an electroless nickel strike plating process (S4) and performing an electroless gold plating process (S6) without performing an electroless palladium plating process (S5), Ni / Au coating on the surface of a copper material It may be a process of forming a.

이하, 실시예 등에 기초하여 본 발명을 구체적으로 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated concretely based on an Example etc ..

실시예 1 Example 1

본 실시예의 무전해 도금 프로세스에서는, 도 1에 나타내는 각 공정 S1~S6(총 6 공정)를 순서대로 행함으로써, 구리재의 표면에 Ni/Pd/Au 피막을 형성하였다. 상술한 탈지 공정(S1), 에칭 공정(S2) 및 디스머트 공정(S3)을 순서대로 행한 후, 무전해 니켈 스트라이크 도금 공정(S4)을 행하였다. 무전해 니켈 스트라이크 도금 공정(S4)에서는, 구리재를 이하의 조성의 무전해 니켈 스트라이크 도금액에 침지하고, 구리재의 표면에 니켈 도금 피막을 형성하였다. 무전해 니켈 스트라이크 도금액은, 황산니켈 6수화물, DL-사과산 및 물을 혼합하여 교반함으로써 니켈 착체를 포함하는 수용액을 조제한 후, 디메틸아민보란을 첨가하여 교반함으로써 조제하였다. 무전해 니켈 스트라이크 도금액에 구리재를 침지하고 있는 동안, 상기 무전해 니켈 스트라이크 도금액을 에어레이션에 의해 교반하였다. In the electroless plating process of the present Example, Ni / Pd / Au films were formed on the surface of a copper material by performing each process S1-S6 (6 steps in total) shown in FIG. The above-described degreasing step (S1), etching step (S2), and dismuting step (S3) were carried out in order, followed by electroless nickel strike plating step (S4). In the electroless nickel strike plating step (S4), the copper material was immersed in the electroless nickel strike plating solution of the following composition, and a nickel plating film was formed on the surface of the copper material. The electroless nickel strike plating solution was prepared by mixing and stirring nickel sulfate hexahydrate, DL-peracid and water to prepare an aqueous solution containing a nickel complex, followed by adding and stirring dimethylamine borane. While the copper material was immersed in the electroless nickel strike plating liquid, the electroless nickel strike plating liquid was stirred by aeration.

(무전해 니켈 스트라이크 도금액) Electroless Nickel Strike Plating Solution

황산니켈 6수화물   0.2g/L(니켈 환산으로 0.045g/L) Nickel sulfate hexahydrate 0.2g / L (0.045g / L in nickel conversion)

DL-사과산       1.0g/L DL-apple acid 1.0g / L

디메틸아민보란    4.0g/L Dimethylamine borane 4.0g / L

pH          9.0 pH 9.0

욕온         50℃ Bath temperature 50 ℃

계속해서, 무전해 팔라듐 도금 공정(S5)을 행하였다. 니켈 도금 피막이 형성된 구리재를 이하의 조성의 환원형 무전해 팔라듐 도금액에 침지하여, 니켈 도금 피막의 표면에 팔라듐 도금 피막을 형성하였다. Subsequently, an electroless palladium plating process (S5) was performed. The copper material in which the nickel plating film was formed was immersed in the reduced type electroless palladium plating liquid of the following composition, and the palladium plating film was formed in the surface of the nickel plating film.

(환원형 무전해 팔라듐 도금액) (Reduced Electroless Palladium Plating Solution)

염화팔라듐      0.038mol/L Palladium chloride 0.038mol / L

에틸렌디아민     0.142mol/L Ethylenediamine 0.142mol / L

포름산나트륨     0.294mol/L Sodium formate: 0.294 mol / L

pH          6.0 pH 6.0

욕온         70℃ Bath temperature 70 ℃

그 후, 무전해 금도금 공정(S6)을 행하였다. 팔라듐 도금 피막이 형성된 구리재를 이하의 조성의 환원형 무전해 금도금액에 침지하고, 팔라듐 도금 피막의 표면에 금도금 피막을 형성하였다. 이상에 의해, 구리재의 표면에 Ni/Pd/Au 피막이 형성되었다. Thereafter, an electroless gold plating step (S6) was performed. The copper material in which the palladium plating film was formed was immersed in the reduction type electroless gold plating liquid of the following composition, and the gold plating film was formed in the surface of the palladium plating film. As described above, the Ni / Pd / Au film was formed on the surface of the copper material.

(환원형 무전해 금도금액) (Reduction type electroless gold plating amount)

시안화금칼륨    5mmol/L Gold Potassium Cyanide 5mmol / L

에틸렌디아민4아세트산2칼륨 0.03mol/L Ethylenediaminetetraacetic acid dipotassium acetate 0.03mol / L

구연산        0.15mol/L Citric acid 0.15mol / L

헥사메틸렌테트라민  3mmol/L Hexamethylenetetramine 3mmol / L

3,3'-디아미노-N-메틸디프로필아민 0.02mol/L 3,3'- diamino-N-methyldipropylamine 0.02mol / L

아세트산탈륨     5mg/L Tallium Acetate 5mg / L

pH          8.5 pH 8.5

욕온         80℃ Bath temperature 80 ℃

비교예Comparative example

[비교예 1] Comparative Example 1

본 비교예의 무전해 도금 프로세스는, 무전해 니켈 스트라이크 도금 공정(S4) 대신, 종래 기술의 무전해 도금 프로세스에서 행해지고 있는 팔라듐 촉매 부여 처리(S14)와 무전해 니켈 도금(S15)을 행한 것 이외에는, 실시예 1의 무전해 도금 프로세스와 완전히 동일하게 행함으로써 구리재의 표면에 Ni/Pd/Au 피막을 형성하였다. 본 비교예의 무전해 도금 프로세스의 공정은 총 7공정이었다. The electroless plating process of this comparative example was carried out instead of the electroless nickel strike plating process (S4) except having performed palladium catalysis giving process (S14) and electroless nickel plating (S15) performed by the electroless plating process of a prior art, The Ni / Pd / Au film was formed on the surface of the copper material by performing the same procedure as in the electroless plating process of Example 1. The process of the electroless plating process of this comparative example was a total of 7 processes.

팔라듐 촉매 부여 처리(S14)에서는, 디스머트된 구리재를 팔라듐 환산으로 30mg/L의 팔라듐 화합물 및 황산 이온을 포함하는 팔라듐 촉매 용액에 침지하여, 구리재의 표면에 팔라듐 촉매를 부여하였다. In palladium-catalyst provision process (S14), the immersed copper material was immersed in the palladium-catalyst solution containing a 30 mg / L palladium compound and sulfate ion in palladium conversion, and the palladium catalyst was provided to the surface of the copper material.

무전해 니켈 도금(S15)에서는 팔라듐 촉매가 부여된 구리재를 이하의 조성의 무전해 니켈 도금액에 침지하였다. In electroless nickel plating (S15), the copper material to which the palladium catalyst was given was immersed in the electroless nickel plating liquid of the following composition.

(무전해 니켈 도금액) Electroless Nickel Plating Solution

황산니켈 6수화물    22.4g/L(니켈 환산으로 5g/L) Nickel sulfate hexahydrate 22.4g / L (5g / L in nickel conversion)

DL-사과산       15g/L DL-apple acid 15g / L

젖산         18g/L Lactic acid 18g / L

차아인산 나트륨   30g/L Sodium hypophosphite 30 g / L

pH          4.5 pH 4.5

욕온         80℃ Bath temperature 80 ℃

[비교예 2] Comparative Example 2

본 비교예의 무전해 도금 프로세스는, 무전해 니켈 도금(S15)에서 이하의 조성의 무전해 니켈 도금액을 이용한 것 이외에는, 비교예 1과 완전히 동일하게 행하였다. 본 비교예의 무전해 도금 프로세스의 공정은 총 7 공정이었다. The electroless plating process of this comparative example was performed completely similarly to the comparative example 1 except having used the electroless nickel plating liquid of the following composition in electroless nickel plating (S15). The process of the electroless plating process of this comparative example was 7 processes in total.

(무전해 니켈 도금액) Electroless Nickel Plating Solution

황산니켈 6수화물    22.4g/L(니켈 환산으로 5g/L) Nickel sulfate hexahydrate 22.4g / L (5g / L in nickel conversion)

글리콜산      30g/L Glycolic Acid 30g / L

아세트산       15g/L Acetic acid 15 g / L

디메틸아민보란    2.5g/L Dimethylamine borane 2.5g / L

pH          6.0 pH 6.0

욕온         60℃ Bath temperature 60 ℃

[참고예 1] Reference Example 1

본 참고예의 무전해 도금 프로세스는, 무전해 니켈 도금(S15)을 행하기 전에 팔라듐 촉매 부여 처리(S14)를 행하지 않은 것 이외에는, 비교예 1과 완전히 동일하게 행하였다. 본 참고예의 무전해 도금 프로세스의 공정은 총 6 공정이었다. The electroless plating process of this reference example was carried out in exactly the same manner as in Comparative Example 1 except that the palladium catalyst applying treatment (S14) was not performed before the electroless nickel plating (S15). The electroless plating process of this reference example had a total of 6 steps.

[참고예 2] Reference Example 2

본 참고예의 무전해 도금 프로세스는, 무전해 니켈 도금(S15)을 행하기 전에 팔라듐 촉매 부여 처리(S14)를 행하지 않은 것 이외에는, 비교예 2와 완전히 동일하게 행하였다. The electroless plating process of this reference example was carried out in exactly the same manner as in Comparative Example 2 except that the palladium catalyst applying treatment (S14) was not performed before the electroless nickel plating (S15).

<평가> <Evaluation>

1. 니켈 도금 피막에 대한 평가 1. Evaluation of Nickel Plating Film

먼저, 실시예 1의 무전해 도금 프로세스의 무전해 니켈 스트라이크 도금 공정(S4)까지를 행하거나, 혹은 비교예 1 및 비교예 2의 무전해 도금 프로세스의 무전해 니켈 도금(S15)까지의 공정을 행함으로써, 구리재의 표면에 막 두께 0.01μm의 니켈 도금 피막을 형성하였다. 얻어진 니켈 도금 피막에 대해 이하의 평가를 행하였다. First, the electroless nickel strike plating process (S4) of the electroless plating process of Example 1 is performed, or the process to the electroless nickel plating (S15) of the electroless plating processes of Comparative Examples 1 and 2 is performed. By carrying out, the nickel plating film of a film thickness of 0.01 micrometer was formed in the surface of a copper material. The following evaluation was performed about the obtained nickel plating film.

1-1. 니켈 석출성 1-1. Nickel precipitation

여기서는, 절연 기재 상에 직경 0.45mm의 구리 패드 30개가 30μm 간격으로 격자 형상으로 배치된 테스트 보드를 이용하였다. 그리고, 실시예 1의 무전해 도금 프로세스의 무전해 니켈 스트라이크 도금 공정(S4)까지를 행하거나, 혹은 비교예 1및 비교예 2의 무전해 도금 프로세스의 무전해 니켈 도금(S15)까지의 공정을 행함으로써, 구리 패드의 표면에 니켈 도금 피막을 형성하였다. 한편, 참고예 1 및 참고예 2의 무전해 도금 프로세스에서는, 무전해 니켈 도금(S15)까지의 공정을 행하였지만, 구리 패드의 표면에 니켈이 전혀 석출되지 않아 니켈 도금 피막을 형성할 수 없었다. Here, a test board was used in which 30 copper pads having a diameter of 0.45 mm were arranged in a lattice shape at intervals of 30 μm on an insulating substrate. Then, up to the electroless nickel strike plating step (S4) of the electroless plating process of Example 1, or the steps up to the electroless nickel plating (S15) of the electroless plating processes of Comparative Examples 1 and 2 are performed. The nickel plating film was formed in the surface of a copper pad by performing. On the other hand, in the electroless plating processes of Reference Example 1 and Reference Example 2, the steps up to electroless nickel plating (S15) were performed, but nickel did not precipitate at all on the surface of the copper pad, and a nickel plating film could not be formed.

얻어진 니켈 도금 피막을 금속 현미경(배율 1000배)으로 관찰하여, 니켈 석출이 정상적으로 행하여진 구리 패드의 수를 카운트하였다. 여기서, 니켈 석출이 정상적으로 행하여졌다고 하는 것은, 구리 패드의 표면 전체가 니켈 도금 피막에 의해 피복되어 있으며, 피복되어 있지 않은 부분이 금속 현미경에서는 확인되지 않음을 의미한다. 결과를 표 1에 나타낸다. 표 1 중의 ○ 표시, △ 표시 및 × 표시의 판단 기준은 이하와 같다. The obtained nickel plating film was observed with the metal microscope (magnification 1000x), and the number of the copper pads which nickel precipitation performed normally was counted. Here, that the nickel deposition was performed normally means that the entire surface of the copper pad is covered with a nickel plating film, and the uncoated portion is not confirmed by the metal microscope. The results are shown in Table 1. The judgment criteria of the ○ mark, the △ mark, and the × mark in Table 1 are as follows.

○: 니켈 석출이 정상적으로 행하여진 구리 패드가 30개이다. (Circle): There are 30 copper pads which nickel deposition performed normally.

△: 니켈 석출이 정상적으로 행하여진 구리 패드가 15~29개이다. (Triangle | delta): The copper pad in which nickel precipitation was normally performed is 15-29 pieces.

×: 니켈이 전혀 석출되지 않은 구리 패드가 30개이다. X: There are 30 copper pads in which nickel did not precipitate at all.

Figure 112019086943116-pct00001
Figure 112019086943116-pct00001

표 1에 나타낸 바와 같이, 비교예 1과 참고예 1을 비교함과 함께 비교예 2와 참고예 2를 비교하면, 비교예 1 및 비교예 2의 무전해 니켈 도금(S15)에 이용되는 무전해 니켈 도금액에 의해 니켈 도금 피막을 형성하기 위해서는, 무전해 니켈 도금(S15)을 행하기 전에 팔라듐 촉매 부여 처리(S14)가 필수임을 이해할 수 있다. As shown in Table 1, when comparing Comparative Example 1 and Reference Example 1 and Comparative Example 2 and Reference Example 2, the electroless nickel plating used for the electroless nickel plating of Comparative Example 1 and Comparative Example 2 (S15) In order to form a nickel plating film by a nickel plating liquid, it can be understood that palladium catalysis giving process (S14) is essential before electroless nickel plating (S15) is performed.

그리고, 비교예 1의 무전해 니켈 도금(S15)은 니켈 석출을 항상 정상적으로 행할 수 있지만, 비교예 2의 무전해 니켈 도금(S15)은 니켈 석출을 정상적으로 행할 수 없는 경우가 있으며, 니켈 석출성이 떨어지는 것을 이해할 수 있다. 이에 대해, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)은 니켈 석출을 항상 정상적으로 행할 수 있어, 니켈 석출성이 우수함을 이해할 수 있다. In addition, although electroless nickel plating (S15) of the comparative example 1 can always perform nickel precipitation normally, electroless nickel plating (S15) of the comparative example 2 may not be able to perform nickel precipitation normally, and nickel precipitation property I can understand what is falling. On the other hand, in the electroless nickel strike plating step (S4) of Example 1, it can understand that nickel precipitation can always be normally performed and it is excellent in nickel precipitation property.

1-2. 표면 형태 1-2. Surface shape

구리 패드의 표면에 형성된 니켈 도금 피막의 표면 형태를 평가하기 위하여, 니켈 도금 피막의 표면을 주사 전자 현미경(SEM)에 의해 배율 5000배 및 3만배로 촬영하여 반사 전자 조성상(COMPO상)을 얻었다. 결과를 도 2 내지 도 4에 나타낸다. 도 2는 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막의 COMPO상을 나타내고, 도 3은 비교예 1의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막의 COMPO상을 나타내며, 도 4는 비교예 2의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막의 COMPO상을 나타낸다. 도 2의 (a), 도 3의 (a) 및 도 4의 (a)는 배율 5000배이며, 도 2의 (b), 도 3의 (b) 및 도 4의 (b)는 배율 3만배이다. In order to evaluate the surface form of the nickel plated film formed on the surface of the copper pad, the surface of the nickel plated film was photographed at a magnification of 5000 times and 30,000 times by scanning electron microscope (SEM) to obtain a reflection electron composition image (COMPO phase). The results are shown in FIGS. 2 to 4. FIG. 2 shows the COMPO phase of the nickel plated film obtained by the electroless nickel strike plating step (S4) of Example 1, and FIG. 3 shows the COMPO of the nickel plated film obtained by the electroless nickel plating (S15) of Comparative Example 1. FIG. A phase is shown, and FIG. 4 shows the COMPO phase of the nickel plating film obtained by the electroless nickel plating (S15) of the comparative example 2. As shown in FIG. 2 (a), 3 (a) and 4 (a) are 5000 times magnification, and FIGS. 2 (b), 3 (b) and 4 (b) are 30,000 times magnification. to be.

도 2 내지 도 4로부터, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은, 비교예 1 및 비교예 2의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막과 비교하여, 흑색부가 적은 것을 확인할 수 있다. 흑색부는 니켈 도금 피막상에 원자 번호가 작은 탄소 등의 원소가 존재함을 나타내고 있다. 이로부터, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은, 비교예 1 및 비교예 2의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막과 비교하여 결함 부분이 적고 치밀한 막임을 이해할 수 있다. 또한, 비교예 2의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막은 흑색부가 특히 많은 것으로부터, 결함 부분이 많아 치밀한 막이 아님을 이해할 수 있다. 2 to 4, the nickel plated film obtained by the electroless nickel strike plating step (S4) of Example 1 includes the nickel plated film obtained by the electroless nickel plating (S15) of Comparative Example 1 and Comparative Example 2; In comparison, it can be confirmed that there are few black parts. The black portion shows that an element such as carbon having a small atomic number is present on the nickel plating film. From this, the nickel plating film obtained by the electroless nickel strike plating process (S4) of Example 1 compared with the nickel plating film obtained by the electroless nickel plating (S15) of Comparative Example 1 and Comparative Example 2, a defective part. It can be understood that this is a small and dense film. In addition, the nickel plating film obtained by the electroless nickel plating (S15) of the comparative example 2 has many black parts, and it can be understood that it is not a dense film with many defect parts.

또한, 비교예 1 및 비교예 2의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막은 표면에 큰 요철이 존재하는데 대하여, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은 표면에 큰 요철은 존재하지 않고, 미세한 요철만이 존재하는 것을 확인할 수 있다. 이로부터, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은, 비교예 1 및 비교예 2의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막과 비교하여 평활성이 우수함을 이해할 수 있다. 또한, 비교예 2의 니켈 도금 피막은 큰 요철이 특히 많이 존재하는 것으로부터, 평활성이 떨어짐을 이해할 수 있다. In addition, nickel obtained by the electroless nickel strike plating process (S4) of Example 1 has a large unevenness | corrugation on the surface of the nickel plating film obtained by the electroless nickel plating (S15) of Comparative Example 1 and Comparative Example 2. It can be confirmed that the plated film does not have large irregularities on the surface, and only fine irregularities exist. From this, the nickel plating film obtained by the electroless nickel strike plating process (S4) of Example 1 has the smoothness compared with the nickel plating film obtained by the electroless nickel plating (S15) of Comparative Example 1 and Comparative Example 2. I can understand the excellence. In addition, it can be understood that the nickel plated film of Comparative Example 2 is inferior in smoothness due to the large number of large irregularities.

이상으로부터, 실시예 1의 무전해 도금 프로세스의 무전해 니켈 스트라이크 도금 공정(S4)에 의하면, 비교예 1 및 비교예 2의 무전해 도금 프로세스의 무전해 니켈 도금(S15)과 비교하여, 치밀하고 평활성이 우수한 니켈 도금 피막을 얻을 수 있음을 이해할 수 있다. As mentioned above, according to the electroless nickel strike plating process (S4) of the electroless plating process of Example 1, compared with the electroless nickel plating (S15) of the electroless plating processes of Comparative Example 1 and Comparative Example 2, It can be understood that a nickel plated film having excellent smoothness can be obtained.

1-3. 표면 원소 분석 1-3. Surface Elemental Analysis

구리 패드의 표면에 형성된 니켈 도금 피막에 대하여, 오거 전자 분광 분석 장치에 의해 표면 원소 분석을 행하였다. 상술한 바와 같이, 비교예 2의 니켈 도금 피막은 성능이 떨어지기 때문에, 실시예 1 및 비교예 1의 니켈 도금 피막만을 대상으로 하였다. The surface elemental analysis was performed with the Auger electron spectroscopy apparatus about the nickel plating film formed in the surface of a copper pad. As mentioned above, since the nickel plating film of the comparative example 2 was inferior in performance, only the nickel plating film of Example 1 and the comparative example 1 was made into object.

니켈 도금 피막에 대하여 리플로우 처리를 3회 행하였다. 리플로우 처리는, 니켈 도금 피막을 230℃로 예비 가열을 행한 후, 250℃로 가열함으로써 행하였다. 그리고, 리플로우 처리를 행하기 전과, 리플로우 처리를 행하여 상온까지 자연 냉각시킨 후, 표면 원소 분석을 행하였다. 표면 원소 분석의 측정 조건은, 가속 전압 10kV, 프로브 전류값 10nA, 측정 지름 50μm, 주사 범위 30~2400eV로 하였다. 결과를 표 2에 나타낸다. 표 2의 수치는, 얻어진 스펙트럼의 피크 강도비로부터 원소를 정량화한 것이다(단위: 원자%). 표 2 중의 -표시는 해당 원소가 전혀 검출되지 않았음을 의미한다. The reflow process was performed three times with respect to the nickel plating film. The reflow process was performed by preheating a nickel plating film at 230 degreeC, and then heating at 250 degreeC. Then, surface element analysis was performed before the reflow treatment and after the reflow treatment to naturally cool down to room temperature. The measurement conditions of surface element analysis were acceleration voltage 10kV, probe current value 10nA, measurement diameter 50micrometer, and scanning range 30-2400 eV. The results are shown in Table 2. The numerical value of Table 2 quantifies an element from the peak intensity ratio of the obtained spectrum (unit: atomic%). -In Table 2 means that the corresponding element was not detected at all.

Figure 112019086943116-pct00002
Figure 112019086943116-pct00002

실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은 디메틸아민보란에 유래하는 붕소를 포함하는 것으로 생각되었으나, 실제로는 붕소는 검출되지 않고 실질적으로 순니켈로 이루어지는 것으로 판명되었다. 한편, 비교예 1의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막은, 표 2에 나타낸 바와 같이, 차아인산 나트륨에 유래하는 인을 포함하는 니켈-인 합금으로 이루어지는 것이었다. The nickel plated film obtained by the electroless nickel strike plating step (S4) of Example 1 was thought to contain boron derived from dimethylamine borane, but in reality it was found that boron was not substantially detected and consisted of pure nickel. . On the other hand, the nickel plating film obtained by the electroless nickel plating (S15) of the comparative example 1 consisted of the nickel-phosphorus alloy containing phosphorus derived from sodium hypophosphite, as shown in Table 2.

표 2로부터, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은, 2번째의 리플로우 처리 후에도 그 표면에 구리가 확산되어 있지 않아 배리어 성능이 우수함을 이해할 수 있다. 한편, 비교예 1의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막은 1회째의 리플로우 처리 후에는 그 표면에 구리가 확산되어 있지 않지만, 2번째의 리플로우 처리 후에는 그 표면에 구리가 확산되어 있어 배리어 성능이 떨어짐을 이해할 수 있다. From Table 2, it can be understood that the nickel plating film obtained by the electroless nickel strike plating step (S4) of Example 1 is excellent in barrier performance because copper is not diffused on the surface even after the second reflow treatment. On the other hand, in the nickel plated film obtained by the electroless nickel plating (S15) of Comparative Example 1, although copper was not diffused on the surface after the first reflow treatment, copper was deposited on the surface after the second reflow treatment. It can be understood that the diffusion is poor and the barrier performance is poor.

1-4. 저전위 전해 1-4. Low potential electrolysis

여기서는, 상기 테스트 보드 대신 구리판을 이용하여 구리판의 표면에 막 두께 0.01μm의 니켈 도금 피막을 형성하였다. 그리고, 얻어진 니켈 도금 피막에 대하여, 0.5체적% 황산 용액중에서 50mV로 저전위 전해를 행하고 배리어 특성을 평가하였다. 결과를 도 5에 나타낸다. 도면 중의 가로축은 전해 시간이며, 세로축은 전류 밀도이다. 전류 밀도의 상승은 니켈 도금 피막의 하층인 구리재로부터 구리가 용출되었음을 나타내고 있다. Here, a nickel plated film having a thickness of 0.01 μm was formed on the surface of the copper plate by using a copper plate instead of the test board. Then, the obtained nickel plated film was subjected to low potential electrolysis at 50 mV in a 0.5% by volume sulfuric acid solution to evaluate barrier properties. The results are shown in FIG. In the figure, the horizontal axis represents electrolysis time, and the vertical axis represents current density. The increase in the current density indicates that copper was eluted from the copper material under the nickel plated film.

도 5에 나타낸 바와 같이, 실시예 1의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은, 비교예 1의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막과 비교하여 전류 밀도의 상승이 작은 것으로부터, 배리어 특성이 우수함을 이해할 수 있다. As shown in FIG. 5, the nickel plating film obtained by the electroless nickel strike plating process (S4) of Example 1 is compared with the nickel plating film obtained by the electroless nickel plating (S15) of Comparative Example 1, and a current density. It is understood that the barrier property is excellent because the rise of is small.

이상의 니켈 석출성, 표면 형태, 표면 원소 분석 및 저전위 전해의 결과로부터, 실시예 1의 무전해 도금 프로세스의 무전해 니켈 스트라이크 도금 공정(S4)은 비교예 1 및 비교예 2의 무전해 도금 프로세스의 무전해 니켈 도금(S15)과 비교하여 니켈 석출성이 우수할 뿐만 아니라, 치밀하고 평활하며 배리어 성능이 우수한 니켈 도금 피막을 얻을 수 있음을 이해할 수 있다. 또한, 실시예 1의 무전해 도금 프로세스의 무전해 니켈 스트라이크 도금 공정(S4)에 의해 얻어진 니켈 도금 피막은, 그와 동일한 막 두께를 갖는 비교예 1 및 비교예 2의 무전해 도금 프로세스의 무전해 니켈 도금(S15)에 의해 얻어진 니켈 도금 피막보다 뛰어난 성능을 구비하는 것을 이해할 수 있다. From the results of the above nickel precipitation, surface morphology, surface element analysis and low potential electrolysis, the electroless nickel strike plating process (S4) of the electroless plating process of Example 1 was performed by the electroless plating processes of Comparative Examples 1 and 2 It can be understood that a nickel plating film having excellent nickel precipitation property as well as a fine, smooth and excellent barrier performance can be obtained as compared with the electroless nickel plating (S15). In addition, the nickel plating film obtained by the electroless nickel strike plating process (S4) of the electroless plating process of Example 1 has the electroless plating of the electroless plating processes of the comparative example 1 and the comparative example 2 which have the same film thickness. It can be understood that it has the performance superior to the nickel plating film obtained by nickel plating (S15).

2. Ni/Pd/Au 피막에 대한 평가 2. Evaluation of Ni / Pd / Au Film

여기서는, 절연 기재상에 배선폭/배선 간격(L/S)이 30~100μm/30~100μm인 구리의 미세 배선이 배치됨과 함께, 미세 배선이 직경 0.45mm인 구리 패드가 0.45μm 간격으로 격자 형상으로 배치된 테스트 보드를 이용하였다. 이 테스트 보드에 대해, 실시예 1의 무전해 도금 프로세스의 총 6 공정 또는 비교예 1의 무전해 도금 프로세스의 총 7 공정을 실시함으로써, 구리재(미세 배선 및 패드)의 표면에 Ni/Pd/Au 피막을 형성하였다. Here, fine wiring of copper having a wiring width / wiring spacing (L / S) of 30 to 100 µm / 30 to 100 µm is arranged on the insulating substrate, and a copper pad having a diameter of 0.45 mm is formed in a lattice shape at intervals of 0.45 µm. The test board placed as was used. By carrying out a total of six steps of the electroless plating process of Example 1 or a total of seven steps of the electroless plating process of Comparative Example 1, the test board was subjected to Ni / Pd / on the surface of the copper material (fine wiring and pad). An Au film was formed.

실시예 1의 무전해 도금 프로세스에서는, 막 두께 0.01μm의 니켈 도금 피막, 막 두께 0.1μm의 팔라듐 도금 피막 및 막 두께 0.1μm의 금도금 피막으로 이루어지는 Ni/Pd/Au 피막을 얻었다. 비교예 1의 무전해 도금 프로세스에서는, 막 두께 0.5μm의 니켈 도금 피막, 막 두께 0.1μm의 팔라듐 도금 피막 및 막 두께 0.1μm의 금도금 피막으로 이루어지는 Ni/Pd/Au 피막을 얻었다. 그리고, 얻어진 Ni/Pd/Au 피막에 대해 이하의 평가를 행하였다. In the electroless plating process of Example 1, the Ni / Pd / Au film which consists of a nickel plated film with a film thickness of 0.01 micrometer, a palladium plating film with a film thickness of 0.1 micrometer, and a gold plating film with a film thickness of 0.1 micrometer was obtained. In the electroless plating process of Comparative Example 1, a Ni / Pd / Au film formed of a nickel plated film having a thickness of 0.5 μm, a palladium plated film having a thickness of 0.1 μm, and a gold plated film having a thickness of 0.1 μm was obtained. And the following evaluation was performed about the obtained Ni / Pd / Au film.

2-1. 땜납 퍼짐성 2-1. Solder spreadability

Ni/Pd/Au 피막의 표면에 땜납을 행하고, 그 후 땜납 퍼짐 시험을 행하였다. 땜납 볼로서 센주(千住)금속공업주식회사의 에코솔더(등록상표) M770를 이용하고, 땜납 볼 직경(D)은 700μm로 하였다. 땜납 퍼짐 시험은, 땜납 리플로우로(爐)(주식회사 일본펄스기술연구소, RF-330)를 이용하여 예비가열 온도 230℃, 리플로우 온도 250℃로 하고, 플럭스로서 주식회사 아사히화학연구소의 AGF-780DS-AA를 이용하였다. 그리고, 리플로우 후의 땜납 볼의 높이(H)(μm)를 측정하여 이하의 식에 의해 퍼짐율 S를 계산하고, 그 최대값, 최소값 및 평균값을 구하였다. 또한, 땜납을 행하기 전에 온도 250℃로 4시간의 열처리를 실시한 Ni/Pd/Au 피막에 대해서도 마찬가지로 땜납 퍼짐 시험을 행하였다. 결과를 도 6에 나타낸다. 도 6의 「열처리 없음」은, 실시예 1 또는 비교예 1의 무전해 도금 프로세스 후에 상기 열처리를 실시하지 않고 땜납을 행한 Ni/Pd/Au 피막의 땜납 퍼짐 시험의 결과를 나타내고, 「열처리 있음」은, 상기 무전해 도금 프로세스에 이어 상기 열처리를 실시한 후, 땜납을 행한 Ni/Pd/Au 피막의 결과를 나타낸다. Solder was performed on the surface of the Ni / Pd / Au film, and the solder spread test was performed after that. As the solder ball, Eco Solder (registered trademark) M770 of Senju Metal Industry Co., Ltd. was used, and the solder ball diameter (D) was 700 micrometers. Solder spread test was carried out using preliminary heating temperature of 230 degreeC and reflow temperature of 250 degreeC using the solder reflow furnace (Japan Pulse Technology Research Institute, RF-330), and AGF-780DS of Asahi Chemical Research Institute, Inc. as a flux. -AA was used. And the height H (micrometer) of the solder ball after reflow was measured, spreading ratio S was calculated by the following formula, and the maximum value, minimum value, and average value were calculated | required. Moreover, the solder spread test was similarly performed about the Ni / Pd / Au film which heat-treated for 4 hours at the temperature of 250 degreeC, before soldering. The results are shown in FIG. "No heat treatment" in FIG. 6 shows the result of the solder spread test of the Ni / Pd / Au film which was soldered without performing the heat treatment after the electroless plating process of Example 1 or Comparative Example 1, and "with heat treatment" Silver shows the result of the Ni / Pd / Au coating which soldered after performing the said heat processing following the said electroless plating process.

퍼짐율(S)=(D-H)/D×100(%) Spread rate (S) = (D-H) / D × 100 (%)

도 6으로부터, 열처리 없음, 열처리 있음 양방에서, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막과 비교하여 땜납 퍼짐성이 우수한 것을 이해할 수 있다. 또한, 열처리 없음과 열처리 있음을 비교하면, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 평균값 및 최소값의 차이가 작은것에 대하여, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 평균값이 크게 저하되어 있다. 이로부터, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 열처리에 의한 구리나 니켈의 금도금 피막으로의 확산을 억제하는 효과가 높고, 열처리를 행하였을 때에도 우수한 땜납 퍼짐성을 유지할 수 있어 뛰어난 내열성을 구비함을 이해할 수 있다. From FIG. 6, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was compared with the Ni / Pd / Au film obtained by the electroless plating process of Comparative Example 1 in both heat treatment and heat treatment. It can be understood that the solder spreadability is excellent. In comparison with no heat treatment and heat treatment, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was obtained by the electroless plating process of Comparative Example 1, while the difference between the average value and the minimum value was small. The average value of the Ni / Pd / Au film is greatly reduced. From this, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 has a high effect of suppressing diffusion of copper or nickel into the gold plated film by heat treatment, and maintains excellent solder spreadability even when the heat treatment is performed. It can be understood that it has excellent heat resistance.

2-2. 땜납 볼 전단 강도 2-2. Solder ball shear strength

Ni/Pd/Au 피막의 표면에 땜납을 행하고, 그 후 땜납 볼 전단 강도를 측정하였다. 땜납 볼 전단 강도는 데이지사제(시리즈 4000) 땜납 볼 전단 테스터를 이용하여, 전단 높이 20μm, 전단 속도 500μm/초로 측정하고, 그 최대값, 최소값 및 평균값을 구하였다. 또한, 땜납을 행하기 전에 온도 250℃로 4시간의 열처리를 실시한 Ni/Pd/Au 피막에 대해서도 마찬가지로 땜납 볼 전단 강도를 측정하였다. 결과를 도 7에 나타낸다. 도 7의 「열처리 없음」은, 실시예 1 또는 비교예 1의 무전해 도금 프로세스 후에 상기 열처리를 실시하지 않고 땜납을 행한 Ni/Pd/Au 피막의 땜납 볼 전단 강도를 나타내고, 「열처리 있음」은, 상기 무전해 도금 프로세스에 이어 상기 열처리를 실시한 후, 땜납을 행한 Ni/Pd/Au 피막의 결과를 나타낸다. Solder was applied to the surface of the Ni / Pd / Au film, and then the solder ball shear strength was measured. The solder ball shear strength was measured at a shear height of 20 µm and a shear rate of 500 µm / second using a daisy ball (Series 4000) solder ball shear tester, and the maximum, minimum, and average values were determined. Moreover, the solder ball shear strength was similarly measured also about the Ni / Pd / Au film which heat-treated at the temperature of 250 degreeC for 4 hours before soldering. The results are shown in FIG. "No heat treatment" in FIG. 7 shows the solder ball shear strength of the Ni / Pd / Au film which was soldered without performing the heat treatment after the electroless plating process of Example 1 or Comparative Example 1, and with "heat treatment" After the heat treatment following the electroless plating process, the result of the soldered Ni / Pd / Au film is shown.

도 7로부터, 열처리 없음, 열처리 있음 양방에서, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막과 비교하면 수치 자체는 낮기는 하지만, 우수한 땜납 볼 전단 강도를 구비하는 것을 이해할 수 있다. 또한, 열처리 없음과 열처리 있음을 비교하면, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 평균값 및 최소값의 차이가 작은 것에 대하여, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 열처리의 전후로 평균값 및 최소값이 크게 저하되어 있다. 이로부터, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막과 비교하여, 열처리에 의한 구리나 니켈의 금도금 피막으로의 확산을 억제하는 효과가 높고, 열처리를 행하였을 때에도 우수한 땜납 볼 전단 강도를 유지할 수 있어 뛰어난 내열성을 구비함을 이해할 수 있다. From Fig. 7, both of the heat treatment without heat treatment and the Ni / Pd / Au coating obtained by the electroless plating process of Example 1 were compared with the Ni / Pd / Au coating obtained by the electroless plating process of Comparative Example 1. It is understood that the numerical value itself is low, but with good solder ball shear strength. In addition, comparing the absence of heat treatment with heat treatment, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was obtained by the electroless plating process of Comparative Example 1 while the difference between the average value and the minimum value was small. In the Ni / Pd / Au film, the average value and the minimum value are greatly reduced before and after the heat treatment. From this, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was compared with the Ni / Pd / Au film obtained by the electroless plating process of Comparative Example 1, and the It can be understood that the effect of suppressing diffusion into the gold plated film is high, and excellent solder ball shear strength can be maintained even when heat treatment is performed, and thus excellent heat resistance is provided.

2-3. 와이어 본딩 강도 및 파단 모드 2-3. Wire Bonding Strength and Break Mode

Ni/Pd/Au 피막의 표면에 선 지름 25μm의 금 와이어를 접합한 후, 풀 테스터로 금 와이어를 잡아당겼을 때의 접합 강도, 즉 와이어 본딩 강도를 측정하였다. 그리고, 그 최대값, 최소값 및 평균값을 구하였다. 또한, 땜납을 행하기 전에 온도 250℃로 4시간의 열처리를 실시한 Ni/Pd/Au 피막에 대해서도 마찬가지로 와이어 본딩 강도를 측정하였다. 결과를 도 8에 나타낸다. 또한, 금 와이어가 파단되었을 때의 파단 모드를 도 9에 나타낸다. 도 8 및 도 9의 「열처리 없음」은, 실시예 1 또는 비교예 1의 무전해 도금 프로세스의 후에 상기 열처리를 실시하지 않고 땜납을 행한 Ni/Pd/Au 피막의 와이어 본딩 강도 또는 파단 모드를 나타내고, 「열처리 있음」은, 상기 무전해 도금 프로세스에 이어 상기 열처리를 실시한 후, 땜납을 행한 Ni/Pd/Au 피막의 결과를 나타내고 있다. After bonding a gold wire having a wire diameter of 25 μm to the surface of the Ni / Pd / Au film, the bonding strength when the gold wire was pulled with a pull tester, that is, the wire bonding strength was measured. And the maximum value, minimum value, and average value were calculated | required. Moreover, the wire bonding strength was similarly measured also about the Ni / Pd / Au film which heat-processed for 4 hours at 250 degreeC before soldering. The results are shown in FIG. Moreover, the breaking mode at the time of breaking a gold wire is shown in FIG. "No heat treatment" in FIGS. 8 and 9 shows the wire bonding strength or the breaking mode of the Ni / Pd / Au film which was soldered without performing the heat treatment after the electroless plating process of Example 1 or Comparative Example 1. "With heat treatment" has shown the result of the Ni / Pd / Au coating which soldered after performing the said heat processing following the said electroless plating process.

도 8로부터, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은, 열처리 없음, 열처리 있음 양방에서, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 열처리 없음의 Ni/Pd/Au 피막과 동등 레벨의 와이어 본딩 강도를 구비하는 것을 이해할 수 있다. 또한, 열처리 없음과 열처리 있음을 비교하면, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 평균값 및 최소값의 차이가 작은 것에 대하여, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은 평균값 및 최소값이 크게 저하되어 있다. From Fig. 8, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was subjected to Ni / Pd / Au without heat treatment obtained by the electroless plating process of Comparative Example 1 in both without heat treatment and with heat treatment. It can be understood that it has a wire bonding strength equivalent to that of the coating. In addition, comparing the absence of heat treatment with heat treatment, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was obtained by the electroless plating process of Comparative Example 1, while the difference between the average value and the minimum value was small. The average and minimum values of the Ni / Pd / Au film are greatly reduced.

또한, 도 9에 나타낸 바와 같이, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막에서는, 열처리 없음, 열처리 있음 양방에서, 금 와이어가 파단되었을 때의 파단 모드는 모두 C 모드였다. 한편, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막에서는, 열처리 없음은 모두 C 모드인 한편, 열처리 있음에서는 45%가 C 모드이며 55%가 E 모드였다. In addition, as shown in FIG. 9, in the Ni / Pd / Au film obtained by the electroless plating process of Example 1, the fracture mode when the gold wire was broken was both C mode without heat treatment and with heat treatment. . On the other hand, in the Ni / Pd / Au film obtained by the electroless plating process of Comparative Example 1, all of the heat treatment was C mode, while in heat treatment, 45% was C mode and 55% was E mode.

이러한 결과로부터, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막과 비교하여, 열처리에 의한 구리나 니켈의 금도금 피막으로의 확산을 억제하는 효과가 높고, 열처리를 행하였을 때에도 와이어 본딩 강도 및 파단 모드를 유지할 수 있어 우수한 내열성을 구비함을 이해할 수 있다. From these results, the Ni / Pd / Au film obtained by the electroless plating process of Example 1 was compared with the Ni / Pd / Au film obtained by the electroless plating process of Comparative Example 1, and the copper and nickel by heat treatment. It is understood that the effect of suppressing diffusion into the gold plated film is high, and even when the heat treatment is performed, the wire bonding strength and the breaking mode can be maintained, thereby providing excellent heat resistance.

이상의 땜납 퍼짐성, 땜납 볼 전단 강도, 와이어 본딩 강도 및 파단 모드의 결과로부터, 실시예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막은, 비교예 1의 무전해 도금 프로세스에 의해 얻어진 Ni/Pd/Au 피막과 비교하여 니켈 도금 피막의 막 두께가 1/50임에도 불구하고, 동등 이상의 뛰어난 실장 특성을 구비하는 것을 이해할 수 있다. 이는, 실시예 1의 무전해 도금 프로세스의 무전해 니켈 스트라이크 도금 공정(S4)에서 형성된 니켈 도금 피막이 치밀하고 평활하여 배리어 성능이 우수하기 때문인 것으로 생각된다. The Ni / Pd / Au coating obtained by the electroless plating process of Example 1 was obtained by the electroless plating process of Comparative Example 1 from the results of the above solder spreadability, solder ball shear strength, wire bonding strength, and fracture mode. Although the film thickness of a nickel plating film is 1/50 compared with a / Pd / Au film, it can understand that it has the outstanding mounting characteristic equivalent or more. This is considered to be because the nickel plating film formed in the electroless nickel strike plating process (S4) of the electroless plating process of Example 1 is dense and smooth, and excellent in barrier performance.

이상 설명한 바와 같이, 본원 발명의 무전해 도금 프로세스에 의하면, 구리재의 표면에 Ni/Au 피막 또는 Ni/Pd/Au 피막을 형성할 수 있다. 얻어진 니켈 도금 피막은 막 두께가 얇아도 구리재의 표면을 확실히 피복할 수 있기 때문에, 본원 발명의 무전해 도금 프로세스에 의하면, 니켈 도금 피막의 박막화를 실현할 수 있다. 얻어진 Ni/Au 피막 또는 Ni/Pd/Au 피막은 니켈 도금 피막의 막 두께가 얇아도 뛰어난 실장 특성을 얻을 수 있기 때문에, 본원 발명의 무전해 도금 프로세스는 복잡한 배선 패턴이나 좁은 피치 배선에 대응할 수 있어 고밀도 실장을 실현할 수 있다. 또한, 얻어진 Ni/Au 피막 또는 Ni/Pd/Au 피막은 전체 막 두께가 얇고 유연성이 뛰어나므로 플렉서블(flexible) 기판으로서 매우 적합하다. As explained above, according to the electroless plating process of this invention, a Ni / Au film or a Ni / Pd / Au film can be formed in the surface of a copper material. Since the obtained nickel plating film can reliably cover the surface of a copper material even if a film thickness is thin, according to the electroless plating process of this invention, thinning of a nickel plating film can be implement | achieved. Since the obtained Ni / Au film or Ni / Pd / Au film can obtain excellent mounting characteristics even when the nickel plating film is thin, the electroless plating process of the present invention can cope with complicated wiring patterns and narrow pitch wiring. High density mounting can be realized. In addition, the obtained Ni / Au film or Ni / Pd / Au film is very suitable as a flexible substrate because the overall film thickness is thin and excellent in flexibility.

또한, 본원 발명의 무전해 도금 프로세스에 의하면, 종래의 무전해 도금 프로세스에서 행하여지고 있던 팔라듐 촉매 부여 처리(S14)를 하지 않아도 니켈 도금 피막을 형성할 수 있기 때문에, 생산성을 향상시킬 수 있다. Moreover, according to the electroless plating process of this invention, since a nickel plating film can be formed, without carrying out the palladium catalyst provision process (S14) performed by the conventional electroless plating process, productivity can be improved.

Claims (5)

무전해 도금법에 따라 구리재의 표면에 니켈 도금 피막과 금도금 피막을 순서대로 형성하는 무전해 도금 프로세스로서,
무전해 스트라이크 도금법에 따라 구리재의 표면에 니켈 도금 피막을 형성하는 공정; 및
환원형 무전해 도금법에 따라 금도금 피막을 형성하는 공정;을 구비하고,
상기 무전해 스트라이크 도금에 사용되는 무전해 니켈 도금액은 인을 포함하지 않는 것을 특징으로 하는 것을 특징으로 하는 무전해 도금 프로세스.
An electroless plating process in which a nickel plating film and a gold plating film are sequentially formed on the surface of a copper material by an electroless plating method,
Forming a nickel plating film on the surface of the copper material by an electroless strike plating method; And
And forming a gold plated film according to a reduced electroless plating method.
And said electroless nickel plating solution used for said electroless strike plating does not contain phosphorus.
제1항에 있어서,
상기 무전해 스트라이크 도금법은 니켈 환산으로 0.002~1g/L의 수용성 니켈염; 카르복시산 또는 그 염; 및 디메틸아민보란, 트리메틸아민보란, 히드라진, 히드라진 유도체로 이루어진 군으로부터 선택되는 1종 이상의 환원제;를 포함하고, pH가 6~10, 욕온이 20~55℃로 조정된 무전해 니켈 스트라이크 도금액을 이용하여, 상기 무전해 니켈 스트라이크 도금액에 상기 구리재를 침지함으로써 행하는 것인, 무전해 도금 프로세스.
The method of claim 1,
The electroless strike plating method is a water-soluble nickel salt of 0.002 ~ 1g / L in terms of nickel; Carboxylic acids or salts thereof; And at least one reducing agent selected from the group consisting of dimethylamine borane, trimethylamine borane, hydrazine and hydrazine derivatives, wherein the pH is 6-10 and the bath temperature is adjusted to 20-55 ° C. using an electroless nickel strike plating solution. And immersing the copper material in the electroless nickel strike plating solution.
제2항에 있어서,
상기 무전해 니켈 스트라이크 도금액은, 상기 수용성 니켈염, 상기 카르복시산 또는 그 염 및 물을 혼합하여 교반함으로써 니켈 착체를 포함하는 수용액을 조제한 후, 상기 수용액에 상기 환원제를 혼합하여 교반함으로써 조제된 것인, 무전해 도금 프로세스.
The method of claim 2,
The electroless nickel strike plating solution is prepared by mixing and stirring the water-soluble nickel salt, the carboxylic acid or its salt, and water to prepare an aqueous solution containing a nickel complex, and then mixing and stirring the reducing agent in the aqueous solution. Electroless Plating Process.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 니켈 도금 피막을 형성하는 공정은 막 두께가 0.005~0.3μm인 니켈 도금 피막을 형성하는 것인, 무전해 도금 프로세스.
The method according to any one of claims 1 to 3,
The step of forming the nickel plating film is to form a nickel plating film having a film thickness of 0.005 ~ 0.3μm, the electroless plating process.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 무전해 도금 프로세스는 구리재의 표면에 니켈 도금 피막, 팔라듐 도금 피막 및 금도금 피막을 순서대로 형성하는 것으로서,
상기 니켈 도금 피막을 형성하는 공정과 상기 금도금 피막을 형성하는 공정 사이에, 환원형 무전해 도금법에 따라 팔라듐 도금 피막을 형성하는 공정을 구비하는 것인, 무전해 도금 프로세스.
The method according to any one of claims 1 to 3,
The electroless plating process is to form a nickel plating film, a palladium plating film and a gold plating film in order on the surface of the copper material,
And a step of forming a palladium plated film in accordance with a reduced electroless plating method between the step of forming the nickel plated film and the step of forming the gold plated film.
KR1020197024866A 2017-06-28 2018-06-21 Electroless plating process KR102084905B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017126052A JP6466521B2 (en) 2017-06-28 2017-06-28 Electroless plating process
JPJP-P-2017-126052 2017-06-28
PCT/JP2018/023630 WO2019004056A1 (en) 2017-06-28 2018-06-21 Electroless plating process

Publications (2)

Publication Number Publication Date
KR20190102097A KR20190102097A (en) 2019-09-02
KR102084905B1 true KR102084905B1 (en) 2020-03-04

Family

ID=64740676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197024866A KR102084905B1 (en) 2017-06-28 2018-06-21 Electroless plating process

Country Status (7)

Country Link
EP (1) EP3647461A4 (en)
JP (1) JP6466521B2 (en)
KR (1) KR102084905B1 (en)
CN (1) CN110325665B (en)
SG (1) SG11201909369RA (en)
TW (1) TWI668330B (en)
WO (1) WO2019004056A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3158576A1 (en) * 2019-11-20 2021-05-27 Atotech Deutschland GmbH & Co. KG Electroless nickel alloy plating baths, a method for deposition of nickel alloys, nickel alloy deposits and uses of such formed nickel alloy deposits
JP2021110009A (en) * 2020-01-14 2021-08-02 小島化学薬品株式会社 Electroless plating process and two layer plating film
JP6841462B1 (en) * 2020-07-03 2021-03-10 奥野製薬工業株式会社 Catalyst-imparting liquid for electroless plating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174774A (en) * 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd Reduction precipitation type electroless gold plating liquid for palladium film
JP2015110821A (en) * 2013-12-06 2015-06-18 学校法人関東学院 Forming method of forming nickel layer on surface of aluminium material, forming method of forming nickel layer on surface of aluminum electrode of semiconductor wafer using forming method, and semiconductor wafer substrate obtained using forming method
JP2016160504A (en) * 2015-03-03 2016-09-05 学校法人関東学院 ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235139A (en) * 1990-09-12 1993-08-10 Macdermid, Incorprated Method for fabricating printed circuits
JP3035676B2 (en) * 1991-10-08 2000-04-24 奥野製薬工業株式会社 Method for electroless nickel plating on zinc-aluminum alloy, composition for catalytic treatment, composition for activation treatment, and composition for electroless nickel strike plating
JP3393190B2 (en) * 1999-02-22 2003-04-07 有限会社関東学院大学表面工学研究所 Method for selectively activating copper pattern and activator used therefor
CN101942652B (en) * 2005-04-01 2012-06-27 日矿金属株式会社 Plated base substrate
JP2007031826A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Connection terminal and substrate for mounting semiconductor having the same
JP5573429B2 (en) * 2009-08-10 2014-08-20 住友ベークライト株式会社 Electroless nickel-palladium-gold plating method, plated product, printed wiring board, interposer, and semiconductor device
KR101310256B1 (en) * 2011-06-28 2013-09-23 삼성전기주식회사 Electroless plated layers of printed circuit board and method for preparing the same
US9388497B2 (en) * 2012-07-13 2016-07-12 Toyo Kohan Co., Ltd. Method of electroless gold plating
KR20140035701A (en) * 2012-09-14 2014-03-24 삼성전기주식회사 Method fo forming au thin-film and printed circuit board
JP6201622B2 (en) * 2013-10-21 2017-09-27 日立化成株式会社 Connection terminal and semiconductor chip mounting board using the same
JP6017726B2 (en) * 2014-08-25 2016-11-02 小島化学薬品株式会社 Reduced electroless gold plating solution and electroless gold plating method using the plating solution
JP6025899B2 (en) * 2015-03-30 2016-11-16 上村工業株式会社 Electroless nickel plating bath and electroless plating method using the same
CN105386016B (en) * 2015-10-21 2018-01-19 东莞市发斯特精密五金有限公司 The method of chemical nickel plating method and chemical plating cupro-nickel conducting wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174774A (en) * 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd Reduction precipitation type electroless gold plating liquid for palladium film
JP2015110821A (en) * 2013-12-06 2015-06-18 学校法人関東学院 Forming method of forming nickel layer on surface of aluminium material, forming method of forming nickel layer on surface of aluminum electrode of semiconductor wafer using forming method, and semiconductor wafer substrate obtained using forming method
JP2016160504A (en) * 2015-03-03 2016-09-05 学校法人関東学院 ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD

Also Published As

Publication number Publication date
JP2019007067A (en) 2019-01-17
EP3647461A4 (en) 2021-05-05
CN110325665A (en) 2019-10-11
KR20190102097A (en) 2019-09-02
EP3647461A1 (en) 2020-05-06
CN110325665B (en) 2021-02-12
JP6466521B2 (en) 2019-02-06
TWI668330B (en) 2019-08-11
US20200048773A1 (en) 2020-02-13
SG11201909369RA (en) 2019-11-28
WO2019004056A1 (en) 2019-01-03
TW201905239A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
US20030096064A1 (en) Electroless gold plating bath and method
KR102084905B1 (en) Electroless plating process
EP2494094B1 (en) Immersion tin silver plating in electronics manufacture
JP2012511105A (en) Electroless palladium plating solution and usage
TW201406492A (en) Bonding member
JP5288362B2 (en) Multilayer plating film and printed wiring board
KR102320245B1 (en) Method for forming nickel plating film
JP4831710B1 (en) Electroless gold plating solution and electroless gold plating method
US12018378B2 (en) Electroless plating process
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
TWI820379B (en) Electroless plating process and double-layer coating
JP2020105543A (en) Immersion gold plating solution and immersion gold plating method
TWI790062B (en) Plated structure with Ni plating film and lead frame including the plated structure
JP7441263B2 (en) Electroless Co-W plating film and electroless Co-W plating solution
US11718916B2 (en) Electroless Co—W plating film
JP2008240018A (en) Tin plating film and method of preventing whisker
JP2013144835A (en) ELECTROLESS Ni-P-Sn PLATING SOLUTION

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant