JP2020105543A - Immersion gold plating solution and immersion gold plating method - Google Patents

Immersion gold plating solution and immersion gold plating method Download PDF

Info

Publication number
JP2020105543A
JP2020105543A JP2018242386A JP2018242386A JP2020105543A JP 2020105543 A JP2020105543 A JP 2020105543A JP 2018242386 A JP2018242386 A JP 2018242386A JP 2018242386 A JP2018242386 A JP 2018242386A JP 2020105543 A JP2020105543 A JP 2020105543A
Authority
JP
Japan
Prior art keywords
gold plating
plating solution
acid
gold
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018242386A
Other languages
Japanese (ja)
Other versions
JP6521553B1 (en
Inventor
知之 藤波
Tomoyuki Fujinami
知之 藤波
隆信 朝川
Takanobu Asakawa
隆信 朝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Priority to JP2018242386A priority Critical patent/JP6521553B1/en
Application granted granted Critical
Publication of JP6521553B1 publication Critical patent/JP6521553B1/en
Priority to TW108141249A priority patent/TW202033827A/en
Priority to KR1020190174476A priority patent/KR20200080185A/en
Priority to CN201911362917.5A priority patent/CN111378962A/en
Publication of JP2020105543A publication Critical patent/JP2020105543A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

To provide immersion gold plating solution with high deposition rate and less variation of a film thickness of a deposition film, and an immersion gold plating solution method, and especially in an ENEPIG method, to provide the immersion gold plating solution and the immersion gold plating method in which corrosion of a lower side nickel intermediate layer in a laminated structure of a palladium intermediate layer/nickel intermediate layer is small.SOLUTION: In a cyan system immersion gold plating solution including a gold cyanide compound and a thallium compound, pH is 2.0 to 4.4 and aminocarboxylic system chelate agent having a hydroxyl group is included. By using the cyanide system gold plating solution including the cyanide gold compound and thallium compound including the aminocarboxylic chelate agent acid having a hydroxyl group of pH of 2.0 to 4.4, a gold surface layer is formed on an intermediate layer of any of copper, nickel or palladium, or on a laminated structure comprising their intermediate layers.SELECTED DRAWING: None

Description

本発明は、シアン化金化合物を用いた置換金めっき液および置換金めっき方法に関する。 The present invention relates to a displacement gold plating solution and a displacement gold plating method using a gold cyanide compound.

電子機器の電子部品に用いられる実装基板の接合部パッドには、通常金めっき層が形成されている。金は、銀、銅の次に高い電気導電率を有し、熱圧着による接合性などの物理的性質に優れると共に、耐酸化性や耐薬品性などの化学的性質にも優れる。そのため、金が高価であるにも関わらず、実装基板の接合部パッドに使用され続けている。このような実装基板のパターンは、電源リードに対する制約があり、また、めっき皮膜の形成が困難である独立したパターンがあることから、無電解金めっき法が多く採用されている。 A gold plating layer is usually formed on a bonding pad of a mounting board used for an electronic component of an electronic device. Gold has the second highest electrical conductivity after silver and copper, and is excellent in physical properties such as bondability by thermocompression bonding, as well as in chemical properties such as oxidation resistance and chemical resistance. Therefore, even though gold is expensive, it continues to be used as a bonding pad of a mounting substrate. Since the pattern of such a mounting substrate has restrictions on the power supply lead and there is an independent pattern in which formation of a plating film is difficult, the electroless gold plating method is often adopted.

置換金めっきは、無電解金めっき法の一部として古くから知られており、金イオンの溶液中に金よりもイオン化傾向が卑な金属が存在すると、卑な金属の表面が溶液中に溶け出し、溶液中の金イオンが金金属として析出する原理を利用する技術である。 Displacement gold plating has long been known as a part of electroless gold plating, and when a metal having a less ionizing tendency than gold exists in a solution of gold ions, the surface of the base metal dissolves in the solution. This is a technique that utilizes the principle that gold ions in a solution are deposited as gold metal.

しかし置換金めっきは、金イオンが下地金属と置換して金金属が析出するという反応機構上、厚付け困難であり、過度に浸漬時間を延長させると膜厚ばらつきが大きくなると共に、下地金属であるニッケル中間層の腐食が拡張するという欠点があった。このため無電解金めっきの処理方法では、置換型と自己触媒型(還元型)の二段処理を行うか、あるいは、液管理が困難ながらも、置換・自己触媒併用型(還元併用型)の一段処理を行う必要があった。 However, displacement gold plating is difficult to thicken because of the reaction mechanism in which gold ions substitute for the base metal and gold metal is deposited. The disadvantage was that the corrosion of some nickel intermediate layers was extended. Therefore, in the electroless gold plating treatment method, a two-step treatment of a substitution type and an autocatalytic type (reduction type) is used. It was necessary to perform one-step processing.

近年、電子機器の高機能化や多機能化が進展し、電子部品に用いられる実装基板の高密度化が進み、接合部パッドの微細化により電源リードの形成が更に困難になり、無電解金めっき法の必要性が更に高まっている。しかしながら置換金めっきは、上述したように、厚付け困難であり、置換型と自己触媒型の二段処理、または置換・自己触媒併用型の一段処理に取って代わられていた。ところが、生産拠点が日本国内からアジアの新興国に移行するのに伴って、ランニングコストの低減が求められ、作業性などについても重視され、置換金めっきプロセスが改めて見直されるようになってきた。 In recent years, electronic devices have become more sophisticated and multifunctional, and mounting boards used for electronic components have become higher in density, and it has become more difficult to form power supply leads due to the miniaturization of bonding pads. The need for plating is increasing. However, as described above, the displacement gold plating is difficult to thicken, and has been replaced by the two-step treatment of the substitution type and the autocatalytic type, or the one-step treatment of the substitution/autocatalyst combined type. However, with the shift of production bases from Japan to emerging countries in Asia, running costs have been required to be reduced, workability has also been emphasized, and the replacement gold plating process has been reviewed again.

実装基板の接合部パッドに用いられる置換金めっきプロセスには、次の3種類の方法が知られている。すなわち、(1)銅上に直接置換金めっき皮膜を形成する直接置換金(Direct Immersion Gold:DIG)法、(2)下地無電解ニッケルめっき皮膜上に、置換金めっき皮膜を形成する無電解ニッケル/置換金(Electroless Nickel Immersion Gold:ENIG)法、および(3)下地無電解ニッケルめっき皮膜と置換金めっき皮膜の間に無電解パラジウムめっき皮膜を設ける無電解ニッケル/無電解パラジウム/置換金(Electroless Nickel Electroless Palladium Immersion Gold:ENEPIG)法である。 The following three types of methods are known for the displacement gold plating process used for the bonding pad of the mounting substrate. That is, (1) Direct Immersion Gold (DIG) method for directly forming a displacement gold plating film on copper, (2) Electroless nickel for forming a displacement gold plating film on a base electroless nickel plating film /Electroless Nickel Immersion Gold (ENIG) method, and (3) Electroless nickel/electroless palladium/Substitution gold (Electroless) in which an electroless palladium plating film is provided between the electroless nickel plating film as the base and the substitution gold plating film. Nickel Electroless Palladium Immersion Gold (ENEPIG) method.

このうちENEPIG法では、ニッケルめっき皮膜は、銅回路が半田に浸食されないためのバリア膜として使用され、パラジウムめっき皮膜は、ニッケルめっき皮膜の金めっき皮膜への拡散防止のためのバリア膜として使用される。そして、電気抵抗が低く、半田濡れ性が良好な金めっき皮膜が最終仕上げに適用される。したがって、ニッケル、パラジウムからなる下地金属のめっき皮膜と金めっき皮膜とによって、半田付けやワイヤーボンディングなどの接合特性の優れた接合部を形成できる利点がある。 Among them, in the ENEPIG method, the nickel plating film is used as a barrier film for preventing the copper circuit from being corroded by solder, and the palladium plating film is used as a barrier film for preventing diffusion of the nickel plating film into the gold plating film. It Then, a gold plating film having low electric resistance and good solder wettability is applied to the final finish. Therefore, there is an advantage that a joint portion having excellent joint characteristics such as soldering and wire bonding can be formed by the plating film of the base metal made of nickel and palladium and the gold plating film.

例えば、特許文献1(特開2012−46792号公報)には「導電性金属からなる導体層上に、ニッケル層、パラジウム層、金層を順次積層してなる接合部を形成するための置換金めっき液であって、置換金めっき液は、シアン化金塩、錯化剤、銅化合物を含有するものであり、置換金めっき液中の錯化剤と銅化合物とのモル比が錯化剤/銅イオン=1.0〜500の範囲であり、錯化剤と銅化合物とから形成される化合物のpH4〜6における安定度定数が8.5以上であることを特徴とする置換金めっき液」(特許請求の範囲、請求項1)が開示されている。この置換金めっきは、「接合部を形成する部分が大小様々な面積のパッドを有する基板であっても、各パッドに形成した接合部の金層膜厚のバラツキが抑制でき、均一な厚みの金めっきの被膜を実現できる置換金めっき処理技術を提供する」(0009段落)ものである。 For example, in Patent Document 1 (JP 2012-46792 A), "a replacement gold for forming a joint portion in which a nickel layer, a palladium layer, and a gold layer are sequentially laminated on a conductor layer made of a conductive metal is formed. A plating solution, wherein the displacement gold plating solution contains a gold cyanide salt, a complexing agent and a copper compound, and the molar ratio of the complexing agent to the copper compound in the displacement gold plating solution is a complexing agent. /Copper ion=1.0 to 500, and the stability constant at pH 4 to 6 of the compound formed from the complexing agent and the copper compound is 8.5 or more. (Claims, Claim 1) is disclosed. This displacement gold plating is capable of suppressing variations in the gold layer thickness of the bonding part formed on each pad even if the part forming the bonding part has pads of various sizes, and a uniform thickness. We provide a displacement gold plating technology that can realize a gold plating film" (paragraph 0009).

このENEPIG法において、置換金めっきの様々な膜厚仕様に適用させるため、金の膜厚を高めることが要求される。しかし、金の析出膜厚を高めようとして処理時間を延長させたり、液温を上昇させたりすると、金の膜厚ばらつきが大きくなるという新たな欠点が露呈した。これは、貴なパラジウム金属の方が上層にあり、卑なニッケル金属の方が下層に存在するため、腐食が不安定になる傾向が生じるためである。さらに、微細な接合部パッドになればなるほど、下層のニッケル中間層の異常腐食が進行して、半田接合やワイヤーボンディング接合を低下させるという深刻な課題へと繋がっていくことがわかった。 In this ENEPIG method, it is required to increase the gold film thickness in order to apply it to various film thickness specifications of displacement gold plating. However, when the treatment time was extended or the liquid temperature was raised in order to increase the deposited gold film thickness, a new defect that the variation in the gold film thickness became large was revealed. This is because the noble palladium metal is in the upper layer and the base nickel metal is in the lower layer, so that corrosion tends to be unstable. Further, it has been found that the finer the bonding pad, the more the abnormal corrosion of the lower nickel intermediate layer progresses, leading to a serious problem of lowering solder bonding or wire bonding bonding.

特開2012−46792号公報JP 2012-46792 A

本発明は、置換金めっきにおける上記の課題に鑑みなされたものであり、析出速度が速く、かつ、実装基板の接合部パッドの面積の差異に伴う膜厚ばらつきが小さい置換金めっき液および置換金めっき方法を提供することを目的とする。特に、従来ENEPIG法において、パラジウム中間層/ニッケル中間層の積層構造の上層のパラジウム中間層の腐食よりも下層のニッケル中間層の腐食比率が高いことを改善した、積層構造における下層のニッケル中間層の腐食が少ない置換金めっき液および置換金めっき方法を提供することを目的とする。 The present invention has been made in view of the above problems in displacement gold plating, and a displacement gold plating solution and a displacement gold plating solution having a high deposition rate and a small film thickness variation due to the difference in the area of the bonding pad of the mounting substrate. An object is to provide a plating method. In particular, in the conventional ENEPIG method, it is improved that the corrosion ratio of the lower nickel intermediate layer is higher than the corrosion ratio of the upper palladium intermediate layer of the palladium intermediate layer/nickel intermediate layer laminated structure. It is an object of the present invention to provide a substitutional gold plating solution and a substitutional gold plating method with less corrosion.

シアン系置換金めっき液における局部電池作用は、一般的に金>パラジウム>ニッケルの順で貴な金属であることが知られている。本発明者らが研究したところ、卑な金属である中間めっき層の腐食が溶液中のpHに大きく依存することがわかった。そして、本発明者らは、中性〜アルカリ性の溶液中で安定なシアン化金化合物を酸性側で不安定な化合物とすることによって卑な金属の中間めっき層の腐食を抑制するとともに析出速度を向上させ、かつ、実装基板の接合部パッドの面積の差異に伴う膜厚ばらつきを小さくすることに成功した。 It is known that the local battery action in the cyan-based displacement gold plating solution is generally a noble metal in the order of gold>palladium>nickel. Studies conducted by the present inventors have revealed that the corrosion of the intermediate plating layer, which is a base metal, greatly depends on the pH of the solution. Then, the present inventors suppress the corrosion of the intermediate plating layer of the base metal by making the gold cyanide compound stable in the neutral to alkaline solution into a compound that is unstable on the acidic side, and increase the deposition rate. We have succeeded in improving and reducing the variation in film thickness due to the difference in the area of the bonding pad of the mounting board.

特に、銅または銅合金パッド上の中間めっき層がパラジウム層とニッケル層の積層構造である場合、シアン系置換金めっき液における局部電池作用は、pHが中性領域では金≒パラジウム>ニッケルの傾向にあるが、他方、pHが弱酸性領域では金>パラジウム>ニッケルの傾向になることがわかった。したがって、シアン系置換金めっき液を弱酸性領域とすることにより上層のパラジウム中間層の腐食比率を高くすることができ、それにより、ニッケル中間層の腐食の抑制、析出速度の向上、面積の差異に伴う膜厚ばらつきの低減が可能となる。 In particular, when the intermediate plating layer on the copper or copper alloy pad has a laminated structure of a palladium layer and a nickel layer, the local cell action in the cyan-based displacement gold plating solution is such that gold ≈ palladium> nickel tends to occur in the neutral pH range. However, on the other hand, it was found that there is a tendency of gold>palladium>nickel in the weakly acidic region of pH. Therefore, the corrosion rate of the upper palladium intermediate layer can be increased by setting the cyan-based displacement gold plating solution to a weakly acidic region, thereby suppressing the corrosion of the nickel intermediate layer, improving the deposition rate, and increasing the area difference. It is possible to reduce the variation in film thickness due to.

本発明の置換金めっき液は、シアン化金化合物およびタリウム化合物を含むシアン系置換金めっき液において、pHが2.0〜4.4であること、および水酸基を有するアミノカルボン酸系キレート剤を含有することを特徴とする。 The displacement gold plating solution of the present invention has a pH of 2.0 to 4.4 in a cyan displacement gold plating solution containing a gold cyanide compound and a thallium compound, and an aminocarboxylic acid type chelating agent having a hydroxyl group. It is characterized by containing.

本発明の置換金めっき方法は、シアン化金化合物およびタリウム化合物を含む置換金めっき液であって、pHが2.0〜4.4であり、水酸基を有するアミノカルボン酸系キレート剤を含有するシアン系置換金めっき液を用いて、銅、ニッケル、パラジウムのいずれかの中間層上、またはそれらの中間層からなる積層構造上に金表層を形成することを特徴とする。特に、本発明の置換金めっき方法は、上記シアン系置換金めっき液を用いて、銅金属上に無電解ニッケルめっき皮膜を形成し、更に無電解パラジウムめっき皮膜を形成した中間層からなる積層構造上に金表層を形成することを特徴とする。 The displacement gold plating method of the present invention is a displacement gold plating solution containing a gold cyanide compound and a thallium compound, having a pH of 2.0 to 4.4 and containing an aminocarboxylic acid type chelating agent having a hydroxyl group. It is characterized in that a gold surface layer is formed on an intermediate layer of any one of copper, nickel, and palladium, or a laminated structure composed of these intermediate layers, using a cyan-based displacement gold plating solution. In particular, the displacement gold plating method of the present invention is a laminated structure comprising an intermediate layer in which an electroless nickel plating film is formed on a copper metal using the cyan-based displacement gold plating solution, and an electroless palladium plating film is further formed. It is characterized in that a gold surface layer is formed thereon.

本発明のシアン化金化合物およびタリウム化合物を含むシアン系置換金めっき液または置換金めっき方法において、上記めっき液のpHを2.0〜4.4とし、水酸基を有するアミノカルボン酸系キレート剤を含有することとしたのは、シアン化金化合物のシアンイオンと金イオンとの錯体の結合力を弱め、かつ、穏やかな還元作用を有するキレート剤の析出機構によって全面均一な金金属皮膜を析出させるためである。 In the cyan substitution gold plating solution or substitution gold plating method containing a gold cyanide compound and a thallium compound according to the present invention, the pH of the plating solution is set to 2.0 to 4.4, and an aminocarboxylic acid type chelating agent having a hydroxyl group is used. The inclusion is to weaken the binding force of the cyanide and gold ion complex of the cyanide gold compound and to deposit a uniform gold metal film on the entire surface by the mechanism of the chelating agent having a mild reducing action. This is because.

本発明のシアン系置換金めっき液または置換金めっき方法において、金イオンは、一般的に0.1〜10g/Lを用いることができる。実用的な上限値は5g/Lである。金地金の滞留を避けるためである。金イオン濃度の下限値未満では、置換速度が遅くなり十分な置換めっき層を形成しにくくなる。また、10g/Lの上限値は、高価な金地金が被めっき物に付着して水洗槽へ汲み出される(ドラッグアウト)などの無駄なコストを省くためである。実用的な観点からは、金イオンの濃度の上限値は、5g/Lが好ましく、3g/Lが特に好ましい。また、下限値は、析出皮膜の置換速度を速くするため0.5g/Lが好ましく、0.8g/Lが特に好ましい。 In the cyan-based displacement gold plating solution or the displacement gold plating method of the present invention, generally 0.1 to 10 g/L of gold ion can be used. The practical upper limit is 5 g/L. This is to avoid the retention of gold bullion. If the gold ion concentration is less than the lower limit value, the substitution rate becomes slow and it becomes difficult to form a sufficient substitution plating layer. Further, the upper limit of 10 g/L is to save wasteful cost such as expensive gold metal adhering to the object to be plated and being pumped out to the washing tank (dragout). From a practical point of view, the upper limit of the concentration of gold ions is preferably 5 g/L, particularly preferably 3 g/L. Further, the lower limit value is preferably 0.5 g/L, and particularly preferably 0.8 g/L in order to accelerate the substitution rate of the deposited film.

本発明のシアン系置換金めっき液または置換金めっき方法において、タリウム化合物を含有させる。タリウムイオンが存在すると、金イオンが金金属として析出する平衡電位よりも貴な電位領域で下地金属上に析出するというアンダーポテンシャル析出現象が起き、金めっき液の置換反応を促進することが知られているが、本発明に係るpHが2.0〜4.4の領域でも有効に作用する。タリウムイオンは、一般的なシアン系置換金めっき液において用いられるタリウム化合物の濃度範囲である0.1〜100mg/Lで用いることができる。 In the cyan-based displacement gold plating solution or the displacement gold plating method of the present invention, a thallium compound is contained. It is known that in the presence of thallium ions, an underpotential deposition phenomenon occurs in which gold ions are deposited on the underlying metal in a potential region nobler than the equilibrium potential where gold ions are deposited as gold metal, which promotes the substitution reaction of the gold plating solution. However, the present invention also works effectively in the pH range of 2.0 to 4.4 according to the present invention. The thallium ion can be used in the concentration range of 0.1 to 100 mg/L, which is the concentration range of the thallium compound used in a general cyan-based displacement gold plating solution.

本発明のシアン系置換金めっき液または置換金めっき方法において、タリウム化合物の実質的な上限値はタリウムイオンとして80mg/Lである。タリウム化合物は、少量で金めっき液の置換反応を促進することができるが、タリウム化合物をタリウムイオンとして5mg/L以上加えても置換反応の促進効果はタリウムイオンの濃度に比例して向上するわけではない。タリウム化合物は、様々な化合物として添加することができるが、硫酸タリウム、酢酸タリウム、硝酸タリウム、ギ酸タリウムなどの水溶性タリウム塩が望ましい。 In the cyan-based displacement gold plating solution or the displacement gold plating method of the present invention, the substantial upper limit of the thallium compound is 80 mg/L as thallium ion. A small amount of a thallium compound can accelerate the substitution reaction of the gold plating solution, but even if the thallium compound is added as thallium ion in an amount of 5 mg/L or more, the effect of accelerating the substitution reaction is improved in proportion to the concentration of the thallium ion. is not. The thallium compound can be added as various compounds, but water-soluble thallium salts such as thallium sulfate, thallium acetate, thallium nitrate, and thallium formate are preferable.

本発明のシアン系置換金めっき液または置換金めっき方法において、pHの下限値を2.0としたのは、2.0未満ではシアン化金化合物のシアンイオンと金イオンとの錯体の結合力が弱くなりすぎて、置換金めっき液中で金金属が析出してしまい高価な金地金のロスが高くなるためである。また、pHの上限値を4.4としたのは、4.4以上ではシアン化金化合物のシアンイオンと金イオンとの錯体の結合力が強すぎて、金金属が析出しにくくなって、パラジウム金属よりも卑なニッケル金属の腐食が不安定になり、金皮膜の実装基板の接合部パッドの面積の差異での厚さがばらつくためである。好ましい上限値は4.0であり、更に好ましくは3.8であり、最も好ましくは3.6である。また、好ましい下限値は2.2であり、更に好ましくは2.4であり、最も好ましくは2.6である。 In the cyan substitutional gold plating solution or the substitutional gold plating method of the present invention, the lower limit of pH is set to 2.0 because when it is less than 2.0, the binding force of the cyanide-gold complex cyanide-gold ion complex. Is too weak, and gold metal is deposited in the displacement gold plating solution, resulting in high loss of expensive gold metal. In addition, the upper limit of pH is set to 4.4, because at 4.4 or more, the binding force of the complex of the cyanide and the gold ion of the cyanide compound is too strong, and it becomes difficult for gold metal to precipitate. This is because the corrosion of nickel metal, which is baser than that of palladium metal, becomes unstable, and the thickness of the gold film varies depending on the area of the bonding pad of the mounting substrate. The preferable upper limit value is 4.0, more preferably 3.8, and most preferably 3.6. The lower limit is preferably 2.2, more preferably 2.4, and most preferably 2.6.

本発明のシアン系置換金めっき液または置換金めっき方法において、水酸基を有するアミノカルボン酸系キレート剤を金金属の析出作用を穏やかにするために含有させる。水酸基を有するアミノカルボン酸系キレート剤の含有量は0.1〜100g/Lである。水酸基を有するアミノカルボン酸系キレート剤の所定量を金イオンと共存させることによって、実装基板の接合部パッドの面積の差異の膜厚ばらつきを抑制させることができる。下限値未満では、タリウムイオンを錯形成させることができず膜厚ばらつきが大きくなる。また、上限値を超えると、膜厚ばらつきに対する効果が頭打ちとなる。 In the cyan substituted gold plating solution or the substituted gold plating method of the present invention, an aminocarboxylic acid type chelating agent having a hydroxyl group is contained in order to moderate the deposition action of gold metal. The content of the aminocarboxylic acid type chelating agent having a hydroxyl group is 0.1 to 100 g/L. By making a predetermined amount of the aminocarboxylic acid type chelating agent having a hydroxyl group coexist with the gold ion, it is possible to suppress the film thickness variation due to the difference in the area of the bonding pad of the mounting substrate. If it is less than the lower limit, thallium ions cannot be complex-formed and the film thickness varies greatly. On the other hand, if the upper limit is exceeded, the effect of variation in film thickness will reach a ceiling.

水酸基を有するアミノカルボン酸系キレート剤としては、DHEG(Dihydroxyethyl Glycine)、HIDA(Hydroxyethyl Imino Diacetic Acid)、HEDTA(Hydroxyethyl Ethylene Diamine Triacetic Acid)、DPTA−OH(1,3−Diamino−2−hydroxypropane Tetraacetic Acid)などが挙げられる。その中で最も有効なものはHEDTAである。 Examples of the aminocarboxylic acid-based chelating agent having a hydroxyl group include DHEG (Dihydroxyethyl Glycine), HIDA (Hydroxyethyl Imino Diacetic Acid), HEDTA (Hydroxydiptyclic Acrylonitrile-Adicarboxylic Acid). ) And the like. The most effective of these is HEDTA.

本発明のシアン系置換金めっき液または置換金めっき方法においては、更にpH緩衝剤を添加することができる。pH緩衝剤を添加することにより、置換金めっき作業中のpH2.0〜4.4の範囲をより安定的に保持することができ、pHの範囲を2.0〜4.4の間で安定的に保持することによって、ENEPIG法であってもパラジウム金属の腐食が促進して、結果的に卑なニッケル金属の腐食が抑制できる。 In the cyan-based displacement gold plating solution or the displacement gold plating method of the present invention, a pH buffering agent can be further added. By adding a pH buffer, the range of pH 2.0 to 4.4 during the displacement gold plating operation can be maintained more stably, and the range of pH is stable between 2.0 to 4.4. By maintaining it for a long time, the corrosion of the palladium metal is promoted even by the ENEPIG method, and as a result, the corrosion of the base nickel metal can be suppressed.

具体的なpH緩衝剤としては、リン酸、グリシン、シアノ酢酸、マロン酸、フタル酸、クエン酸、ギ酸、グリコール酸、乳酸、コハク酸、酢酸、酪酸、プロピオン酸、およびそれらの塩の少なくとも1種以上が挙げられる。この中では、酢酸、酢酸塩、ギ酸またはギ酸塩が好ましく、最も有効なものは酢酸または酢酸塩である。これらの群から選択される少なくとも1種以上を合計で0.1〜100g/L含むことが好ましい。 Specific pH buffering agents include at least one of phosphoric acid, glycine, cyanoacetic acid, malonic acid, phthalic acid, citric acid, formic acid, glycolic acid, lactic acid, succinic acid, acetic acid, butyric acid, propionic acid, and salts thereof. There are more than one species. Of these, acetic acid, acetate, formic acid or formate is preferable, and the most effective one is acetic acid or acetate. It is preferable that the total amount of at least one selected from these groups is 0.1 to 100 g/L.

本発明のシアン系置換金めっき液または置換金めっき方法においては、腐食抑制剤を更に添加することができる。腐食抑制剤を添加する理由は、pH緩衝剤と同様、置換金めっき作業中の卑な銅金属やニッケル金属の腐食をより抑制するためである。腐食抑制剤としては、ポリエチレングリコール(平均分子量200〜20000)が好ましい。置換金めっき作業中のpH2.0〜4.4を安定的に保持するからである。また、アミド硫酸またはアミド硫酸塩も同様の効果を発揮することがわかった。これらの化合物を好ましくは1種もしくは2種以上合計で0.1〜100g/L含むことができる。 In the cyan-based displacement gold plating solution or the displacement gold plating method of the present invention, a corrosion inhibitor can be further added. The reason for adding the corrosion inhibitor is to further suppress the corrosion of the base copper metal or nickel metal during the displacement gold plating operation, similarly to the pH buffering agent. As the corrosion inhibitor, polyethylene glycol (average molecular weight 200 to 20000) is preferable. This is because the pH of 2.0 to 4.4 during the displacement gold plating operation is stably maintained. It was also found that amide sulfate or amide sulfate also exhibits the same effect. These compounds may be preferably used alone or in a total amount of 0.1 to 100 g/L.

本発明のシアン系置換金めっき液または置換金めっき方法において、めっき液のpHを調整するには、希硫酸などの無機酸や酢酸などの有機酸、あるいは水酸化アルカリを用いることができる。また液温は、高温になればなるほど金の析出速度は速くなるが、蒸発ロスも激しくなる。一般的には60〜90℃の範囲でめっき作業が行われる。 In the cyan substitutional gold plating solution or the substitutional gold plating method of the present invention, an inorganic acid such as dilute sulfuric acid, an organic acid such as acetic acid, or an alkali hydroxide can be used to adjust the pH of the plating solution. Further, as the liquid temperature becomes higher, the gold deposition rate becomes faster, but the evaporation loss becomes more severe. Generally, the plating operation is performed in the range of 60 to 90°C.

本発明のシアン系置換金めっき液によれば、これまでよりも金金属の析出速度が速くなり、しかも、実装基板の接合部パッドの面積の差異に伴う膜厚ばらつきが小さい析出皮膜を形成させる効果がある。さらに、本発明はパラジウム中間層/ニッケル中間層の積層構造における下層のニッケル中間層の腐食が少ない置換金めっきの析出皮膜を形成させる効果がある。 According to the cyan-based displacement gold plating solution of the present invention, the deposition rate of gold metal becomes faster than ever, and moreover, a deposited film with less variation in film thickness due to the difference in the area of the bonding pad of the mounting substrate is formed. effective. Further, the present invention has an effect of forming a deposited film of displacement gold plating which causes less corrosion of the lower nickel intermediate layer in the laminated structure of the palladium intermediate layer/nickel intermediate layer.

また、本発明のシアン系置換金めっき方法によれば、中間層の腐食を抑制するとともに、置換金めっきの析出速度が速い置換金めっき層を形成させる効果がある。さらに、本発明のシアン系置換金めっき方法によれば、実装基板の接合部パッドの面積の差異に伴う膜厚ばらつきを小さくさせる効果がある。特に、本発明のシアン系置換金めっき方法によれば、パラジウム中間層/ニッケル中間層の積層構造上に金表層を形成させる場合、下層のニッケル中間層の腐食を低減させる効果がある。 Further, according to the cyan displacement gold plating method of the present invention, it is possible to suppress the corrosion of the intermediate layer and to form a displacement gold plating layer having a high deposition rate of displacement gold plating. Furthermore, according to the cyan-based displacement gold plating method of the present invention, there is an effect of reducing the film thickness variation due to the difference in the area of the bonding pad of the mounting substrate. In particular, according to the cyan displacement gold plating method of the present invention, when the gold surface layer is formed on the laminated structure of the palladium intermediate layer/nickel intermediate layer, it is effective in reducing the corrosion of the nickel intermediate layer as the lower layer.

図1は本発明の実施例に係るパラジウムめっき皮膜表面の走査型電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph of the surface of a palladium plating film according to an example of the present invention. 図2は従来例に係るパラジウムめっき皮膜表面の走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of the surface of the palladium plating film according to the conventional example.

以下、本発明に係るシアン系置換金めっき液および置換金めっき方法の実施の形態を更に詳しく説明する。本発明の被めっき物としては、従来の置換金めっき方法と同様に、特に制限はない。すなわち、各種金属材料、またプラスチックやセラミックなどの絶縁基材上に形成された銅などの金属皮膜(電気的に独立した回路を含む)の表面に用いることができる。 Hereinafter, embodiments of the cyan-based displacement gold plating solution and the displacement gold plating method according to the present invention will be described in more detail. The object to be plated of the present invention is not particularly limited as in the conventional displacement gold plating method. That is, it can be used on the surface of various metal materials, or a metal film of copper or the like (including electrically independent circuits) formed on an insulating substrate such as plastic or ceramic.

本発明の置換金めっきを施す前に、従来の置換金めっき方法の場合と同様に、周知の前処理工程で行うことができる。例えば、基材の脱脂、ソフトエッチング、硫酸活性、パラジウム触媒付与などを行うことができる。また必要に応じて、前処理が施された各種金属材料、またプラスチックやセラミックなどの絶縁基材上に形成された銅などの接合部パッドの表面にニッケルめっき皮膜、パラジウムめっき皮膜などの中間層を成膜することができる。本発明の置換金めっき方法においては、銅、ニッケルまたはパラジウムからなる中間層上に金表層を形成することができる。 Prior to performing the displacement gold plating of the present invention, a well-known pretreatment step can be performed as in the conventional displacement gold plating method. For example, degreasing of the substrate, soft etching, sulfuric acid activity, addition of a palladium catalyst, etc. can be performed. In addition, if necessary, various metal materials that have been subjected to pretreatment, or an intermediate layer such as a nickel plating film or palladium plating film on the surface of the bonding pad such as copper formed on an insulating base material such as plastic or ceramic Can be formed. In the displacement gold plating method of the present invention, the gold surface layer can be formed on the intermediate layer made of copper, nickel or palladium.

本発明に係るシアン系置換金めっきの条件は、従来と大きな違いはない。めっき速度を向上させる観点から、液温はできるだけ高い方が好ましい。好ましくは80℃以上であり、より好ましくは85℃以上である。めっき時間は一般的に5〜30分程度である。また、通常のENEPIG法ではニッケル中間層が0.08〜8μmの膜厚で形成され、パラジウム中間層は0.03〜0.3μmの膜厚で形成される。好ましい置換金めっき皮膜の膜厚は0.03〜0.3μmである。 The conditions for cyan-based displacement gold plating according to the present invention are not so different from the conventional conditions. The liquid temperature is preferably as high as possible from the viewpoint of improving the plating rate. It is preferably 80° C. or higher, and more preferably 85° C. or higher. The plating time is generally about 5 to 30 minutes. Further, in the usual ENEPIG method, the nickel intermediate layer is formed with a film thickness of 0.08 to 8 μm, and the palladium intermediate layer is formed with a film thickness of 0.03 to 0.3 μm. The preferable thickness of the displacement gold plating film is 0.03 to 0.3 μm.

本発明の置換金めっき液によって金皮膜を形成した後、熱処理を行うことができる。熱処理は、周知の置換金めっき方法の後処理工程で行うことができる。例えば、バッチ式の熱処理炉、開放型のトンネル炉、雰囲気をコントロールできるオートクレーブ炉などを用いることができる。熱処理を施すと、膨れのない置換金めっき皮膜を安定して得ることができる。 After forming a gold film with the displacement gold plating solution of the present invention, heat treatment can be performed. The heat treatment can be performed in a post-treatment step of a known displacement gold plating method. For example, a batch heat treatment furnace, an open tunnel furnace, an autoclave furnace whose atmosphere can be controlled, or the like can be used. When the heat treatment is performed, a swelling-free displacement gold plating film can be stably obtained.

以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、下記実施例に本発明が限定されるものではないのは勿論である。
(実施例1〜15)
テストピースは、ガラス繊維で強化されたエポキシ樹脂製の実装基板(30mm×20mm×厚さ1mm)を使用して、次のように行った。なお、この実装基板の表面には、独立した銅パッド(0.4mm×0.4mm□,0.8mm×0.8mm□,3.0mm×3.0mm□)と銅回路(100μm幅)で接続された銅パッド(0.4mm×0.4mm□,0.8mm×0.8mm□,3.0mm×3.0mm□)が形成されている。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples.
(Examples 1 to 15)
The test piece was performed as follows using a mounting substrate (30 mm×20 mm×thickness 1 mm) made of epoxy resin reinforced with glass fiber. In addition, on the surface of this mounting board, an independent copper pad (0.4 mm × 0.4 mm□, 0.8 mm × 0.8 mm□, 3.0 mm × 3.0 mm□) and a copper circuit (100 μm width) were formed. Connected copper pads (0.4 mm×0.4 mm□, 0.8 mm×0.8 mm□, 3.0 mm×3.0 mm□) are formed.

酸性脱脂(日本エレクトロプレイティング・エンジニヤース株式会社(以下「EEJA」と略す)製・イートレックス15、45℃、5分)、ソフトエッチング(三菱ガス化学株式会社製・NPE−300、25℃、1分)、硫酸活性(10%硫酸、25℃、1分)、パラジウム触媒付与(EEJA製・レクトロレスAC2、25℃、1分)、無電解ニッケルめっき(EEJA製・レクトロレスNP7600、85℃、27分、Ni5μm)、無電解パラジウムめっき(EEJA製・レクトロレスPd2000S、52℃、10分、Pd0.1μm)を行った。 Acid degreasing (manufactured by Japan Electroplating Engineering Co., Ltd. (hereinafter abbreviated as "EEJA"), Eatrex 15, 45°C, 5 minutes), soft etching (Mitsubishi Gas Chemical Co., Ltd., NPE-300, 25°C, 1 minute), sulfuric acid activity (10% sulfuric acid, 25° C., 1 minute), palladium catalyst application (EEJA, Lectroless AC2, 25° C., 1 minute), electroless nickel plating (EEJA, Lectroless NP7600, 85° C., 27) Min, Ni 5 μm), and electroless palladium plating (EEJA, Lectroless Pd2000S, 52° C., 10 minutes, Pd 0.1 μm).

次に、表1に示す実施例1〜15のシアン系置換金めっき液組成と条件で、この実装基板のパラジウム中間層/ニッケル中間層の積層構造上に置換金めっきを行った。 Next, substitutional gold plating was performed on the laminated structure of the palladium intermediate layer/nickel intermediate layer of this mounting substrate under the composition and conditions of the cyan type substitutional gold plating solutions of Examples 1 to 15 shown in Table 1.

これらの6種類の銅パッドに形成した実施例1〜15の置換金めっき皮膜の膜厚を蛍光X線膜厚計(エスアイアイ・ナノテクノロジー株式会社製・SFT−9550)で測定した。この測定結果から実施例1〜15の平均膜厚と膜厚ばらつきを算出した。算出した平均膜厚と膜厚ばらつきの結果を表2の実施例1〜15に示す。
なお「液安定性」について、置換金めっき終了後の置換金めっき液を目視で観察して、金沈殿物と容器内壁への金析出がないものを丸印(〇)で、金沈殿物と容器内壁への金析出が観察されたものをバツ印(×)で評価した。
The film thicknesses of the displacement gold plating films of Examples 1 to 15 formed on these six types of copper pads were measured by a fluorescent X-ray film thickness meter (SFT-9550 manufactured by SII Nanotechnology Inc.). From the measurement results, the average film thickness and film thickness variation of Examples 1 to 15 were calculated. Results of the calculated average film thickness and film thickness variation are shown in Examples 1 to 15 of Table 2.
Regarding "liquid stability", the substitution gold plating solution after the completion of the substitution gold plating was visually observed, and the gold precipitate and those without gold deposition on the inner wall of the container were circled (○) to indicate the gold precipitation. What was observed to deposit gold on the inner wall of the container was evaluated by a cross mark (x).

次に、置換金めっきされた実施例1〜15の実装基板を金剥離剤(EEJA製・ゴールドストリッパー・コンセントレイトN、25℃、30秒)を用いて置換金めっき層のみを剥離した。その後、走査型電子顕微鏡(株式会社・日立ハイテクノロジーズ製・S−4700、20kV、×10000)を用いて実施例1〜15の下地金属(パラジウム中間層/ニッケル中間層の積層構造)の腐食状況を確認した。 Next, the displacement gold-plated mounting boards of Examples 1 to 15 were stripped off only the displacement gold-plated layer using a gold stripping agent (made by EEJA, Gold Stripper Concentrate N, 25° C., 30 seconds). Then, using a scanning electron microscope (Hitachi High-Technologies Corporation, S-4700, 20 kV, ×10000), the corrosion conditions of the underlying metals (palladium intermediate layer/nickel intermediate layer laminated structure) of Examples 1 to 15 were used. It was confirmed.

具体例として図1、2を示す。
図1は、実施例2の置換金めっき層のみを剥離して、下地金属の表面を露呈させたものである。パラジウムめっき皮膜に形成した細かな粒界(0.5μm×0.5μm)と下層のニッケルめっき皮膜に形成した略四角形の大きな粒界(5μm×5μm)が観察される。置換金めっきは、液中の金イオンと金よりも卑な下地金属との電位差によって進行するので、これらの粒界模様は下地金属が置換反応によって腐食された痕跡を示すものである。パラジウムめっき皮膜にも、細かな腐食パターンが観察されることから、実施例2の置換金めっき液では、パラジウムめっき皮膜が全面で比較的均一に置換されたことが示唆される。パラジウムめっき皮膜が腐食された分だけ相対的にニッケルめっき皮膜の腐食が少なくなるため、ニッケルめっき皮膜に形成した略四角形の大きな粒界は、これまでの置換金めっき液から得られたものよりも、不明確で薄くなっていた。
1 and 2 are shown as a specific example.
In FIG. 1, only the displacement gold plating layer of Example 2 was peeled off to expose the surface of the base metal. Fine grain boundaries (0.5 μm×0.5 μm) formed on the palladium plating film and large quadrangular grain boundaries (5 μm×5 μm) formed on the lower nickel plating film are observed. Since the displacement gold plating proceeds due to the potential difference between the gold ions in the solution and the base metal that is less base than gold, these grain boundary patterns show traces of corrosion of the base metal by the substitution reaction. Since a fine corrosion pattern is also observed in the palladium plating film, it is suggested that the displacement gold plating solution of Example 2 replaced the palladium plating film relatively uniformly over the entire surface. Corrosion of the nickel plating film is reduced as much as the palladium plating film is corroded. Therefore, the large quadrangular grain boundaries formed in the nickel plating film are larger than those obtained from the conventional substitutional gold plating solutions. , Was unclear and thin.

図2は、比較例2の置換金めっき層のみを剥離し、下地金属の表面を露呈させたものである。ニッケルめっき皮膜に形成した略四角形の大きな粒界(5μm×5μm)だけが観察される。パラジウムめっき皮膜には、図1のような細かな粒界は観察されず、液中の金イオンとパラジウムめっき皮膜との置換反応が起きていないことが示唆される。このパラジウムめっき皮膜をピンセットで突くと、パラジウムめっき皮膜が割れて下層のニッケルめっき皮膜が露呈した。露呈したニッケルめっき皮膜は、略四角形の大きな粒界が激しく腐食されて、大きな空洞が形成していた。すなわち、比較例2の置換金めっき液では、ニッケルめっき皮膜の一部分、略四角形の大きな粒界だけで置換反応が起きていたことが示唆される。 FIG. 2 shows the surface of the underlying metal exposed by peeling off only the displacement gold plating layer of Comparative Example 2. Only large quadrangular grain boundaries (5 μm×5 μm) formed in the nickel plating film are observed. Fine grain boundaries as shown in FIG. 1 are not observed in the palladium plating film, which suggests that the substitution reaction between the gold ion in the liquid and the palladium plating film does not occur. When the palladium plating film was pierced with tweezers, the palladium plating film was broken and the lower nickel plating film was exposed. In the exposed nickel plating film, large quadrangular grain boundaries were severely corroded, and large cavities were formed. That is, it is suggested that in the displacement gold plating solution of Comparative Example 2, the displacement reaction occurred only in a part of the nickel plating film, that is, a large grain boundary of a substantially square shape.

実施例1〜15の置換金めっき皮膜は、いずれもニッケル中間層がパラジウム中間層よりも優先的に腐食されるという顕著なニッケル優先腐食は観察されなかった。このことを表2中に「Ni腐食性」として丸印(〇)で示す。なお、後述する表4中にニッケル優先腐食が観察されたものをバツ印(×)で示す。 In the displacement gold plating films of Examples 1 to 15, no remarkable nickel preferential corrosion in which the nickel intermediate layer was preferentially corroded over the palladium intermediate layer was not observed. This is indicated by a circle (◯) in Table 2 as “Ni corrosiveness”. In Table 4, which will be described later, cross marks (x) indicate that nickel preferential corrosion was observed.

表2から明らかなように、本発明の実施例1〜15のシアン系置換金めっき液によれば、析出速度が速く、かつ、実装基板の接合パッドの面積の差異があっても膜厚ばらつきが小さい析出皮膜を得られたことがわかる。また、本発明の実施例1〜15のシアン系置換金めっき液によれば、パラジウム中間層/ニッケル中間層の積層構造における下層のニッケル中間層の腐食が極めて少ない置換金めっきの析出皮膜を形成することができたことがわかる。 As is clear from Table 2, according to the cyan-based displacement gold plating solutions of Examples 1 to 15 of the present invention, the deposition rate is high, and the film thickness variation occurs even if there is a difference in the bonding pad area of the mounting substrate. It can be seen that a deposited film having a small value was obtained. Further, according to the cyan-based displacement gold plating solutions of Examples 1 to 15 of the present invention, a displacement gold plating deposition film in which corrosion of the lower nickel intermediate layer in the laminated structure of the palladium intermediate layer/nickel intermediate layer is extremely small is formed. I can see that I was able to do it.

(比較例1〜5)
実施例1と同様にして、表3に示す液組成と条件で比較例1〜5の置換金めっきを行った。すなわち、実施例1と同様のテストピースを使用して前処理を行い、パラジウム中間層/ニッケル中間層の積層構造を形成した後、表3に示す比較例1〜5のシアン系置換金めっき液組成と条件で置換金めっきを行った。
(Comparative Examples 1-5)
In the same manner as in Example 1, the displacement gold plating of Comparative Examples 1 to 5 was performed under the liquid composition and conditions shown in Table 3. That is, after performing the pretreatment using the same test piece as in Example 1 to form a laminated structure of the palladium intermediate layer/nickel intermediate layer, the cyan-based displacement gold plating solutions of Comparative Examples 1 to 5 shown in Table 3 were obtained. Substitution gold plating was performed according to the composition and conditions.

ここで、比較例1の置換金めっき液は、タリウム化合物を含まないものである。また、比較例2の置換金めっき液は、水酸基を有するアミノカルボン酸系キレート剤を含有しないものである。また、比較例3の置換金めっき液は、水酸基を有するアミノカルボン酸系キレート剤の代わりに還元剤としてアスコルビン酸を用いたものである。また、比較例4の置換金めっき液は、pHが下限値の2.0を下回っている。また、比較例5の置換金めっき液は、pHが上限値の4.4を上回っている。 Here, the displacement gold plating solution of Comparative Example 1 does not contain a thallium compound. Further, the substituted gold plating solution of Comparative Example 2 does not contain an aminocarboxylic acid type chelating agent having a hydroxyl group. Further, the substituted gold plating solution of Comparative Example 3 uses ascorbic acid as a reducing agent instead of the aminocarboxylic acid type chelating agent having a hydroxyl group. The pH of the displacement gold plating solution of Comparative Example 4 is below the lower limit of 2.0. Further, the displacement gold plating solution of Comparative Example 5 has a pH higher than the upper limit value of 4.4.

その後、実施例1と同様にして、比較例1〜5の置換金めっきの平均膜厚と膜厚ばらつきを算出した。その結果を表4に示す。併せて、「液安定性」および「Ni腐食性」を測定し、その結果、良好なものを丸印(〇)、不良なものをバツ印(×)で示す。 Then, in the same manner as in Example 1, the average film thickness and the film thickness variation of the displacement gold plating of Comparative Examples 1 to 5 were calculated. The results are shown in Table 4. At the same time, "liquid stability" and "Ni corrosiveness" were measured, and as a result, good ones are indicated by circles (◯) and defective ones are indicated by crosses (x).

表4から明らかなように、比較例1〜5のシアン系置換金めっき液では、めっき液が安定しないこと、析出速度が遅いこと、実装基板の接合パッドの面積の差異があると膜厚ばらつきが大きいこと、あるいは、パラジウム中間層/ニッケル中間層の積層構造における下層のニッケル中間層の腐食が大きいことがわかる。すなわち、タリウム化合物を含まない比較例1の置換金めっきでは、浸漬時間を60分としても平均膜厚が0.06μmと非常に薄い。しかも、膜厚ばらつきが22.6と大きく、極端に薄い膜が存在するので、実装基板・接合部パッドには不適である。 As is clear from Table 4, in the cyan-based displacement gold plating solutions of Comparative Examples 1 to 5, when the plating solution is not stable, the deposition rate is slow, and there is a difference in the area of the bonding pad of the mounting board, the film thickness varies. Is large, or the lower nickel intermediate layer in the laminated structure of the palladium intermediate layer/nickel intermediate layer has large corrosion. That is, in the displacement gold plating of Comparative Example 1 containing no thallium compound, the average film thickness was 0.06 μm, which was very thin even when the immersion time was 60 minutes. Moreover, since the film thickness has a large variation of 22.6 and an extremely thin film exists, it is not suitable for a mounting substrate/bonding pad.

また、水酸基を有するアミノカルボン酸系キレート剤を含有しない比較例2の置換金めっき液は、めっき終了後の容器壁面に金金属が析出し、容器が変色していた。また、パラジウム中間層/ニッケル中間層の積層構造における下層のニッケル中間層の腐食が激しく、独立した銅パッド上のパラジウム中間層が一部剥離していた。 Further, in the displacement gold plating solution of Comparative Example 2 containing no aminocarboxylic acid type chelating agent having a hydroxyl group, gold metal was deposited on the wall surface of the container after the plating was completed, and the container was discolored. Further, in the laminated structure of the palladium intermediate layer/nickel intermediate layer, the lower nickel intermediate layer was severely corroded, and the palladium intermediate layer on the independent copper pad was partly peeled off.

また、アスコルビン酸を含有した比較例3の置換金めっき液は、著しく液安定性が悪くなっていた。 Further, the substitutional gold plating solution of Comparative Example 3 containing ascorbic acid had remarkably poor liquid stability.

また、pHが下限値を下回る比較例4の置換金めっき液も液安定性が悪くなっている。さらに、ポリエチレングルコール無添加のため下層のニッケル中間層の腐食が拡張していた。 Further, the substitution gold plating solution of Comparative Example 4 having a pH lower than the lower limit also has poor solution stability. Furthermore, the corrosion of the lower nickel intermediate layer was expanded due to the addition of no polyethylene glycol.

また、pHが上限値を超える比較例5の置換金めっき液は、膜厚ばらつきが極めて大きくなった。また、パラジウム中間層/ニッケル中間層の積層構造における下層のニッケル中間層の腐食が激しく、独立した銅パッド上のパラジウム中間層が一部剥離していた。 Further, in the displacement gold plating solution of Comparative Example 5 having a pH exceeding the upper limit value, the variation in film thickness was extremely large. Further, in the laminated structure of the palladium intermediate layer/nickel intermediate layer, the lower nickel intermediate layer was severely corroded, and the palladium intermediate layer on the independent copper pad was partly peeled off.

以上の実施例および比較例から明らかなとおり、本発明のシアン系置換金めっき液を使用すると、めっき終了後の金沈殿物と容器内壁への金析出がなく、めっき液が安定している。また、金金属の析出速度が速く、ENEPIG法などにおける実装基板の接合部パッドの面積の差異の膜厚ばらつきを小さくすることができる。特に、本発明のシアン系置換金めっき方法によれば、下層のニッケル中間層を激しく腐食させることなく、パラジウム中間層/ニッケル中間層の積層構造上に金表層を形成することができる。 As is clear from the above Examples and Comparative Examples, when the cyan-based displacement gold plating solution of the present invention is used, there is no gold precipitate after the completion of plating and gold deposition on the inner wall of the container, and the plating solution is stable. Further, the deposition rate of gold metal is high, and it is possible to reduce the film thickness variation due to the difference in the area of the bonding pad of the mounting substrate in the ENEPIG method or the like. In particular, according to the cyan displacement gold plating method of the present invention, the gold surface layer can be formed on the laminated structure of the palladium intermediate layer/nickel intermediate layer without violently corroding the lower nickel intermediate layer.

本発明の製造方法により製造されたシアン系置換金めっき液は、金属、プラスチック、セラミックなどの被めっき物にスポットめっきや全面めっきなどの置換金めっきを行うことができる。その結果、電極、電気・電子部材、半導体部材などの用途に利用することができる。

The cyan-based displacement gold plating solution produced by the production method of the present invention can perform displacement gold plating such as spot plating or whole surface plating on an object to be plated such as metal, plastic and ceramic. As a result, it can be used for applications such as electrodes, electric/electronic members, and semiconductor members.

Claims (8)

シアン化金化合物およびタリウム化合物を含むシアン系置換金めっき液において、pHが2.0〜4.4であること、および水酸基を有するアミノカルボン酸系キレート剤を含有することを特徴とする置換金めっき液。 A substituted gold plating solution containing a cyanide gold compound and a thallium compound, having a pH of 2.0 to 4.4 and containing an aminocarboxylic acid type chelating agent having a hydroxyl group. Plating solution. 前記のタリウム化合物がタリウムイオンとして0.1〜100mg/L、並びに、水酸基を有するアミノカルボン酸系キレート剤が0.1〜100g/Lであることを特徴とする請求項1に記載の置換金めっき液。 2. The substituted gold according to claim 1, wherein the thallium compound is 0.1 to 100 mg/L as thallium ion, and the aminocarboxylic acid type chelating agent having a hydroxyl group is 0.1 to 100 g/L. Plating solution. 前記の水酸基を有するアミノカルボン酸系キレート剤が、HEDTAであることを特徴とする請求項1または2に記載の置換金めっき液。 The displacement gold plating solution according to claim 1 or 2, wherein the aminocarboxylic acid-based chelating agent having a hydroxyl group is HEDTA. 前記のpHが2.2〜4.0であることを特徴とする請求項1〜3のいずれかに記載の置換金めっき液。 The displacement gold plating solution according to claim 1, wherein the pH is 2.2 to 4.0. 腐食抑制剤として、ポリエチレングリコール(平均分子量200〜20000)、アミド硫酸またはアミド硫酸塩の少なくとも1種以上を更に含み、その濃度がそれぞれ0.1〜100g/Lであることを特徴とする請求項1〜4のいずれかに記載の置換金めっき液。 The corrosion inhibitor further comprises at least one or more of polyethylene glycol (average molecular weight 200 to 20000), amide sulfate or amide sulfate, and the concentration thereof is 0.1 to 100 g/L, respectively. The displacement gold plating solution according to any one of 1 to 4. pH緩衝剤として、リン酸、グリシン、シアノ酢酸、マロン酸、フタル酸、クエン酸、ギ酸、グリコール酸、乳酸、コハク酸、酢酸、酪酸、プロピオン酸、およびそれらの塩の少なくとも1種以上を更に含むことを特徴とする請求項1〜5のいずれかに記載の置換金めっき液。 As a pH buffer, at least one or more of phosphoric acid, glycine, cyanoacetic acid, malonic acid, phthalic acid, citric acid, formic acid, glycolic acid, lactic acid, succinic acid, acetic acid, butyric acid, propionic acid, and salts thereof is further added. The displacement gold plating solution according to any one of claims 1 to 5, comprising: 請求項1〜請求項6のいずれかに記載の置換金めっき液を用いて、銅、ニッケル、パラジウムのいずれかの中間層上、またはそれらの中間層からなる積層構造上に金表層を形成することを特徴とする置換金めっき方法。 Using the displacement gold plating solution according to any one of claims 1 to 6, a gold surface layer is formed on an intermediate layer of any of copper, nickel, and palladium, or on a laminated structure composed of these intermediate layers. A displacement gold plating method characterized by the above. 前記積層構造は、銅金属上に無電解ニッケルめっき皮膜を形成し、更に無電解パラジウムめっき皮膜を形成した中間層の積層構造であることを特徴とする請求項7に記載の置換金めっき方法。

8. The displacement gold plating method according to claim 7, wherein the laminated structure is a laminated structure of an intermediate layer in which an electroless nickel plating film is formed on copper metal, and an electroless palladium plating film is further formed.

JP2018242386A 2018-12-26 2018-12-26 Substitution gold plating solution and substitution gold plating method Expired - Fee Related JP6521553B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018242386A JP6521553B1 (en) 2018-12-26 2018-12-26 Substitution gold plating solution and substitution gold plating method
TW108141249A TW202033827A (en) 2018-12-26 2019-11-13 Substituted gold plating solution and substituted gold plating method having a high precipitation rate and a small variation in the film thickness of the precipitated film
KR1020190174476A KR20200080185A (en) 2018-12-26 2019-12-24 Substituted gold plating solution and substituted gold plating method
CN201911362917.5A CN111378962A (en) 2018-12-26 2019-12-26 Replacement gold plating solution and replacement gold plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018242386A JP6521553B1 (en) 2018-12-26 2018-12-26 Substitution gold plating solution and substitution gold plating method

Publications (2)

Publication Number Publication Date
JP6521553B1 JP6521553B1 (en) 2019-05-29
JP2020105543A true JP2020105543A (en) 2020-07-09

Family

ID=66655744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242386A Expired - Fee Related JP6521553B1 (en) 2018-12-26 2018-12-26 Substitution gold plating solution and substitution gold plating method

Country Status (1)

Country Link
JP (1) JP6521553B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087472A (en) * 2020-12-01 2022-06-13 日本エレクトロプレイテイング・エンジニヤース株式会社 Non-cyanic substituted gold plating solution and substituted gold plating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754264A (en) * 1980-08-04 1982-03-31 Schering Ag
US20050031895A1 (en) * 2000-08-21 2005-02-10 Kazuyuki Suda Electroless displacement gold plating solution and additive for use in preparing plating solution
JP2012046792A (en) * 2010-08-27 2012-03-08 Electroplating Eng Of Japan Co Gold displacement plating solution, and method for forming joint part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754264A (en) * 1980-08-04 1982-03-31 Schering Ag
US20050031895A1 (en) * 2000-08-21 2005-02-10 Kazuyuki Suda Electroless displacement gold plating solution and additive for use in preparing plating solution
JP2012046792A (en) * 2010-08-27 2012-03-08 Electroplating Eng Of Japan Co Gold displacement plating solution, and method for forming joint part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087472A (en) * 2020-12-01 2022-06-13 日本エレクトロプレイテイング・エンジニヤース株式会社 Non-cyanic substituted gold plating solution and substituted gold plating method

Also Published As

Publication number Publication date
JP6521553B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
CN110325665B (en) Electroless plating process
KR101768927B1 (en) Gold displacement plating solution, and method for formation of joint part
JP5755231B2 (en) Electroless plating of tin and tin alloys
JP2012521490A (en) Pretreatment method for electroless nickel plating
EP3060696B1 (en) Method of selectively treating copper in the presence of further metal
JP4792045B2 (en) Method for depositing a palladium layer and a palladium bath therefor
JP5288362B2 (en) Multilayer plating film and printed wiring board
KR102116055B1 (en) Electroless nickel strike plating solution
JP3482402B2 (en) Replacement gold plating solution
JP5843249B2 (en) Activation liquid for pretreatment of electroless palladium plating or electroless palladium alloy plating
JP6521553B1 (en) Substitution gold plating solution and substitution gold plating method
JP2018044205A (en) Plating method
JP5766318B2 (en) Lead frame
JP7096955B1 (en) A plating structure provided with a Ni electrolytic plating film and a lead frame containing the plating structure.
KR100619345B1 (en) Method for plating on printed circuit board for semi-conductor package and printed circuit board produced therefrom
JP2010196121A (en) Electroless palladium plating bath and electroless palladium plating method
JP4230813B2 (en) Gold plating solution
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
JP4096671B2 (en) Electronic component plating method and electronic component
JP2021070858A (en) Substitution gold plating solution and substitution gold plating method
JP5990789B2 (en) Activation liquid for pretreatment of electroless palladium plating or electroless palladium alloy plating
JP2004332036A (en) Electroless plating method
KR20200080185A (en) Substituted gold plating solution and substituted gold plating method
JP4577156B2 (en) Electroless nickel plating bath and electroless plating method using the same
JP2000178753A (en) Electroless plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190111

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6521553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350