JP2016160504A - ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD - Google Patents

ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD Download PDF

Info

Publication number
JP2016160504A
JP2016160504A JP2015041733A JP2015041733A JP2016160504A JP 2016160504 A JP2016160504 A JP 2016160504A JP 2015041733 A JP2015041733 A JP 2015041733A JP 2015041733 A JP2015041733 A JP 2015041733A JP 2016160504 A JP2016160504 A JP 2016160504A
Authority
JP
Japan
Prior art keywords
electroless
plating
plating film
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015041733A
Other languages
Japanese (ja)
Inventor
友人 加藤
Yuto Kato
友人 加藤
秀人 渡邊
Hideto Watanabe
秀人 渡邊
高井 治
Osamu Takai
治 高井
本間 英夫
Hideo Honma
英夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Gakuin School Corp
Original Assignee
Kanto Gakuin School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Gakuin School Corp filed Critical Kanto Gakuin School Corp
Priority to JP2015041733A priority Critical patent/JP2016160504A/en
Publication of JP2016160504A publication Critical patent/JP2016160504A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of stabilizing the reaction rate of an electroless Ni/Au plating precipitation reaction at the time of forming an electroless Ni/Au plating film, within a controllable range, and forming an electroless Ni/Au plating film having an excellent corrosion resistance.SOLUTION: In a Ni/Au plated film forming method for forming a nickel coating on the circuit surface of a wiring circuit board and forming a gold plating film on the surface of said nickel coating, there is adopted an electroless Ni/Au plating film forming method or the like, which is characterized in that said nickel coating is formed by subjecting the circuit surface of the wiring circuit board to an electroless Ni strike plating and then to an electroless Ni plating.SELECTED DRAWING: Figure 1

Description

本件出願は、無電解Ni/Auめっき皮膜の形成方法及びその形成方法で得られた無電解Ni/Auめっき皮膜に関する。ここでいう無電解Ni/Auめっき皮膜は、特に配線回路の表面、半導体チップの接続端子の表面等に用いるものである。   The present application relates to a method for forming an electroless Ni / Au plating film and an electroless Ni / Au plating film obtained by the forming method. The electroless Ni / Au plating film here is used particularly on the surface of a wiring circuit, the surface of a connection terminal of a semiconductor chip, and the like.

近年、パソコン、モバイル通信機器等に組み込まれる配線板、半導体チップ等には、小型化、軽量化と同時に高機能化求められている。従って、これらに搭載される配線板及び半導体チップ搭載基板には高密度化と高速信号化が求められる。係る場合の配線板及び半導体チップ搭載基板には、めっきリード等の形成が不要になる無電解Ni/Auめっき層が用いられてきた。   In recent years, wiring boards, semiconductor chips, and the like incorporated in personal computers, mobile communication devices, and the like have been required to have high functionality as well as downsizing and weight reduction. Therefore, high density and high speed signal are required for wiring boards and semiconductor chip mounting substrates mounted thereon. In such a case, an electroless Ni / Au plating layer that eliminates the need to form a plating lead or the like has been used for the wiring board and the semiconductor chip mounting substrate.

この無電解Ni/Auめっき層とは、下地に無電解ニッケル皮膜があり、その表面に金めっき皮膜(少なくとも置換金めっき皮膜)が存在するものである。このときの無電解ニッケルめっき皮膜の形成には、次亜リン酸塩を還元剤として用いる溶液(以下、「次亜リン酸系めっき液」と称する。)が広く用いられてきた。この次亜リン酸系めっき液の場合、形成される無電解ニッケル皮膜のバルク内に、次亜リン酸塩が含有するリンとニッケルとが非晶質状態で共析し、厳密には「ニッケル−リン合金皮膜」を形成する。このような無電解ニッケルめっき皮膜は、置換金めっきの下地めっきとして用いられ、銅・銅合金等からなる金属導体配線の構成成分が金めっき皮膜に拡散し物性低下を招かないようにするバリア層として機能すると共に、優れた耐腐食性や耐摩耗性を得るためのものである。   The electroless Ni / Au plating layer has an electroless nickel film on the base and a gold plating film (at least a displacement gold plating film) on the surface thereof. For the formation of the electroless nickel plating film at this time, a solution using hypophosphite as a reducing agent (hereinafter referred to as “hypophosphite plating solution”) has been widely used. In the case of this hypophosphite plating solution, phosphorus and nickel contained in hypophosphite are co-deposited in an amorphous state in the bulk of the formed electroless nickel film. -"Phosphorus alloy film" is formed. Such an electroless nickel plating film is used as an undercoat for displacement gold plating, and prevents the components of metal conductor wiring made of copper, copper alloy, etc. from diffusing into the gold plating film and degrading its physical properties. As well as providing excellent corrosion resistance and wear resistance.

また、無電解ニッケルめっき皮膜の表面に設ける置換金めっき皮膜(厚さ:0.01μm〜0.1μm)は、置換反応により無電解ニッケルめっき皮膜上に薄い金めっきで形成したものであり、耐腐食性を向上させ、金属導体配線のはんだ濡れ性改善等に寄与する。そして、ワイヤーボンディングにおける金めっき皮膜と金ワイヤーとの接合強度を高め、接続信頼性を向上させるためには、置換金めっきの後に無電解金めっき液で無電解金めっき皮膜(厚さ:0.1μm〜1.0μm)を設けて厚くすることもある。   The replacement gold plating film (thickness: 0.01 μm to 0.1 μm) provided on the surface of the electroless nickel plating film is formed by thin gold plating on the electroless nickel plating film by a substitution reaction. Improves corrosivity and contributes to improving solder wettability of metal conductor wiring. In order to increase the bonding strength between the gold plating film and the gold wire in wire bonding and improve the connection reliability, an electroless gold plating film (thickness: 0. 1 μm to 1.0 μm) may be provided to increase the thickness.

以上のような無電解Ni/Auめっき皮膜を用いた回路の高密度化が進み、且つ、その回路に流れる信号電流が高速化すると回路表面に設ける無電解Ni/Auめっき層にも、隣接する回路間でのショート不良の発生、絶縁信頼性の低下を引き起こすこと等を極力回避する精度が要求されるようになる。   Adjacent to the electroless Ni / Au plating layer provided on the circuit surface as the density of the circuit using the above electroless Ni / Au plating film increases and the signal current flowing through the circuit increases in speed. There is a demand for accuracy to avoid as much as possible the occurrence of short-circuit defects between circuits and the deterioration of insulation reliability.

このような観点から、特許文献1には、微細な回路であっても回路断面形状を良好に保つことのできるセミアディティブ用エッチング剤、これを用いたセミアディティブ方法及び配線基板の製造方法を提供することを目的とした発明が開示されており、無電解Ni/Auメッキを行う場合、絶縁層表面に金属残渣が残っていると絶縁層表面にめっき金属が析出し、ショート不良や絶縁信頼性の低下を引き起こすことを防止することが開示されている。即ち、配線板形成に用いた銅箔表面の防錆成分であるCrやNi等が、銅箔をエッチングした後も絶縁樹脂の表面に残りやすい。そこで、絶縁樹脂への金属残渣の除去を行うために、フェリシアン化金属塩とキレート剤を含有するエッチング液とで金属残渣を除去する方法等を提案している。   From such a viewpoint, Patent Document 1 provides a semi-additive etchant that can maintain a good circuit cross-sectional shape even in a fine circuit, a semi-additive method using the same, and a method for manufacturing a wiring board. In the case of performing electroless Ni / Au plating, if metal residue remains on the surface of the insulating layer, the plating metal is deposited on the surface of the insulating layer, resulting in short circuit failure or insulation reliability. It is disclosed to prevent the occurrence of the decrease. That is, Cr, Ni, and the like, which are rust preventive components on the surface of the copper foil used for wiring board formation, are likely to remain on the surface of the insulating resin even after the copper foil is etched. Therefore, in order to remove the metal residue from the insulating resin, a method of removing the metal residue with a ferricyanide metal salt and an etching solution containing a chelating agent has been proposed.

ところが、上述のフェリシアン化金属塩は分解しやすく毒性が強く、廃液負担が大きくなる。そして、キレート剤を含有するエッチング液は強酸性であるため、回路と絶縁樹脂層との界面に与えるダメージが大きくなるという問題がある。そこで、特許文献2では、絶縁層表面に残存するCu、Ni、Crなどの金属残渣が除去可能であり、無電解Ni/Auめっきなどの析出異常を抑制する金属残渣除去液として、「キレート剤を含み、かつアルカリ性を示すことを特徴とする金属残渣除去液。」を採用している。   However, the above-described metal ferricyanide salt is easily decomposed and highly toxic, increasing the burden of waste liquid. And since the etching liquid containing a chelating agent is strongly acidic, there exists a problem that the damage given to the interface of a circuit and an insulating resin layer becomes large. Therefore, in Patent Document 2, metal residues such as Cu, Ni, and Cr remaining on the surface of the insulating layer can be removed, and a “chelating agent” is used as a metal residue removing solution that suppresses precipitation abnormality such as electroless Ni / Au plating. And a metal residue removing solution characterized by exhibiting alkalinity.

特開2004−277854号公報JP 2004-277854 A 特開2006−245199号公報JP 2006-245199 A

田嶋和貴;表面技術,62(8),387(2011).Tajima, K .; Surface Technology, 62 (8), 387 (2011).

しかしながら、特許文献1及び特許文献2に開示されたように、絶縁層表面の金属残渣の問題を解消しても、無電解Niめっき皮膜にNiノジュールが発生し、後続の置換金めっきの析出状態に影響を及ぼすという問題が発生していた。特に、微細銅配線回路上に無電解Ni/Auめっきを行う場合、配線ピッチの狭小化に伴い無電解Niめっきを行った際に発生するブリッジ現象(以下、「Niブリッジ現象」と称する。)が大きな問題となっている。そして、この問題を解決するために,近年では無電解Ni/Auめっき皮膜の形成におけるNi薄膜化プロセスの適用が検討されてきている。   However, as disclosed in Patent Literature 1 and Patent Literature 2, even if the problem of the metal residue on the surface of the insulating layer is solved, Ni nodules are generated in the electroless Ni plating film, and the deposition state of the subsequent displacement gold plating There was a problem that affected it. In particular, when electroless Ni / Au plating is performed on a fine copper wiring circuit, a bridge phenomenon (hereinafter referred to as “Ni bridge phenomenon”) that occurs when electroless Ni plating is performed as the wiring pitch is narrowed. Is a big problem. In order to solve this problem, in recent years, application of a Ni thinning process in the formation of an electroless Ni / Au plating film has been studied.

このNi薄膜化プロセスを用いて無電解Ni/Auめっき皮膜を形成する場合,無電解法で析出するNi粒子が不均一であるため、無電解ニッケル皮膜の表面に置換Auめっきを施すときに、無電解ニッケル皮膜の局部腐食現象が発生しやすい。また、無電解ニッケル法によるNi粒子の析出は,下地の表面状態やPd触媒の吸着状態に影響されやすい。この触媒として用いるPdは水素吸蔵性が非常に高く、置換反応性に優れるために、Pdの吸着状態によっては無電解Niめっきの析出反応が急激に進行し、制御が困難となりNiノジュールが発生する傾向があった。   When forming an electroless Ni / Au plating film using this Ni thinning process, the Ni particles deposited by the electroless method are non-uniform, so when performing substitution Au plating on the surface of the electroless nickel film, Local corrosion phenomenon of electroless nickel film is likely to occur. Further, the precipitation of Ni particles by the electroless nickel method is easily influenced by the surface state of the base and the adsorption state of the Pd catalyst. Pd used as a catalyst has a very high hydrogen storage property and excellent substitution reactivity. Therefore, depending on the adsorption state of Pd, the precipitation reaction of electroless Ni plating proceeds rapidly, making it difficult to control and generating Ni nodules. There was a trend.

以上のことから理解できるように、無電解Ni/Auめっき皮膜を形成する際の無電解Niめっきの析出反応の反応速度を制御可能な範囲で安定化させ、析出するNi粒子が均一でNiノジュールの発生を抑制し、且つ、良好な耐腐食性能を備える無電解Ni/Auめっき皮膜の形成が可能な方法が望まれてきた。   As can be understood from the above, the reaction rate of the electroless Ni plating deposition reaction when forming the electroless Ni / Au plating film is stabilized within a controllable range, and the deposited Ni particles are uniform and Ni nodules. Therefore, there has been a demand for a method capable of forming an electroless Ni / Au plating film that suppresses the occurrence of oxidization and has good corrosion resistance.

そこで、本件出願の発明者等は、触媒として用いるPdよりも水素吸蔵性が低く、次亜リン酸の酸化反応を生起させるNiに着目し、従来の無電解Ni/Auめっき皮膜の形成方法の代替として、以下の発明に想到した。   Therefore, the inventors of the present application pay attention to Ni that has a lower hydrogen storage property than Pd used as a catalyst and causes an oxidation reaction of hypophosphorous acid, and the conventional method for forming an electroless Ni / Au plating film. As an alternative, the following invention has been conceived.

無電解Ni/Auめっき皮膜の形成方法: 本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、配線回路基板の回路表面にニッケル皮膜を形成し、当該ニッケル皮膜の表面に金めっき皮膜を形成するNi/Auめっき皮膜の形成方法において、当該ニッケル皮膜は、配線回路基板の回路表面に無電解Niストライクめっきを行った後、無電解Niめっきを行うことで形成することを特徴とする。 Electroless Ni / Au plating film forming method: The electroless Ni / Au plating film forming method according to the present application is formed by forming a nickel film on a circuit surface of a printed circuit board and applying a gold plating film to the surface of the nickel film. In the forming method of the Ni / Au plating film to be formed, the nickel film is formed by performing electroless Ni plating after performing electroless Ni strike plating on the circuit surface of the printed circuit board.

本件出願に係る無電解Ni/Auめっき皮膜の形成方法で用いる前記無電解Niストライクめっきは、無電解Niストライクめっき液としてジメチルアミンボランを1g/L〜10g/L、Niを10ppm〜200ppm含有する水溶液を用いるものである。   The electroless Ni strike plating used in the method of forming an electroless Ni / Au plating film according to the present application contains 1 g / L to 10 g / L of dimethylamine borane and 10 ppm to 200 ppm of Ni as an electroless Ni strike plating solution. An aqueous solution is used.

本件出願に係る無電解Ni/Auめっき皮膜の形成方法において、前記金めっき皮膜は、無電解金めっき法で形成するものである。   In the method for forming an electroless Ni / Au plating film according to the present application, the gold plating film is formed by an electroless gold plating method.

電子部品材料: 本件出願に係る電子部品材料は、上述の無電解Ni/Auめっき皮膜の形成方法を用いて得られることを特徴とする。 Electronic component material: The electronic component material according to the present application is obtained by using the above-described method for forming an electroless Ni / Au plating film.

本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、無電解Niめっき皮膜の形成に、従来のPd触媒に代えて無電解Niストライクめっきを行い、その後無電解Niめっきを行うことで、無電解Niめっきの析出速度を制御し、均一なNi粒子を析出させNiノジュールの発生を抑制する。従って、最終的に施す無電解Auめっき皮膜も均一になり、良好な耐腐食性能を備える無電解Ni/Auめっき皮膜の形成ができる。しかも、本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、電解めっきを含んでいないため、製造コストも削減可能である。また、本件出願に係る無電解Ni/Auめっき皮膜の形成方法を用いて得られる電子部品材料は、その表面に均一な厚さの無電解Ni/Auめっき皮膜を備え、良好な耐腐食性能を備えることになる。更に、本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、無電解めっき法を用いているため、当該電子部品材料の表面形状が複雑化していても、その表面に均一な無電解Ni/Auめっき皮膜を設けることができる。   The method for forming the electroless Ni / Au plating film according to the present application is to perform electroless Ni strike plating instead of the conventional Pd catalyst for the formation of the electroless Ni plating film, and then perform electroless Ni plating. The deposition rate of electroless Ni plating is controlled to precipitate uniform Ni particles and suppress the generation of Ni nodules. Therefore, the electroless Au plating film finally applied is also uniform, and an electroless Ni / Au plating film having good corrosion resistance can be formed. Moreover, since the electroless Ni / Au plating film forming method according to the present application does not include electrolytic plating, the manufacturing cost can be reduced. In addition, an electronic component material obtained by using the electroless Ni / Au plating film forming method according to the present application has an electroless Ni / Au plating film having a uniform thickness on the surface, and has good corrosion resistance. To prepare. Furthermore, since the electroless Ni / Au plating film forming method according to the present application uses an electroless plating method, even if the surface shape of the electronic component material is complicated, the surface of the electroless Ni / Au plating film is uniform. / Au plating film can be provided.

実施例及び比較例の無電解金めっきを施す前の無電解ニッケル皮膜の表面状態を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the surface state of the electroless nickel membrane before performing the electroless gold plating of an Example and a comparative example. 実施例及び比較例の定電位電解法を用いたバリア性試験の結果を示す図である。It is a figure which shows the result of the barrier property test using the constant potential electrolysis method of an Example and a comparative example.

無電解Ni/Auめっき皮膜の形成方法の形態: 本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、配線回路基板の回路表面にニッケル皮膜を形成し、当該ニッケル皮膜の表面に金めっき皮膜を形成するNi/Auめっき皮膜の形成方法において、当該ニッケル皮膜は、配線回路基板の回路表面に無電解Niストライクめっきを行った後、無電解Niめっきを行うことで形成することを特徴とする。即ち、この無電解Ni/Auめっき皮膜の形成方法を工程別に記載すると、以下のようになる。 Form of formation method of electroless Ni / Au plating film: The formation method of the electroless Ni / Au plating film according to the present application is to form a nickel film on the circuit surface of the wiring circuit board and to perform gold plating on the surface of the nickel film. In the method of forming a Ni / Au plating film for forming a film, the nickel film is formed by performing electroless Ni plating after performing electroless Ni strike plating on a circuit surface of a printed circuit board. To do. That is, it is as follows when the formation method of this electroless Ni / Au plating film is described according to the process.

無電解Ni/Auめっき皮膜を適用する対象物: 無電解Ni/Auめっき皮膜を設けるのは、プリント配線板の銅配線回路の表面、半導体のウェハめっき、コネクタ部品の端子めっき等であり、特段の限定は要さない。 Object to which electroless Ni / Au plating film is applied: Electroless Ni / Au plating film is provided on the surface of copper wiring circuit of printed wiring boards, semiconductor wafer plating, terminal plating of connector parts, etc. No limitation is required.

無電解ニッケル皮膜の形成: 本件出願に係る無電解Ni/Auめっき皮膜の形成方法では、上述の試験用回路基板が備える配線回路の表面に無電解ニッケル皮膜を形成するにあたり、最初に無電解Niストライクめっき浴を用いてニッケル触媒核を形成する。 Formation of Electroless Nickel Film: In the method of forming an electroless Ni / Au plating film according to the present application, when forming the electroless nickel film on the surface of the wiring circuit included in the above-described circuit board for testing, the electroless Ni film is first formed. Nickel catalyst nuclei are formed using a strike plating bath.

そして、無電解Niストライクめっき液としては、DMAB(ジメチルアミンボラン)を1g/L〜10g/L、Niを10ppm〜200ppm含有する水溶液を用いることが好ましい。一方、DMABが1g/L未満の場合には、ニッケル触媒核の形成速度が遅くなり、工業的に要求される生産性を満足できないため好ましくない。DMABが10g/Lを超える場合でも特段の問題は無いが、ニッケル触媒核の形成速度が向上する効果が飽和し、資源の無駄遣いとなり好ましくない。そして、Niが10ppm未満の場合には、ニッケル触媒核の形成量が少なくなりストライクめっきを行う意義が無くなるため好ましくない。一方、Niが200ppmを超える場合には、銅配線間の樹脂上へ過剰なニッケル触媒核が生成し、Niブリッジ現象が発生してしまうため、好ましくない。   As the electroless Ni strike plating solution, an aqueous solution containing 1 g / L to 10 g / L of DMAB (dimethylamine borane) and 10 ppm to 200 ppm of Ni is preferably used. On the other hand, when the DMAB is less than 1 g / L, the formation rate of the nickel catalyst nuclei is slow, and the industrially required productivity cannot be satisfied. Even if DMAB exceeds 10 g / L, there is no particular problem, but the effect of improving the formation rate of nickel catalyst nuclei is saturated, which is not preferable because it wastes resources. If Ni is less than 10 ppm, the amount of nickel catalyst nuclei formed is reduced, and the significance of performing strike plating is lost, which is not preferable. On the other hand, when Ni exceeds 200 ppm, excessive nickel catalyst nuclei are generated on the resin between the copper wirings, and Ni bridge phenomenon occurs, which is not preferable.

この無電解Niストライクめっき液は、液温20℃〜40℃の範囲で用いることが好ましい。液温が20℃未満になると、ニッケル触媒核の形成速度が遅く、配線回路の表面へのニッケル触媒核の付着状態も場所によるバラツキが大きくなるため好ましくない。一方、液温が40℃を超えると、ニッケル触媒核の生成速度が過剰になり、且つ、無電解Niストライクめっき液からの水分量蒸発が大きく組成変動も大きくなり好ましくない。   This electroless Ni strike plating solution is preferably used in a temperature range of 20 ° C to 40 ° C. When the liquid temperature is less than 20 ° C., the formation rate of the nickel catalyst nuclei is slow, and the state of the nickel catalyst nuclei adhering to the surface of the wiring circuit is also unfavorable because it varies depending on the location. On the other hand, if the liquid temperature exceeds 40 ° C., the rate of formation of nickel catalyst nuclei becomes excessive, and the evaporation of water from the electroless Ni strike plating solution is large, resulting in large composition fluctuations.

以上に述べてきた無電解Niストライクめっき液に、無電解Ni/Auめっき皮膜を適用する対象物を、30秒〜300秒間浸漬してニッケル触媒核の形成を行うことが好ましい。この浸漬時間が30秒未満の場合、上述の無電解Niストライクめっき液で良好なニッケル触媒核の形成が困難である。一方、浸漬時間が300秒を超える場合でも特段の問題はないが、工業的に要求される生産性を満足できないため好ましくない。   It is preferable to form a nickel catalyst nucleus by immersing an object to which an electroless Ni / Au plating film is applied in the electroless Ni strike plating solution described above for 30 seconds to 300 seconds. When this immersion time is less than 30 seconds, it is difficult to form good nickel catalyst nuclei with the above electroless Ni strike plating solution. On the other hand, even when the immersion time exceeds 300 seconds, there is no particular problem, but it is not preferable because productivity required industrially cannot be satisfied.

以上のようにして無電解Niストライクめっきが終了すると、その後、ニッケル触媒核を形成した表面に、厚さ0.01μm〜3μmの無電解Niめっき皮膜を形成する。厳密に言えば、この無電解Niめっき皮膜の中に、無電解Niストライクめっきで形成したニッケル触媒核が含まれている。無電解Niめっき皮膜厚さが0.01μm未満の場合には、下にある配線回路表面を十分に被覆できずに耐腐食性能が低下する傾向があり好ましくない。一方、無電解Niめっき皮膜厚さが3μmを超える場合には、ニッケルの析出速度も遅くなり、無電解Niめっき皮膜表面が粗らくなり、後の無電解金めっき皮膜の表面状態に影響を与えるため好ましくない。   When electroless Ni strike plating is completed as described above, an electroless Ni plating film having a thickness of 0.01 μm to 3 μm is then formed on the surface on which the nickel catalyst nuclei are formed. Strictly speaking, this electroless Ni plating film contains nickel catalyst nuclei formed by electroless Ni strike plating. If the thickness of the electroless Ni plating film is less than 0.01 μm, the underlying wiring circuit surface cannot be sufficiently covered and the corrosion resistance tends to decrease, which is not preferable. On the other hand, when the electroless Ni plating film thickness exceeds 3 μm, the deposition rate of nickel also becomes slow, the surface of the electroless Ni plating film becomes rough, and the surface state of the subsequent electroless gold plating film is affected. Therefore, it is not preferable.

そして、この無電解Niめっき皮膜の形成には、公知の無電解Niめっき液の全てを使用することが可能であるが、最も良好な膜厚均一性とめっきの付き周り性を考慮すると、硫酸Ni 23g/L、リンゴ酸 13g/L、乳酸 18g/L、鉛 0.2ppm、次亜リン酸Na 23g/Lの組成の無電解ニッケルめっき液を用いることが好ましい。   And in forming this electroless Ni plating film, it is possible to use all of known electroless Ni plating solutions, but considering the best film thickness uniformity and plating coverage, sulfuric acid It is preferable to use an electroless nickel plating solution having a composition of Ni 23 g / L, malic acid 13 g / L, lactic acid 18 g / L, lead 0.2 ppm, and sodium hypophosphite 23 g / L.

無電解金めっき皮膜の形成: 上述のようにして配線回路の表面への無電解Niめっき皮膜の形成が終了すると、当該無電解Niめっき皮膜の表面に無電解Auめっき皮膜を形成する。無電解Auめっき皮膜は、厚さ0.01μm〜0.2μmである。無電解Auめっき皮膜の厚さが0.01μm未満の場合は、無電解Niめっき皮膜の表面を均一に被覆できていないことがあり好ましくない。一方、無電解Auめっき皮膜の厚さが0.2μmを超える場合には、無電解Auめっき皮膜の表面が粗くなるため好ましくない。 Formation of electroless gold plating film: When the formation of the electroless Ni plating film on the surface of the wiring circuit is completed as described above, an electroless Au plating film is formed on the surface of the electroless Ni plating film. The electroless Au plating film has a thickness of 0.01 μm to 0.2 μm. When the thickness of the electroless Au plating film is less than 0.01 μm, the surface of the electroless Ni plating film may not be uniformly coated, which is not preferable. On the other hand, when the thickness of the electroless Au plating film exceeds 0.2 μm, the surface of the electroless Au plating film becomes rough, which is not preferable.

この無電解金めっき液としては、公知の無電解金めっき液の全てを用いることが可能である。しかし、シアン化金カリウム 2.8g/L、クエン酸3K 30g/L、リン酸 8g/L、エチレンジアミン四酢酸 58g/L、のシアン系置換型無電解Auめっき液を用いることが、膜厚均一性に優れた無電解Auめっき皮膜を得るために好ましい。また、環境負荷及び作業性向上を考慮して、ノンシアン系置換型無電解Auめっき液を用いる場合には、例えば、亜硫酸金ナトリウム 5g/L、亜硫酸ナトリウム 25g/L、チオ硫酸ナトリウム 30g/L、L−アスコルビン酸ナトリウム 15g/L、塩化アンモニウム 5g/Lの組成を用いることが好ましい。   As this electroless gold plating solution, all known electroless gold plating solutions can be used. However, using a cyan substitutional electroless Au plating solution of potassium gold cyanide 2.8 g / L, citric acid 3K 30 g / L, phosphoric acid 8 g / L, ethylenediaminetetraacetic acid 58 g / L, the film thickness is uniform. It is preferable for obtaining an electroless Au plating film having excellent properties. In consideration of environmental load and workability improvement, when using a non-cyanide substitution type electroless Au plating solution, for example, sodium gold sulfite 5 g / L, sodium sulfite 25 g / L, sodium thiosulfate 30 g / L, It is preferable to use a composition of sodium L-ascorbate 15 g / L and ammonium chloride 5 g / L.

この無電解Auめっき皮膜を形成する無電解Auめっき液は、液温70℃〜95℃の範囲で用いることが好ましい。液温が70℃未満になると、無電解Auめっき皮膜の析出速度が極度に低下するため好ましくない。一方、液温が95℃を超えると、無電解Auめっき液の組成変動が大きく、無電解Auめっき皮膜の表面状態にバラツキが生じるため好ましくない。   The electroless Au plating solution for forming the electroless Au plating film is preferably used in a temperature range of 70 ° C. to 95 ° C. When the liquid temperature is less than 70 ° C., the deposition rate of the electroless Au plating film is extremely decreased, which is not preferable. On the other hand, when the liquid temperature exceeds 95 ° C., the composition variation of the electroless Au plating solution is large, and the surface state of the electroless Au plating film varies, which is not preferable.

以上に述べた無電解Auめっき液に、無電解Ni/Auめっき皮膜を適用する対象物を、60秒〜20分間浸漬して無電解Auめっきを行うことが好ましい。この浸漬時間が60秒未満の場合、無電解Auめっき皮膜が0.01μmとなり、無電解Niめっき皮膜を十分に被覆できないことがあり好ましくない。一方、浸漬時間が20分を超える場合、厚さ0.2μmを超える無電解Auめっき皮膜が形成され、表面が粗くなるため好ましくない。   It is preferable to perform electroless Au plating by immersing an object to which an electroless Ni / Au plating film is applied in the electroless Au plating solution described above for 60 seconds to 20 minutes. When this immersion time is less than 60 seconds, the electroless Au plating film becomes 0.01 μm, which is not preferable because the electroless Ni plating film may not be sufficiently coated. On the other hand, when the immersion time exceeds 20 minutes, an electroless Au plating film having a thickness of more than 0.2 μm is formed and the surface becomes rough.

電子部品材料の形態: 本件出願に係る電子部品材料は、上述の無電解Ni/Auめっき皮膜の形成方法を用いて得られることを特徴とする。ここでいう「電子部品材料」とは、プリント配線板・半導体チップ搭載基板・チップ部品・コネクター部品等のあらゆる導電端子めっき等を必要とするものとして記載している。本件出願に係る無電解Ni/Auめっき皮膜の形成方法を用いることで、電子部品材料のボンディング部位・接続端子部等の耐腐食性を向上が可能となる。 Form of Electronic Component Material: The electronic component material according to the present application is obtained by using the above-described method for forming an electroless Ni / Au plating film. Here, “electronic component material” is described as requiring any conductive terminal plating such as a printed wiring board, a semiconductor chip mounting substrate, a chip component, and a connector component. By using the method for forming an electroless Ni / Au plating film according to the present application, it is possible to improve the corrosion resistance of bonding parts, connection terminal portions, and the like of electronic component materials.

試験用配線板の調製: 両面銅張積層板の表面にある銅箔層を、希塩酸を用いて酸洗処理し、その清浄化した銅箔層の表面にドライフィルムラミネートを行い、100μmピッチ(回路幅50μm、回路間ギャップ50μm)の試験用直線回路を形成した。その後、リン酸と過酸化水素とを含むデスマット溶液を用いてデスマット処理して試験用回路基板を得た。 Preparation of test wiring board: The copper foil layer on the surface of the double-sided copper-clad laminate is pickled with dilute hydrochloric acid, dry film lamination is performed on the surface of the cleaned copper foil layer, and a 100 μm pitch (circuit) A test linear circuit having a width of 50 μm and an inter-circuit gap of 50 μm was formed. Thereafter, a desmut treatment was performed using a desmut solution containing phosphoric acid and hydrogen peroxide to obtain a test circuit board.

無電解ニッケル皮膜の形成: 上述の試験用回路基板が備える銅回路の表面に、無電解Niストライクめっきを用いてニッケル触媒核を形成した。このときの無電解Niストライクめっきは、DMABを4g/L、Niを20ppm含有する水溶液であり、ここに試験用回路基板を60秒間浸漬してニッケル触媒核の形成を行った。その後、ニッケル触媒核を形成した表面に、厚さ0.5μmの無電解Niめっき皮膜を形成した。このときの無電解Niめっき皮膜の形成には、硫酸Ni 23g/L、リンゴ酸 13g/L、乳酸 18g/L、鉛 0.2ppm、次亜リン酸Na 23g/Lで処理した。 Formation of electroless nickel coating: A nickel catalyst core was formed on the surface of a copper circuit included in the above-described test circuit board using electroless Ni strike plating. The electroless Ni strike plating at this time was an aqueous solution containing 4 g / L of DMAB and 20 ppm of Ni, and a test circuit board was immersed therein for 60 seconds to form a nickel catalyst nucleus. Thereafter, an electroless Ni plating film having a thickness of 0.5 μm was formed on the surface on which the nickel catalyst core was formed. In this case, the electroless Ni plating film was formed by treatment with Ni sulfate 23 g / L, malic acid 13 g / L, lactic acid 18 g / L, lead 0.2 ppm, and hypophosphorous acid Na 23 g / L.

無電解金めっき皮膜の形成: 銅回路の表面に無電解Niめっき皮膜を形成した試験用回路基板を用いて、無電解Niめっき皮膜の表面に無電解Auめっき皮膜を形成した。ここでは、シアン化金カリウム 2.8g/L、クエン酸3K 30g/L、リン酸 8g/L、エチレンジアミン四酢酸 58g/Lのシアン系置換型無電解Auめっき液を用いて、ここに銅回路の表面に無電解Niめっき皮膜を形成した試験用回路基板を300秒間浸漬して、無電解Niめっき皮膜上にのみ選択的に、厚さ0.05μmの無電解Auめっき皮膜を形成し、微細銅配線回路上に無電解Ni/Auめっき皮膜を設けた。 Formation of electroless gold plating film: An electroless Au plating film was formed on the surface of the electroless Ni plating film using a test circuit board in which the electroless Ni plating film was formed on the surface of the copper circuit. Here, a cyanide substitution type electroless Au plating solution of potassium gold cyanide 2.8 g / L, citric acid 3K 30 g / L, phosphoric acid 8 g / L, and ethylenediaminetetraacetic acid 58 g / L is used. A test circuit board having an electroless Ni plating film formed on the surface thereof is immersed for 300 seconds to selectively form an electroless Au plating film having a thickness of 0.05 μm only on the electroless Ni plating film. An electroless Ni / Au plating film was provided on the copper wiring circuit.

比較例Comparative example

無電解ニッケル皮膜の形成: 上述の試験用回路基板が備える銅回路の表面に、塩化Pd触媒溶液を用いてパラジウム触媒核を形成した。このときの塩化Pd触媒溶液は、Pdを50ppm含有する水溶液であり、ここに試験用回路基板を60秒間浸漬して、Pd触媒核の形成を行った。その後、Pd触媒を形成した表面に、厚さ0.5μmの無電解Niめっき皮膜を形成した。無電解Niめっき皮膜の形成には、実施例と同じ溶液を用いた。 Formation of electroless nickel coating: Palladium catalyst nuclei were formed on the surface of a copper circuit provided in the above-described test circuit board using a Pd chloride catalyst solution. The Pd chloride catalyst solution at this time was an aqueous solution containing 50 ppm of Pd, and the test circuit board was immersed therein for 60 seconds to form Pd catalyst nuclei. Thereafter, an electroless Ni plating film having a thickness of 0.5 μm was formed on the surface on which the Pd catalyst was formed. The same solution as in the example was used for forming the electroless Ni plating film.

無電解金めっき皮膜の形成: 銅回路の表面に無電解Niめっき皮膜を形成した試験用回路基板を用いて、無電解Niめっき皮膜の表面に無電解Auめっき皮膜を形成した。ここでは、実施例と同様のシアン系置換型無電解Auめっき液を用いて、ここに銅回路の表面に無電解Niめっき皮膜を形成した試験用回路基板を300秒間浸漬して、無電解Niめっき皮膜上にのみ選択的に、厚さ0.05μmの無電解Auめっき皮膜を形成し、微細銅配線回路上に無電解Ni/Auめっき皮膜を設けた。 Formation of electroless gold plating film: An electroless Au plating film was formed on the surface of the electroless Ni plating film using a test circuit board in which the electroless Ni plating film was formed on the surface of the copper circuit. Here, a test circuit board in which an electroless Ni plating film is formed on the surface of a copper circuit is immersed for 300 seconds using the same cyan-based substitutional electroless Au plating solution as in the example. An electroless Au plating film having a thickness of 0.05 μm was selectively formed only on the plating film, and an electroless Ni / Au plating film was provided on the fine copper wiring circuit.

<無電解Ni/Auめっき皮膜の評価方法>
無電解Ni/Auめっき皮膜の評価として、「NiおよびAu皮膜表面形態観察」、「下地Ni局部腐食状態観察」、「定電位電解法を用いたバリア性試験」を行った。以下、各試験の試験方法に関して述べる。
<Evaluation method of electroless Ni / Au plating film>
As the evaluation of the electroless Ni / Au plating film, “Ni and Au film surface morphology observation”, “underlying Ni local corrosion state observation”, and “barrier property test using constant potential electrolysis method” were performed. The test methods for each test are described below.

Ni及びAu皮膜表面形態観察方法:各めっき表面は、電界放射型走査型電子顕微鏡(FE−SEM)を用いて観察した。
下地Ni局部腐食状態観察:Auめっき皮膜まで施された試料を、シアン系金剥離液を用いてAu皮膜を溶解除去し、FE−SEMで下地Ni表面を観察した。下地Ni局部腐食によって形成されるPリッチ層の分析には、オージェ電子分光分析装置を用いて皮膜深さ方向分析を行った。
定電位電解法を用いたバリア性試験:Auめっきまで施した試料をアノードとし、対極に白金コイル、参照極に銀/塩化銀電極とした。それらの電極を、10vol%硫酸水溶液に浸漬し、−50mVの電圧を印加し、その際に流れる電流を読み取った。
Ni and Au film surface morphology observation method: Each plating surface was observed using a field emission scanning electron microscope (FE-SEM).
Observation of underlying Ni local corrosion state: The Au coating was dissolved and removed from the sample applied up to the Au plating film using a cyan-based gold stripping solution, and the surface of the underlying Ni was observed by FE-SEM. For the analysis of the P-rich layer formed by the underlying Ni local corrosion, the film depth direction analysis was performed using an Auger electron spectroscopy analyzer.
Barrier property test using constant potential electrolysis method: A sample subjected to Au plating was used as an anode, a platinum coil as a counter electrode, and a silver / silver chloride electrode as a reference electrode. These electrodes were immersed in a 10 vol% sulfuric acid aqueous solution, a voltage of −50 mV was applied, and the current flowing at that time was read.

<実施例と比較例との対比>
Ni及びAu皮膜表面形態観察における対比: 「実施例の無電解金めっきを施す前の無電解ニッケル皮膜」と「比較例の無電解金めっきを施す前の無電解ニッケル皮膜」との各表面状態を走査型電子顕微鏡で観察したが、これらの表面形態に顕著な差異はなかった。しかし、「実施例の無電解金めっき後の金めっき表面」と「比較例の無電解金めっき後の金めっき表面」との各表面状態を走査型電子顕微鏡で観察すると、図1から理解できるように、比較例の無電解金めっきを構成するAu粒子は粗く、実施例の無電解金めっきを構成するAu粒子の方が微細で平滑な表面となっていることが分かる。
<Contrast between Example and Comparative Example>
Comparison of Ni and Au film surface morphology observation: Each surface state of “electroless nickel film before electroless gold plating of example” and “electroless nickel film before electroless gold plating of comparative example” Were observed with a scanning electron microscope, and there was no significant difference in their surface morphology. However, when each surface state of "the gold plating surface after electroless gold plating of the example" and "the gold plating surface after electroless gold plating of the comparative example" is observed with a scanning electron microscope, it can be understood from FIG. Thus, it can be seen that the Au particles constituting the electroless gold plating of the comparative example are rough, and the Au particles constituting the electroless gold plating of the example have a finer and smoother surface.

下地Ni局部腐食状態観察における対比: 下地Ni局部腐食状態観察の結果、実施例の無電解Ni/Auめっき皮膜の方が、比較例の無電解Ni/Auめっき皮膜に比べて、無電解金めっき皮膜剥離後の下地Ni局部腐食が少なかった。 Contrast in observation of underlying Ni local corrosion state: As a result of observation of underlying Ni local corrosion state, the electroless Ni / Au plating film of the example is more electroless than the electroless Ni / Au plating film of the comparative example. There was little local Ni local corrosion after film peeling.

定電位電解法を用いたバリア性試験における対比: 図2から理解できるように、比較例に比べ、実施例の方が溶出電流が小さくなっていることが分かる。従って、比較例に比べ、実施例の方がピンホール等の表面欠陥の少ない緻密な無電解金めっきを備えているといえる。 Comparison in barrier property test using constant potential electrolysis method: As can be understood from FIG. 2, it can be seen that the elution current is smaller in the example than in the comparative example. Therefore, it can be said that the example is equipped with dense electroless gold plating with less surface defects such as pinholes than the comparative example.

以上のことから、本件出願に係る無電解Ni/Auめっき皮膜の形成方法のように無電解ニッケル皮膜の形成に際して無電解Niストライクめっきを用いることで、従来の方法に比べ均一な析出状態で、且つ、耐腐食性に優れた無電解Ni/Auめっき皮膜の形成が可能になる。   From the above, by using the electroless Ni strike plating when forming the electroless nickel film as in the electroless Ni / Au plating film forming method according to the present application, in a uniform precipitation state compared to the conventional method, In addition, it is possible to form an electroless Ni / Au plating film having excellent corrosion resistance.

本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、従来のPd触媒を用いず、且つ、電解めっき法を採用していないため、製造コストが安価である。そして、本件出願に係る無電解Ni/Auめっき皮膜の形成方法は、プリント配線板・コネクタ端子・シリコンウェハ上の回路表面に、良好な耐腐食性能を備える無電解Ni/Auめっき皮膜の形成が可能である。よって、高品質の無電解Ni/Auめっき皮膜を備える電子部品材料を市場に供給することができる。   Since the method for forming an electroless Ni / Au plating film according to the present application does not use a conventional Pd catalyst and does not employ an electrolytic plating method, the manufacturing cost is low. The method for forming an electroless Ni / Au plating film according to the present application is to form an electroless Ni / Au plating film having good corrosion resistance on a circuit surface on a printed wiring board, a connector terminal, or a silicon wafer. Is possible. Therefore, an electronic component material provided with a high quality electroless Ni / Au plating film can be supplied to the market.

Claims (4)

配線回路基板の回路表面にニッケル皮膜を形成し、当該ニッケル皮膜の表面に金めっき皮膜を形成するNi/Auめっき皮膜の形成方法において、
当該ニッケル皮膜は、配線回路基板の回路表面に無電解Niストライクめっきを行った後、無電解Niめっきを行うことで形成することを特徴とする無電解Ni/Auめっき皮膜の形成方法。
In a method for forming a Ni / Au plating film in which a nickel film is formed on a circuit surface of a printed circuit board, and a gold plating film is formed on the surface of the nickel film,
The method for forming an electroless Ni / Au plating film, wherein the nickel film is formed by performing electroless Ni strike plating on a circuit surface of a printed circuit board, followed by electroless Ni plating.
前記無電解Niストライクめっきは、無電解Niストライクめっき液としてジメチルアミンボランを1g/L〜10g/L、Niを10ppm〜200ppm含有する水溶液を用いるものである請求項1に記載の無電解Ni/Auめっき皮膜の形成方法。 The electroless Ni strike plating uses an aqueous solution containing 1 g / L to 10 g / L of dimethylamine borane and 10 ppm to 200 ppm of Ni as an electroless Ni strike plating solution. Method for forming Au plating film. 前記金めっき皮膜は、無電解金めっき法で形成する請求項1又は請求項2に記載の無電解Ni/Auめっき皮膜の形成方法。 The method for forming an electroless Ni / Au plating film according to claim 1, wherein the gold plating film is formed by an electroless gold plating method. 請求項1〜請求項3のいずれかに記載の無電解Ni/Auめっき皮膜の形成方法を用いて得られることを特徴とする電子部品材料。 An electronic component material obtained by using the electroless Ni / Au plating film forming method according to claim 1.
JP2015041733A 2015-03-03 2015-03-03 ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD Pending JP2016160504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041733A JP2016160504A (en) 2015-03-03 2015-03-03 ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041733A JP2016160504A (en) 2015-03-03 2015-03-03 ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD

Publications (1)

Publication Number Publication Date
JP2016160504A true JP2016160504A (en) 2016-09-05

Family

ID=56844276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041733A Pending JP2016160504A (en) 2015-03-03 2015-03-03 ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD

Country Status (1)

Country Link
JP (1) JP2016160504A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004057A1 (en) * 2017-06-28 2019-01-03 小島化学薬品株式会社 Electroless nickel strike plating solution and method for forming nickel plating film
WO2019004056A1 (en) * 2017-06-28 2019-01-03 小島化学薬品株式会社 Electroless plating process
JP2019504179A (en) * 2016-12-07 2019-02-14 東莞市國瓷新材料科技有限公司 Method for preparing ceramic encapsulated substrate with copper-plated box dam
JP2019169553A (en) * 2018-03-22 2019-10-03 ホシデン株式会社 Coil, non-contact power feeding unit and manufacturing method for coil
EP4092157A4 (en) * 2020-01-14 2024-01-03 Kojima Chemicals Co Ltd Electroless plating process and two-layer plating film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135607A (en) * 1996-10-31 1998-05-22 Hitachi Ltd Wiring board and its manufacture
JP2001107254A (en) * 1999-10-05 2001-04-17 Fujitsu Ltd DEPOSITION METHOD OF Ni ELECTRODE LAYER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135607A (en) * 1996-10-31 1998-05-22 Hitachi Ltd Wiring board and its manufacture
JP2001107254A (en) * 1999-10-05 2001-04-17 Fujitsu Ltd DEPOSITION METHOD OF Ni ELECTRODE LAYER

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504179A (en) * 2016-12-07 2019-02-14 東莞市國瓷新材料科技有限公司 Method for preparing ceramic encapsulated substrate with copper-plated box dam
KR102116055B1 (en) * 2017-06-28 2020-05-27 고지마 가가쿠 야쿠힌 가부시키가이샤 Electroless nickel strike plating solution
CN110325665A (en) * 2017-06-28 2019-10-11 小岛化学药品株式会社 Electroless plating technique
JP2019007067A (en) * 2017-06-28 2019-01-17 小島化学薬品株式会社 Electroless plating process
WO2019004056A1 (en) * 2017-06-28 2019-01-03 小島化学薬品株式会社 Electroless plating process
TWI668330B (en) * 2017-06-28 2019-08-11 日商小島化學藥品股份有限公司 Electroless plating process
KR20190102097A (en) * 2017-06-28 2019-09-02 고지마 가가쿠 야쿠힌 가부시키가이샤 Electroless plating process
JP2019007068A (en) * 2017-06-28 2019-01-17 小島化学薬品株式会社 Electroless nickel strike plating solution and method for depositing nickel plating coating
EP3647461A4 (en) * 2017-06-28 2021-05-05 Kojima Chemicals Co. Ltd. Electroless plating process
KR20190102099A (en) * 2017-06-28 2019-09-02 고지마 가가쿠 야쿠힌 가부시키가이샤 Method of forming electroless nickel strike plating solution and nickel plating film
CN110352266A (en) * 2017-06-28 2019-10-18 小岛化学药品株式会社 Electroless striking nickel-plating liquid and the film build method for plating nickel flashing
KR102084905B1 (en) * 2017-06-28 2020-03-04 고지마 가가쿠 야쿠힌 가부시키가이샤 Electroless plating process
WO2019004057A1 (en) * 2017-06-28 2019-01-03 小島化学薬品株式会社 Electroless nickel strike plating solution and method for forming nickel plating film
JP2019169553A (en) * 2018-03-22 2019-10-03 ホシデン株式会社 Coil, non-contact power feeding unit and manufacturing method for coil
JP7063668B2 (en) 2018-03-22 2022-05-09 ホシデン株式会社 Coil, non-contact power supply unit, and coil manufacturing method
EP4092157A4 (en) * 2020-01-14 2024-01-03 Kojima Chemicals Co Ltd Electroless plating process and two-layer plating film

Similar Documents

Publication Publication Date Title
JP5428667B2 (en) Manufacturing method of semiconductor chip mounting substrate
JP2016160504A (en) ELECTROLESS Ni/Au PLATED FILM FORMING METHOD, AND ELECTROLESS Ni/Au PLATED FILM OBTAINED BY THE FORMING METHOD
JP2011058090A (en) Method for electroless nickel-palladium-gold plating, plated product, printed wiring board, interposer and semiconductor device
US20140076618A1 (en) Method of forming gold thin film and printed circuit board
EP3489385B1 (en) Electroless palladium/gold plating process
KR20110038457A (en) A metal layer structure comprising electroless ni plating layer and a fabricating method the same
JP2013108180A (en) Substrate and method for producing the same
JP2010037603A (en) Connection terminal part and method for producing the same
JPH10135607A (en) Wiring board and its manufacture
JP5682678B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
JP6236824B2 (en) Method for manufacturing printed wiring board
JP2013093360A (en) Semiconductor chip mounting substrate and manufacturing method of the same
JP2013089913A (en) Substrate for mounting semiconductor chip and manufacturing method thereof
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
JP5691527B2 (en) Wiring board surface treatment method and wiring board treated by this surface treatment method
JP5299321B2 (en) Plating method
JP2020105543A (en) Immersion gold plating solution and immersion gold plating method
JP2000178753A (en) Electroless plating method
WO2021166641A1 (en) Plated laminate
WO2021145300A1 (en) Electroless plating process and two-layer plating film
JP5808042B2 (en) Palladium catalyst-imparting solution comprising palladium ammine complex salt aqueous solution and electroless nickel plating method for copper wiring board using the same
JP2007141936A (en) Method of manufacturing printed wiring board having high-density copper pattern
JP4577156B2 (en) Electroless nickel plating bath and electroless plating method using the same
JP3554741B2 (en) Electroless nickel plating bath and method for forming high-purity nickel needle coating using the same
TW201016083A (en) Micro-etching process of PCB without causing galvanic corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190508