KR102046206B1 - 압축 기체 생성 및 제어 - Google Patents

압축 기체 생성 및 제어 Download PDF

Info

Publication number
KR102046206B1
KR102046206B1 KR1020157008231A KR20157008231A KR102046206B1 KR 102046206 B1 KR102046206 B1 KR 102046206B1 KR 1020157008231 A KR1020157008231 A KR 1020157008231A KR 20157008231 A KR20157008231 A KR 20157008231A KR 102046206 B1 KR102046206 B1 KR 102046206B1
Authority
KR
South Korea
Prior art keywords
speed
inlet guide
flow rate
limit band
electric motor
Prior art date
Application number
KR1020157008231A
Other languages
English (en)
Other versions
KR20150063062A (ko
Inventor
마이클 제이 스탠코
존 에이치 로얄
아흐메드 에프 압델와합
칼 엘 슈왈츠
Original Assignee
프랙스에어 테크놀로지, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프랙스에어 테크놀로지, 인코포레이티드 filed Critical 프랙스에어 테크놀로지, 인코포레이티드
Publication of KR20150063062A publication Critical patent/KR20150063062A/ko
Application granted granted Critical
Publication of KR102046206B1 publication Critical patent/KR102046206B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • F04B49/103Responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/14Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0284Conjoint control of two or more different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • F04D29/464Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps adjusting flow cross-section, otherwise than by using adjustable stator blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

원심 압축기 (12) 또는 압축기로 형성된 1개 이상의 압축단, 압축단(들)을 통한 유동을 제어하는 유입구 안내 날개 (14), 및 진동 모드가 전기 모터를 손상시킬 수 있는 제한 속도 대역을 갖는, 단(들)에 직접 커플링된 전기 모터 (24)를 갖는 압축 시스템에 의해 생성되는 압축 기체의 생성 및 유량 제어를 위한 방법 및 장치가 제공된다. 속도가 제한 속도 대역 초과 또는 미만에 있는 경우에는, 목적 유량을 속도 조정 단독에 의해, 또한 00에 위치하는 유입구 안내 날개에 의해 얻는다. 목적 유량이 제한 속도 대역 내의 속도에서의 연장된 전기 모터 작동을 필요로 하는 경우에는, 속도를 제한 속도 대역의 최상위 수준으로 설정하고, 유입구 안내 날개의 적절한 위치조절을 통해 목적 유량을 얻는다.

Description

압축 기체 생성 및 제어 {COMPRESSED GAS PRODUCTION AND CONTROL}
본 발명은, 압축기가 전기 모터에 직접 커플링되며, 진동 모드가 전기 모터 및/또는 압축기를 손상시킬 수 있는 제한 속도 대역이 존재하는, 압축 기체를 생성하고 압축 기체의 유량을 제어하기 위한 방법 및 장치에 관한 것이다. 보다 특히, 본 발명은, 목적 유량이 제한 속도 대역 내에 있지 않은 속도에 의해 얻어질 수 있는 경우에는 전기 모터의 속도 제어에 의해, 또한 다르게는 목적 유량이 제한 속도 대역 내의 속도에 의해 얻어지는 경우에는 유입구 안내 날개 조작을 통해, 목적 유량을 얻기 위한 방법 및 장치에 관한 것이다.
기체는 전형적으로 전기 모터에 의해 구동되는 압축기에서 압축된다. 압축기는 기체가 주위 압력으로부터 높은 전달 압력으로 단계적으로 압축되도록 연결될 수 있다. 단간 냉각을 사용하여 단 사이에서 압축기의 열을 제거한다. 사용되는 통상적 압축기 디자인은 원심 압축기이다. 원심 압축기에서는, 압축되는 기체가 유입구로 도입되고, 이는 전기 모터에 의해 회전되는 임펠러의 작용에 의해 압축된다. 이어서, 기체는 확산기를 통과하고, 나선형 구성의 볼루트(volute)로부터 배출된다.
압축기를 사용하는 많은 산업적 공정에서는, 유량의 디자인 수준으로부터 압축되는 기체의 유량을 감소 또는 증가시키는 것이 필수적이다. 예를 들어, 극저온 공기 분리에서는, 공기를 일련의 압축단에서 압축시키고, 공기의 정류에 적합한 온도로 냉각시키고, 이어서 증류 컬럼 시스템으로 도입하여 공기를 그의 성분 부분, 예를 들어 산소, 질소 및 아르곤으로 분리한다. 분리된 생성물의 판매 수익을 최적화하기 위해, 전기 에너지 비용을 최소화하는 것이 중요하다. 전력 비용은 하루 중 시간에 따라 달라지기 때문에, 오프-피크 시간(off-peak time)에, 예를 들어 저녁 동안에 공기 분리를 수행하는 것이 가장 비용 효율적이다. 이와 같이, 에너지 비용이 가장 비싼 피크 시간 동안에는, 압축되는 공기의 유량을 감소시킴으로써 플랜트를 턴 다운시키는 것이 유리할 수 있다.
압축 시스템을 통한 기체 유량은, 개방 위치로부터 점점 더 폐쇄 위치로 설정하여 도입되는 기체에 와류를 부여하고, 이로써 기체 유량을 감소시킬 수 있는 유입구 안내 날개의 배치에 의해 제어될 수 있다. 보다 최근에는, 압축기에 직접 커플링될 수 있는 고속 모터가 사용가능해졌다. 이러한 모터는 또한, 압축기의 속도가 정확히 제어될 수 있게 하는 속도 제어를 갖는다. 이러한 속도 제어는, 기체의 유량이 유입구 안내 날개의 사용에 의한 것보다 열역학적으로 더 효율적인 방식으로 제어되게 한다. 이러한 모터의 일례는, 속도를 제어하기 위한 가변 주파수 드라이브를 갖는 영구 자석 모터이다. 이러한 모터는 압축기에, 또는 압축 시스템 내의 각각의 압축기에 직접 연결될 수 있다.
압축기에 의해 압축되는 기체의 유량을 제어하기 위한 속도 제어의 사용에는 특정 한계가 있다. 하나의 주요 한계는, 터보기계에 대한 의도된 작동 속도 범위 내에서의 바람직하지 않은 진동 모드에 관한 것이다. 이들 모드로의 작동 또는 그에 근접한 작동은, 모터를 작동불능하게 만들기에 충분한 로터 손상을 일으킬 수 있는 로터 변위를 일으킬 수 있기 때문에, 제한 속도 대역을 설정하거, 이들 바람직하지 않은 진동 모드로의 작동 또는 그에 근접한 작동을 피하는 것이 통상적 관행이다. 이러한 대역의 폭은 모터의 중요 작동 범위; 및 그에 따라 압축기를 사용불가능하게 만든다.
논의되는 바와 같이, 본 발명은, 전체 압축기의 열역학적 효율을 최대화하면서 모터의 전체 작동 범위에 걸쳐 기체의 목적 유량이 안전하게 얻어질 수 있는, 기체를 압축하기 위한 방법 및 장치를 제공한다.
본 발명은, 기체를 압축시켜 압축 기체를 생성하기 위한 1개 이상의 압축단, 및 1개 이상의 압축단에 직접 커플링된 전기 모터를 갖는 압축 시스템 내에서 기체를 압축시키는, 압축 기체를 생성하고 압축 기체의 유량을 제어하는 방법을 제공한다. 모터는, 진동 모드가 압축 시스템을 손상시킬 수 있는 제한 속도 대역을 갖는다. 보다 구체적으로, 압축 시스템에 대한 손상은 모터 및/또는 모터에 커플링된 압축기에 대한 손상일 수 있다. 1개 이상의 압축단은, 압축 기체의 유량을 목적 유량으로 제어하기 위한 유입구 안내 날개를 갖는 원심 압축기를 포함할 수 있고, 전기 모터는 모터 및 그에 따라 원심 압축기의 임펠러의 속도를 제어하여 또한 압축 기체의 유량을 목적 유량으로 제어하기 위한 속도 제어기를 가질 수 있다. 목적 유량이 제한 속도 대역 초과 또는 미만에 위치하는 전기 모터의 속도에 의해 얻어질 수 있는 경우에는, 00 와류각으로 설정된 유입구 안내 날개를 사용하면서 속도 제어기를 사용하여 전기 모터의 속도를 제어함으로써 유량을 제어하여 목적 유량을 달성한다. 본원 및 특허청구범위에 사용된 바와 같이, 또한 통상의 기술자에게 널리 공지된 바와 같이, 유입구 안내 날개의 위치와 관련하여 사용되는 경우의 용어 "00 와류각"은, 날개를 완전 개방 위치로 설정하여, 유입구 안내 날개로부터의 유동이 통상적으로 기체를 압축기의 유입구에 공급하는 파이프의 중심선인 유동 중심선과 평행하도록 한 것을 의미한다. 목적 유량이 제한 속도 대역 내에 위치하는 전기 모터의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는, 속도 제어기를 사용하여 전기 모터의 속도를 제한 속도 대역 초과의 상위 속도로 설정되도록 제어하고, 유입구 안내 날개를 설정하여 목적 유량을 얻는다.
압축 기체의 유량을 압축 시스템의 하류에서 측정하여 측정 유량을 얻을 수 있다. 측정 유량을 목적 유량과 비교하여, 측정 유량과 목적 유량 사이의 차이가 존재하는 경우에 목적 유량에서의 오차를 얻을 수 있다. 목적 유량이 제한 속도 대역 초과 또는 미만에 위치하는 전기 모터의 속도를 사용하여 얻어질 수 있는 경우에는, 속도 제어기를 사용하여 전기 모터의 속도를 조정함으로써 목적 유량에서의 오차를 최소화한다. 목적 유량이 제한 속도 대역 내에 위치하는 전기 모터의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는, 유입구 안내 날개를 조정함으로써 목적 유량에서의 오차를 최소화한다.
전기 모터의 현재 속도가 제한 속도 대역 초과의 상위 속도에 위치하고, 현재 목적 유량이 유입구 안내 날개를 유입구 안내 날개의 현재 위치로 조정함으로써 얻어지고, 새로운 목적 유량을 얻기 위해 제한 속도 대역 미만의 전기 모터의 새로운 속도가 요구되는 경우에는, 전기 모터의 속도를 속도 감소 단계에서 감소시킨다. 동시에, 유입구 안내 날개를 각각의 속도 감소 단계 동안 연속적으로 개방하여, 유입구 안내 날개가 제한 속도 대역 미만의 하위 속도에서 00 와류각으로 설정되도록 한다. 그 후, 속도를 새로운 속도가 얻어질 때까지 감소시킨다.
전기 모터의 현재 속도가 제한 속도 대역 미만에 위치하고, 목적 유량이 제한 속도 대역 내에 위치하는 전기 모터의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는, 제한 속도 대역 초과의 상위 속도에서 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치를 계산한다. 00 와류각으로 설정된 유입구 안내 날개를 사용하면서 전기 모터의 속도를 제한 속도 대역 미만의 하위 속도로 설정한다. 그 후, 전기 모터의 속도를 제한 속도 대역 초과의 상위 속도가 얻어질 때까지 속도 증가 단계에서 증가시킨다. 추가로, 유입구 안내 날개를 각각의 속도 증가 단계 동안 연속적으로 폐쇄하여, 제한 속도 대역 초과의 상위 속도에 도달시에 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치에 도달되도록 한다. 이와 관련하여, 통상의 기술자에 의해 잘 이해되는 바와 같이, 유입구 안내 날개의 연속적 폐쇄는 압축기로 도입되는 유동에 대해 보다 많은 와류를 부여하고, 따라서 유량을 목적 유량으로 감소시킬 것이다.
전기 모터는 고속 영구 자석 모터일 수 있고, 속도 제어기는 가변 주파수 드라이브일 수 있다. 이러한 경우에, 압축 시스템은 기체를 압축시키기 위한 2개의 압축단을 가질 수 있다. 원심 압축기는 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착되어 2개의 압축단 중 제1 압축단을 형성하고 기체를 제1 압력으로 압축시키는 제1 원심 압축기이다. 제1 원심 압축기와 유체 소통되는 제2 원심 압축기는, 모터 샤프트의 다른 쪽 단부 상에 장착되어 2개의 압축단 중 제2 압축단을 형성하고 기체를 제1 압력보다 높은 제2 압력으로 더욱 압축시킨다.
대안적 실시양태에서, 압축 시스템은, 2개의 원심 압축기에 기체를 공급하는 공통 공급기 및 압축 기체가 배출되는 공통 유출구를 갖는 2개의 원심 압축기를 가질 수 있다. 원심 압축기는 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착된 2개의 원심 압축기 중 제1 원심 압축기이고, 2개의 원심 압축기 중 제2 원심 압축기는 모터 샤프트의 다른 쪽 단부 상에 장착된다. 2개의 원심 압축기 중 각각의 제1 및 제2 원심 압축기는 유입구 안내 날개를 갖는다.
본 발명은 또한, 압축 기체를 생성하고 압축 기체의 유량을 제어하기 위한 장치를 제공한다. 장치는 기체를 압축시켜 압축 기체를 생성하기 위한 1개 이상의 압축단을 갖는 압축 시스템을 포함한다. 1개 이상의 압축단에 직접 커플링된 전기 모터는, 진동 모드가 압축 시스템을 손상시킬 수 있는 제한 속도 대역을 갖는다. 1개 이상의 압축단은, 압축 기체의 유량을 목적 유량으로 제어하도록 유입구 안내 날개 위치조절 신호에 반응하는 유입구 안내 날개를 갖는 원심 압축기를 포함할 수 있고, 전기 모터는 모터 및 그에 따라 원심 압축기의 임펠러의 속도를 제어하여 또한 압축 기체의 유량을 목적 유량으로 제어하도록 속도 제어 신호에 반응하는 속도 제어기를 가질 수 있다.
마스터 제어기는 유입구 안내 날개 신호 및 속도 제어 신호를 생성한다. 마스터 제어기는 목적 유량을 얻기 위한 전기 모터의 속도 계산치, 및 목적 유량을 얻는 제한 속도 대역 초과의 상위 속도의 속도 수준에서의 유입구 안내 날개 위치를 계산하도록 프로그래밍된다. 추가로, 마스터 제어기는 또한, 속도 계산치가 제한 속도 대역 초과 또는 미만에 위치하는 경우에, 속도 제어 신호가 속도 계산치와 관련될 수 있도록 속도 제어 신호를 생성하고, 유입구 안내 날개가 00 와류각으로 설정되도록 유입구 안내 날개 위치조절 신호를 생성하도록 프로그래밍된다. 속도 계산치가 제한 속도 대역 내에 위치하는 경우에, 마스터 제어기는 또한, 속도 제어 신호가 제한 속도 대역 초과의 상위 속도의 속도 수준과 관련될 수 있고, 유입구 안내 위치조절 신호가 목적 유량을 얻는 유입구 안내 날개 위치와 관련될 수 있도록 속도 제어 신호를 생성하도록 프로그래밍된다.
유동 변환기는 압축 시스템의 하류에 위치하며, 압축 기체의 실제 유량과 관련될 수 있는 유동 신호를 생성하도록 구성된다. 마스터 제어기는 유동 신호에 반응하며, 또한 실제 유량을 목적 유량과 비교하여, 실제 유량과 목적 유량 사이의 차이가 존재하는 경우에 목적 유량에서의 오차를 생성하도록 프로그래밍된다. 속도 계산치가 제한 속도 대역 초과 또는 미만에 위치하는 경우에는, 목적 유량에서의 오차를 최소화하도록 속도 신호를 생성하고, 목적 유량이 제한 속도 대역 내에 위치하는 속도 계산치를 사용하지 않고서는 얻어질 수 없는 경우에는, 목적 유량에서의 오차를 최소화하도록 유입구 안내 날개 위치조절 신호를 생성한다.
마스터 제어기는, 전기 모터의 현재 속도가 제한 속도 대역 초과의 상위 속도에 위치하고, 현재 목적 유량이 유입구 안내 날개를 유입구 안내 날개의 현재 위치로 조정함으로써 얻어지고, 새로운 목적 유량을 얻기 위해 요구되는 전기 모터의 속도 계산치가 제한 속도 대역 미만인 경우에는, 제한 속도 대역 미만의 하위 속도가 얻어질 때까지 속도 감소 단계에서 연속적으로 감소하는 전기 모터의 속도와 관련될 수 있도록 속도 제어 신호를 연속적으로 생성하도록 프로그래밍된다. 동시에, 유입구 안내 날개가 제한 속도 대역 미만의 하위 속도에서 00 와류각으로 설정되도록 연속적으로 커지는 유입구 안내 날개의 개방과 관련될 수 있도록 하는 속도 제어 신호의 각각의 연속적 생성 동안 유입구 안내 날개 위치조절 신호를 연속적으로 생성한다. 그 후, 속도 계산치가 얻어지도록 속도 제어 신호를 생성한다.
전기 모터의 현재 속도가 제한 속도 대역 미만에 위치하고, 목적 유량이 제한 속도 대역 내에 위치하는 전기 모터의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는, 제한 속도 대역 초과의 상위 속도에서 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치를 계산하고, 제한 속도 대역 미만의 하위 속도와 관련될 수 있도록 속도 제어 신호를 생성하고, 제한 속도 대역 초과의 상위 속도가 얻어질 때까지 속도 증가 단계에서 연속적으로 증가하는 전기 모터의 속도와 관련될 수 있도록 속도 제어 신호를 연속적으로 생성한다. 동시에, 제한 속도 대역 초과의 상위 속도 도달시에 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치에 도달되도록 연속적으로 폐쇄되는 유입구 안내 날개의 위치와 관련될 수 있도록 각각의 속도 증가 단계 동안 유입구 안내 날개 위치조절 신호를 생성한다.
전기 모터는 고속 영구 자석 모터일 수 있고, 속도 제어기는 가변 주파수 드라이브일 수 있다. 이러한 경우에, 압축 시스템은 2개의 압축단을 가질 수 있고, 원심 압축기는 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착되어 2개의 압축단 중 제1 압축단을 형성하는 제1 원심 압축기이다. 제1 원심 압축기와 유체 소통되는 제2 원심 압축기는, 모터 샤프트의 다른 쪽 단부 상에 장착되어 2개의 압축단 중 제2 압축단을 형성한다. 대안적 실시양태에서, 압축 시스템은, 2개의 원심 압축기에 기체를 공급하는 공통 공급기 및 압축 기체가 배출되는 공통 유출구를 갖는 2개의 원심 압축기를 가질 수 있다. 원심 압축기는 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착된 2개의 원심 압축기 중 제1 원심 압축기이고, 2개의 원심 압축기 중 제2 원심 압축기는 모터 샤프트의 다른 쪽 단부 상에 장착된다.
2개의 원심 압축기 중 각각의 제1 및 제2 원심 압축기는 유입구 안내 날개를 갖고, 각각 유입구 안내 날개 위치조절 신호에 반응한다.
본 명세서는, 본 출원인이 그의 발명이라고 여기는 주제를 명백하게 지시하는 특허청구범위로 결론내려지지만, 본 발명은 첨부된 도면과 관련하여 볼 때 보다 잘 이해될 것이라 여겨지며, 도면에서
도 1은 본 발명에 따른 방법을 수행하기 위한 압축 시스템의 개략도이고;
도 2는 도 1의 압축 시스템에 사용되는 전기 모터에 대한 제1 및 제2 굽힘 모드에서의 속도 의존적 자연 로터 주파수의 그래프 표시이다.
도 3은 음영 영역으로 표시된 제한 속도 대역을 갖는 도 2의 속도 의존적 자연 로터 주파수의 그래프 표시이고;
도 4는 도 1에 나타낸 압축 시스템의 제1 압축단에 사용되는 압축기의 압축기 맵이고;
도 5a 및 5b는 도 1의 압축 시스템의 마스터 제어기에 사용되는 프로그래밍의 논리 흐름도이고;
도 6은 도 5에 나타낸 "제한 속도 대역 미만의 속도에 대한 IGV 위치조절 서브루틴"에 사용되는 프로그래밍의 논리 흐름도이고;
도 7은 도 5에 나타낸 "제한 속도 대역 IGV 위치조절 서브루틴 I"에 사용되는 프로그래밍의 논리 흐름도이고;
도 8은 도 5에 나타낸 "제한 속도 대역 IGV 위치 서브루틴 II"에 사용되는 프로그래밍의 논리 흐름도이고;
도 9는 도 5에 나타낸 "피드백 서브루틴 "에 사용되는 프로그래밍의 논리 흐름도이고;
도 10은 본 발명에 따른 방법을 수행하기 위한 압축 시스템의 대안적 실시양태이다.
도 1을 참조로 하면, 본 발명에 따른 압축 시스템 (1)이 나타나 있다. 압축 시스템 (1) 내에서, 기체상 공급 스트림 (10)에 의한 기체를, 압축될 기체의 유량을 조정하기 위한 유입구 안내 날개 (14)를 갖는 제1 압축기 (12)에서 압축시킨다. 제1 압축기 (12)는 제1 압축단을 구성한다. 인터쿨러 (16)에서의 압축열 제거 후, 기체를 제2 압축기 (18)에서 보다 고압으로 더욱 압축시켜 압축 기체 스트림 (20)을 생성한다. 제1 및 제2 압축기 (12) 및 (18)는 유입구, 임펠러, 확산기및 압축 후의 기체를 배출시키기 위한 스크롤형 볼루트를 갖는 공지된 디자인의 원심 압축기이다.
제1 및 제2 압축기 (12) 및 (18)는 이들 압축기의 임펠러를 구동시키는 모터 (24)의 모터 샤프트 (22)의 단부에 대향하도록 연결된다. 모터 (24)는 고속 영구 자석 모터일 수 있다. 영구 자석 모터 (24)의 속도는, 모터 (24)의 속도, 및 그에 따라 압축 기체 스트림 (20)의 유량을 조정할 수 있는 가변 주파수 드라이브 (26)에 의해 제어된다. 가변 주파수 드라이브 (26)는 전기적 접속 (28)에 의해 모터 (24)에 연결된다. 가변 주파수 드라이브 (26)는, 마스터 제어기 (30)에서 생성되고 전기적 접속 (32)에 의해 가변 주파수 드라이브로 전송되는 모터 속도와 관련될 수 있도록 속도 제어 신호에 반응한다. 이에 추가로, 전기적 접속 (28) 및 (32)은 모터 (24), 가변 주파수 드라이브 (28), 및 마스터 제어기 (30) 사이에 제공되어 모터 (24)의 속도와 관련될 수 있는 신호를 전송하여, 실제로 마스터 제어기 (30)에서 사용되는 프로그래밍이 모터 (24)의 실제 속도를 측정할 수 있게 한다. 자기 베어링을 사용하는 모터의 경우에, 이러한 베어링에 관련되는 센서는 이러한 신호를 보낼 수 있으며, 이는 통상적인 것이다. 마스터 제어기 (30)는 또한, 전기적 접속 (34)에 의해 유입구 안내 날개 (14) 내에 도입된 위치조절기로 전송되는 유입구 안내 날개 위치 신호를 생성한다. 위치조절기는 또한, 마스터 제어기 (30)로 피드백되는 유입구 안내 날개의 위치에 비례하는 신호를 생성하여, 마스터 제어기 (30)에서 사용되는 프로그래밍 논리가 실제로 유입구 안내 날개 (14)의 위치를 측정할 수 있게 한다. 상기 논의된 위치조절기 및 유입구 안내 날개 (14) 및 그의 특징부는 통상적인 것이며 관련 기술분야에 널리 공지되어 있다. 마스터 제어기 (30)는 마스터 제어기 (30)에 대한 입력 (38)으로서 기능하는 압축 기체 스트림 (20)에 대한 유동 요청 (36)에 반응한다.
논의되는 바와 같이, 모터 (24)는, 모터 및/또는 제1 및 제2 압축기 (12) 및 (18)를 손상시킬 수 있는 진동 모드 발생 없이 단기간 동안에만 작동이 수행될 수 있는 제한 속도 대역을 갖는다. 목적 유량이 제한 속도 대역 내에 위치하는 모터 (24)의 속도를 사용하지 않고 속도 제어에 의해 얻어질 수 있는 경우에는, 마스터 제어기 (30)는, 또한 압축 기체 스트림 (20)의 목적 유량을 생성하는 모터 (24) 내에서의 속도를 생성하는 유동 요청 (36)에 반응하는 속도 제어 신호를 생성한다. 이 때, 유입구 안내 날개 (14)를 완전히 개방하도록, 또는 다시 말해서 유입구 안내 날개 (14)를 00 와류 위치로 설정하도록 마스터 제어기 (30)에 의해 유입구 안내 날개 신호가 생성된다. 목적 유량이 제한 속도 대역 내에 있는 모터 (24)의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는, 모터 (24)의 속도를 제한 속도 대역 초과의 상위 속도로 설정하도록 마스터 제어기 (30)에 의해 속도 신호가 생성되고, 유입구 안내 날개를 폐쇄하여 목적 유량을 생성하도록, 또는 다시 말해서 제1 압축기 (12)로 도입되는 유동에 보다 많은 와류를 부여하여 유량을 목적 유량으로 감소시키도록 유입구 안내 날개 신호가 생성된다.
임의로, 측정 유량과 유동 요청 (36) 사이에 차이가 존재하는 경우, 전기적 접속 (42)에 의해 마스터 제어기 (30)로 입력되는, 압축 기체 스트림 (20)의 유동과 관련될 수 있는 유동 신호를 생성하는 유동 변환기 (40)에 의해 피드백이 제공될 수 있다. 유동 신호에 반응하여, 마스터 제어기 (30)는 영구 자석 모터 (24)의 속도 또는 유입구 안내 날개 (14) 또는 이들 둘 다를 추가로 조정하여 오차를 최소화한다.
본 발명을 고속 영구 자석 모터를 참조로 하여 기재하였으나, 이는 유도 모터 및 스위치드 릴럭턴스 모터(switched reluctance motor) 등의 가변 주파수 드라이브에 의해 제어되는 다른 고속 모터에 대해서도 동등한 응용성을 갖는다는 것을 인지하여야 한다. 또한, 2개의 압축단을 도 1에 나타내었지만, 본 발명은 전기 모터의 축에 연결된 압축기에 의해 제공되는 단일 압축단에 대해서도 동등한 응용성을 갖는다.
모터 샤프트의 한쪽 단부에서 원심 압축기에 직접 커플링되거나 또는 2개의 원심 압축기가 로터 샤프트의 대향 단부에 직접 커플링된 전기 모터에는, 제1 및 제2 굽힘 모터 샤프트 모드에 대한 속도 의존적 자연 주파수가 존재하며, 이러한 속도에서의 연장된 작동은 전기 모터를 손상시킬 수 있다. 도 2에 나타낸 바와 같이, 굽힘 모드는 전방 및 후방 세차운동 모드 "F" 및 "B" 둘 다를 갖는다. 제1 굽힘 모드는, 전형적으로 회전을 위한 모터 샤프트 (22)를 지지하는 저널 베어링 부근에 위치하는 2개의 노드 (삼각형으로 나타냄)를 갖는다. 제2 굽힘 모드는 3개의 노드를 갖고, 여기서 외부 2개의 노드는 전형적으로 이러한 저널 베어링 부근에 위치하고, 중심 노드는 2개의 외부 노드들 사이에, 또한 2개의 베어링 사이에 위치한다. 전방 방식의 여기(excitation)는 가장 통상적으로 로터 불균형 및 베어링에서의 교차 커플링으로서도 공지된 비선형 강성 효과에 의해 생성된다. 후방 모드의 여기는 가장 통상적으로 샤프트 밀봉재와 같은 고정 부분을 러빙하는 모터 샤프트에 의해 생성된다. 전형적으로 짧은 후방 모드의 러빙 수행에 비해, 항상 존재하는 전방 방식의 불균형 및 공동 교차 커플링으로 인해, 전형적으로 전방 세차운동 모드에 보다 큰 관심이 주어지며, 많은 경우에 후방 모드는 무시되거나 고려되지 않는다. 따라서, 전방 모드에 대한 여기 진폭은, 후방 모드를 여기시키는 짧은 러빙과 비교시에 허용불가능한 수준으로 성장하는 경향이 보다 높고, 보다 많은 작동 문제가 존재할 수 있다.
예를 들어, 모터 (24)에는, 자기 유형 베어링일 수 있으며 모터 케이싱 내에 제공된 저널 베어링에 의한 회전을 위해 영구 자석을 함유하는 로터가 매달려 있다. 유체역학 및 에어포일 유형 베어링이 또한 가능하다는 것을 인지하여야 한다. 자기 또는 또한 가능하게는 유체역학 또는 에어포일 유형 베어링일 수 있는 트러스트 베어링이 제공되어 축방향 하중을 흡수한다. 제1 및 제2 압축기 (12) 및 (18)는 영구 자석 모터 (24)의 모터 하우징에 연결되고, 상기에 기재된 바와 같이, 모터 샤프트 (22)는 모터 샤프트 (22)의 대향 단부에 위치하는 제1 및 제2 압축기 (12) 및 (18)에 위치하는 2개의 임펠러를 구동시킨다. 이러한 회전 부분의 집합체는 로터로서 언급된다. 전방 굽힘 모드에서는, 샤프트가 회전 방향으로 진동 및 세차운동하기 시작함에 따라, 로터가 모터 케이싱 내의 내부 고정 부분과 접촉하여 모터의 잠재적 손상 또는 파괴를 일으킬 수 있다.
도 3을 참조로 하면, 도 1에 나타낸 로터 자연 주파수 상에 분리 여유(separation margin)가 위치한다. 전방 및 후방 세차운동 방향 둘 다의 각각의 로터 굽힘 모드 상에서의 분리 여유의 사용을 예시하기 위해, 각각의 모드에 대한 분리 여유의 대표적이지만 임의적인 값을 도 3에 약어 SM 옆에 나타내었다. 사용되는 실제 분리 여유는 전형적으로, 존재하는 댐핑의 양 뿐만 아니라 경험 또는 산업적 지침에 대한 함수이다. 예를 들어, 미국 석유 협회(American Petroleum Institute)에서는 그의 발행물 API 684에 이러한 지침을 제공한다. 이러한 예에 나타낸 로터 자연 주파수는 모터의 디자인 단계 동안 이루어진 분석적 계산의 산물이라는 것을 인지하여야 한다. 그 결과, 이들은 일정 불확실도를 갖는 예측된 동적 반응이다. 또한, 심지어 동일한 모터도, 불확실도가 또한 존재하는 이러한 모터 제작과 관련된 허용오차로 인해 약간의 차이를 가질 것이다. 따라서, 분리 여유는 모터의 안전한 작동을 위해 존재하는 이러한 선에서의 허용오차를 나타낸다. 따라서, 이들 선으로 둘러싸인 음영 영역이, 모터에 대한 제한 속도 대역이며, 여기서 작동은 금지되지는 않으면서 짧은 시간 간격으로 제한되어, 가능한 굽힘 모드의 여기가 모터에 손상을 일으키는 것을 방지한다.
대각선은 이러한 제한 속도 대역의 경계를 편리하게 확인하기 위해 기울기가 1인 작업선으로서 언급된다. 도 1 및 2에서의 로터 자연 주파수 플롯은 단지 예시적인 것이며, 이러한 플롯은 상이한 모터에서 달라진다는 것을 인지하여야 한다. 또한, 예시를 위해, 제1 굽힘 모드의 후방 세차운동 모드가 무시될 수 있도록 베어링에 의해 제공되는 충분한 댐핑이 존재한다고 가정된다. 그러나, 제2 굽힘 모드의 후방 세차운동 모드는 피해야 한다. 그러나, 상기 언급된 바와 같이, 이는 문제가 적고, 따라서 안전성 여유는 종종 제1 굽힘 모드의 전방 세차운동 모드보다 적도록 선택된다. 추가로, 예시를 위해, 모터는 단지 9000 rpm으로 작동될 필요가 있다고 가정된다. 이는 제2 굽힘 모드의 후방 세차운동 모드의 안전성 여유의 하한에 있기 때문에, 이러한 모터 속도는 작동의 상한을 나타낼 것이다. 그러나, 모터가 보다 고속에서의 작동을 필요로 하는 경우에는, 3개의 제한 속도 대역, 즉 제1 굽힘 모드의 전방 세차운동 방식, 제2 굽힘 모드의 후방 세차운동 모드 및 제2 굽힘 모드의 전방 세차운동 모드 모두가 존재할 수 있다. 그러나, 이러한 예에서는, 1개의 제한 속도 대역이 존재하며, 이는 6300 내지 6800 rpm 사이에 있으나 이들 값을 포함하지는 않는다. 제안된 모터 작동이 5000 내지 9000 rpm 사이에 있다는 것을 고려하면, 이러한 제한 속도 대역은, 모터에 연결된 1개 이상의 압축기의 유량을 조절하기 위해 이용불가능한 모터의 작동 속도 범위의 12.5 퍼센트를 나타낸다. 도 4를 참조로 하면, 압축기 (12)에 대한 압축기 맵이 나타나 있다. 기재된 바와 같이, 압축기는 작동 속도 범위 상에서 12 내지 30 LBM/Sec (파운드 질량/초)의 유량의 유동을 전달할 수 있다. 제한 속도 대역은 19 LBM/Sec 내지 21 LBM/Sec의 질량 유동, 또는 다시 말해서 속도 단독의 조작에 의해 전달되는 유량 범위의 약 17 퍼센트의 전달을 막는다.
도 5a 및 5b를 참조로 하면, 마스터 제어기 (30)는 제어 프로그램으로 프로그래밍되고, 구체적으로 도 5a를 참조로 하면, 제어 프로그램은 실행단 (50) "시작"에서 시작되며, 도 1에 나타낸 바와 같은 유동 요청 (36)의 입력을 통해 실행단 (52)에서 특정된 새로운 유량 "QS"가 입력된다. 현재 유량 "QR"은 유동 변환기 (40)에 의해 측정되며, 바람직하게는 제어기 (30) 내에 데이터로서 저장된 NR의 현재 속도와 함께 실행단 (54)에 입력된다. 단 (55)에서 플래그, "피드백"은 "오프(off)"로 설정되고, 이어서 프로그램은 실행단 (56)으로 진행되고, 여기서 도 4에 나타낸 유형의 압축기 맵에 포함된 데이터가 얻어져, 00으로 설정된 유입구 안내 날개 (14)를 사용한 압축기의 속도가 측정된다. 이 속도는 변수 NS로 언급된다.
이어서, 프로그램은 실행단 (58)으로 진행되어 새로운 속도, "NS"가 제1 압축기 (12)의 최소 또는 최대 속도 외부에 있는지를 결정하는 시험을 수행한다. 상기 논의된 예에서, 압축기의 최소 및 최대 속도는 5000 내지 9000 rpm 범위일 것이다. 시험에 대한 응답이 "예"이면, 실행단 (60)이 실행되고, 요청된 유량이 범위에서 벗어났다는 메시지가 조작자에게 전송된다.
시험에 대한 응답이 "아니오"이면, 실행단 (62)이 실행되고, 여기서 새로운 속도가, 상기 주어진 예에서 6300 내지 6800 rpm 사이인 제한 속도 대역 내에 있는지를 결정하는 시험이 수행된다. 시험에 대한 응답이 "아니오"이면, 실행단 (64)이 실행되고, 여기서 현재 속도 NR이 제한 속도 대역 초과의 상위 속도인지를 결정하는 추가의 시험이 수행된다. 상기 예에서, 상위 속도는 6800 rpm일 것이며, 이는 제한 속도 대역이 이 속도 미만에 있기 때문이다. 이러한 상위 속도는 특정 모터에 대해 계산된 것보다 훨씬 더 큰 여유를 제공하도록 6800 rpm 초과로, 예를 들어 7000 rpm으로 설정될 수 있다는 것을 인지하여야 한다. 시험에 대한 응답이 "아니오"이면, 마스터 제어기 (30)에 의해 속도 신호가 생성되고, 이는 실행단 (66)에 기재된 바와 같이, 전기적 접속 (32)에 의해 가변 주파수 드라이브 (26)로 전송되어 또한 모터 (24)를 속도 신호와 관련될 수 있는 속도로 설정한다. 이어서, 프로그램은 "피드백 서브루틴" (68), 이어서 참조 번호 (70)으로 표시된 프로그램 실행의 종료로 진행된다. 피드백 서브루틴 (68) 실행 전에, 2개의 변수 "IGV" 및 "IGVS"는 각각 (67) 및 (71)로 나타낸 바와 같이 둘 다 0으로 설정된다. 유입구 안내 날개 (14)의 현재 위치 "IGV" 및 그의 특정된 위치 "IGVS"를 0으로 설정하는 것은, 피드백 서브루틴 (68)이 적절히 실행되고 새로운 기준 유입구 안내 날개 위치 "IGVR"를 0과 같도록 정의하는 것을 가능하게 하기 위해 필수적이다. 얻어진 측정 유량이 QS와 같지 않은 경우, 피드백 서브루틴 (68)은 모터 (24)의 속도 또는 유입구 안내 날개 (14)의 위치가 새로운 유량 QS를 얻기 위해 요구되는 바와 같이 조정되는 것을 가능하게 한다. 그러나, 이러한 피드백 제어가 존재하지 않는 본 발명의 실시양태도 가능하고, 따라서 피드백 서브루틴 (68)은 임의적이라는 것을 인지하여야 한다.
실행단 (64)에서의 시험이 "예"이면, 실행단 (72)에서 또 다른 시험이 수행된다. 실행단 (72)에 기재된 바와 같이, 시험에서 부정적 응답이 나오면, 압축 기체 스트림 (20)의 목적 유량을 얻기 위해, 단지 모터 (24)의 속도만이 유입구 안내 날개 (14)의 00 와류각으로 조정되는 것, 다시 말해서 완전 개방되는 것이 필요하다. 논리를 검토하면, 실행단 (62)에 기재된 바와 같이, 새로운 속도가 제한 속도 대역 내에 있지 않고, 실행단 (64)에서 시험된 바와 같이 현재 속도가 제한 속도 대역 내에 있고, 또한 실행단 (72)에서 시험된 바와 같이 새로운 속도가 제한 속도 대역 미만이 아니기 때문에, 새로운 속도는 제한 속도 대역 초과여야 한다. 이와 같이, 목적 유량을 생성하기 위해, 실행단 (74)에 기재된 바와 같이, 와류가 생성되지 않도록 유입구 안내 날개 (14)를 00 와류각으로 다시 위치조절하도록 유입구 안내 날개 위치조절 신호를 생성하고, 목적 유량을 얻는 목적 속도와 관련될 수 있도록 속도 제어 신호를 생성한다. 이들 신호는, 각각 전기 전도체 (32) 및 (34)에 의해 가변 주파수 드라이브 (26)로, 및 유입구 안내 날개 (14)로 전송된다. 유입구 안내 날개 (14)의 위치조절이 즉각적이지 않기 때문에, 유입구 안내 날개 위치와 관련될 수 있는 신호를 유입구 안내 날개 (14)로부터 전기적 접속 (34)을 통해 마스터 제어기로 다시 전송하여 실행단 (76)에 기재된 바와 같이 유입구 안내 날개 (14)의 현재 위치를 측정하는 순환을 수행한다. 그 후, 측정된 유입구 안내 날개 위치를 00 목적 위치에 대해 시험하는, 실행단 (78)에 나타낸 바와 같은 시험을 수행한다. 시험에 대한 응답이 "아니오"이면, 00의 목적 위치 IGVM에 도달할 때까지, 또는 다시 말해서 실행단 (78)에서 수행된 시험이 긍정적으로 응답할 때까지, 제어 프로그램의 실행이 실행단 (76)으로 다시 순환한다. 그 후, 프로그램은, (79)에서 모터 (24)의 속도 "N"을 측정하고, 이어서 단 (80)에서 속도를 시험하여, 측정된 속도가 NS, 특정된 속도에 도달하였는지를 결정하는 순환을 실행한다. 모터 (24)가 특정된 속도에 도달하지 않은 경우에, 프로그램은 측정 속도가 사실상 특정된 속도에 도달할 때까지 (79)로 다시 순환한다. 이 때, 변수 "IGVS"는 0으로 설정되고, 프로그래밍은 피드백 서브루틴 (68), 이어서 프로그램 종료 (70)로 진행된다. 변수 "IGVS"의 0으로의 설정은 피드백 서브루틴 (68)이 적절히 실행되도록 하기 위한 그에 대한 필수적 변수를 공급한다.
실행단 (72)으로 돌아가서, 시험에 대한 응답이 긍정적이면, 제한 속도 대역 미만의 모터 (24)의 속도에서 목적 유량이 얻어진다. 이러한 목적으로 유입구 안내 날개를 00 위치로 즉시 설정하는 것이 가능하지만, 이 때 모터의 속도가 제한 속도 대역의 최상위 수준에 있고, 이 때 유입구 안내 날개 (14)가 유량을 제어하고 있기 때문에 유동이 감소하기보다는 증가하기 때문에, 이는 바람직하지 않을 수 있다. 본 발명의 대부분의 응용에서는, 유입구 안내 날개 (14)의 이동이 점진적이며 유동 감소가 단조로운 것이 보다 바람직하다. 구체적으로 도 5b를 참조하면, 유입구 안내 날개 (14)를 점진적으로 이동시키기 위해, 실행단 (72)의 시험의 긍정적 결과 후, 제한 속도 대역 미만의 속도에 대한 IGV 위치조절 서브루틴 (82)이 실행된다. 서브루틴 (82)에서, 모터 (24)의 속도는 제한 속도 대역 내에 있으면서 점증적으로 감소하고, 또한 유입구 안내 날개 (14)는 00 와류각으로 점증적으로 개방된다. 또한, 모터의 속도를 조정하여 목적 유량 QS를 얻는다.
도 6을 참조로 하면, 일반적으로 (82)로 나타낸 서브루틴은 제한 속도 대역 초과의 상위 속도 NU의 검색, 이어서 각각 (83) 및 (84)에 기재된 바와 같은 제한 속도 대역 미만의 하위 속도 NL의 검색으로 개시된다. 이러한 "검색"은, 이들 값, 즉 6300 및 6800 rpm과 관련될 수 있는 데이터를 단순히 판독함으로써 수행될 수 있다. 사용자는 속도가 강하되는 단계의 수를 선택할 수 있거나, 또는 이들은 예비-프로그래밍될 수 있다. 임의의 경우에, 사용자가 속도 단계를 선택한다고 가정하면, 이는 마스터 제어기 (30)의 제어 프로그램으로의 입력일 것이며, "K"의 값을 가질 것이다. 이어서, (86)에 기재된 바와 같이, 프로그램은, 제한 속도 대역 초과의 상위 속도 "NU"로부터 제한 속도 대역 미만의 하위 속도 "NL"을 빼고, 그 차이를 사용자가 선택한 단계 수 "K"로 나눔으로써 모터 (24)에 대한 증분 속도 강하를 결정하는 계산을 수행한다. 따라서, 사용자에 의해 10개의 단계가 선택되었다고 가정하면, 속도는 50 rpm의 감소 단계에서 조정될 것이다. 이어서, (88)에 나타낸 바와 같이, 값을 유입구 안내 날개 (14)로부터 마스터 제어기 (30)로 전송함으로써 유입구 안내 날개 (14)의 날개 위치 "IGVC"를 측정한다. 다음 실행단에서, 실행단 (90)에 나타낸 바와 같이, 증가된 속도 Ni를 마스터 제어기 (30)에서의 프로그래밍에 의해 생성되고 가변 주파수 드라이브 (26)로 전송된 그에 관련될 수 있는 속도 신호에 의해 모터 (24)로 전송한다. 예를 들어, 속도가 6800 rpm의 상위 속도 수준에 있고, 10개의 50 rpm 단계가 선택되었다고 가정하면, 제1 증분 Ni는 6750 rpm과 같도록 설정된다. 그 후, 요구되는 유입구 안내 날개의 위치가 실행단 (92)에서 계산된다. 이는 간단히, 제한 속도 대역의 속도 범위, 즉 Nu - NL에 대한 현재 증분 속도 값 Ni와 NL 사이의 차이의 비율이다. 이 비율에 상기 실행단 (88)에서 결정된 유입구 안내 날개 (14)의 현재 위치를 곱한다. 결과적으로, Ni가 NL에 접근함에 따라, 유입구 안내 날개 (14)의 위치가 00 와류각에 접근하고, 따라서 완전히 개방될 것이다. 이어서, 실행단 (92)의 결과를 실행단 (94)으로 공급하고, 여기서 유입구 안내 날개 위치조절 신호 값을 검색하거나 산출하여 실행단 (92)에서 계산된 값을 얻는다. 이어서, 실행단 (96)에 기재된 바와 같이, 이러한 신호를 전기적 접속 (34) 상에서 마스터 제어기 (30)로부터 유입구 안내 날개 (14)로 전송한다.
속도 변화에 대한 모터 (24)의 반응은 즉각적이지 않기 때문에, 모터 (24)의 속도는 (98)에서 측정된다. 또한, 유입구 안내 날개의 위치조절은 또한 즉각적이지 않기 때문에, 프로그램은 마스터 제어기 (30)로의 전송에 의해 유입구 안내 날개 (14)에서의 날개의 위치를 측정하는 프로그래밍 (100)에서의 단계와, 이어서 (102)에서 유입구 안내 날개 (14)가 프로그래밍의 실행단 (92)에서 계산된 위치에 있는지를 결정하는 시험을 수행하는 것 사이에서 순환된다. (102)의 시험 결과가 부정적이면, 시험이 긍정적이 될 때까지 실행단 (100)을 재실행한다. 이 때, 실행단 (104)에서 실행단 (98)에서 얻어진 모터 (24)의 속도가 증가된 속도 Ni에 도달하였는지를 결정하는 추가의 시험을 수행한다. 응답이 부정적이면, 프로그래밍이 실행단 (98)으로 되돌아간다. (104)의 시험이 긍정적이거나, 또는 측정 속도가 증가된 속도에 도달하면, 실행단 (106)에 기재된 바와 같이, 속도를 시험하여 단 (98)에서 측정된 속도가 제한 속도 대역 미만의 하위 속도 NL에 도달하였는지를 결정한다. 이러한 시험에 대한 응답이 "아니오"이면, 속도를 실행단 (108)에 기재된 바와 같은 새로운 Ni의 값으로 증가시킨다. 예를 들어, 속도가 현재 6750 rpm인 경우에, 50 rpm 증분을 가정하면, 사용자 특정된 10 단계 루틴에서 다음 증분은 6700 rpm일 것이다. 이어서, 프로그램은 실행단 (90)으로 다시 순환하여 모터 (24)에 대해 속도에서의 새로운 증분을 설정할 것이다. 그러나, 실행단 (106)의 시험에 대한 응답이 긍정적이면, 유입구 안내 날개 (14)를 완전 개방 위치 및 00 와류각으로 설정한다. 프로그래밍의 단 (109)에서는, 실행단 (56)에서 결정된 바와 같은 목적 유동을 생성하기 위해 요구되는 속도를 가변 주파수 드라이브 (26)로 전송하여 이러한 속도로 모터 (24)를 설정하도록 속도 신호가 생성된다. 이어서, 프로그래밍은, 단 (110)에서 속도를 측정하고, 이어서 (111)에서 시험하여 측정 속도가 특정된 속도 NS에 도달하였는지를 결정하는 순환으로 진행된다. 시험이 긍정적이면, 단계 (112)에 기재된 바와 같이 변수 IGVS를 IGV와 같도록 설정하고, 프로그래밍을 피드백 서브루틴 (68) 및 프로그램 종료 (70)로 진행시킨다. "IGVS"를 "IGV"와 같도록 설정하는 것은 피드백 서브루틴 (68)이 적절히 실행될 수 있도록 한다.
다시 도 5a 및 실행단 (62)을 참조로 하면, 새로운 속도가 제한 속도 대역 내에 있기 때문에 시험에 대한 응답을 "예"라고 가정하면, 다음으로 도 5b에 나타낸 바와 같은 실행단 (113)이 실행된다. 실행단 (113)에서는 현재 속도가 제한 속도 대역 초과의 상위 속도 NU인지를 시험한다. 그렇지 않다고, 따라서 시험에 대한 응답이 "아니오"라고 가정하면, 현재 속도는 제한 속도 대역 초과 또는 미만일 수 있다. 이는 실행단 (114)에서 결정되며, 시험에 대한 응답이 "아니오"라고 가정하면, (115)에 기재된 바와 같은 제한 속도 대역 IGV 위치조절 서브루틴 I이 실행된다. 이러한 서브루틴에서는, 모터 (24)의 속도가 제한 속도 대역 초과의 상위 속도로 설정되고, 필요한 와류가 유동에 부여되도록 유입구 안내 날개 (14)를 사용하여 목적 유량이 얻어질 것이다.
추가로 도 7을 참조로 하면, (115)의 서브루틴의 프로그래밍에서 사용되는 논리는, 이 예에서 6800 rpm인 제한 속도 대역 초과의 상위 속도 "NU"를 검색하는 실행단 (116)에서 시작된다. 다시, 논의되는 목적을 위해, (117)에서 특정된 속도 변수 NS를 NU로 설정한다. 이어서, 마스터 제어기 (30)에 의해, 실행단 (118)에 기재된 바와 같이 가변 속도 드라이브 (26)로 전송되어 모터 (24)를 이러한 속도로 작동하도록 설정하는 속도 신호가 생성된다. 속도가 제한 속도 대역 초과의 상위 속도에 있었기 때문에, 모터 (24)는 감속되어야 한다. 이와 같이, (120)에서 모터 (24)의 속도를 측정하고, 이어서 실행단 (122)에서 모터 (24)가 제한 속도 대역 초과의 상위 속도에 도달하였는지를 결정하는 시험을 수행하는 순환이 실행된다. 시험에 대한 응답이 "예"이면, 프로그래밍은 (124)로 진행되며, 여기서 검색 테이블에서 검색이 수행되어, 도 1에서 참조 번호 (36) 및 특히 프로그래밍의 실행단 (52)에 기재된 바와 같이 요청된 새로운 유량을 얻기 위한 유입구 안내 날개 (14)에서의 날개의 위치를 결정한다. 다시 도 4를 참조로 하면, 파선은 제한 속도 대역의 상한으로 설정된 속도에서 목적 유량을 얻기 위한 유입구 안내 날개 (14)의 가능한 와류각 위치를 나타낸다. 선택된 위치는, 특정 압축기 속도에서 압력 비율 및 질량 유동이 얻어지는 시스템 저항선과 파선의 교차점에 있을 것이다. 이러한 00 내지 200의 특정한 압축기 날개 위치는, 제한 속도 대역 내에서 목적 유량을 얻기 위해 이용가능할 것이다. 날개 위치 및 질량 유동에 관한 데이터를 검색 테이블에 저장하고, 실제 저장 데이터 사이의 포인트를 내삽할 수 있다.
실행단 (124) 후에, 검색 테이블 또는 산출에 의해, (126)에서 유입구 안내 날개 (14)에 대한 유입구 안내 날개 위치조절 신호를 산출하고, 이어서 (128)에서 신호를 마스터 제어기 (30)로부터 유입구 안내 날개 (14)로 전송한다. 유입구 안내 날개 (14)의 위치조절은 즉각적이지 않기 때문에, (130)에서 유입구 안내 날개 (14) 내에서의 날개 위치를 측정하고, (132)에서 유입구 안내 날개 (14)가 목적 유량을 얻기 위한 위치에 있는지를 결정하는 시험을 수행하는 순환을 수행한다. 시험에 대한 응답이 "예"이면, 프로그래밍은 피드백 서브루틴 (68), 이어서 종료 (70)로 진행된다.
도 5b를 참조로 하면, 실행단 (114)에서 수행된 시험이 긍정적이거나, 또는 다시 말해서 현재 속도가 제한 속도 대역 미만에 있다고 가정하면, 제한 속도 대역 IGV 위치조절 서브루틴 II (134) 내에 포함된 프로그래밍이 실행된다. 이러한 서브루틴에서, 모터의 속도가 제한 속도 대역 미만의 하위 속도로 증가하고, 이어서 제한 속도 대역 초과의 상위 속도에 도달할 때까지 속도가 점증적으로 증가한다. 각각의 속도 증가 동안, 모터 (24)의 속도가 제한 속도 대역 초과의 상위 속도에 있으면서 목적 유량이 얻어지는 위치에 도달할 때까지 유입구 안내 날개 (114)가 점증적으로 폐쇄된다.
구체적으로, 추가로 도 8을 참조로 하면, 먼저 실행단 (136)에서 제한 속도 대역 미만의 하위 속도 "NL"이 측정되도록 서브루틴 (134)이 프로그래밍된다. 이어서, 하위 속도 "NL"과 관련될 수 있는 속도 신호는 마스터 제어기 (30)에 의해 생성되며, 실행단 (138)에 기재된 바와 같이 가변 주파수 드라이브 (26)로 전송되어 모터 (24)의 속도가 이러한 속도로 조정된다. 모터 (24)의 가속화는 즉각적이지 않기 때문에, 이어서 (142)에서 모터 (24)의 속도를 측정하고, 이어서 실행단 (143)에서 시험하여 모터 속도가 제한 속도 대역 미만의 하위 속도에 도달하였는지를 결정하는 순환이 수행된다. 응답이 긍정적이면, 실행단 (144)에서 검색 테이블에서의 검색을 수행하여, 도 4와 관련하여 상기 언급된 유형의 데이터 사용에 의해 제한 속도 대역 초과의 상위 속도에서 압축 기체 스트림 (20)의 목적 유량을 얻기 위한 유입구 안내 날개 (14)의 위치조절을 결정한다. 논의되는 목적을 위해, (145)에서 변수 "NS"를 상위 속도 변수 "NU"로 설정한다. 그 후, 실행단 (146)에서, 사용자는, 마스터 제어기 (30)로의 입력에서와 같이, 모터 (24)의 속도를 제한 속도 대역 미만의 하위 속도로부터 제한 속도 대역 초과의 상위 속도로 상승시키기 위한 속도를 증가시키는 단계의 수 "K"를 특정할 수 있다. 이러한 속도 증분은 최상위 속도와 하위 속도 사이의 차이를 증분으로 나눔으로써 주어진다. 예를 들어, 상기 예에서, 10개의 증분이 요망되면, 속도 증분은 50 rpm이다. 예를 들어, 속도가 6300 rpm의 하위 수준에 있고, 10개의 50 rpm 단계가 선택되었다고 가정하면, 제1 속도 증분 "NI"는 6350 rpm과 같도록 설정된다.
참조 번호 (148)로 표시된 다음 실행단에서는, 증가된 속도, "Ni"와 관련될 수 있는 속도 신호가 생성되며, 이는 마스터 제어기 (30)에 의해 생성되고, 가변 주파수 드라이브 (26)로 전송되어 모터를 증가된 속도로 설정한다. 또한, 유입구 안내 날개 (14)의 위치는, 실행단 (150)에서 요구되는 유입구 안내 날개 (14)의 유입구 안내 날개 위치 "IGVS"를 곱한 비율만큼 증가된다. 이 비율은, Ni의 현재 값과 제한 속도 대역의 하위 속도 수준 사이의 차이 (Ni - NL)를 제한 속도 대역의 최상위 속도와 하위 속도 사이의 차이 (NU - NL)로 나눈 것이다. 증가된 속도가 NU와 같으면, 명백히 상기 비율은 1과 같고, 유입구 안내 날개 위치는 IGVS와 같을 것이다. 이어서, (150)에서 결정된 유입구 안내 날개 위치의 증분 값 IGVi를 사용하여, 마스터 제어기 (30)에 의해 생성될 유입구 안내 날개 위치조절 신호를 실행단 (152)에서 검색 또는 산출한다. 이러한 신호는 실행단 (154)에서 유입구 안내 날개 (14)로 전송되어 유입구 안내 날개 (14)를 점증적으로 폐쇄한다.
이어서, 프로그래밍은, 모터 (24)의 속도 및 유입구 안내 날개 (14)의 위치를 각각 (156) 및 (158)에서 측정하는 순환을 실행한다. 이어서, 실행단 (160)에서 유입구 안내 날개 (14)의 측정된 위치가 실행단 (150)에서 계산된 값에 도달하였는지를 결정하는 시험을 수행한다. 이 시험에 대한 응답이 "예"이면, (162)에서 측정 속도 N을 증가된 속도 Ni와 비교한다. 시험에 대한 응답이 부정적이면, 프로그래밍은 (156)으로 다시 순환한다. (160)의 시험에 대한 응답이 긍정적이면, (164)에서 측정 속도가 제한 속도 대역 초과의 상위 속도 "NU"에 도달하였는지를 결정하는 시험을 수행한다. 실행단 (164)에서 수행된 시험이 부정적이면, (166)에서 속도를 새로운 Ni의 값으로 증가시키고, 프로그래밍은 실행단 (148)으로 다시 순환하여 모터 (24)를 증가된 속도로 작동되도록 설정한다. 속도가 사실상 제한 속도 대역 상한에 도달한다는 점에서 (164)의 시험에 대한 응답이 "예"이면, 피드백 서브루틴 (68)의 적절한 실행을 위해, (168)에서 변수 "IGVs"를 "IGV"와 같도록 설정한다. 이어서 피드백 서브루틴 (68)을 실행하고, 이어서 프로그래밍은 (70)에서 종료로 진행될 것이다.
다시 도 5b 및 실행단 (113)을 참조하면, 현재 속도가 제한 속도 대역 초과의 상위 속도에 있으면, (170)에서 검색을 수행하여 "NU", 제한 속도 대역 초과의 상위 속도를 결정한다. (172)에서 변수 NS를 NU와 같도록 설정하고, (174)에서 플래그 "피드백"을 이것이 "오프"로 설정되었는지에 대해 시험한다. 이러한 질문에 대한 응답이 "예"이면, 피드백 서브루틴이 상기 시험 시간 직전에 도달되지 않은 경우와 같이, (176)에서 검색 테이블에서 검색을 수행하여, 도 4에 나타낸 데이터의 유형에 대해 상기 논의된 방식으로 요구되는 유입구 안내 날개 (14)의 위치를 결정한다. 그 후, 실행단 (178)에서, 요구되는 유입구 안내 날개 위치조절 신호를 검색 테이블로부터 결정하거나 또는 산출한다. 이어서, 유입구 안내 날개 위치조절 신호를 마스터 제어기 (30)에 의해 생성하고, 실행단 (180)에서 유입구 안내 날개 (14)로 전송한다. 이어서, (182)에서 유입구 안내 날개 (14)의 위치를 측정하고, (184)에서 측정된 값이 요구되는 유입구 안내 날개의 위치에 도달하였는지를 결정하는 시험을 수행하는 순환을 실행한다. 시험에 대한 응답이 "예"이면, 프로그래밍은 피드백 서브루틴 (68), 이어서 프로그램 종료 (70)로 진행된다.
상기 논의된 서브루틴 및 프로그래밍에서는, 유입구 안내 날개 (14)가 현재 증가된 속도와 관련된 비율로 개방된다는 것을 인지하여야 한다. 그러나, 이러한 점증적 개방은 고정된 백분율만큼 수행될 수도 있고, 속도는 고정된 백분율만큼 증가될 수도 있는 것이 가능하다. 그러나, 인지될 수 있는 바와 같이, 이와 같이 수행되었다면, 요구되는 속도는 요구되는 유입구 안내 날개 개방 전에 도달될 수 있거나, 그 반대의 경우일 것이다. 이러한 경우에, 프로그래밍은 또한, 속도 또는 요구되는 개방을 완성시킨 일정 백분율로 요구되는 속도 또는 유입구 안내 날개 개방을 얻도록 제공되어야 할 것이다. 이러한 최종 백분율은 고정된 백분율과 상이할 것이다. 다른 쪽 극단에서는, 모터가 목적 유량을 생성하는 속도 Ns로 구동하게 하는 속도 명령을 모터 (24)로 전송하면서 단순히 유입구 안내 날개를 00 위치로 개방하는 것이 또한 가능하다.
도 9를 참조로 하면, 측정된 유량 "Q"가 사실상 특정된 유량 "QS"에 도달하였음을 확인하기 위해 피드백 서브루틴 (68)에 의해 피드백 제어를 실행할 수 있다. 이러한 피드백 제어를 사용하지 않으며, 유량 제어에 대해 계산된 값에 의존하는 본 발명의 실시양태가 가능하다는 것을 인지하여야 한다. 그러나, 기재된 바와 같이, 이러한 피드백 제어를 사용한다고 가정하면, 도 1에 나타낸 유동 변환기와 같은 수단에 의해 (186)에서 유량을 측정하고, (188)에서 "Q"가 "QS"와 같은지를 결정하는 시험을 수행한다. 이것이 사실상 수행되면, 프로그래밍은 종료 (70)으로 진행되고, 피드백 제어가 요구되지 않는다. (188)의 시험이 "아니오"라고 가정하면, (190)에서 플래그 "피드백"이 "온(on)"으로 설정된다. 그 후, (192)에 기재된 바와 같이, 업데이트된 새로운 특정된 속도 NNS가 계산된다. 이러한 계산은 실행단 (194)에서 수행된다. 이러한 계산에서는, NS의 현재 값, 모터 (24)의 특정된 속도는, 특정된 속도의 현재 값과 기준 속도 사이의 차이 (NS - NR)를 또한 곱한, 특정된 유량과 측정된 유량 사이의 차이 (QS - Q) 및 측정된 유량과 기준 유량 사이의 차이 (Q - QR)의 비율만큼 증가 또는 감소된다. 이어서, 실행단 (196)에 나타낸 바와 같이 NS의 값을 NNS로서 재정의한다.
새로운 특정된 속도의 계산 후, (198)에 나타낸 바와 같이 새로운 특정된 IGV 위치, "IGVNS"에 대한 계산을 수행한다. (200)에 기재된 바와 같이, IGVNS는, 새로운 특정된 속도 계산에 사용된 것과 동일한 비율에 IGVS와 IGVR 사이의 차이를 곱한 것만큼 증가 또는 감소된 유입구 안내 날개 (14)의 현재 특정된 값, 또는 IGVS이다. 이어서, 실행단 (202)에서 유입구 안내 날개 (14)의 새로운 특정된 위치를 재정의한다. 프로그래밍이 실행단 (67) 및 (71)으로부터, 또는 실행단 (81)으로부터, 또는 서브루틴 (82)으로부터 진행된 경우에, IGVNS는 0 또는 다시 말해서 00 와류각에서 유지된다는 것을 인지하여야 한다. 프로그래밍이 서브루틴 (115) 및 (134)으로부터 또는 실행단 (184)으로부터 진행된 경우에, IGVS의 값은 이러한 서브루틴 또는 실행단 (184)에서 정의된 값일 것이다.
모터 (24)의 새로운 특정된 속도 및 유입구 안내 날개 (14)의 새로운 특정된 위치의 산출 후, 실행단 (204)에 나타낸 바와 같이, 새로운 기준 속도, 기준 유량 및 기준 IGV 위치를 모터 (24)의 현재 측정된 속도, 현재 측정된 유량 및 유입구 안내 날개 (14)의 현재 측정된 위치에 의해 정의한다. 이어서, 프로그래밍은 실행단 (58)으로 다시 순환한다.
NS 및 NR 값이 제한 속도 대역 내에 있지 않다고 가정하면, 모터 (24)의 속도는, 피드백 서브루틴 (68)에 후속되는 실행단 (66)에서, Q가 QS와 같을 때까지 모터의 속도를 증가 또는 감소시킴으로써 조정될 것이다. 다시 말해서, 이러한 경우에 속도는 유동에서의 오차를 최소화하도록 조정된다. 또 다른 가능성은, NS가 제한 속도 대역 내에 있고, 모터의 현재 속도가 제한 속도 대역 초과의 상위 속도 수준 NU에 있는 것이다. 이러한 경우에, 실행단 (113)의 시험에 대한 응답이 "예"이다. 그러나, 플래그 "피드백"은 "온"으로 설정될 것이다. 이러한 경우에, 실행단 (142)의 시험에 대한 응답이 "예"인 경우와 같이 실행단 (176)은 우회되고, 유입구 안내 날개 (14)로 전송되는 IGVS의 값은 피드백 서브루틴 (68)의 실행단 (200)에서 발견된 IGVNS이 될 것이다. 따라서, 유입구 안내 날개 (14) 조정에 의해 유량 오차가 최소화된다.
도 10을 참조로 하면, 본 발명은, 압축 공기 스트림 (10)을 이중 공급기 (206)로부터 2개의 압축기 (12a) 및 (12b)로 도입하여 이중 유출구 (208)로부터 압축 기체 스트림 (20')을 생성하는 압축 시스템 (1')에 대한 응용성을 갖는 것으로 이해된다. 압축기 (12a) 및 (12b)는 모터 (24)의 모터 샤프트 (22)의 단부 상에 장착되고, 여기에는 마스터 제어기 (30)로부터 유입구 안내 날개 위치조절 신호를 유입구 안내 날개 (14a) 및 (14b)로 전송하는 전기적 접속 (34a) 및 (34b)을 통해 제어되는 유입구 안내 날개 (14a) 및 (14b)가 제공된다. 전기적 접속 (34a) 및 (34b)은 또한, 유입구 안내 날개 (14a) 및 (14b) 내의 날개의 위치를 나타내도록 유입구 안내 날개 (14a) 및 (14b)로부터의 신호를 마스터 제어기 (30)로 다시 전송한다. 모터 (24)의 속도 및 유입구 안내 날개 (14a) 및 (14b) 내에서의 날개 위치를 제어하는 프로그래밍은 상기 논의된 압축 시스템 (1)에 대해 상기 요약된 바와 동일할 수 있으며, 여기서 동일한 유입구 안내 날개 위치조절 신호가 유입구 안내 날개 (14a) 및 (14b)로 전송되고, 프로그래밍이 유입구 안내 날개 (14a) 및 (14b) 중 하나의 날개 위치에 대해 반응할 수 있으며, 이는 이들이 동일한 유닛이기 때문이다. 또한, 속도 신호는 상기에 요약된 것과 동일한 방식으로 모터 (24)의 속도를 제어하도록 생성되며, 여기서 이러한 속도는 다르게는 제한 속도 대역 내의 모터 속도를 필요로 하는 유동 요청이 생성되는 제한 속도 대역의 최상한으로 설정되고, 유량은 유입구 안내 날개 (14a) 및 (14b)에 의해 조정된다.
상기 논의; 및 특히 도 4로부터 명백한 바와 같이, 단순한 속도 증가 또는 감소를 사용하여 증가 또는 감소하는 유동의 부산물은 각각 압력 비율의 증가 또는 감소를 동반한다. 많은 산업적 이용가능성은, 직렬 배치의 다중 압축 터보머신 (압축 트레인으로서도 공지됨)을 수반하고, 유동 뿐만 아니라 전반적인 트레인 압력 비율 상에서의 제어 둘 다에서 유익하거나 또는 그에 필요하기 때문에, 본 발명을 이러한 압축 트레인에서 초기단 또는 압축단으로서 사용하는 것이 가능하다. 압력은, 후속 단에서 하류 단의 속도의 증가에 의해 회복될 것이다. 기재된 바와 같은 본 발명을 유량이 제한 속도 대역 주위에서 진동하고, 이에 따라 주요한 압력 변동이 없으며, 이러한 압력 변동이 이러한 용도에 허용될 수 있는 용도에 사용하는 것이 또한 가능하다.
본 발명을 바람직한 실시양태를 참조로 하여 기재하였지만, 관련 기술분야의 통상의 기술자에게 나타나는 바와 같이, 첨부된 특허청구범위에 기재된 바와 같은 본 발명의 사상 및 범주에서 벗어나지 않으면서 이에 대한 수많은 변화 및 생략이 이루어질 수 있다.

Claims (12)

  1. 기체를 압축시켜 압축 기체를 생성하기 위한 1개 이상의 압축단, 및 1개 이상의 압축단에 직접 커플링되며 진동 모드가 압축 시스템을 손상시킬 수 있는 제한 속도 대역을 갖는 전기 모터를 갖는 압축 시스템 내에서 기체를 압축시키는 것을 포함하는, 압축 기체를 생성하고 압축 기체의 유량을 제어하는 방법이며,
    1개 이상의 압축단은 압축 기체의 유량을 목적 유량으로 제어하기 위한 유입구 안내 날개를 갖는 원심 압축기를 포함하고, 전기 모터는 모터 및 그에 따라 원심 압축기의 임펠러의 속도를 제어하여 또한 압축 기체의 유량을 목적 유량으로 제어하기 위한 속도 제어기를 갖고;
    목적 유량이 제한 속도 대역 초과 또는 미만에 위치하는 전기 모터의 속도를 사용하여 얻어질 수 있는 경우에는, 00 와류각으로 설정된 유입구 안내 날개를 사용하면서 속도 제어기를 사용하여 전기 모터의 속도를 제어함으로써 유량을 제어하여 목적 유량을 달성하고;
    전기 모터의 현재 속도가 제한 속도 대역 초과의 상위 속도에 위치하고, 현재 목적 유량이 유입구 안내 날개를 유입구 안내 날개의 현재 위치로 조정함으로써 얻어지고, 새로운 목적 유량을 얻기 위해 제한 속도 대역 미만의 전기 모터의 새로운 속도가 요구되는 경우에는,
    전기 모터의 속도를 제한 속도 대역 미만의 하위 속도가 얻어질 때까지 속도 감소 단계에서 감소시키고;
    유입구 안내 날개를 각각의 상기 속도 감소 단계 동안 연속적으로 개방하여, 유입구 안내 날개가 제한 속도 대역 미만의 하위 속도에서 00 와류각으로 설정되도록 하고;
    그 후, 속도를 새로운 속도가 얻어질 때까지 감소시키고;
    전기 모터의 현재 속도가 제한 속도 대역 미만에 위치하고, 목적 유량이 제한 속도 대역 내에 위치하는 전기 모터의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는,
    제한 속도 대역 초과의 상위 속도에서 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치를 계산하고;
    00 와류각으로 설정된 유입구 안내 날개를 사용하면서 전기 모터의 속도를 제한 속도 대역 미만의 하위 속도로 설정하고;
    전기 모터의 속도를 제한 속도 대역 초과의 상위 속도가 얻어질 때까지 속도 증가 단계에서 증가시키고;
    유입구 안내 날개를 각각의 상기 속도 증가 단계 동안 연속적으로 폐쇄하여, 제한 속도 대역 초과의 상위 속도에 도달시에 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치에 도달되도록 하는 것인, 압축 기체를 생성하고 압축 기체의 유량을 제어하는 방법.
  2. 제1항에 있어서, 전기 모터가 고속 영구 자석 모터이고, 속도 제어기가 가변 주파수 드라이브인 방법.
  3. 제2항에 있어서,
    압축 시스템이 기체를 압축시키기 위한 2개의 압축단을 갖고;
    원심 압축기가 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착되어 2개의 압축단 중 제1 압축단을 형성하고 기체를 제1 압력으로 압축시키는 제1 원심 압축기이고;
    제1 원심 압축기와 유체 소통되는 제2 원심 압축기가, 모터 샤프트의 다른 쪽 단부 상에 장착되어 2개의 압축단 중 제2 압축단을 형성하고 기체를 제1 압력보다 높은 제2 압력으로 더욱 압축시키는 것인 방법.
  4. 제2항에 있어서,
    압축 시스템이 2개의 원심 압축기에 기체를 공급하는 공통 공급기 및 압축 기체가 배출되는 공통 유출구를 갖는 2개의 원심 압축기를 갖고;
    원심 압축기가 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착된 2개의 원심 압축기 중 제1 원심 압축기이고;
    2개의 원심 압축기 중 제2 원심 압축기가 모터 샤프트의 다른 쪽 단부 상에 장착되고;
    2개의 원심 압축기 중 각각의 제1 및 제2 원심 압축기는 유입구 안내 날개를 갖는 것인 방법.
  5. 기체를 압축시켜 압축 기체를 생성하기 위한 1개 이상의 압축단, 및 1개 이상의 압축단에 직접 커플링되며 진동 모드가 압축 시스템을 손상시킬 수 있는 제한 속도 대역을 갖는 전기 모터를 갖는 압축 시스템; 및
    유입구 안내 날개 신호 및 속도 제어 신호를 생성하는 마스터 제어기
    를 포함하는, 압축 기체 생성 및 압축 기체의 유량 제어를 위한 장치이며,
    1개 이상의 압축단은 압축 기체의 유량을 목적 유량으로 제어하도록 유입구 안내 날개 위치조절 신호에 반응하는 유입구 안내 날개를 갖는 원심 압축기를 포함하고, 전기 모터는 모터 및 그에 따라 압축기의 임펠러의 속도를 제어하여 또한 압축 기체의 유량을 목적 유량으로 제어하도록 속도 제어 신호에 반응하는 속도 제어기를 갖고;
    마스터 제어기는,
    목적 유량을 얻기 위한 전기 모터의 속도 계산치를 계산하고;
    목적 유량을 얻는 제한 속도 대역 초과의 상위 속도의 속도 수준에서의 유입구 안내 날개 위치를 계산하고;
    속도 계산치가 제한 속도 대역 초과 또는 미만에 위치하는 경우에는, 속도 제어 신호가 속도 계산치와 관련될 수 있도록 속도 제어 신호를 생성하고, 유입구 안내 날개가 00 와류각으로 설정되도록 유입구 안내 날개 위치조절 신호를 생성하고;
    전기 모터의 현재 속도가 제한 속도 대역 초과의 상위 속도에 위치하고, 현재 목적 유량이 유입구 안내 날개를 유입구 안내 날개의 현재 위치로 조정함으로써 얻어지고, 새로운 목적 유량을 얻기 위해 요구되는 전기 모터의 속도 계산치가 제한 속도 대역 미만인 경우에는,
    제한 속도 대역 미만의 하위 속도가 얻어질 때까지 속도 감소 단계에서 연속적으로 감소하는 전기 모터의 속도와 관련될 수 있도록 속도 제어 신호를 연속적으로 생성하고;
    유입구 안내 날개가 제한 속도 대역 미만의 하위 속도에서 00 와류각으로 설정되도록 연속적으로 커지는 유입구 안내 날개의 개방과 관련될 수 있도록 하는 속도 제어 신호의 각각의 연속적 생성 동안 유입구 안내 날개 위치조절 신호를 연속적으로 생성하고;
    유입구 안내 날개가 00 와류각으로 설정된 후, 속도 계산치가 얻어지도록 속도 제어 신호를 생성하도록 프로그래밍되고;
    전기 모터의 현재 속도가 제한 속도 대역 미만에 위치하고, 목적 유량이 제한 속도 대역 내에 위치하는 전기 모터의 속도를 사용하지 않고서는 얻어질 수 없는 경우에는,
    제한 속도 대역 초과의 상위 속도에서 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치를 계산하고;
    제한 속도 대역 미만의 하위 속도와 관련될 수 있도록 속도 제어 신호를 생성하고;
    하위 속도가 얻어진 후, 제한 속도 대역 초과의 상위 속도가 얻어질 때까지 속도 증가 단계에서 연속적으로 증가하는 전기 모터의 속도와 관련될 수 있도록 속도 제어 신호를 연속적으로 생성하고;
    제한 속도 대역 초과의 상위 속도 도달시에 목적 유량을 얻기 위해 요구되는 유입구 안내 날개의 위치에 도달되도록 연속적으로 폐쇄된 유입구 안내 날개의 위치와 관련될 수 있도록 각각의 속도 증가 단계 동안 유입구 안내 날개 위치조절 신호를 생성하도록 프로그래밍된 것인, 압축 기체 생성 및 압축 기체의 유량 제어를 위한 장치.
  6. 제5항에 있어서, 전기 모터가 고속 영구 자석 모터이고, 속도 제어기가 가변 주파수 드라이브인 장치.
  7. 제6항에 있어서,
    압축 시스템이 2개의 압축단을 갖고;
    원심 압축기가 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착되어 2개의 압축단 중 제1 압축단을 형성하는 제1 원심 압축기이고;
    제1 원심 압축기와 유체 소통되는 제2 원심 압축기가, 모터 샤프트의 다른 쪽 단부 상에 장착되어 2개의 압축단 중 제2 압축단을 형성하는 것인 장치.
  8. 제6항에 있어서,
    압축 시스템이 2개의 원심 압축기에 기체를 공급하는 공통 공급기 및 압축 기체가 배출되는 공통 유출구를 갖는 2개의 원심 압축기를 갖고;
    원심 압축기가 고속 영구 자석 모터의 모터 샤프트의 한쪽 단부 상에 장착된 2개의 원심 압축기 중 제1 원심 압축기이고;
    2개의 원심 압축기 중 제2 원심 압축기가 모터 샤프트의 다른 쪽 단부 상에 장착되고;
    2개의 원심 압축기 중 각각의 제1 및 제2 원심 압축기는, 각각 유입구 안내 날개 위치조절 신호에 반응하는 유입구 안내 날개를 갖는 것인 방법.
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020157008231A 2012-10-03 2013-08-28 압축 기체 생성 및 제어 KR102046206B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/644,066 2012-10-03
US13/644,066 US9175691B2 (en) 2012-10-03 2012-10-03 Gas compressor control system preventing vibration damage
PCT/US2013/057066 WO2014055179A2 (en) 2012-10-03 2013-08-28 Compressed gas production and control

Publications (2)

Publication Number Publication Date
KR20150063062A KR20150063062A (ko) 2015-06-08
KR102046206B1 true KR102046206B1 (ko) 2019-11-18

Family

ID=49123942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157008231A KR102046206B1 (ko) 2012-10-03 2013-08-28 압축 기체 생성 및 제어

Country Status (9)

Country Link
US (2) US9175691B2 (ko)
EP (1) EP2904275A2 (ko)
KR (1) KR102046206B1 (ko)
CN (1) CN104704243B (ko)
BR (1) BR112015007054A2 (ko)
CA (1) CA2885214A1 (ko)
IN (1) IN2015DN02119A (ko)
MX (1) MX2015004166A (ko)
WO (1) WO2014055179A2 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160053764A1 (en) * 2012-10-03 2016-02-25 Ahmed F. Abdelwahab Method for controlling the compression of an incoming feed air stream to a cryogenic air separation plant
US10443603B2 (en) * 2012-10-03 2019-10-15 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
US20160032935A1 (en) * 2012-10-03 2016-02-04 Carl L. Schwarz System and apparatus for compressing and cooling an incoming feed air stream in a cryogenic air separation plant
US10385861B2 (en) 2012-10-03 2019-08-20 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
US20160032934A1 (en) * 2012-10-03 2016-02-04 Carl L. Schwarz Method for compressing an incoming feed air stream in a cryogenic air separation plant
US20160187893A1 (en) * 2014-12-31 2016-06-30 Ingersoll-Rand Company System and method using parallel compressor units
FR3034420A1 (fr) * 2015-03-31 2016-10-07 Lab Francais Du Fractionnement Anticorps monoclonaux anti-cd303
KR102446458B1 (ko) * 2016-08-30 2022-09-23 8 리버스 캐피탈, 엘엘씨 고압의 산소를 생성하기 위한 극저온 공기 분리 방법
CN106762756B (zh) * 2016-12-15 2019-05-31 福建景丰科技有限公司 一种纺织用空气压缩系统及空气压缩方法
US10989210B2 (en) 2017-07-10 2021-04-27 Praxair Technology, Inc. Anti-surge speed control for two or more compressors
CN109727615B (zh) 2017-10-27 2021-09-10 伊姆西Ip控股有限责任公司 用于存储设备的散热的系统和方法
CN110060711B (zh) * 2018-01-18 2021-02-12 伊姆西Ip控股有限责任公司 存储设备以及控制其风扇转速的方法
US20220364571A1 (en) * 2021-04-29 2022-11-17 Emerson Climate Technologies, Inc. Mass flow interpolation systems and methods for dynamic compressors
CN115493318A (zh) 2021-06-17 2022-12-20 开利公司 离心压缩机的控制方法及空气调节系统
CN114870422B (zh) * 2022-05-12 2024-03-01 梅胜 一种基于气压机组的分馏塔顶压力控制方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE604703C (de) * 1932-10-28 1934-10-26 Schering Kahlbaum Ag Verfahren zur Darstellung eines Oxyketons der Formel C H O
US3767318A (en) * 1971-05-10 1973-10-23 Mitsui Shipbuilding Eng Method of controlling multi-casing variable speed compressors
US4102604A (en) * 1977-05-04 1978-07-25 Compressor Controls Corporation Method and apparatus for noninteracting control of a dynamic compressor having rotating vanes
US4151725A (en) * 1977-05-09 1979-05-01 Borg-Warner Corporation Control system for regulating large capacity rotating machinery
US4218191A (en) * 1978-11-29 1980-08-19 Phillips Petroleum Company Multi-constraint control of a compression system
JPS63235696A (ja) * 1987-03-24 1988-09-30 Kobe Steel Ltd 多段遠心圧縮機の制御方法
US5282726A (en) * 1991-06-21 1994-02-01 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
JPH05157095A (ja) * 1991-12-04 1993-06-22 Hitachi Ltd 遠心圧縮機の容量制御装置
US5355691A (en) * 1993-08-16 1994-10-18 American Standard Inc. Control method and apparatus for a centrifugal chiller using a variable speed impeller motor drive
GB2316714B (en) 1993-08-16 1998-04-22 American Standard Inc Control of variable capacity centrifugal compressors
US5428965A (en) * 1993-12-10 1995-07-04 Whirlpool Corporation Motor control for refrigeration appliance
US5947680A (en) * 1995-09-08 1999-09-07 Ebara Corporation Turbomachinery with variable-angle fluid guiding vanes
US5901579A (en) * 1998-04-03 1999-05-11 Praxair Technology, Inc. Cryogenic air separation system with integrated machine compression
US6616421B2 (en) * 2000-12-15 2003-09-09 Cooper Cameron Corporation Direct drive compressor assembly
JP3751208B2 (ja) * 2001-02-23 2006-03-01 株式会社神戸製鋼所 多段可変速圧縮機の制御方法
CA2373905A1 (en) * 2002-02-28 2003-08-28 Ronald David Conry Twin centrifugal compressor
CN100351527C (zh) * 2002-08-12 2007-11-28 日立产业有限公司 涡轮式压缩机及其运行方法
US7356999B2 (en) * 2003-10-10 2008-04-15 York International Corporation System and method for stability control in a centrifugal compressor
US20060198744A1 (en) * 2005-03-03 2006-09-07 Carrier Corporation Skipping frequencies for variable speed controls
WO2010101426A2 (ko) * 2009-03-05 2010-09-10 주식회사 에어젠 기체 압축기 및 기체 압축기의 유량 제어 방법

Also Published As

Publication number Publication date
CA2885214A1 (en) 2014-04-10
WO2014055179A2 (en) 2014-04-10
US20140093396A1 (en) 2014-04-03
CN104704243B (zh) 2016-09-28
US20150377244A1 (en) 2015-12-31
BR112015007054A2 (pt) 2017-07-04
EP2904275A2 (en) 2015-08-12
IN2015DN02119A (ko) 2015-08-14
MX2015004166A (es) 2015-06-10
US9175691B2 (en) 2015-11-03
KR20150063062A (ko) 2015-06-08
CN104704243A (zh) 2015-06-10
WO2014055179A3 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
KR102046206B1 (ko) 압축 기체 생성 및 제어
Fink et al. Surge dynamics in a free-spool centrifugal compressor system
JP5650204B2 (ja) 制御システム
EP2756240B1 (en) Centrifugal compressor diffuser control
JP5465673B2 (ja) 制御システム
TWI628364B (zh) 用於多階段離心壓縮機的容量控制系統及方法
Gravdahl et al. Modeling of surge in free-spool centrifugal compressors: Experimental validation
KR101850828B1 (ko) 터보 기계
Casey et al. The design of ultra-high-speed miniature centrifugal compressors
JP6222993B2 (ja) 2軸式ガスタービン
CN105143684A (zh) 用于具有侧流的涡轮压缩机的抗喘振控制的方法及系统
CN111140544B (zh) 压缩机导叶开度控制方法、装置及空调机组
KR102437553B1 (ko) 일련의 크라이오제닉 압축기에서 유체의 압력 및 온도를 제어하는 방법
EP2751430A2 (en) Capacity control system and method for centrifugal compressor
Omri et al. Numerical study on the transient behavior of a radial pump during starting time
US10527049B2 (en) System and method for measuring bending mode frequencies
CN107076158B (zh) 用于调节串联连接的低温压缩机的转速的方法
Fink et al. Surge dynamics in a free-spool centrifugal compressor system
Larralde et al. Selection of gas compressors: part 6
Yoon et al. Model validation for an AMB-based compressor surge control test rig
JP2003322096A (ja) 流体機械の流量制御方法
JP2003322097A (ja) 流体機械の流量制御方法
Oh et al. Development of high-speed industrial turbo blowers with foil air bearings
CN106321463A (zh) 一种离心泵恒压力控制系统

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant