KR102045332B1 - 이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치 - Google Patents

이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치 Download PDF

Info

Publication number
KR102045332B1
KR102045332B1 KR1020130053258A KR20130053258A KR102045332B1 KR 102045332 B1 KR102045332 B1 KR 102045332B1 KR 1020130053258 A KR1020130053258 A KR 1020130053258A KR 20130053258 A KR20130053258 A KR 20130053258A KR 102045332 B1 KR102045332 B1 KR 102045332B1
Authority
KR
South Korea
Prior art keywords
terminal
offload
wifi
base station
data
Prior art date
Application number
KR1020130053258A
Other languages
English (en)
Other versions
KR20140118650A (ko
Inventor
김성훈
김상범
정경인
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP14773679.7A priority Critical patent/EP2981129B1/en
Priority to PCT/KR2014/002473 priority patent/WO2014157898A1/ko
Priority to EP20184434.7A priority patent/EP3780715A1/en
Priority to US14/779,447 priority patent/US10979953B2/en
Priority to CN201480030465.XA priority patent/CN105247920B/zh
Publication of KR20140118650A publication Critical patent/KR20140118650A/ko
Application granted granted Critical
Publication of KR102045332B1 publication Critical patent/KR102045332B1/ko
Priority to US17/227,807 priority patent/US11678244B2/en
Priority to US18/305,188 priority patent/US20230269648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0865Load balancing or load distribution among access entities between base stations of different Radio Access Technologies [RATs], e.g. LTE or WiFi
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0846Load balancing or load distribution between network providers, e.g. operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Abstract

본 발명은 이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치에 관한 것으로 특히 베어러 수준에서 트래픽을 오프 로드하는 방법에 관한 것이다.
이에 따른 본 발명은, 기지국과 제1 통신망의 베어러를 통하여 데이터 통신 수행 중, 상기 기지국으로부터 제2 통신망으로 일부 트래픽을 오프로드하기 위한 오프로드 명령을 수신하는 단계, 상기 오프로드 명령에 응답하여 상기 기지국으로 오프로드 보고를 전송하는 단계, 및 상기 제1 통신망의 베어러를 해제하지 않고, 상기 제2 통신망의 베어러를 통하여 상기 단말이 접속 가능한 AP와 상기 일부 트래픽에 대한 데이터 통신을 수행하는 단계를 포함하는 단말의 트래픽 오프로드 방법 및 단말, 단말과 통신하는 기지국에 관한 것이다.

Description

이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치{METHOD AND APPARATUS TO OFFLOAD TRAFFIC USING WIRELESS LAN IN MOBILE COMMUNICATION SYSTEM}
본 발명은 이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치에 관한 것으로 특히 베어러 수준에서 트래픽을 오프 로드하는 방법에 관한 것이다.
최근 무선 통신 기술은 급격한 발전을 이루었으며, 이에 따라 통신 시스템 기술도 진화를 거듭하였다. 이에 따른 3세대 이동통신 기술로 UMTS 시스템이 있으며, 4세대 이동통신 기술로 각광받는 시스템이 LTE 시스템이다.
특히, 오늘날의 무선 통신 시스템은 스마트폰의 보급에 따라 사용자의 데이터 사용량이 폭증하였으며, 폭증하는 데이터를 감당하기 위해, 기존의 이동통신망 (즉, 3G, 4G 셀룰러 망)에 추가로 무선랜 망을 연동함으로써 데이터 사용량을 분산시키고자 하는 노력이 시도되고 있다.
하지만, 현재의 기술은 셀룰러 망과 무선랜 망의 연동을 긴밀하게 다루지는 못하고 있다. 즉, 현재는 셀룰러 망과 무선랜 망이 일부의 제한적인 기능 (예를 들어, 인증)을 제외하고는 각자 독립적으로 작동한다.
이에 따라, 무선랜 망이 어디에 있는지 위치를 알지 못하는 단말은 무선랜 망을 사용하고자 하는 경우에, 끊임없이 주변의 무선랜 망을 검색하여야 하며 이는 단말의 전력 소모를 초래한다. 또한, 주변의 무선랜 망 검색을 위해서는, 단말의 무선랜 전원이 항상 켜져 있어야 한다는 문제점도 있다.
단말이 사용 가능한 무선랜 망을 발견해서 접속한다 하더라도, 현재의 셀룰러 망과의 연결을 해제하고 단말의 모든 트래픽을 무선랜 망으로 송수신해야 하기 때문에, 사용자의 체감 서비스 품질이 저하될 수 있다. 또한, 실시간성이 중요한 VoIP와 같은 사용자 데이터나, RRC 제어 메시지 등이 무선 랜을 통해 송수신 되는 경우, 해당 서비스가 요구하는 서비스 품질을 무선랜에서 제공하지 못할 수 있다.
뿐만 아니라 무선랜 망의 커버리지 한계 때문에, 무선랜 망을 사용하던 단말이 LTE와 같은 무선 셀룰러 망으로 복귀해야 하는 경우가 발생할 수 있다. 단말이 무선랜 망으로 접속을 수립하고 해제하는 과정에서 LTE 망의 연결을 해제하고 재접속한다면 사용자가 체감하는 서비스 품질은 심각하게 열화 될 수 있다.
본 발명은 베어러 이동통신 시스템에서 무선랜을 이용하여 베어러 수준에서 트래픽을 오프로드하는 방법 및 장치를 제공한다.
상술한 과제를 해결하기 위하여, 본 발명에 따른 단말의 트래픽 오프로드 방법은, 기지국과 제1 통신망의 베어러를 통하여 데이터 통신 수행 중, 상기 기지국으로부터 제2 통신망으로 일부 트래픽을 오프로드하기 위한 오프로드 명령을 수신하는 단계, 상기 오프로드 명령에 응답하여 상기 기지국으로 오프로드 보고를 전송하는 단계, 및 상기 제1 통신망의 베어러를 해제하지 않고, 상기 제2 통신망의 베어러를 통하여 상기 단말이 접속 가능한 AP와 상기 일부 트래픽에 대한 데이터 통신을 수행하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 기지국의 트래픽 오프로드 방법은, 단말과 제1 통신망의 베어러를 통하여 데이터 통신 수행 중, 제2 통신망으로 일부 트래픽을 오프로드하기 위한 오프로드 명령을 상기 단말로 전송하는 단계, 상기 단말로부터 상기 오프로드 명령에 응답하여 오프로드 보고를 수신하는 단계, 및 상기 제1 통신망의 베어러를 해제하지 않고, 상기 단말이 통신 가능한 AP로 상기 일부 트래픽에 대한 데이터를 포워딩하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 단말은, 기지국 또는 AP(Access Point)와 데이터 통신을 수행하는 송수신부, 및 상기 송수신부가 상기 기지국과 제1 통신망의 베어러를 통하여 데이터 통신 수행 중, 상기 기지국으로부터 제2 통신망으로 일부 트래픽을 오프로드하기 위한 오프로드 명령을 수신하면, 상기 오프로드 명령에 응답하여 상기 기지국으로 오프로드 보고를 전송하고, 상기 제1 통신망의 베어러를 해제하지 않고, 상기 제2 통신망의 베어러를 통하여 상기 단말이 접속 가능한 AP와 상기 일부 트래픽에 대한 데이터 통신을 수행하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 기지국은, 단말과 데이터 통신을 수행하는 송수신부, 및
상기 송수신부가 단말과 제1 통신망의 베어러를 통하여 데이터 통신 수행 중, 제2 통신망으로 일부 트래픽을 오프로드하기 위한 오프로드 명령을 상기 단말로 전송하고, 상기 단말로부터 상기 오프로드 명령에 응답하여 오프로드 보고를 수신하고, 상기 제1 통신망의 베어러를 해제하지 않고, 상기 단말이 통신 가능한 AP로 상기 일부 트래픽에 대한 데이터를 포워딩하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 한다.
본 발명은 이동통신 시스템에서 무선랜을 이용하여 사용자 트래픽의 오프로드를 효율적으로 지지하고, 오프로드 시 발생하는 서비스 단절 현상을 최소화할 수 있다.
도 1은 본 발명이 적용되는 LTE 시스템의 구조를 도시하는 도면,
도 2는 본 발명이 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면,
도 3은 일반적인 무선 랜 오프로드를 설명한 도면,
도 4는 본 발명에 따른 베어러 수준 WIFI offload의 일 실시 예를 나타낸 흐름도,
도 5는 본 발명에 따른 베어러 수준 WIFI offload의 다른 실시 예를 나타낸 흐름도,
도 6은 무선 베어러에 저장되어 있는 데이터의 종류를 도시한 도면,
도 7은 무선 랜 오프로드 과정에서 데이터 전달에 대해서 설명한 도면,
도 8은 본 발명에 따른 단말의 무선 랜 측정 방법을 나타낸 순서도,
도 9는 본 발명에 따른 단말의 무선 랜 오프로드 방법을 나타낸 순서도,
도 10은 단말의 불연속 수신 동작을 설명하기 위한 도면,
도 11은 HARQ retransmission timer가 일찍 종료됨으로써 발생하는 문제를 설명하기 위한 도면,
도 12는 본 발명의 일 실시 예에 따른 HARQ retransmission timer 제어 동작을 설명하기 위한 도면,
도 13은 본 발명의 일 실시 예에 따른 단말의 동작을 나타낸 순서도,
도 14는 본 발명에 따른 단말의 구성을 나타낸 블록도,
도 15는 본 발명에 따른 기지국 장치의 구성을 나타낸 블록도,
도 16은 캐리어 집적을 설명한 도면,
도 17은 본 발명의 일 실시 예에 따라 PCell interruption을 기초로 단말을 스케줄링하는 방법을 나타낸 순서도,
도 18은 본 발명의 일 실시 예에 따라 PCell interruption을 기초로 단말을 스케줄링하는 방법에 있어서 단말의 동작에 관한 제1 실시 예를 나타낸 순서도,
도 19는 단말의 성능 정보에 포함되는 밴드 조합에 대한 정보 및 측정 성능 파라미터를 나타낸 도면,
도 20은 본 발명의 일 실시 예에 따라 PCell interruption을 기초로 단말을 스케줄링하는 방법에 있어서 단말의 동작에 관한 제2 실시 예를 나타낸 순서도,
도 21은 페이로드의 비트맵 구성을 나타낸 도면이다.
하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하기로 한다.
본 발명은 무선 셀룰러 망과 무선랜 망에 접속할 수 있는 단말이 데이터의 일부를 무선랜 망을 통해 송수신하는 방법 및 장치에 관한 것이다. 이하 본 발명을 설명하기에 앞서 LTE 시스템에 대해서 간략하게 설명한다.
본 발명에서는 설명의 편의를 위해, 셀룰러 망의 한 예로 LTE 시스템을 기준으로 설명하나, 다른 셀룰러 망 (예를 들어 UMTS)에서도 모두 적용될 수 있다.
도 1은 본 발명이 적용되는 LTE 시스템의 구조를 도시하는 도면이다.
도 1을 참조하면, LTE 시스템의 무선 액세스 네트워크는 적어도 하나의 ENB(차세대 기지국, Evolved Node B, Node B 또는 기지국)(105, 110, 115, 120), MME(Mobility Management Entity)(125), S-GW(Serving-Gateway)(130) 및 단말(User Equipment, 이하 UE 또는 단말)(135)로 구성된다.
단말(135)은 ENB(105, 110, 115, 120) 및 S-GW(130)를 통해 외부 네트워크에 접속한다.
ENB(105, 110, 115, 120)는 기존의 UMTS 시스템에서 노드 B에 대응한다. ENB(105, 110, 115, 120)는 UE(135)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다.
LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스되므로, UE(135)들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, ENB(105, 110, 115, 120)가 이러한 역할을 담당한다.
하나의 ENB(105, 110, 115, 120)는 통상 다수의 셀 들을 제어한다. 예컨대, LTE 시스템은 100 Mbps의 전송 속도를 구현하기 위해서 무선 접속 기술로 20 MHz 대역폭의 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 사용한다. 또한, LTE 시스템은 단말(135)의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다.
MME(125)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다.
S-GW(130)는 데이터 베어러를 제공하는 장치이며, MME(125)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다.
도 2는 본 발명이 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP(Packet Data Convergence Protocol)(205, 240), RLC(Radio Link Control)(210, 235), MAC (Medium Access Control)(215, 230) 및 PHY(Physical Layer)(220, 225)으로 이루어진다.
PDCP(205, 240)는 IP 헤더 압축/복원 등의 동작을 담당한다.
RLC(또는, 무선 링크 제어)(210, 235)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성한다.
MAC(215, 230)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결된다. 또한, MAC(215, 230)은 RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역 다중화하는 동작을 수행한다.
PHY(또는, 물리 계층)(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송한다. 또한, PHY(220, 225)눈 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다.
PHY(220, 225)는 추가적인 오류 정정을 위해, HARQ(Hybrid ARQ)를 사용할 수 있다. 수신단에서는 송신단에서 전송한 패킷의 수신 여부를 1비트로 송신단에 전송한다. 이를 HARQ ACK/NACK 정보라 한다. 업링크 전송에 대한 다운링크 HARQ ACK/NACK 정보는 PHICH (Physical Hybrid-ARQ Indicator Channel) 물리 채널을 통해 전송되며 다운링크 전송에 대한 업링크 HARQ ACK/NACK 정보는 PUCCH (Physical Uplink Control Channel)나 PUSCH (Physical Uplink Shared Channel) 물리 채널을 통해 전송될 수 있다.
이하에서는, LTE 시스템에서 종래의 무선랜을 이용한 오프로드(offload)에 대하여 설명하도록 한다.
도 3은 일반적인 무선 랜 오프로드를 설명한 도면이다.
오늘날의 LTE 시스템에서는, 급증하는 무선 데이터 수요를 충족시키기 위해서 무선랜 망을 이용한 offload를 제공하고 있다. 특히 사업자가 자체적으로 무선랜 망을 구성하고, 자신의 가입자에게만 무선랜 서비스를 제공하는 것이 유력한 서비스 모델로 떠오르고 있다.
도 3을 참조하면, LTE ENB(305)의 전파 영역(coverage) 내에 복수의 무선랜 AP(Access Point)(310, 315)가 배치되어 있고, AP(310, 315)와 LTE ENB(305)는 사업자 유선 망(OPERATOR managed NW)(320)에 연결되어 있다.
단말이 오로지 LTE 전파만 도달하는 영역(이하 LTE 전파 영역)에 위치하는 경우(325)에는 모든 사용자 트래픽은 LTE 망을 통해서 송수신 된다. 반면, 단말이 AP(310, 315)쪽으로 이동해서 LTE 전파 및 WIFI 전파가 모두 도달하는 영역(이하 WIFI 전파 영역)에 위치하게 되면(330), 사업자는 단말의 LTE 연결을 해제하고 AP(310, 315)를 통해 사용자 트래픽이 송수신 되도록 단말을 설정할 수 있다.
이후에, 단말이 WIFI 전파 영역을 벗어나, 다시 LTE 전파 영역에 위치하면(335), LTE ENB(305)는 단말과 새롭게 연결을 설정하고 다시 LTE 무선 망을 통해 사용자 트래픽을 송수신한다.
사업자는 WIFI offload와 관련된 정보를 단말에게 제공하기 위해서 WIFI 서버(340)를 구비할 수 있다. 단말은 WIFI 서버(340)로부터 WIFI offload와 관련된 정보, 예를 들어 offload 정책 등을 획득할 수 있다.
상술한 바와 같이 단말이 WIFI offload를 할 때마다 RRC 연결을 해제하고 재수립하게 되면, LTE 망에 RRC 연결과 관련된 제어 메시지의 수가 급증하고 사용자 트래픽 송수신이 중단되는 문제점 등이 야기된다.
이러한 문제는, 단말이 WIFI 전파 영역에 진입하더라도 RRC 연결을 해제하지 않고 유지함으로써 해결할 수 있다. 또는, 이러한 문제는 서비스의 종류에 따라서 일부 서비스, 예를 들어, FTP 등 대규모 데이터 트래픽이 발생하는 비실시간 서비스만 WIFI를 통해 서비스하고, 서비스 품질 요구 사항이 강력한 음성 서비스 등은 LTE를 통해서 서비스하는 방법으로 해결할 수도 있다.
따라서, 본 발명에서는 단말이 WIFI 전파 영역에 진입하더라도 RRC 연결을 유지하는 한편 서비스 종류에 따라서 일부 서비스만 WIFI를 통해 서비스하고 나머지 서비스는 LTE 무선 망으로 서비스하는 방법을 제안한다. 본 발명에서 제안하는 오프로드 방법을 이하에서 베어러 수준의 WIFI offload(bearer level offload)로 칭한다.
제1 실시 예
도 4는 본 발명에 따른 베어러 수준 WIFI offload의 일 실시 예를 나타낸 흐름도이다.
먼저, 기지국(410)은 기지국(410)의 전파 영역에 위치한 단말(405)로 시스템 정보를 전송한다(415). 이때, 기지국(410)은 기지국(410)의 전파 영역에 액세스 가능한 WIFI 망이 존재한다면, 시스템 정보를 통해 WIFI 관련 정보를 단말(405)로 제공한다. WIFI 관련 정보를 공통 WIFI 관련 정보 (Common WIFI information)라 할 때, 공통 WIFI 관련 정보는 아래와 같은 것들을 포함할 수 있다.
[공통 WIFI 관련 정보]
- 서빙 셀의 영역 내에서 액세스 가능한 WIFI AP 존재 여부
- WIFI channel 정보
- WIFI AP 위치 정보 (예를 들어 LTE 전파 수신 신호 세기를 기준으로 한 위치, 혹은 GPS 좌표 정보)
- 액세스 가능한 WIFI 망이 존재하는 주변 주파수 리스트 (혹은 주변 주파수 별 WIFI 망의 SSID정보)
상기 정보를 공통 WIFI 관련 정보라 하는 이유는 상기 정보가 불특정 다수의 단말들에게 공통으로 제공되기 때문이다.
단말(405)은 WIFI 오프로드 기능을 지원하며, 현재 사업자로부터 WIFI 서비스를 제공받을 수 있다. 단말(405)은 기지국(410)으로부터 수신한 WIFI 관련 정보, 즉 공통 WIFI 관련 정보를 저장해둔다.
임의의 이유로 데이터 송수신을 할 필요가 발생하면 단말(405)은 기지국(410)과 RRC 연결 수립 과정 및 RRC 연결 재설정(RRC connection reconfiguration) 과정을 수행한다(420). RRC 연결 수립 과정을 통해 단말(405)과 기지국(410)은 SRB를 설정하고, RRC 연결 재설정 과정을 통해 DRB를 설정한다. SRB는 RRC 제어 메시지와 상위 계층 제어 메시지 송수신을 위한 무선 베어러이고, DRB는 사용자 데이터 송수신을 위한 무선 베어러이다. 무선 베어러는 각각의 설정에 따라 소정의 서비스 품질을 제공한다. 서비스의 서비스 품질 요구 사항 (QoS requirement)을 충족시킬 수 있도록, 서비스별로 DRB를 설정할 수 있다. 요구 서비스 품질이 유사한 서비스들이 있다면 상기 서비스들은 하나의 DRB를 통해 서비스될 수도 있다. 단말(405)은 상기 RRC 연결 재설정 과정이 완료된 후 네트워크로 WIFI offload 지원과 관련된 단말 정보를 보고할 수 있다. WIFI offload 지원과 관련된 단말 정보로는 아래와 같은 것들이 있을 수 있다.
[WIFI offload 지원에 대한 단말 정보]
- 단말이 접속할 수 있는 WIFI 망에 대한 정보. 예를 들어 단말이 접속할 수 있는 AP의 SSID 정보가 있을 수 있다.
- 단말이 offload를 적용할 수 있는 베어러와 관련된 정보. 예를 들어 WIFI offload가 적용되는 QCI 정보나 EPS 베어러 식별자 정보 같은 것이 있을 수 있다.
상기 WIFI offload 지원과 관련된 단말 정보는 단말(405)이 WIFI 서버로부터 사전에 제공받을 수 있다.
다음으로, 단말(405)과 기지국(410)은 설정된 무선 베어러를 통해 하향 링크 데이터와 상향 링크 데이터를 송수신한다(425).
임의의 시점에 임의의 이유로 기지국(410)은 단말(405)의 트래픽 중 일부를 베어러 수준의 오프로드 하기로 결정한다(430). 즉, 기지국(410)은 오프로드가 필요한지 여부 및 데이터 송수신 상태가 오프로드 조건을 만족하는지 여부를 기초로, 트래픽 중 일부를 WIFI로 offload 하기로 결정한다. 이하 설명의 편의를 위해서 WIFI offload가 적용되는 베어러를 WIFI offload 베어러로 명명한다. WIFI offload 베어러는 WIFI offload IP flow, WIFI offload EPS 베어러, WIFI offload DRB와 매핑될 수 있으며 이하에서는 이들의 용어를 혼용한다.
기지국(410)은 예를 들어 대규모의 비실시간 데이터가 발생하는 IP flow를 WIFI로 offload하기로 결정할 수 있다. 즉, 기지국(410)은 상기 IP flow와 매핑되는 EPS 베어러 혹은 DRB를 WIFI로 offload한다.
기지국(410)은 WIFI offload를 지원하는 단말 중 비실시간 데이터 발생량이 증가하고 액세스 가능한 WIFI 부근에 있는 것으로 판단되는 단말이 존재하면 상기 단말의 일부 트래픽을 WIFI로 offload하기로 결정할 수 있다.
베어러 수준의 오프로드가 결정되면, 기지국(410)은 단말(405)에게 다음의 정보를 포함하는 offload 명령 제어 메시지를 전송한다(430).
- offload 베어러 식별자
전술한 바와 같이 서비스 요구 사항이 낮은 일부 DRB만 WIFI로 offload하는 것이 바람직하며, 기지국(410)은 단말(405)에게 offload 할 DRB의 식별자 (혹은 EPS 베어러의 식별자)를 통보한다.
또 다른 방법으로, offload 정책을 기반으로 단말이 offload 베어러를 직접 선택할 수도 있다.
- LTE 복귀 조건
WIFI offload를 중지하고 LTE로 복귀하는 조건에 관한 정보이다. 자세한 내용은 후술한다.
offload 정책은 WIFI 서버가 단말에게 제공하는 것으로 예를 들어 아래와 같은 것들이 있을 수 있다.
[offload 정책]
- WIFI offload와 관련된 사업자 정보(예를 들어 PLMN id)
- WIFI offload와 관련된 SSID; 단말이 WIFI offload를 적용할 수 있는 SSID 정보. 단말은 상기 SSID 가 방송되는 WIFI 망을 액세스 가능한 WIFI 망으로 판단한다.
- WIFI offload와 관련된 QoS 정보; 지시된 QoS의 트래픽만 WIFI 오프로드 적용. QoS는 QCI (QoS Clas Identifier)라는 정보로 표현될 수 있으며, 베어러 별로 QCI가 할당된다. 따라서 상기 정책은 'QCI x가 설정된 베어러의 데이터는 액세스 가능한 WIFI가 있을 경우 WIFI를 통해 트래픽을 처리하고, QCI y가 설정된 베어러의 데이터는 액세스 가능한 WIFI가 있더라도 WIFI를 통해 트래픽을 처리하지 않는다.' 같은 것이 될 수 있다.
- WIFI offload와 관련된 EPS 베어러 식별자. 지시된 식별자를 가지는 EPS 베어러에 대해서만 offload를 적용
offload 명령 제어 메시지를 수신한 단말(405)은 공통 WIFI 관련 정보를 이용해서 주변에 액세스할 수 있는 WIFI AP가 존재하는지 검색한다(435).
440단계에서 액세스 가능한 WIFI AP가 발견되면(440), 단말(405)은 다음 단계로 진행하고 WIFI AP가 발견되지 않으면, 단말(405)은 WIFI 검색을 지속한다. 이때 단말(405)의 배터리 소모를 줄이기 위해서 WIFI 검색을 주기적으로 수행할 수 있으며 단말(405)의 현재 속도나 LTE 채널 상황에 따라 주기를 조정할 수도 있다. 예컨대, 단말(405)의 동작 속도가 높고, LTE 채널 상황이 열악할수록 단말(405)은 WIFI 검색 주기를 짧게 조절할 수 있다. 혹은 단말(405)은 기지국(410)이 offload 명령 제어 메시지에 지시해 준 WIFI 검색 주기를 기초로 WIFI 검색 주기를 조절할 수도 있다.
445단계에서 다음으로, 단말(405)은 액세스 가능한 WIFI AP가 발견되었다는 것을 보고하기 위해서 offload 보고 제어 메시지를 생성해서 기지국(410)으로 전송한다(445). 상기 제어 메시지에는 예를 들어 아래와 같은 정보가 포함된다.
- 발견한 AP의(혹은 무선랜의) 채널 상태/신호 품질
- 발견한 AP의(혹은 무선랜의) SSID (Service Set Identifier)
- 발견한 AP의(혹은 무선랜의) 로드(load) 정보
- offload DRB 명단
AP의 SSID와 로드 정보는 AP가 주기적으로 전송하는 Beacon 신호를 통해 단말(405)이 획득한다.
단말(405)은 또한 offload되는 DRB의 버퍼 상태 변화를 기지국(410)에게 통보하기 위해 정규 버퍼 상태 보고 (Buffer Status Report, BSR)를 트리거해서 상기 제어 메시지와 함께 기지국(410)으로 전송한다.
BSR은 단말(405)이 기지국(410)에게 전송할 데이터의 양을 보고하는 제어 메시지이며, 소정의 조건이 충족되면 트리거된다. 종래에는 BSR의 트리거 조건으로, 주기적 타이머의 만료, 우선 순위가 높은 데이터의 발생 등이 정의되어 있다. 본 발명에서는 아래의 BSR의 트리거 조건을 추가한다.
[WIFI offload 관련 BSR 생성 조건]
- 베어러 수준의 WIFI offload가 실행될 AP(혹은 무선랜 망)이 발견되거나, 기지국으로부터 offload 명령 제어 메시지를 수신한 후 액세스 가능한 AP(혹은 무선랜 망)이 발견됨; 그리고
- offload DRB의 버퍼 상태가 현재의 서빙 기지국에게 이 전에 보고된 적이 있으며 (혹은 현재 서빙 셀에서 offload DRB의 버퍼 상태가 한 번이라도 보고된 적이 있으며),
- offload DRB의 데이터 양으로 가장 최근에 보고한 값이 0보다 큰 값이다.
단말(405)은 상기 조건이 충족되면 기지국(410)으로 정규 BSR을 트리거한다. 이때, 단말(405)은 전체 데이터 양을 보고하는 대신 타입 C 데이터 양만 기지국(410)으로 보고한다. 임의의 DRB의 타입 C 데이터란, 상기 DRB의 전송 버퍼에 저장되어 있는 데이터 중, 재전송이 필요한 데이터를 의미하며, 이에 대하여 도 6을 참조하여 더욱 자세하게 후술한다.
혹은 단말(405)은 단말(405)의 복잡도를 줄이기 위해서 실제 데이터 양을 반영하지 않는 미리 정해진 값, 예를 들어 0Byte를 offload DRB의 버퍼 상태로 기지국(410)에 보고할 수도 있다. 즉 WIFI offload 관련 BSR 생성 조건이 충족되면, 단말(405)은 offload DRB의 버퍼 상태를 0 byte로 표시하는 정규 BSR을 기지국(410)으로 트리거함으로써, 동작을 단순화할 수도 있다.
정규 BSR이 트리거되면 단말(405)은 BSR을 전송하기 위해서 기지국(410)에게 전송 자원을 요청한다. 반면에 단말(405)은 다른 BSR 예를 들어 주기적 BSR은 BSR이 트리거 되더라도, BSR 전송만을 위해서 기지국(410)에게 전송 자원을 요청하지는 않는다.
OFFLOAD 보고 제어 메시지와 BSR을 수신한 기지국(410)은 소정의 DRB들이 LTE에서는 더 이상 사용되지 않으며 관련 트래픽이 WIFI를 통해 송수신 될 것임을 인지한다. 또한, 기지국(410)은 향후 상기 offload DRB에서 더 이상 송수신할 데이터가 발생하지 않는다 하더라도, DRB 해제 과정을 개시하지 않고 상기 DRB를 유지한다. 이는 향후 단말(405)이 LTE/WIFI 전파 영역에서 LTE 전파 영역으로 복귀했을 때 상기 DRB를 재사용하기 위해서이다. 또한, 기지국(410)은 상기 offload되는 DRB의 하향 링크 데이터 중 아직 전송이 개시되지 않은 데이터를 관련 AP로 포워딩한다.
단말(405)은 offload 준비가 완료되면, offload DRB의 상향 링크 데이터 중 타입 D 데이터를 무선랜 모듈의 전송 버퍼로 기기 내 전달 (local forwarding) 한다. 그리고 단말(405)은 상기 offload될 DRB에 더 이상 전송할 데이터가 없다 하더라도 DRB를 그대로 유지한다.
또는, 현재 DRB의 데이터는 LTE 망에서 처리하되, 이 후 새로운 데이터들만 WIFI에서 처리하는 것도 고려할 수 있다. 이 경우, WIFI offload가 개시된 후 상당 기간 동안 단말(405)과 기지국(401)은 WIFI와 LTE를 모두 사용해서 상기 offload EPS 베어러의 데이터를 송수신할 것이다.
단말(405)의 포워딩과 DRB 유지 동작 등에 대해서는 도 7을 참조하여 더욱 자세하게 후술한다.
다음으로, 단말(405)은 액세스 가능한 AP(450)를 이용해서 offload DRB와 관련된 데이터들의 송수신을 수행한다(455).
액세스 가능한 AP(450)(혹은 액세스 가능한 무선랜 망)는 아래 조건을 충족시키는 AP(혹은 무선랜 망)를 의미한다.
[액세스 가능한 무선랜 망]
- 무선랜 신호 세기가 소정의 기준 이상이고,
- 사용자의 가입 규약 (subscription)이 상기 AP로의 접근을 허용한다. (혹은 offload 정책에 따라 무선랜 망의 SSID가 단말의 액세스가 허용된 SSID이다.)
단말(405)은 AP(450)와 데이터 송수신을 수행하면서, LTE 복귀 조건이 만족하는지 여부를 지속적으로 감시한다. LTE 복귀 조건으로는 아래와 같은 것들이 있을 수 있다.
[LTE 복귀 조건]
- WIFI의 채널 품질이 소정의 기준 이하인 상태가 소정의 기간 동안 지속하면 복귀. 상기 기준 채널 품질과 기준 기간은 _430의 OFFLOAD 명령 제어 메시지에서 지시될 수 있다.
- WIFI의 QoS가 소정의 기준 이하인 상태가 소정의 기간 동안 지속하면 복귀. 좀 더 구체적으로;
성능 (throughput) 혹은 전송 속도 (data rate)이 소정의 기준 이하인 상태가 소정의 기간 이상 지속함. throughput은 일정 기간 동안 무선랜 망을 이용해서 성공적으로 송수신 된 데이터의 양으로 정의될 수 있다. 단말의 전송 성능 (혹은 전송 속도)과 수신 성능(혹은 수신 속도)은 함께 고려되거나 독립적으로 고려될 수 있다. 예컨대 전송 성능과 수신 성능의 합을 기준 성능과 비교하거나, 전송 성능과 또 다른 기준 성능을 비교하거나, 수신 성능과 또 다른 기준 throughput을 비교해서 복귀 조건 성립 여부를 판단할 수 있다. 상기 기준 성능과 기준 기간은 430의 OFFLOAD 명령 제어 메시지에서 지시될 수 있다.
전송 패킷 에러 레이트 (Packet Error Rate) 혹은 비트 에러 레이트가 소정의 기준 이하인 상태가 소정의 기간 이상 지속됨. PER은 소정의 기간 동안 무선랜 망을 이용해서 전송한 데이터 중 긍정적 인지 신호 (Positive Acknowledgement)가 수신되지 않은 데이터의 비율로 정의될 수 있다. 기준 PER/BER과 기준 기간은 430의 OFFLOAD 명령 제어 메시지에서 지시될 수 있다.
버퍼링 지연이 소정의 기준 이상인 상태가 소정의 기간 이상 지속됨. 전송 지연은 데이터가 전송 버퍼에 도착한 시점과 데이터가 WIFI를 통해 전송되는 시점 사이의 차이를 의미한다. 기준 버퍼링 지연과 기준 기간은 _430의 OFFLOAD 명령 제어 메시지에서 지시될 수 있다.
- offload EPS(Evolved Packet System) 베어러에 소정의 기간 동안 데이터 송수신이 발생하지 않음. offload EPS 베어러는 offload DRB 및 offload IP flow와 연결된 EPS 베어러이다. EPS 베어러는 특정 QoS를 제공하는 베어러이며 DRB의 상위 개념이다. 프로토콜 스택 상에서 DRB가 PDCP와 RLC 장치를 포함한다면, EPS 베어러는 PDCP 상위와 IP flow(혹은 IP 플로우 혹은 IP 5-tuple)사이를 연결한다. 하나의 EPS 베어러는 하나의 DRB와 연결된다. IP 5-tuple은 Source IP address, Destination IP address, Sourece Port number, Destination Port number, Protocol ID (혹은 IP flow id, 혹은 QoS id)를 통칭하는 것으로 하나의 IP flow를 특정하는 정보이다. 기준 기간은 _430의 OFFLOAD 명령 제어 메시지에서 지시될 수 있다.
- offload EPS 베어러를 해제할 필요성 발생. 예를 들어 EPS 베어러와 연결된 애플리케이션이 종료되면 해당 EPS 베어러도 해제하여야 한다.
LTE 복귀 조건이 충족되면, 단말(405)은 액세스 가능한 다른 무선 랜 망을 검색할 수 있다. 액세스 가능한 다른 무선랜 망이 없다면 단말(405)은 무선랜 연결을 해제하고 LTE 망으로 복귀한다. 단말(405)은 무선랜 전송 버퍼에 전송한 적이 없는 데이터가 저장되어 있다면, 상기 데이터를 offload DRB로 기기 내 전달한다. LTE 망으로 복귀한다는 것은 offload 되었던 DRB 관점이며, 단말(405) 입장에서는 LTE 망에 계속 머물러 있었으므로 복귀라는 표현은 온당치 않을 수도 있다.
465단계에서 다음으로 단말(405)은 offload DRB에 전송할 데이터가 있는지 검사한다(465). 무선랜 전송 버퍼에서 offload DRB로 데이터가 포워딩 되었다면 전송할 데이터가 존재하고, 이 경우 단말(405)은 정규 BSR을 기지국(410)으로 트리거한다. 더 이상 전송할 데이터가 없어서 LTE로 복귀한 것이라면, offload DRB에 전송할 데이터가 존재하지 않는다. 이 경우, 상기 DRB를 불필요하게 유지하는 것을 방지하기 위해서 단말(405)은 기지국(410)에게 offload 복귀 제어 메시지 (COMEBACK INDICATION)을 전송한다(470). offload 복귀 제어 메시지에는 아래 정보들이 포함될 수 있다.
[offload 복귀 제어 메시지]
- 복귀 이유: QoS가 기준 이하, 채널 품질이 기준 이하, 더 이상 전송할 데이터 부재 등의 이유 중 하나를 표시할 수 있다.
- 무선랜 사용 기록: 무선랜 AP의 SSID, BSSID, 채널 번호 등. 무선랜을 통해 송수신한 데이터의 양. 무선랜에서의 평균 송수신 성능, 무선랜에서의 평균 전송 지연, 무선랜에서의 평균 전송 오류율 등
- 무선랜 로드 정보들의 평균값 (혹은 대표 값), 무선랜 채널 상태의 평균값 (혹은 대표 값)
offload 복귀 제어 메시지를 수신한 기지국은 단말의 DRB를 해제하는 등의 필요한 동작을 수행하고 무선랜 사용 기록과 무선랜 로드 정보 등은 무선랜 관리 서버와 과금 서버로 전달한다.
도 5는 본 발명에 따른 베어러 수준 WIFI offload의 다른 실시 예를 나타낸 흐름도이다.
도 5의 513, 515, 520단계는 각각 도 4의 415, 420, 425단계와 동일하다.
522단계에서 기지국(510)은 단말(505)에게 WIIF offload를 적용할 필요가 있다고 판단한다. 예를 들어 아래 조건이 성립하는 경우이다.
- 단말이 접근 가능한 WIFI 망이 주변에 존재하고
- offload가 적용될 베어러에 송수신할 데이터가 대량으로 존재하거나, 대량으로 발생할 것으로 예상됨
- 현재 LTE 망의 로드를 고려할 때 WIFI로의 offload가 필요함
기지국(510)은 단말(505)에게 WIFI를 검색할 것을 지시하는 제어 메시지, 예를 들어 측정 제어 정보 (measurement control information)를 수납한 제어 메시지를 생성해서 전송한다(523). 측정 제어 정보에는 통상적으로 측정 대상 정보 (Measurement Object), 측정 보고 설정 정보 (report configuration) 등이 포함된다. 종래의 측정 대상은 셀룰러 망에 특화된 것들, 예를 들어 LTE 주파수, UMTS 주파수와 셀 식별자 등으로 정의되어 있다. 본 발명에서는 측정 대상으로 WIFI를 추가한다. 기지국(510)은 측정 대상 정보로 WIFI 망을 식별하는 정보, 예를 들어 SSID 정보와 WIFI 채널 정보 등을 단말(505)에게 전달한다. 측정 보고 설정 정보는 이벤트 형식으로 정의된다. 예를 들어 이벤트 A1은 서빙 LTE 셀의 채널 품질이 소정의 기준 값보다 좋아지는 것을 의미하고 이벤트 A2는 서빙 LTE 셀의 채널 품질이 소정의 기준 값보다 나빠지는 것을 의미한다. 본 발명에서는 WIFI 측정과 관련해서 새로운 이벤트를 정의한다.
- 이벤트 C1: 액세스 가능한 WIFI 망의 채널 품질이 소정의 기준 값보다 좋아짐
- 이벤트 C2: 채널 품질이 소정의 기준 값보다 좋다고 보고했던 WIFI 망의 채널 품질이 소정의 또 다른 기준 값보다 나빠짐.
기지국(510)은 상기 제어 메시지를 이용해서 단말(505)에게 WIFI 측정을 수행할 주기를 지정할 수도 있다. 또한, 기지국(510)은 상기 제어 메시지를 이용해서 단말(505)에게 WIFI 측정을 개시할 조건을 지정할 수도 있다. 예를 들어 기지국(510)은 단말(505)에게 WIFI 망의 위치에 대응되는 RF 지도 (RF fingerpint), 혹은 WIFI AP의 GPS 좌표 및 상기 AP의 영역 정보 (예를 들어 AP 전파 영역의 반경 정보)를 제공함으로써 단말(505)이 WIFI 망에 근접한 경우에만 WIFI 측정을 개시하도록 한다.
상기와 같이 측정 제어 정보를 통해 제공되는 WIFI 관련 정보를 전용 WIFI 관련 정보 (dedicated WIFI information)라 한다.
524단계에서 다음으로, 단말(505)은 523단계에서 제공된 전용 WIFI 관련 정보를 이용해서 액세스 가능한 WIFI 망이 있는지 검색한다(524). 전용 WIFI 관련 정보가 제공되지 않았거나 일부만 제공되었다면, 단말(505)은 공통 WIFI 관련 정보와 전용 WIFI 관련 정보를 조합해서 사용할 수도 있다.
525단계에서 액세스 가능한 WIFI AP를 발견하면(525), 단말(505)은 다음 단계로 진행해서 측정 보고 제어 메시지를 생성해서 기지국(510)으로 보고한다(526). 상기 측정 보고 제어 메시지에는 아래와 같은 정보가 포함될 수 있다.
- 발견한 WIFI 망(혹은AP)의 SSID와 BSSID
- 발견한 WIFI 망(혹은 AP)의 채널 품질
- 상기 AP의 비콘 신호로부터 인지한 로드 정보
상기 제어 메시지를 수신한 기지국(510)은 단말(505)의 일부 베어러를 offload하기로 결정하고(527), 단말(505)에게 offload 지시 메시지를 전송한다(530).
이후의 530단계, 545단계, 547단계, 548단계, 550단계, 555단계, 560단계, 565단계, 570단계, 575단계는 각각 도 4의 430단계, 445단계, 447단계, 448단계, 450단계, 455단계, 460단계, 465단계, 470단계, 475단계와 동일하다.
이다. 도 4 및 도 5에서, 소정의 조건이 만족되면 단말은 기지국에게 BSR을 전송한다. BSR은 긴 BSR과 짧은 BSR로 나누어지며, 긴 BSR에는 4개의 LCG(Logical Channel Group) 들의 버퍼 상태가 보고되고 짧은 BSR에는 오로지 하나의 LCG의 버퍼 상태가 보고된다. LCG란 기지국의 제어에 의해서 그룹화된 로지컬 채널들의 집합이며, 상기 로지컬 채널들은 통상 유사한 로지컬 채널 우선 순위를 가진다. LCG의 버퍼 상태는 상기 LCG에 포함되는 로지컬 채널들의 버퍼 상태의 총합이다. 로지컬 채널은 무선 베어러와 일 대 일로 매핑되는 것으로 RLC 장치와 MAC 장치 사이의 경로이다. BSR을 통해서 보고되는 LCG의 버퍼 상태는 LCG에 속하는 로지컬 채널(혹은 무선 베어러)에 저장되어 있는 전송 가능한 데이터의 양에 관한 것이다.
도 6을 참조하면, 무선 베어러에 저장된 데이터는 크게 아래 4 가지 종류로 구분할 수 있다.
- 타입 A 데이터 (605): 이미 전송되었으며, 수신 측으로부터 성공적 수신이 확인(confirm)되었고 폐기 타이머 (discard timer)가 만료되지는 않은 데이터. 성공적인 수신이 확인되었다는 것은 RLC 계층의 긍정적 인지 신호가 수신되었다는 것을 의미한다. 통상 타입 A 데이터를 저장하고 있을 필요가 없지만, LTE 시스템에서는 핸드 오버 시 타겟 셀에서의 재전송 필요성 등을 고려해서 타입 A 데이터를 폐기하지 않고 저장한다. 단말은 폐기 타이머가 만료되면 해당 데이터를 폐기한다. 폐기 타이머는 PDCP SDU가 PDCP 전송 버퍼에 도착하면 구동되는 타이머로, 너무 오랜 기간 지체되어 유효하지 않은 데이터를 전송하지 않고 폐기하기 위한 것이다.
- 타입 B 데이터 (610, 620, 630): 이미 전송되었으나, 수신 측이 성공적으로 수신하였다는 것을 아직 확인하지 않았고, 폐기 타이머가 만료되지 않은 데이터. 이 유형의 데이터는 향후 재전송이 필요하거나, 필요하지 않지만 폐기 타이머가 만료될 때까지 저장을 하고 있어야 하는 데이터이다.
- 타입 C 데이터 (615, 625): 이미 전송되었으나, 수신 측이 재전송을 요청하여 재전송이 필요하고 폐기 타이머가 만료되지 않은 데이터.
- 타입 D 데이터 (630): 아직 전송된 적이 없으며 폐기 타이머가 만료되지 않은 데이터
설명의 편의를 위해서 EPS 베어러 x에 대해서 WIFI offload를 적용하고, EPS 베어러 x가 DRB x`와 연결되어 있으며, 임의의 LCG x``는 DRB x`로만 구성된 상황을 가정한다.
이때, WIFI offload가 적용되기 전, 즉 445단계 혹은 545단계 이전에 전송된 BSR에서는 LCG x``에 대해서 타입 C 데이터와 타입 D 데이터의 양이 보고된다.
그러나 WIFI offload가 개시되기 직전, 혹은 WIFI offload를 적용하기로 결정한 직후 트리거된 BSR에는 LCG x``에 대해서 타입 C 데이터 양만 보고한다. 이는 offload 후 타입 D 데이터는 WIFI 망을 통해 전송하고 타입 C 데이터는 LTE 망을 통해 전송하기 위해서이다. 타입 C 데이터 역시 WIFI 망을 통해 송수신하는 것도 고려할 수 있지만, 그럴 경우 타입 C 데이터보다 버퍼 도착 시각이 느린 타입 B 데이터(620, 630)를 WIFI 망에서 재전송해야 하는 문제가 발생한다.
단말은 상기 타입 C의 양만 반영된 BSR을 트리거해서 전송함으로써, 기지국이 이미 offload 된 데이터에 대해서 전송 자원을 할당하는 것을 방지할 수 있다.
단말은 WIFI에서 LTE로 복귀하면, WIFI 망에서 아직 전송되지 않은 데이터를 DRB x`의 전송 버퍼로 전달한다. 상기 동작의 결과로 DRB x`의 전송 버퍼에 새로운 데이터가 발생한다면, 단말은 BSR을 트리거해서 기지국으로 전송한다. 이 때 단말은 타입 D 데이터 양도 반영해서 BSR을 생성한다.
도 7은 무선 랜 오프로드 과정에서 데이터 전달에 대해서 설명한 도면이다.
단말이 EPS 베어러 x를 WIFI로 offload 할 때, 매핑된 DRB를 해제할 수도 있고 유지할 수도 있다. 해제하는 경우, 향후 단말이 LTE 망으로 복귀했을 때 DRB를 새롭게 설정해야 하며 이는 추가적인 제어 메시지 교환과 서비스 중단을 의미하므로 DRB를 유지하는 것이 바람직하다.
이처럼 이미 WIFI로 offload된 EPS 베어러의 DRB를 유지하기 위해서는 단말이 기지국에게, 해당 DRB에서 데이터 송수신이 없더라도 DRB를 해제하지 않을 것을 요청해야 하며, 이를 위해서 단말은 445단계와 545단계에서 기지국에게 소정의 제어 메시지를 전송한다.
WIFI offload가 개시되면, 단말은 WIFI의 MAC과 물리 계층을 설정한다. 단말은 offload될 EPS 베어러와 연결된 DRB(720)의 동작을 중지하고, 상기 DRB의 타입 D 데이터를 WIFI 베어러(730)의 전송 버퍼로 기기내 전달한다. 단말은 또한 TFT(Traffic Flow Template)(710)를 재설정해서 EPS 베어러 x의 데이터가 DRB x`가 아니라 WIFI로 전달되도록 한다. TFT는 IP 5-tuple 같은 정보를 이용해서 IP 플로우를 적절한 DRB와 연결하는 장치이다. 단말은 WIFI offload가 개시되기 전에는 offload EPS 베어러의 트래픽 (혹은 offload IP 플로우의 트래픽)이 적절한 DRB로 전달되도록 TFT를 설정하고, WIFI offload가 개시되면 offload EPS 베어러의 트래픽이 WIFI 베어러로 전달되도록 TFT를 조정한다. 그리고 WIFI offload가 종료되면 EPS 베어러 x의 트래픽이 다시 DRB x`로 전달되도록 TFT를 재조정한다. 단말은 WIFI offload가 종료되면 WIFI 베어러에서 아직 전달되지 않은 데이터들을 DRB x`로 기기내 전달한다.
도 8은 본 발명에 따른 단말의 무선 랜 측정 방법을 나타낸 순서도이다.
805단계에 단말은 기지국에게 혹은 네트워크로 WIFI와 관련된 단말의 성능을 보고한다.
WIFI 단말 성능 보고는 기지국의 요청에 의해서 개시될 수 있다. 예컨대, 단말이 WIFI 관련 성능 보고를 지시하는 UE 성능 보고 요청 (UE capability enquiry) 제어 메시지를 수신하면, 단말은 WIFI offload 지원에 대한 단말 정보를 수납한 UE 성능 정보 (UE capability information) 제어 메시지를 생성해서 기지국으로 전송한다.
810단계에서 단말은 WIFI 측정을 지시하는 제어 메시지를 수신한다. 상기 제어 메시지에는 WIFI의 SSID, 채널 정보 등이 측정 대상 정보로 특정되고 이벤트 C1혹은 C2가 측정 보고 설정 정보로 특정될 수 있다. 상기 제어 메시지에는 WIFI 측정 개시 조건과 관련된 정보도 포함될 수 있다.
815단계에서 단말은 상기 제어 메시지에 따라서 WIFI 측정을 수행한다. 단말은 WIFI에 대한 측정을 수행함에 있어서 전용 WIFI 관련 정보만 고려할 수도 있고, 전용 WIFI 관련 정보와 공통 WIFI 관련 정보를 함께 고려할 수도 있다.
820단계에서 소정의 이벤트, 예컨대 C1혹은 C2가 발생하면, 단말은 825단계로 진행해서 측정 결과 보고 메시지를 생성해서 기지국으로 전송한다. 상기 측정 보고 제어 메시지에는 채널 품질이 소정의 기준 이상인 액세스 가능한 WIFI 망의 SSID와 BSSID, WIFI 망의 채널 품질 정보, 로드 정보 등이 포함될 수 있다. 기지국은 상기 측정 결과 보고 메시지를 이용해서 WIFI offload 여부를 결정한다. offload를 결정하였다면, offload 베어러의 타입 D 데이터들을 해당 AP로 전달한다. 기지국은 단말이 보고한 SSID와 BSSID를 이용해서 상기 AP를 특정한다.
도 9는 본 발명에 따른 단말의 무선 랜 오프로드 방법을 나타낸 순서도이다.
905단계는 도 8의 805단계와 동일하다.
910단계에서 단말은 WIFI 관련 정보 및 LTE 복귀 조건을 인지한다. 상기 정보는 서빙 셀의 시스템 정보를 통해 획득하거나, 일대일 RRC 제어 메시지 (unicast RRC control message or dedicate RRC control message)를 통해 획득하거나, 이 둘의 조합으로 획득할 수 있다.
915단계에서 단말은 현재 서빙 셀에서 데이터 송수신을 수행하면서 WIFI offload 조건이 충족되는지 판단한다. WIFI offload 조건이 충족되면 단말은 920단계로 진행한다. WIFI offload 조건은, 단말에게 Offload 베어러가 설정되어 있고, 상기 Offload 베어러에 저장되어 있는 데이터의 양이 소정의 기준 이상인 상태에서 기지국이 단말에게 offload를 지시하거나, 단말이 액세스 가능한 WIFI 망을 발견하면 충족된다.
920단계에서 단말은 offload할 베어러를 판단한다. offload할 베어러는 WIFI 서버로부터 획득한 offload 정책 (offload policy)을 참고해서 단말이 자체적으로 판단할 수도 있고, 기지국이 결정해서 단말에게 지시할 수도 있다.
925단계에서 단말은 offload를 보고하는 RRC 제어 메시지를 생성해서 기지국으로 보고한다. 'WIFI offload 관련 BSR 생성 조건'이 충족된다면 단말은 BSR도 생성해서 함께 기지국으로 전송한다.
930단계에서 단말은 WIFI를 통해 데이터를 송수신하기 위해 WIFI의 MAC 계층 장치와 PHY 계층 장치를 적절하게 설정한다. 그리고 Offload 베어러의 전송 버퍼에 저장되어 있는 데이터 중 소정의 데이터, 예를 들어 타입 D 데이터를 WIFI의 전송 버퍼로 기기 내 전달한다. 단말은 또한 Offload 베어러 데이터의 전달 경로를 LTE에서 WIFI로 변경하기 위해서, TFT를 설정한다. 즉, 단말은 Offload 베어러가 LTE의 해당 DRB로 전달되지 않고 WIFI의 관련 전송 버퍼로 전달되도록 TFT를 설정한다.
935단계에서 단말은 WIFI를 이용해서 offload 베어러의 데이터를 송수신한다. 이때 단말은 소정의 기간 동안, 예컨대 타입 C데이터의 송수신이 완료될 때까지는 LTE와 WIFI를 모두 이용해서 송수신하고, 타입 C 데이터는 LTE로 타입 D 데이터는 WIFI로 송수신할 수도 있다. 또는, 단말은 타입 C 데이터 및 타입 D 데이터를 모두 LTE로 송수신하고, 새로운 데이터만 WIFI로 송수신할 수도 있다.
단말의 복잡도를 줄이는 방법으로, 타입 C 데이터와 타입 D 데이터를 모두 WIFI를 통해 송수신하는 것도 고려할 수 있다. 단말은 offload가 결정되면, 타입 C 데이터, 타입 D 데이터 및 타입 C 데이터에 시간상으로 후행하는 타입 B 데이터 (예를 들어 도 6의 620, 630)는 WIFI 전송 버퍼로 기기내 전달하고, 타입 A 데이터와 타입 C 데이터에 시간상으로 선행하는 타입 B 데이터 (예를 들어 도 6의 610)는 전송 버퍼에서 폐기한다. 그리고 offload 보고 제어 메시지의 전송이 완료되면, offload DRB의 동작을 중지한다. 임의의 offload DRB의 동작을 중지한다는 것은, 상기 DRB로 상향 링크 데이터를 전송하지 않고, 상기 DRB의 하향 링크 데이터가 수신되더라도 MAC 계층에서 조용히 폐기하고 해당 DRB로 전달하지 않는 것을 의미한다.
940단계에서 단말은 LTE 복귀 조건이 충족되는지 검사한다. 충족된다면 단말은 945단계로 진행해서 WIFI의 MAC 장치와 PHY 장치를 해제하고, WIFI의 전송 버퍼에 저장되어 있는 데이터 중 타입 D 데이터를 offload DRB의 전송 버퍼로 기기내 전달한다. 이 때 타입 C 데이터도 함께 전달할 수 있다. 그리고 offload DRB의 동작을 재개한다.
950단계에서 단말은 offload 복귀 제어 메시지를 생성해서 기지국으로 전송한다. WIFI offload 관련 BSR 생성 조건 2가 충족된다면 단말은 정규 BSR을 트리거/생성해서 기지국으로 전송한다.
WIFI offload 관련 BSR 생성 조건 2는 다음과 같다.
[WIFI offload 관련 BSR 생성 조건 2]
- 무선랜 망에서 LTE로 복귀; 그리고
- offload DRB의 버퍼에 데이터가 저장되어 있음
이하에서는, 본 발명에 따른 무선 랜 오프로드 방법의 다른 실시 예로, 단말의 배터리 소모를 줄이기 위해 불연속 수신 동작을 수행하는 방법 및 장치를 제시한다.
제2 실시 예
도 10은 단말의 불연속 수신 동작을 설명하기 위한 도면이다.
불연속 수신 동작은 단말이 정해진 시점에 수신기를 온해서 스케줄링 여부를 검사하도록 함으로써 단말의 전력 소모를 최소화하는 방안이다. 단말이 수신기를 온해서 스케줄링 여부를 검사하는 것을 단말이 액티브 타임에 있다고 표현하며, 단말은 액티브 타임에서 순방향 제어 채널을 감시한다. 순방향 제어 채널은 PDCCH (Physical Downlink Control Channel)라고 하며, 상기 순방향 제어 채널을 통해 순방향 스케줄링 명령(순방향 전송 자원을 할당하고 순방향 데이터 수신에 필요한 기타 제어 정보를 수납한 것) 혹은 역방향 스케줄링 명령(역방향 전송 자원을 할당하고 역방향 데이터 전송에 필요한 기타 제어 정보를 수납한 것)이 전송된다. 규격에서 상기 순방향 스케줄링 명령은 순방향 어사인먼트로(downlink assignment)로, 역방향 스케줄링 명령은 역방향 그랜트 (uplink grant)로 불린다. 이하에서 단말이 순방향 스케줄링 명령 혹은 역방향 스케줄링 명령을 수신한다는 표현은 단말이 순방향 어사인먼트 혹은 역방향 그랜트를 수신하는 것과 동일한 의미이며, PDCCH를 수신한다는 표현과 혼용하도록 한다.
순방향 혹은 역방향 스케줄링 명령은 HARQ 최초 전송을 위한 것과 HARQ 재전송을 위한 것으로 구분된다. 이하에서 HARQ 최초 전송을 위한 순방향 혹은 역방향 스케줄링 명령은 최초 전송용 순방향 혹은 역방향 스케줄링 명령으로, HARQ 재전송을 위한 순방향 혹은 역방향 스케줄링 명령은 재전송용 순방향 혹은 역방향 스케줄링 명령으로 표현한다.
불연속 수신동작은 단말이 어느 시점에 액티브 타임으로 천이해서 PDCCH를 감시하고 어느 시점에 비액티브 타임 (non-active time)으로 천이해서 PDCCH 감시를 중지하고 수신기를 오프하는지 정의함으로써 구체화된다.
단말은 on-duration timer, inactivity timer, HARQ retransmission timer 등의 타이머를 구비하며, 상기 타이머 중 하나라도 구동 중이면 단말은 액티브 타임으로 동작한다.
on-duration 타이머는 DRX 주기(1215)마다 일정 기간씩 구동된다(1205, 1210).
inactivity timer는 단말이 최초 전송을 지시하는 스케줄링 명령을 수신할 때마다 구동된다. 예를 들어 on-duratio timer가 구동되는 중에 단말이 최초 전송을 지시하는 순방향 스케줄링 명령을 수신하면 (1220) inactivity timer가 구동된다. inactivity timer가 구동되는 중에 재전송을 지시하는 순방향 스케줄링 명령이 수신되더라도 inactivity timer는 재구동되지 않는다.
순방향 데이터 수신과 역방향 데이터 전송은 HARQ 방식에 따라서 진행되기 때문에, 단말은 최초 HARQ 전송을 수신하거나 HARQ 재전송을 수신한 후, 데이터에 오류가 잔존하면 HARQ 재전송을 위한 스케줄링 명령을 수신하여야 한다. 이를 위해서 단말에는 HARQ retransmission timer가 정의되어 있으며, HARQ retransmission timer는 순방향 데이터를 수신할 때마다, 상기 데이터를 수신한 시점에서 일정 기간(1230, 1235) 경과한 후 구동된다. 상기 일정 기간은 HARQ RTT Timer라는 소정의 길이를 가지는 타이머에 의해서 정의된다. HARQ 재전송 타이머는 재전송을 지시하는 스케줄링 명령을 수신하면(1260) 중지된다.
이하에서는 단말의 불연속 수신 동작 중에 HARQ retransmission timer가 일찍 종료됨으로써 발생하는 문제를 설명하도록 한다.
도 11은 HARQ retransmission timer가 일찍 종료됨으로써 발생하는 문제를 설명하기 위한 도면이다.
HARQ retransmission timer는 HARQ process 당 하나씩 구비되며, 한 번의 전송에서 두 개의 트랜스포트 블록 (Transport Block, TB, MAC PDU에 CRC가 부가된(append)된 것)이 전송되는 MIMO에서는 비효율적으로 동작하는 문제가 있다.
예를 들어 임의의 시점에 임의의 HARQ 프로세스에 대해서 TB1과 TB2가 송수신되고(1305), 두 개의 TB 모두 전송 실패하는 경우, 단말은 TB1 및 TB2 각각에 대해서 부정적 인지 신호(Negative Acknowledgement, NAK)를 전송한다(1310).
소정의 시점에 HARQ retransmission timer가 구동되고, 두 TB 중 하나의 TB를 수신하면 단말은 retransmission timer의 구동을 중지한다(1315). 이때, 나머지 TB에 대한 재전송은 HARQ retransmission timer가 다시 구동될 때까지 지연된다(1320).
이하에서는, 상기한 문제점을 해결하기 위하여 본 발명의 일 실시 예에 따른 단말의 동작을 설명하도록 한다.
도 12는 본 발명의 일 실시 예에 따른 HARQ retransmission timer 제어 동작을 설명하기 위한 도면이다.
상기한 문제점을 해결하기 위해서, 본 발명의 일 실시 예에서는 MIMO가 구동되는 경우에, 해당 HARQ 프로세스의 TB들 중 아직 성공적으로 수신되지 않은 모든 TB들이 수신된 후에, HARQ retransmission timer를 중지하도록 한다.
예를 들어, 도 12를 참조하면, 임의의 시점에 임의의 HARQ 프로세서에 대해서 TB1과 TB2가 동시에 송수신되고(1405), 두 개의 TB 모두 전송 실패하는 경우, 단말은 각각에 대해서 부정적 인지 신호(Negative Acknowledgement, NAK)를 전송한다(1410). 상기 TB1과 TB2는 모두 HARQ 프로세스의 버퍼에 저장된다.
1415 단계에서 TB1에 대한 재전송이 수신되더라도, TB2에 대한 재전송이 아직 수신되지 않았으므로, 즉 해당 HARQ 프로세스에 재전송이 필요한 또 다른 TB가 저장되어 있으므로 단말은 HARQ retransmission timer를 중지하지 않는다. 이 때 HARQ RTT timer는 정상적으로 구동한다.
1420 단계에서 TB2에 대한 재전송이 수신되면, HARQ retransmission timer가 구동되는 동안 재전송이 필요한 TB들에 대한 재전송이 모두 수신되었으므로 단말은 HARQ retransmission timer를 중지한다. 이 때 단말은 이미 구동 중인 HARQ RTT timer를 재구동한다(1425). 이는 HARQ retransmission timer가 구동되고 있을 때 HARQ RTT timer가 만료되는 것을 방지하기 위한 것이다. 만약 상기 상황이 발생하면, 단말은 HARQ retransmission timer를 다시 구동해야 할지 그대로 유지해야 할지 판단할 수 없기 때문이다.
이하에서는, 상술한 단말의 HARQ retransmission timer 제어 동작에 대하여 보다 상세하게 설명한다.
도 13은 본 발명의 일 실시 예에 따른 단말의 동작을 나타낸 순서도이다.
1505 단계에서 단말은 DRX 설정 정보를 획득한다. 상기 설정 정보는 RRC 연결 재구성과 같은 제어 메시지를 통해 수신될 수 있다. 또한, 상기 설정 정보는, onDurationTimer, drx-InactivityTimer, HARQ retransmission timer, DRX cycle length, drxStartOffset 등에 관한 정보를 포함할 수 있다. 1510 단게에서 단말은 DRX 동작을 개시한다. 구체적으로 단말은 상기 DRX cycle length와 drxStartOffset을 다음의 수식 1에 적용해서 onDurationTimer의 시작 서브 프레임을 특정한다.
Figure 112013041563726-pat00001
여기서, SFN은 0 ~ 1023 사이의 정수로 10 ms 마다 1씩 증가한다.
또한, 단말은 상기 서브 프레임부터 최소한 onDurationTimer가 구동되는 동안 액티브 타임을 유지한다. 만약 상기 기간 동안 새로운 전송을 지시하는 순방향 어사인먼트나 역방향 그랜트가 수신되면 액티브 타임은 drx-InactivityTimer만큼 연장된다.
1515 단계에 임의의 HARQ 프로세스에 대한 순방향 어사인먼트를 수신하면, 단말은 1520 단계로 진행해서 상기 HARQ 프로세스의 HARQ RTT timer가 이미 구동 중인지 검사한다.
HARQ 프로세스의 HARQ RTT timer가 이미 구동 중이라면 단말은 1530 단계로 진행해서 HARQ RTT timer 초기 값을 적용해서 재구동하고 구동 중이 아니라면 단말은 1525 단계로 진행해서 HARQ RTT timer를 구동한다.
해당 HARQ 프로세스의 HARQ retransmission timer가 구동 중이라면 단말은 1535 단계로 진행해서 HARQ retransmission timer 중지 여부를 판단한다.
HARQ retransmission timer가 구동 중이지 않다면 단말은 새로운 순방향 어사인먼트가 수신될 때까지 대기했다가 1515 단계로 복귀한다.
1535 단계에서 단말은 해당 HARQ process에 저장되어 있는, 즉, 아직 성공적으로 디코딩되지 않은 모든 TB들이 상기 타이머가 구동되는 동안 수신되었는지 검사한다(check if all TBs not successfully decoded in the HARQ process are received during when the timer is running). 해당 HARQ process에 저장되어 있는, 즉, 아직 성공적으로 디코딩되지 않은 모든 TB들이 상기 타이머가 구동되는 동안 수신되었으면, 단말은 1545 단계로 진행해서 HARQ retransmission timer를 중지한다. 반대로 상기 타이머가 구동되는 동안 해당 HARQ process에 저장되어 있는, 즉, 아직 성공적으로 디코딩되지 않은 TB들 중 하나라도 수신되지 않았으면, 단말은 1540 단계로 진행해서 HARQ retransmission timer를 중지하지 않고 계속 구동한다.
1535 단계의 조건은 아래와 같이 변형 가능하다.
상기 타이머가 개시되었을 때 아직 성공적으로 디코딩되지 않았던 모든 TB들이 상기 타이머가 구동되는 동안 수신되었다면 단말은 1545 단계로 진행하고, 상기 타이머가 개시되었을 때 아직 성공적으로 디코딩되지 않았던 TB 중, 상기 타이머가 구동되는 동안 수신되지 않은 TB가 있다면 단말은 1540 단계로 진행한다.
제3 실시 예
단말의 전송 속도를 증가시키기 위해서 하나의 단말에 여러 개의 서빙 셀을 집적하는 carrier aggregation이라는 기법이 도입되었다.
도 16은 캐리어 집적을 설명한 도면이다.
도 16을 참조하면, 하나의 기지국에서는 일반적으로 여러 주파수 대역에 걸쳐서 다중 캐리어들이 송출되고 수신된다. 예를 들어 기지국(1605)에서 순방향 중심 주파수가 f1인 캐리어(1615)와 순방향 중심 주파수가 f3(1610)인 캐리어가 송출될 때, 종래에는 하나의 단말이 상기 두 개의 캐리어 중 하나의 캐리어를 이용해서 데이터를 송수신하였다. 그러나 캐리어 집적 능력을 갖는 단말(1630)은 동시에 여러 개의 캐리어를 이용하여 데이터를 송수신할 수 있다. 기지국(1605)은 캐리어 집적 능력을 갖는 단말(1630)에 대해서는 상황에 따라 더 많은 캐리어를 할당함으로써 상기 단말(1630)의 전송 속도를 높일 수 있다. 상기와 같이 하나의 기지국에서 송출되고 수신되는 순방향 캐리어와 역방향 캐리어들을 집적하는 것을 캐리어 집적이라고 한다.
아래에 실시 예에서 빈번하게 사용될 용어들에 대해서 설명한다.
전통적인 의미로 하나의 기지국에서 송출되고 수신되는 하나의 순방향 캐리어와 하나의 역방향 캐리어가 하나의 셀을 구성한다고 할 때, 캐리어 집적이란 단말이 동시에 여러 개의 셀을 통해서 데이터를 송수신하는 것으로 이해될 수도 있을 것이다. 이를 통해 최대 전송 속도는 집적되는 캐리어의 수에 비례해서 증가한다.
이하 실시 예를 설명함에 있어서 단말이 임의의 순방향 캐리어를 통해 데이터를 수신하거나 임의의 역방향 캐리어를 통해 데이터를 전송한다는 것은 상기 캐리어를 특징짓는 중심 주파수와 주파수 대역에 대응되는 셀에서 제공하는 제어 채널과 데이터 채널을 이용해서 데이터를 송수신한다는 것과 동일한 의미를 갖는다. 본 발명에서는 특히 캐리어 집적을 다수의 서빙 셀이 설정된다는 것으로 표현할 것이며, 프라이머리 서빙 셀(이하 PCell)과 세컨더리 서빙 셀(이하 SCell), 혹은 활성화된 서빙 셀 등의 용어를 사용할 것이다. 상기 용어들은 LTE 이동 통신 시스템에서 사용되는 그대로의 의미를 가지며, 자세한 내용은 TS 36.331과 TS 36.321 등에서 찾아 볼 수 있다. 본 발명에서는 또한 timeAlignmentTimer, Activation/Deactivation MAC Control Element, C-RNTI MAC CE 등의 용어를 사용하며, 이들에 대한 보다 자세한 설명은 TS 36.321에서 찾아 볼 수 있다.
단말에게 SCell이 설정되거나 활성화될 때, 혹은 SCell이 해제되거나 비활성화될 때, 단말은 무선 전단 (Radio Frequency Frontend)을 재설정할 수 있다. 이는 RF의 필터 대역폭을 새롭게 설정되거나 활성화되는, 혹은 해제되거나 비활성화되는 상황에 맞춰서 재설정하는 과정을 포함하며, 단말이 상기 재설정을 수행하는 중에는 데이터 송수신이 중지된다. 상기 RF 대역폭 재설정은 아래와 같은 특징을 갖는다.
PCell과 동일한 주파수 밴드의 SCell이 설정되거나 활성화되거나 해제되거나 비활성화될 경우, PCell에서 일정 기간 동안 데이터 송수신이 중지되며, 이를 PCell 송수신 중단 (PCell interruption)으로 표현한다.
PCell interruption 발생 여부와 PCell interruption 구간의 길이는 단말의 처리 능력, 하드웨어 성능 등에 따라서 달라질 수 있다.
- PCell과 SCell이 서로 다른 주파수 밴드에 설정된다면 RF 대역폭 재설정이 필요치 않으며 PCell interruption이 발생하지 않는다.
- PCell과 SCell이 동일한 주파수 밴드에 설정되고, 단말에 하나 이상의 RF 장치가 구비되어 있으며, 상기 주파수 밴드에 하나 이상의 RF 장치를 사용한다면, RF 대역폭 재설정이 필요치 않으며 PCell interruption이 발생하지 않는다.
- PCell과 SCell이 동일한 주파수 밴드에 설정되고, 상기 주파수 밴드에 하나의 RF 장치만 사용한다면 RF 대역폭 재설정이 필요하고 PCell interruption이 발생한다.
SCell이 활성화되거나 비활성화될 때, SCell에 대한 측정을 수행해야 할 때, RF 대역폭 재설을 수행할 경우 SCell이 활성화되거나 비활성화될 때, 단말이 비활성화 상태의 SCell에 대한 측정을 수행하기 이전에, 그리고 측정을 수행한 후에, PCell interruption이 발생한다. SCell이 설정될 때 PCell과 SCell이 모두 포함되도록 RF 장치를 재설정하고, SCell이 해제될 때 PCell만 포함되도록 RF 장치를 재설정한다면, SCell이 설정되어 있는 동안에는 PCell interruption이 발생하지 않는다.
본 발명에서는 단말이 기지국에게 PCell interruption 필요성 여부를 보고하고, 기지국은 PCell interruption 발생 여부와 발생 시점 등을 고려해서 단말을 스케줄링하는 방법 및 장치를 제시한다.
도 17은 본 발명의 일 실시 예에 따라 PCell interruption을 기초로 단말을 스케줄링하는 방법을 나타낸 순서도이다.
도 17을 참조하면, 단말(1705), 기지국(1710), MME(1715)로 구성된 이동 통신 시스템에서 단말(1705)이 power on된다(1720). 단말(1705)은 셀 검색 과정 등을 통해서 전파가 수신되는 셀과 PLMN을 검색하고 이를 바탕으로 어떤 PLMN의 어떤 셀을 통해서 등록 과정을 수행할지 결정한다(1725).
단말(1705)은 상기 선택한 셀을 통해서 RRC 연결 설정 과정을 수행한 후 등록을 요청하는 제어 메시지 ATTACH REQUEST를 MME(1715)에게 전송한다(1730). 상기 메시지에는 단말(1705)의 식별자 같은 정보가 포함된다.
MME(1715)는 ATTACH REQUEST 메시지를 수신하면 단말(1705)의 등록을 허용할지 여부를 판단한 후, 허용하기로 결정하였다면 단말(1705)의 서빙 기지국(1710)으로 초기 컨텍스트 설정 메시지 요청 (Initial Context Setup Request)라는 제어 메시지를 전송한다(1735). MME(1715)가 단말(1705)의 성능 정보를 가지고 있다면 상기 메시지에 단말(1705)의 성능 관련 정보를 포함시켜서 전송시키지만, 초기 등록 과정에서는 MME(1715)가 이런 정보를 가지고 있지 않기 때문에 상기 메시지에 단말(1705)의 성능 관련 정보를 포함되지 않는다.
기지국(1710)은 단말(1705)의 성능 정보가 포함되지 않은 Initial Context Setup Request 메시지를 수신하면 단말(1705)에게 UE CAPABILITY ENQUIRY라는 제어 메시지를 전송한다(1740). 상기 메시지는 단말(1705)에게 성능을 보고할 것을 지시하는 것으로, RAT Type이라는 파라미터를 이용해서 단말(1705)의 특정 RAT (Radio Access Technology)에 대한 성능 정보를 요구한다. 단말(1705)이 LTE 망에서 상기 과정을 수행하고 있다면 RAT-Type은 EUTRA(Evolved Universal Terrestrial Radio Access)로 설정된다. 기지국(1710)은 주변에 다른 무선 망, 예를 들어 UMTS 망이 있다면 향후 핸드 오버 등을 대비해서, RAT-Type에 UTRA를 추가해서 단말(1705)의 UMTS 관련 성능 정보도 요구할 수 있다.
단말(1705)은 UE CAPABILITY ENQUIRY 제어 메시지를 수신하면, RAT Type에서 지시된 무선 기술에 대한 자신의 성능 정보를 수납한 UE CAPABILITY INFORMATION정보를 생성한다. 상기 제어 메시지에는 단말(1705)이 지원하는 밴드 조합들 별로 하나 혹은 하나 이상의 밴드 조합 정보가 수납된다. 상기 밴드 조합 정보는 단말(1705)이 어떤 CA 조합을 지원하는지 나타내는 정보이며, 기지국(1710)은 상기 정보를 이용해서 단말(1705)에게 적절한 CA를 설정한다. 상기 제어 메시지에는 또한 단말(1705)이 소정의 밴드 조합에서 PCell interruption이 필요한지 여부를 나타내는 정보 (PCell interruption 정보)도 포함한다. 단말(1705)은 UE CAPABILITY INFORMATION 메시지를 기지국으로 전송한다(1745).
기지국(1710)은 상기 UE CAPABILITY INFORMATION 메시지에 수납된 단말(1705)의 성능 정보를 MME(1715)에게 보고하기 위해서 UE CAPABILITY INFO INDICATION 메시지를 MME(1715)에게 전송한다(1750). 기지국(1710)은 또한 단말(1705)이 보고한 성능 정보를 바탕으로 단말(1705)의 트래픽 상황이나 채널 상황 등을 참고해서 단말(1705)을 적절하게 재설정한다. 예를 들어 기지국(1710)은 단말(1705)에게 추가적인 SCell을 설정하거나 다른 주파수에 대한 측정을 명령하여 측정 갭을 설정한다(1755).
기지국(1710)은 PCell interruption을 고려해서 PCell의 스케줄링을 수행하고, 단말(1705)은 소정의 기간에 PCell interruption이 발생하도록 RF 대역폭 재설정을 수행한다(1760).
도 18은 본 발명의 일 실시 예에 따라 PCell interruption을 기초로 단말을 스케줄링하는 방법에 있어서 단말의 동작에 관한 제1 실시 예를 나타낸 순서도이다.
도 18을 참조하면, 1805 단계에서 단말은 기지국에게 자신의 성능 보고를 한다. 이 때 단말은 자신이 지원하는 주파수 밴드들, 캐리어 집적을 지원하는 주파수 밴드 조합을 보고하고, 상기 주파수 밴드 조합이 인트라 밴드 조합이라면 RF 대역폭 재설정 필요성을 보고한다.
도 19에는 단말의 성능 정보에 포함되는 밴드 조합에 대한 정보 및 측정 성능 파라미터가 도시되어 있다.
이하에서는, 단말이 주파수 대역 x와 주파수 대역 y를 지원하고, 아래와 같이 캐리어 집적을 지원하는 경우를 가정한다. 아래의 표 1은 각 주파수 밴드 조합에 대한 주파수 대역과 서빙 셀의 수를 나타낸다.
밴드조합
주파수 밴드 조합 1 (1910) 밴드 x에서 서빙 셀 1개
주파수 밴드 조합 2 (1915) 밴드 x에서 서빙 셀 2개
주파수 밴드 조합 3 (1920) 밴드 y에서 서빙 셀 1개
주파수 밴드 조합 4 (1925) 밴드 x에서 서빙 셀 1개, 밴드 y에서 서빙 셀 1개
단말은 아래 조건을 충족시키는 주파수 밴드 조합 정보에 대해서, PCell interruption 발생 여부를 지시하는 1 비트 정보를 포함시킨다.
- 하나의 밴드에서 적어도 두 개의 서빙 셀이 설정되는 밴드 조합.
상술한 예에 따르면, 단말에 주파수 밴드 조합 2(1915)에서 밴드 x에서 두 개의 서빙 셀이 설정되므로, 단말은 성능 정보에 PCell interruption 정보(1930)를 포함시킨다. 단말이 상기 밴드 x에 대해서 하나 이상의 RF 장치를 적용하는 경우, 단말은 PCell interruption 정보를 'no'로 설정하고, 반대로 상기 밴드 x에 대해서 하나의 RF 장치만을 적용하는 경우, PCell interruption 정보를 'yes'로 설정한다. 일 실시 예에서 단말은, 상기 PCell interruption 정보를 명시적으로 포함시키는 대신 이미 존재하는 다른 정보를 이용해서 PCell interruption 필요성 여부를 보고할 수도 있다. 예를 들어 단말이 소정의 조건을 만족시키는 interFreqNeedForGaps 비트를 'no'로 설정하면, 소정의 밴드에서는 PCell interruption이 발생하지 않는다는 것을 의미한다.
전술한 바와 같이 단말의 성능 정보에는 단말이 지원하는 밴드 조합에 대한 정보(SupportedBandCombination 이하 SBC, 1905)와 단말의 측정 성능 파라미터 (MeasParameters, 1935)가 포함된다.
SBC(1905)는 하나 이상의 밴드 조합 파라미터 (BandCombinationParameters 이하 BCP, 1910, 1915, 1920, 1925)로 구성된다. BCP(1910, 1915, 1920, 1925)는 단말이 지원하는 각 각의 밴드 조합에 관한 정보이다.
BCP(1910, 1915, 1920, 1925)는 하나 혹은 하나 이상의 밴드 파라미터 (BandParameters 이하 BP)로 구성된다. BP는 밴드를 지시하는 정보(FreqBandIndicator)와 순방향 밴드 파라미터 (bandParametersDL 이하 BPDL)와 역방향 밴드 파라미터 (bandParametersUL 이하 BPUL)로 구성된다. BPDL은 다시 해당 밴드에서 지원되는 서빙 셀의 개수를 지시하는 대역폭 클래스 (bandwidthClass)와 안테나 성능 정보로 구성된다. 대역폭 클래스 A는 전체 대역폭이 최대 20 MHz이고 서빙 셀 1개를 설정 가능한 성능을 나타내고, 대역폭 클래스 B는 서빙 셀 2개를 설정 가능하고 전체 대역폭 총합이 최대 20 MHz인 성능을 나타내며, 대역폭 클래스 C는 서빙 셀 2개를 설정 가능하고 전체 대역폭 총합이 최대 40 MHz인 성능을 나타낸다.
단말의 측정 성능 정보는 BCP(1910, 1915, 1920, 1925)와 동일한 개수의 밴드 정보 (BandInfoEUTRA, 이하 BI, 1940, 1950)로 구성되며, 하나의 BI(1940, 1950)는 해당 정보들이 수납된 순서에 따라서 하나의 BCP(1910, 1915, 1920, 1925)와 일 대 일로 대응된다. 즉 첫 번째 BI (1940)는 첫 번째 BCP(1910)에 대응하고, 두 번째 BI(1945)는 두 번째 BCP(1915)에 대응된다. BI(1940, 1950)는 EUTRA 주파수 밴드들에 대해서 주파수간 측정 (inter-frequency measurement) 시 측정 갭 필요성 여부를 나타내는 정보인 interFreqBAndList (이하 IFBL)과, UTRA와 같은 다른 RAT (Radio Access Technology)의 주파수 밴드들에 대한 측정 시 측정 갭 필요성 여부를 나타내는 정보인 interRAT-BandList로 구성된다.
IFBL은 단말이 지원하는 EUTRA 주파수 밴드 수만큼의 측정 갭 필요 지시자 (interFreqNeedForGaps, 이하 IFNG, 1950, 1955)로 구성된다. 상기 IFNG(1950, 1955)는 지원하는 EUTRA 주파수 밴드 리스트 (bandListEUTRA)에 수납된 EUTRA 주파수 밴드들에 대해서 순서대로 측정 갭 필요성 여부를 표시한다. 예를 들어 단말이 bandListEUTRA에서 밴드 X와 밴드 Y를 수납하였다면, 첫 번째 IFNG (1950)는 밴드 X에 대한 측정 갭 필요성을 나타내고 두 번째 IFNG(1955)는 밴드 Y에 대한 측정 갭 필요성을 나타낸다. 즉 첫 번째 IFNG (1950)는 연관된 BCP (1910)로 설정되었을 때 단말이 밴드 X에 대해서 주파수간 측정을 수행함에 있어서 측정 갭이 필요한지를 나타내고, 두 번째 IFNG(1955)는 밴드 Y에 대해서 주파수간 측정을 수행함에 있어서 측정 갭이 필요한지 나타낸다.
이하에서는, 단말이 소정의 BCP(1910, 1915, 1920, 1925)에 대해서 PCell interruption 정보를 암묵적으로 보고하는 방법에 대해서 설명한다.
단말이 소정의 주파수 밴드에 대해서 하나 이상의 RF 장치를 사용하도록 설정되어 있다면 단말은 상기 주파수 밴드에 대해서는 PCell interruption이 필요하지 않다고 보고한다. 이때 단말은 상기 주파수 밴드에 하나의 서빙 셀만 설정된 BCP (CA가 아닌 BCP)와 대응되는 BI의 IFNG 중 상기 주파수 밴드에 대응되는 IFNG를 측정 갭이 필요하지 않다고 설정함으로써 PCell interruption이 필요하지 않다고 보고한다. 예를 들어 주파수 밴드 x에 PCell이 설정된 단말에게 동일한 주파수 밴드의 SCell이 설정되거나 해제되거나 활성화되거나 비활성화되거나 측정될 때, PCell interruption이 발생하지 않는다는 것을 표시하기 위해서 단말은 밴드 x에 서빙 셀이 하나만 설정되어 있는 BCP (1910)와 대응되는 BI (1940)에서 밴드 X에 대한 IFNG (1950)를 'no'로 정해서 PCell interruption이 필요하지 않다는 것을 표시한다.
다시 말해서 PCell이 설정된 주파수 밴드에 SCell이 설정되거나 해제되거나 활성화되거나 비활성화되거나 측정될 때, 단말이 자신의 성능을 표 2와 같이 보고했다면 단말은 상기 PCell과 SCell에 별도의 RF 장치를 사용하고 PCell interruption은 발생하지 않는다.
단말에 오직 하나의 서빙 셀이 설정되고, 상기 서빙 셀이 상기 주파수 밴드에 설정되어 있을 때, 상기 주파수 밴드에 대한 주파수간 측정을 수행함에 있어서 측정 갭이 필요하지 않다.
1810 단계에서 단말은 적어도 하나의 SCell을 설정하는 제어 메시지를 수신한다. 1815 단계에서 단말은 상기 SCell의 주파수 대역이 이미 설정되어 있는 서빙 셀, 예를 들어 PCell의 주파수 밴드와 동일한 주파수 밴드에 속하며 인접한 주파수 대역인지 검사한다.
상기 조건이 충족되지 않으면 단말은 1820 단계로 진행해서 RF 대역폭 재설정을 수행하지 않고, PCell interruption이 허용되지 않는 것으로 판단하고 동작을 수행한다. PCell interruption이 허용되지 않는 것으로 판단했을 때 단말 동작은 표 3에, PCell interruption이 허용되는 것으로 판단했을 때 단말 동작은 표 4에 기술하였다.
PCell interruption으로 특정될 수 있는 시구간에서도 기지국이 단말에게 데이터 송수신을 스케줄링할 수 있고, 단말이 역방향 전송을 수행할 것을 기대하므로, 단말은 상기 시구간에서 PDCCH를 감시하고 예정된 역방향 전송을 수행한다.
PCell interruption으로 특정될 수 있는 시구간에서 기지국이 단말에게 데이터 송수신을 스케줄링하지 않고, 단말이 역방향 전송을 수행하지 않을 것으로 기대하므로, 단말은 상기 PCell interruption으로 특정될 수 있는 시구간에서 RF 대역폭 재설정을 수행한다. RF 대역폭 재설정을 완료한 후 단말은 PDCCH 감시와 예정된 역방향 전송 수행을 재개한다.
상기 PCell interruption으로 특정될 수 있는 시구간은 예를 들어 SCell을 설정하는 제어 메시지가 수신된 시점이 서브 프레임 n일 때 n+m1과 n+m1+k1 사이의 시구간이다. 상기 k1은 모든 종류의 단말이 무선 전단 재설정을 수행할 수 있도록 정의되어야 하며, 예를 들어 5가 될 수 있다. m1은 모든 종류의 단말이 상기 제어 메시지를 수신하고 해석해서 무선 전단 재설정이 필요하다는 사실을 인지할 수 있도록 정의되어야 하며, 예를 들어 20이 될 수 있다.
새롭게 설정되는 SCell이 PCell과 동일한 주파수 밴드에 설정되고 두 서빙 셀의 주파수 대역이 서로 인접한 경우, 단말은 1825 단계로 진행해서 표 5의 조건이 만족하는지 검사한다.
상기 PCell과 SCell이 설정된 주파수 밴드에 오직 하나의 서빙 셀이 설정되었을 때 상기 동일한 주파수 밴드에 대한 주파수 간 측정을 실시하기 위해서 측정 갭이 필요하지 않다고 보고하였다.
또는 PCell과 SCell이 설정된 주파수 밴드에 대한 non-CA 설정과 대응되는 BandInfoEUTRA에서, 상기 주파수 밴드의 주변 셀에 대한 주파수간 측정을 수행할 때 측정 갭이 필요하지 않다고 보고하였다.
단말은 표 5의 조건이 만족되면 1830 단계로, 만족되지 않으면 1835 단계로 진행한다. 1830 단계로 진행하였다는 것은 기지국이 PCell interruption이 발생하지 않을 것으로 판단함을 의미하며, 단말은 SCell에 별도의 RF 장치를 설정함으로써 PCell의 RF 장치가 재설정되지 않도록 한다. 그리고 표 3의 동작을 수행한다.
1835 단계로 진행하였다는 것은 기지국이 PCell interruption이 발생할 것으로 판단함을 의미하며, 단말은 소정의 시구간에 RF 대역폭 재설정을 수행해서 PCell interruption이 상기 시구간 내에서 발생하도록 한다.
도 20은 본 발명의 일 실시 예에 따라 PCell interruption을 기초로 단말을 스케줄링하는 방법에 있어서 단말의 동작에 관한 제2 실시 예를 나타낸 순서도이다.
도 20에 있어서 단계 2005에 관한 상세한 내용은 도 18의 단계 1805에 관하여 설명한 바와 동일하다.
2010 단계에서 단말은 적어도 하나의 SCell에 대한 비트가 1로 설정된 Activation/ Deactivation MAC CE(이하 A/D MAC CE)를 수신한다.
A/D MAC CE는 단말에 설정된 SCell들을 활성화하거나 비활성화하는 MAC 계층 제어 메시지로, MAC 서브 헤더와 페이로드로 이뤄진다.
MAC 서브 헤더는 페이로드의 종류를 나타내는 LCID (Logical Channel ID)와 또 다른 MAC 서브 헤더의 존재 여부를 나타내는 E 비트 등으로 구성된다.
도 21에는 페이로드의 비트맵 구성을 나타낸 도면이다.
도 21을 참조하면, 페이로드는 1 바이트의 비트맵으로 C7비트(2105)는 SCell 인덱스가 7인 서빙 셀(이하 SCell 인덱스가 x인 서빙 셀은 SCell x)의 상태를, C4비트(2110)는 SCell 4 의 상태를, C1 비트(2115)는 SCell 1의 상태를 나타낸다. 상기 비트가 1로 설정되는 경우에, 단말은 해당 SCell이 이미 활성화 상태라면 활성화 상태를 유지하고 비활성화 상태라면 활성화 상태로 천이한다. 상기 비트가 0으로 설정되는 경우에 단말은 해당 SCell이 활성화 상태라면 비활성화 상태로 천이하고 이미 비활성화 상태라면 비활성화 상태를 유지한다.
2015 단계에서 단말은 비트가 1로 설정된 SCell이 이미 활성화된 SCell인지 검사한다. 만약 이미 활성화된 SCell이라면 단말은 2050 단계로 진행하고, 아직 활성화되지 않은 SCell이라면 2020 단계로 진행한다.
2020 단계에서 단말은 상기 SCell의 주파수 대역이 이미 설정되어 있는 서빙 셀, 예를 들어 PCell의 주파수 밴드와 동일한 주파수 밴드에 속하며 PCell의 주파수 대역과 인접한 주파수 대역인지 검사한다.
SCell의 주파수 대역이 이미 설정되어 있는 서빙 셀이 아니면 단말은 2025 단계로 진행하고, 이미 설정되어 있는 서빙 셀이면 2030 단계로 진행한다.
2025 단계에서 단말은 n+x1부터 상기 활성화된 SCell에 대한 CQI 전송을 개시한다.
2030 단계에서 단말은 표 5의 조건이 만족되는지 여부를 판단한다. 조건이 만족된다면, RF 대역폭 재설정이 필요하지 않으며 단말은 2025 단계로 진행한다. 조건이 만족되지 않으면 RF 대역폭 재설정이 필요하며 단말은 2035 단계로 진행한다.
2035 단계에서 단말은 소정의 시구간, 예를 들어 서브 프레임 n+m2와 서브 프레임 n+m2+k2사이에서 PCell interruption이 허용된 것으로 판단하고 상기 시구간에 RF 재설정을 수행한다. m2는 A/D MAC CE에 대한 HARQ 피드백 전송이 가능하도록 정의된 값, 예를 들어 5이다. k2는 k1과 동일한 값이 사용될 수 있다.
2040 단계에서 단말은 소정의 서브 프레임, 예를 들어 서브 프레임 n+m2+k2+1부터 상기 SCell에 대한 CQI 전송을 개시하고 PCell에 대한 CQI 전송을 재개한다.
2045 단계에서 단말은 이하의 표 6에 따른 조건의 만족 여부를 판단한다. 표 6의 조건은 단말이 상기 SCell에 대한 활성화 동작 완료 최종 시점을 특정하기 위한 것이다. 임의의 SCell이 활성화되면, 단말은 상기 SCell에 대한 PDCCH 감시, SRS 전송 등의 동작을 수행한다. 상기 동작을 개시하려면 RF 대역폭 재설정 후 SCell 신호 송수신을 위해서 추가적인 재설정 동작이 필요하다. 상기 추가적인 재설정 동작에 소요되는 시간은 단말의 성능에 따라 달라질 수 있으며, 규격에서는 단말이 준수하여야 하는 최소한의 요구 사항, 즉 최종 시점이 정의된다. 하기 표 6의 조건이 만족되는 경우에는 단말이 좀 더 신속하게 재설정을 완료할 수 있으며, 이때 적용되는 최대 활성화 지연을 ad1(activation delay 1)으로 명명한다. 하기 표 6의 조건이 만족하지 않는 경우에는 재설정 완료에 좀 더 오랜 시간이 소요될 수 있으며 이때 적용되는 최대 활성화 지연을 ad2 (activation delay 2)로 명명한다.
서브 프레임 n에 SCell을 활성화시키는 A/D MAC CE를 수신하였을 때, 서브 프레임 n을 기준으로 이전 소정의 기간 내에 SCell에 대한 측정 결과를 수납한 측정 결과 보고 제어 메시지를 전송하였다.
즉 서브 프레임 n -y ~ 서브 프레임 n 사이에 측정 결과 보고 제어 메시지가 수납된 MAC PDU의 전송이 개시되었다.
상기 y는 단말이 비활성화 상태의 SCell에 대한 측정을 수행하였을 때 그 결과가 유효한 기간으로 정의될 수 있다. 통상 5 번의 측정 샘플이 존재하는 경우에 유효한 측정 결과를 도출할 수 있고, 단말은 DRX 주기 마다 혹은 measCycleSCell이라는 기간 마다 한 번의 측정을 수행하므로, 상기 y는 DRX 주기에 5를 곱한 것과 measCycleSCell에 5를 곱한 것 중 큰 값으로 정의될 수 있다.
표 6의 조건이 만족되면 단말은 2055 단계로 진행해서 n+x1에 sCellDeactivationTimer를 구동하고 n+w1에 PHR을 트리거한다. w1은 상기 SCell에 대한 활성화가 완료된 시점과 관련된 서브 프레임을 특정하는 정수이며 최대값이 ad1이다. 다시 말해서 단말은 상기 SCell에 대한 활성화가 완료된 시점에 PHR을 트리거하며, 상기 활성화 완료는 늦어도 n+ad1까지는 완료되어야 한다.
표 6의 조건이 만족되지 않으면 단말은 2060 단계로 진행해서 n+x1에 sCellDeactivationTimer를 구동하고 n+w2에 PHR을 트리거한다. w2는 상기 SCell에 대한 활성화가 완료된 시점과 관련된 서브 프레임을 특정하는 정수이며 최대값이 ad2이다. 다시 말해서 단말은 상기 SCell에 대한 활성화가 완료된 시점에 PHR을 트리거하며, 상기 활성화 완료는 늦어도 n+ad2까지는 완료되어야 한다.
2050 단계에서 단말은 n+x1에 sCellDeactivationTimer를 재구동하고 PHR을 트리거한다.
sCellDeactivationTimer는 일정 기간 동안 데이터 송수신이 없는 SCell을 비활성화하기 위한 것으로 SCell 마다 하나씩 설정된다. 단말은 SCell이 활성화되면 상기 타이머를 구동하고, SCell에 대한 순방향 어사인먼트 혹은 역방향 그랜트가 수신될 때마다, 혹은 상기 SCell이 다시 활성화될 때마다 상기 타이머를 재구동한다.
PHR(Power Headroom Report)은 단말이 기지국에게 현재 가용 전송 출력을 보고하는 제어 정보이다. SCell이 활성화되면 단말은 기지국에게 PHR을 보고해서 상기 SCell에 대한 전송 출력 상황을 보고한다.
SCell 활성화 종류는 아래 3 가지로 구분할 수 있다.
- SCell 활성화 1: 이미 활성화된 SCell에 대해서 활성화를 명령하는 A/D MAC CE가 수신된 경우
- SCell 활성화 2: 비활성화된 SCell에 대해서 활성화를 명령하는 A/D MAC CE가 수신되었으며, 표 6의 조건이 만족되는 경우
- SCell 활성화 3: 비활성화된 SCell에 대해서 활성화를 명령하는 A/D MAC CE가 수신되었으며, 표 6의 조건이 만족되지 않는 경우
A/D MAC CE는 여러 개의 SCell들에 대한 활성화 명령을 수납할 수 있으므로, 하나의 A/D MAC CE에 의해서 상기 여러 종류의 활성화가 동시에 발생할 수도 있다.
이 때 단말은 PHR을 한 번만 트리거하고, 트리거 시점은 가장 늦게 활성화가 완료되는 SCell의 활성화가 완료되는 시점이다. 예컨대, 서브 프레임 n에 A/D MAC CE를 수신하였으며, 상기 A/D MAC CE에 대해서 오로지 SCell 활성화 1만 발생한다면, 단말은 n+x1에 PHR을 트리거한다. 상기 A/D MAC CE에 의해 소정의 SCell에 대해서는 SCell 활성화 1이 발생하고, 다른 SCell에 대해서는 SCell 활성화 2가 발생한다면, 단말은 모든 SCell의 활성화가 완료된 후 PHR을 트리거하되, 상기 PHR은 적어도 n+ad1까지는 트리거되도록 한다. 상기 A/D MAC CE에 의해 SCell 활성화 3도 발생한다면, 단말은 모든 SCell의 활성화가 완료된 후 PHR을 트리거하되, 상기 PHR은 적어도 n+ad2까지는 트리거되도록 한다.
도 14는 본 발명에 따른 단말의 구성을 나타낸 블록도이다.
도 14를 참조하면, 본 발명의 실시 예에 따른 단말은 송수신부(1005), 제어부(1010), 다중화 및 역다중화부(1020), 제어 메시지 처리부(1035), 무선 베어러 장치(1025, 1030, 1033), 오프로드 제어부(1040), 무선랜 장치(1045), TFT(1050), IP 레이어(1055) 등을 포함한다.
상기 송수신부(1005)는 서빙 셀의 하향 링크 채널로 데이터 및 소정의 제어 신호를 수신하고 상향 링크 채널로 데이터 및 소정의 제어 신호를 전송한다. 다수의 서빙 셀이 설정된 경우, 송수신부(1005)는 상기 다수의 서빙 셀을 통한 데이터 송수신 및 제어 신호 송수신을 수행한다.
다중화 및 역다중화부(1020)는 무선 베어러 장치(1025, 1030, 1033)의 데이터를 다중화하거나 송수신부(1005)에서 수신된 데이터를 역 다중화해서 적절한 무선 베어러 장치로 전달하는 역할을 한다.
무선 베어러 장치(1025, 1030, 1033)는 PDCP 장치와 RLC 장치로 구성되며, TFT(1050)로부터 전달된 패킷을 처리한다.
제어 메시지 처리부(1035)는 RRC 계층 장치이며 기지국으로부터 수신된 제어 메시지를 처리해서 필요한 동작을 취한다. 예를 들어 제어 메시지 처리부(1035)는 RRC 제어 메시지를 수신해서 WIFI 관련 정보를 제어부와 오프로드 제어부(1010)로 전달한다.
제어부(1010)는 송수신부(1005)를 통해 수신된 스케줄링 명령, 예를 들어 역방향 그랜트들을 확인하여 적절한 시점에 적절한 전송 자원으로 역방향 전송이 수행 되도록 송수신부(1005)와 다중화 및 역다중화부(1015)를 제어하고, 불연속 수신 동작을 제어한다.
오프로드 제어부(1045)는 오프로드를 위한 제반 절차와 관련된 제어 동작을 수행한다. 보다 구체적으로 오프로드 제어부(1045)는 도 4, 도 5, 도 7, 도 8, 도 9 등에 도시되어 있는 단말 동작 관련 필요한 제어 동작을 수행한다. 도면에는 편의상 도시하지 않았지만 오프로드 제어부(1045)는 제어부(1010), 제어 메시지 처리부(1035), 무선 베어러 장치(1025, 1030, 1033), TFT(1050) 등과 연결되어 있을 수 있다.
TFT(1050)는 IP 레이어에서 전달된 IP 패킷들을 소정의 기준에 따라 적절한 무선 베어러 장치로 전달하거나 무선랜 장치로 전달한다.
도 15는 본 발명에 따른 기지국 장치의 구성을 나타낸 블록도이다.
도 15를 참조하면, 본 발명의 실시 예에 따른 기지국은, 송수신부(1105), 제어부(1110), 다중화 및 역다중화부(1120), 제어 메시지 처리부(1135), 무선 베어러 장치(1125, 1130, 1133), 스케줄러(1115), 하향 링크 트래픽 핸들러(1140), 오프로드 제어부(1145)를 포함한다.
송수신부(1105)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다.
다중화 및 역다중화부(1120)는 무선 베어러 장치(1125, 1130, 1133) 데이터를 다중화하거나 송수신부(1105)에서 수신된 데이터를 역 다중화해서 적절한 상위 계층 처리부(1125, 1130) 혹은 제어부(1110)로 전달하는 역할을 한다.
제어 메시지 처리부(1135)는 단말이 전송한 제어 메시지를 처리해서 필요한 동작을 취하거나, 단말에게 전달할 제어 메시지를 생성해서 하위 계층으로 전달한다.
무선 베어러 장치(1125, 1130, 1133)는 S-GW 혹은 또 다른 기지국에서 전달된 데이터를 RLC PDU로 구성해서 다중화 및 역다중화부(1120)로 전달하거나 다중화 및 역다중화부(1120)로부터 전달된 RLC PDU를 PDCP SDU로 구성해서 S-GW 혹은 다른 기지국으로 전달한다.
스케줄러(1115)는 단말의 버퍼 상태, 채널 상태 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부(1105)에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.
제어부(1110)는 LTE 망에서의 데이터 송수신을 위한 전반적인 제어 동작 및 불연속 수신 관련 제어 동작을 수행한다.
오프로드 제어부(1145)는 오프로드를 위한 제반 절차와 관련된 제어 동작을 수행한다. 보다 구체적으로 오프로드 제어부(1145)는 도 4, 도 5, 도 7, 도 8, 도 9 등에 도시되어 있는 단말 동작과 관련하여 기지국이 수행해야 할 동작 및 상기 도면들에 도시되어 있는 기지국 동작에 필요한 제어 동작을 수행한다.
하향 링크 트래픽 핸들러(1140)는 오프로드 제어부(1145)의 제어에 따라 하향 링크 PDCP SDU를 적절한 무선 베어러 장치(1125, 1130, 1133)로 전달하거나 무선랜 AP로 전달한다.
105, 110, 115, 120: 기지국 125: MME
130: S-GW 135: 단말

Claims (24)

  1. CA(carrier aggregation)을 지원하는 무선 통신 시스템에서 단말에 의한 방법으로서,
    상기 단말의 성능 정보를 보고 요청하기 위한 제1 제어 메시지를 수신하는 단계로서, 상기 제1 제어 메시지는 RAT(Radio Access Technology)의 유형을 나타내는 값을 포함하고, 상기 값은 EUTRA(Evolved Universal Terrestrial Radio Access)로 설정되는, 상기 수신하는 단계;
    상기 RAT의 유형을 나타내는 상기 값에 대응하는 상기 성능 정보를 보고하는 단계로서, 상기 성능 정보는 상기 단말이 소정의 밴드 조합에 대하여 프라이머리 셀(Primary Cell)에 관한 송수신중단(interruption)이 필요한지 여부를 나타내는 정보를 포함하는, 상기 보고하는 단계;
    세컨더리 셀(Secondary Cell)을 추가 또는 해제를 위한 제2 제어 메시지를 수신하는 단계; 및
    상기 프라이머리 셀에 관한 송수신중단을 수행하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 단말의 상기 성능 정보는 상기 CA 를 위한 주파수 밴드 조합을 더 포함하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 프라이머리 셀에 관한 상기 송수신중단을 수행하는 단계는:
    상기 프라이머리 셀이 추가 또는 해제된 세컨더리 셀과 동일한 주파수 밴드에 있다는 것을 확인하는 단계;
    소정의 시간 동안, 상기 프라이머리 셀에 관한 상기 송수신중단을 수행하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  4. CA(carrier aggregation)을 지원하는 무선 통신 시스템에서 단말로서,
    신호를 송수신하기 위한 송수신부; 및
    제어부를 포함하고,
    상기 제어부는:
    상기 단말의 성능 정보를 보고 요청하기 위한 제1 제어 메시지를 수신하도록 상기 송수신부를 제어하고, 상기 제1 제어 메시지는 RAT(Radio Access Technology)의 유형을 나타내는 값을 포함하고, 상기 값은 EUTRA(Evolved Universal Terrestrial Radio Access)로 설정되고,
    상기 RAT의 유형을 나타내는 상기 값에 대응하는 상기 성능 정보를 보고하도록 상기 송수신부를 제어하고, 상기 성능 정보는 상기 단말이 소정의 밴드 조합에 대하여 프라이머리 셀(Primary Cell)에 관한 송수신중단(interruption)이 필요한지 여부를 나타내는 정보를 포함하고,
    세컨더리 셀(Secondary Cell)을 추가 또는 해제를 위한 제2 제어 메시지를 수신하도록 상기 송수신부를 제어하고; 그리고
    상기 프라이머리 셀에 관한 송수신중단을 수행하도록 구성되는, 것을 특징으로 하는 단말.
  5. 제4항에 있어서,
    상기 단말의 상기 성능 정보는 상기 CA 를 위한 주파수 밴드 조합을 더 포함하는 것을 특징으로 하는 단말.
  6. 제4항에 있어서,
    상기 제어부는:
    상기 프라이머리 셀이 추가 또는 해제된 세컨더리 셀과 동일한 주파수 밴드에 있다는 것을 확인하고, 그리고
    소정의 시간 동안, 상기 프라이머리 셀에 관한 상기 송수신중단을 수행하도록 구성되는 것을 특징으로 하는 단말.
  7. CA(carrier aggregation)을 지원하는 무선 통신 시스템에서 기지국에 의한 방법으로서,
    단말의 성능 정보를 보고 요청하기 위한 제1 제어 메시지를 단말에게 전송하는 단계로서, 상기 제1 제어 메시지는 RAT(Radio Access Technology)의 유형을 나타내는 값을 포함하고, 상기 값은 EUTRA(Evolved Universal Terrestrial Radio Access)로 설정되는, 상기 전송하는 단계;
    상기 RAT의 유형을 나타내는 상기 값에 대응하는 상기 성능 정보를 단말로부터 수신하는 단계로서, 상기 성능 정보는 상기 단말이 소정의 밴드 조합에 대하여 프라이머리 셀(Primary Cell)에 관한 송수신중단(interruption)이 필요한지 여부를 나타내는 정보를 포함하는, 상기 수신하는 단계; 및
    세컨더리 셀(Secondary Cell)을 추가 또는 해제를 위한 제2 제어 메시지를 전송하는 단계를 포함하고,
    상기 세컨더리 셀이 추가 또는 해제된 경우, 상기 단말에 의해 상기 프라이머리 셀에 관한 송수신중단을 수행되는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 단말의 상기 성능 정보는 상기 CA 를 위한 주파수 밴드 조합을 더 포함하는 것을 특징으로 하는 방법.
  9. 제7항에 있어서,
    상기 프라이머리 셀이 추가 또는 해제된 상기 세컨더리 셀과 동일한 주파수 밴드에 있다면, 상기 소정의 시간 동안 상기 단말에 의해 상기 프라이머리 셀에 관한 상기 송수신중단이 수행되는 것을 특징으로 하는 방법.
  10. CA(carrier aggregation)을 지원하는 무선 통신 시스템에서 기지국으로서,
    신호를 송수신하기 위한 송수신부; 및
    제어부를 포함하고,
    상기 제어부는:
    단말의 성능 정보를 보고 요청하기 위한 제1 제어 메시지를 단말에게 전송하도록 상기 송수신부를 제어하고, 상기 제1 제어 메시지는 RAT(Radio Access Technology)의 유형을 나타내는 값을 포함하고, 상기 값은 EUTRA(Evolved Universal Terrestrial Radio Access)로 설정되고;
    상기 RAT의 유형을 나타내는 상기 값에 대응하는 상기 성능 정보를 단말로부터 수신하도록 상기 송수신부를 제어하고, 상기 성능 정보는 상기 단말이 소정의 밴드 조합에 대하여 프라이머리 셀(Primary Cell)에 관한 송수신중단(interruption)이 필요한지 여부를 나타내는 정보를 포함하고; 그리고
    세컨더리 셀(Secondary Cell)을 추가 또는 해제를 위한 제2 제어 메시지를 전송하도록 상기 송수신부를 제어하도록 구성되고,
    상기 세컨더리 셀이 추가 또는 해제되는 경우, 상기 단말에 의해 상기 프라이머리 셀에 관한 송수신중단을 수행되는 것을 특징으로 하는 기지국.
  11. 제10항에 있어서,
    상기 단말의 상기 성능 정보는 상기 CA 를 위한 주파수 밴드 조합을 더 포함하는 것을 특징으로 하는 기지국.
  12. 제10항에 있어서,
    상기 프라이머리 셀이 추가 또는 해제된 상기 세컨더리 셀과 동일한 주파수 밴드에 있다면, 상기 소정의 시간 동안 상기 단말에 의해 상기 프라이머리 셀에 관한 상기 송수신중단이 수행되는 것을 특징으로 하는 기지국.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
KR1020130053258A 2013-03-26 2013-05-10 이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치 KR102045332B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14773679.7A EP2981129B1 (en) 2013-03-26 2014-03-25 Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor
PCT/KR2014/002473 WO2014157898A1 (ko) 2013-03-26 2014-03-25 이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치
EP20184434.7A EP3780715A1 (en) 2013-03-26 2014-03-25 Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor
US14/779,447 US10979953B2 (en) 2013-03-26 2014-03-25 Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
CN201480030465.XA CN105247920B (zh) 2013-03-26 2014-03-25 在移动通信系统中借助无线lan卸载流量的方法及其装置
US17/227,807 US11678244B2 (en) 2013-03-26 2021-04-12 Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
US18/305,188 US20230269648A1 (en) 2013-03-26 2023-04-21 Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130032193 2013-03-26
KR20130032193 2013-03-26
KR1020130037738 2013-04-05
KR20130037738 2013-04-05

Publications (2)

Publication Number Publication Date
KR20140118650A KR20140118650A (ko) 2014-10-08
KR102045332B1 true KR102045332B1 (ko) 2019-11-18

Family

ID=51991455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130053258A KR102045332B1 (ko) 2013-03-26 2013-05-10 이동통신 시스템에서 무선랜을 이용해서 트래픽을 오프 로드하는 방법 및 장치

Country Status (5)

Country Link
US (3) US10979953B2 (ko)
EP (2) EP3780715A1 (ko)
KR (1) KR102045332B1 (ko)
CN (1) CN105247920B (ko)
WO (1) WO2014157898A1 (ko)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2850902T3 (pl) * 2012-05-16 2017-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Sposób i układ w sieci komunikacyjnej
CN105103605B (zh) * 2013-04-04 2019-05-10 交互数字专利控股公司 通过卸载实现改进的wlan使用的3gpp wlan交互的方法
WO2014189227A1 (ko) * 2013-05-22 2014-11-27 엘지전자 주식회사 Mtc 기기의 송수신 방법
US10834649B2 (en) * 2013-05-30 2020-11-10 Telefonaktiebolaget Lm Ericsson (Publ) RAN-controlled selective handover between first and second RAN:S
US20150109927A1 (en) * 2013-10-18 2015-04-23 Qualcomm Incorporated Base station to access point interface for data bearer routing
WO2015139764A1 (en) * 2014-03-21 2015-09-24 Nokia Solutions And Networks Oy Cross reporting of empty or non-empty buffers in dual connectivity
WO2015147720A1 (en) * 2014-03-24 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) System and method for activating and deactivating multiple secondary cells
US9888341B2 (en) * 2014-06-26 2018-02-06 Lg Electronics Inc. Data transmitting method using WLAN
CN106664620B (zh) * 2014-07-14 2021-04-09 康维达无线有限责任公司 在集成小小区和wifi网络中的网络发起的移交
CN104270819B (zh) * 2014-10-23 2018-08-24 东莞宇龙通信科技有限公司 辅助通信的方法及系统、具有基站功能的设备和终端
EP3213550A4 (en) * 2014-10-30 2018-06-13 LG Electronics Inc. Method and apparatus for configuring radio bearer types for unlicensed carriers in wireless communication system
WO2016072890A1 (en) * 2014-11-04 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for integration of wireless wide area networks with wireless local area networks
US10178587B2 (en) * 2014-12-02 2019-01-08 Wipro Limited System and method for traffic offloading for optimal network performance in a wireless heterogeneous broadband network
US10098016B2 (en) * 2015-01-22 2018-10-09 Qualcomm Incorporated Adaptive scanning with multi-radio device
CN107113800B (zh) * 2015-01-30 2020-10-30 诺基亚技术有限公司 用于服务小区的方法、装置、计算机可读存储介质和移动通信网络
ES2735407T3 (es) * 2015-02-09 2019-12-18 Huawei Tech Co Ltd Método de descarga de paquetes de datos RLC y estación base
WO2016144389A1 (en) * 2015-03-09 2016-09-15 Hewlett-Packard Development Company, L.P. A-gps wlan
KR102613165B1 (ko) 2015-04-03 2023-12-14 삼성전자 주식회사 무선 통신 시스템에서 다른 무선 접속 기술을 이용한 다중 연결을 제공하기 위한 장치 및 방법
US10104584B2 (en) 2015-05-14 2018-10-16 Blackberry Limited Uplink data splitting
CN113873573A (zh) * 2015-05-22 2021-12-31 三星电子株式会社 终端和基站及其通信方法
WO2016190655A1 (ko) 2015-05-25 2016-12-01 엘지전자 주식회사 단말이 wlan 결합 상태를 보고하는 방법 및 장치
US10342051B2 (en) 2015-06-10 2019-07-02 Htc Corporation Device and method of handling long term evolution-wireless local area network aggregation
EP3318081B1 (en) * 2015-07-03 2023-02-15 LG Electronics Inc. Method and apparatus for enhancing coordination of lte-wlan in wireless communication system
US10582403B2 (en) 2015-07-20 2020-03-03 Samsung Electronics Co., Ltd Communication method and apparatus in wireless communication system
WO2017018538A1 (ja) * 2015-07-30 2017-02-02 京セラ株式会社 無線端末
KR102450976B1 (ko) * 2015-07-31 2022-10-05 삼성전자 주식회사 무선 통신 시스템에서 단말의 부차반송파를 제어하기 위한 장치 및 방법
WO2017026780A1 (ko) * 2015-08-11 2017-02-16 엘지전자 주식회사 단말이 wlan 측정 결과를 보고할지 여부를 결정하는 방법 및 장치
CN107925934B (zh) 2015-09-18 2022-06-03 富士通株式会社 网络指示的处理装置、方法以及通信系统
WO2017052429A1 (en) * 2015-09-23 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Cooperation between wireless communication networks
KR102461929B1 (ko) * 2015-09-25 2022-11-02 삼성전자주식회사 다수의 무선 접속 인터페이스를 지원하는 이동 통신 시스템에서 스트리밍 서비스 데이터를 수신하는 장치 및 방법
US10326641B2 (en) * 2016-01-26 2019-06-18 Motorola Mobility Llc Using RF energy on an uplink channel to transition an unpowered access point to a power-up state
WO2017131808A1 (en) * 2016-01-29 2017-08-03 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods for traffic reporting on offloaded packet data network (pdn) connections
CN107302770A (zh) * 2016-04-15 2017-10-27 中兴通讯股份有限公司 一种数据重传方法及装置
WO2017192171A1 (en) * 2016-05-06 2017-11-09 Intel IP Corporation Uplink data request and uplink splitting signaling
CN108029043B (zh) * 2016-06-30 2021-04-06 北京小米移动软件有限公司 数据传输方法及装置
US10602567B2 (en) 2016-08-12 2020-03-24 Motorola Mobility Llc Methods, devices, and systems for discontinuous reception for a shortened transmission time interval and processing time
US10225821B2 (en) * 2016-09-28 2019-03-05 Sprint Communications Company L.P. Wireless communication system control of carrier aggregation for a wireless relay
CA3038577C (en) 2016-09-29 2024-01-02 Nokia Technologies Oy Radio bearer switching in radio access
CN115001639B (zh) * 2016-11-01 2023-10-03 苹果公司 在lte-wlan聚合中避免通过wlan的上行链路中的hfn去同步方法
US10448249B2 (en) * 2016-12-22 2019-10-15 Cisco Technology, Inc. Network initiated dynamic quality of service for carrier wireless local area network calling
KR102170530B1 (ko) * 2017-03-16 2020-10-28 주식회사 케이티 제어 메시지 중복수신 방법 및 장치
AU2017405271B2 (en) 2017-03-20 2021-04-01 Lg Electronics Inc. Session management method and SMF node
CN108632889A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种缓冲区状态报告的触发方法、装置、终端
WO2019000374A1 (zh) * 2017-06-30 2019-01-03 北京小米移动软件有限公司 数据分流指示方法及装置、数据分流方法及装置和接入点
CN117676720A (zh) 2017-08-10 2024-03-08 北京三星通信技术研究有限公司 一种数据流的操作控制的方法及设备
CN109802793B (zh) 2017-11-17 2021-04-02 电信科学技术研究院 部分带宽去激活定时器的处理方法、装置及终端、设备
CN109451825B (zh) * 2017-11-24 2022-02-01 北京小米移动软件有限公司 交调干扰指示方法及装置、基站和用户设备
US11246122B2 (en) * 2018-01-11 2022-02-08 Htc Corporation Device and method for handling bandwidth parts
WO2019157631A1 (zh) 2018-02-13 2019-08-22 Oppo广东移动通信有限公司 一种QoS流的重映射方法及装置、计算机存储介质
CN110324890B (zh) * 2018-03-30 2022-05-17 维沃移动通信有限公司 部分带宽激活定时器的控制方法及终端
CN110650493B (zh) * 2018-06-26 2023-11-17 华为技术有限公司 一种测量方法和测量装置
CN113316952A (zh) * 2019-01-30 2021-08-27 联发科技(新加坡)私人有限公司 新无线电未许可频谱中的切换改进
CN111182503A (zh) * 2019-12-31 2020-05-19 成都车晓科技有限公司 一种基于多数据融合分析的智能车险评估方法及系统
JP7088230B2 (ja) * 2020-04-01 2022-06-21 富士通株式会社 ネットワーク指示の処理装置、方法及び通信システム
WO2022036586A1 (en) * 2020-08-19 2022-02-24 Qualcomm Incorporated Adaptive discontinuous reception cycle configuration for active flows
US20220338188A1 (en) * 2021-04-15 2022-10-20 Qualcomm Incorporated User equipment (ue) capability frequency band combination prioritization
CN114172791B (zh) * 2021-06-16 2023-06-02 荣耀终端有限公司 通道切换方法、电子设备及存储介质
CN114398106B (zh) * 2022-01-21 2023-11-21 中国联合网络通信集团有限公司 一种卸载策略确定方法、装置、电子设备及存储介质
WO2023141743A1 (en) * 2022-01-25 2023-08-03 Qualcomm Incorporated Control plane operation for disaggregated radio access network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144731A2 (ko) * 2011-04-20 2012-10-26 엘지전자 주식회사 무선 접속 시스템에서 액세스 포인트를 검출하기 위한 방법 및 장치
US20130064103A1 (en) * 2011-09-12 2013-03-14 Renesas Mobile Corporation Mechanism for signaling buffer status information

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064400B2 (en) * 2005-07-20 2011-11-22 Interdigital Technology Corporation Method and system for supporting an evolved UTRAN
KR20080040543A (ko) * 2006-11-02 2008-05-08 엘지전자 주식회사 위상천이 기반 프리코딩을 이용한 데이터 전송 방법 및이를 지원하는 송수신기
US8675743B2 (en) * 2007-08-03 2014-03-18 Apple Inc. Feedback scheduling to reduce feedback rates in MIMO systems
KR101358991B1 (ko) * 2007-09-14 2014-02-06 삼성전자주식회사 다중 빔형성 방법 및 장치
US8873407B2 (en) * 2009-06-16 2014-10-28 Blackberry Limited Method for accessing a service unavailable through a network cell
KR101644882B1 (ko) 2009-07-28 2016-08-02 엘지전자 주식회사 다중반송파 지원 광대역 무선 통신 시스템에서의 반송파 관리 절차 수행 방법 및 장치
CN102026324B (zh) * 2009-09-18 2014-01-29 电信科学技术研究院 一种聚合小区的重配置方法、设备和系统
US9661564B2 (en) 2010-01-08 2017-05-23 Interdigital Patent Holdings, Inc. Method and apparatus for selected internet protocol traffic offload
KR101831281B1 (ko) 2010-04-06 2018-02-23 삼성전자주식회사 이동통신 시스템에서 스케줄링 정보를 처리하는 방법 및 장치
KR20110113484A (ko) 2010-04-09 2011-10-17 주식회사 팬택 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
TWI445368B (zh) * 2010-06-25 2014-07-11 Htc Corp 適用於無線通訊能力傳訊之行動通訊裝置
US20130114579A1 (en) * 2010-07-12 2013-05-09 Lg Electronics Inc. Data transmission method, related base station and user equipment
EP2593040B1 (en) 2010-07-12 2016-03-30 Katholieke Universiteit Leuven Bionic eye lens
EP2597798A4 (en) * 2010-07-21 2014-02-26 Lg Electronics Inc METHOD AND DEVICE FOR SENDING AND RECEIVING A FEEDBACK ON CHANNEL STATUS INFORMATION
WO2012067406A2 (ko) * 2010-11-15 2012-05-24 삼성전자 주식회사 이동통신 시스템에서 단말의 전력 소모를 최적화하는 방법 및 장치
JP5727621B2 (ja) * 2010-12-02 2015-06-03 インターデイジタル パテント ホールディングス インコーポレイテッド 干渉予測を使用してワイヤレス通信におけるチャネル品質指標のフィードバック精度を向上させるシステムおよび方法
CN102595475B (zh) * 2011-01-06 2017-12-19 中兴通讯股份有限公司 一种上报测量能力的方法
US8792376B2 (en) * 2011-01-11 2014-07-29 Samsung Electronics Co., Ltd. Secondary carrier activation/deactivation method and apparatus for mobile communication system supporting carrier aggregation
KR20120099568A (ko) 2011-01-18 2012-09-11 삼성전자주식회사 무선 통신 시스템에서 단말기 내에 복수 개의 이종 통신 모듈이 있을 경우 간섭을 측정하는 방법 및 장치
CN102740470B (zh) 2011-04-02 2018-02-13 中兴通讯股份有限公司 指示用户设备双频段非相邻载波聚合能力的方法及系统
US8554142B2 (en) 2011-06-20 2013-10-08 Verizon Patent And Licensing Inc. Cellular network traffic offload via local wireless connectivity
CN102892143B (zh) * 2011-07-20 2015-11-25 华为技术有限公司 数据分流的方法以及用户设备
BR112014001319A2 (pt) * 2011-07-21 2017-04-18 Telefonica Sa método e sistema para agregação de largura de banda em um ponto de acesso
CN110519847B (zh) * 2011-07-29 2023-11-24 交互数字专利控股公司 用于多无线电接入技术无线系统中的无线电资源管理的方法和设备
JP5804594B2 (ja) * 2011-08-05 2015-11-04 シャープ株式会社 プリコーディング装置、プリコーディング用プログラムおよび集積回路
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
JP6084971B2 (ja) * 2011-08-12 2017-02-22 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ装置、ネットワークノード、その中の第2のネットワークノード、および方法
US9888429B2 (en) 2011-08-12 2018-02-06 Sk Telecom Co., Ltd. Multi-network based simultaneous data transmission method and apparatuses applied to the same
KR101369980B1 (ko) * 2011-08-12 2014-03-14 에스케이텔레콤 주식회사 이기종 네트워크 기반 데이터 동시 전송 서비스 방법 및 이에 적용되는 장치
WO2012163023A1 (zh) * 2011-10-27 2012-12-06 华为技术有限公司 分配多载波资源的方法、基站、和终端
KR101920496B1 (ko) * 2011-11-25 2018-11-21 애플 인크. 인터밴드 tdd 전송 방식에서 사용자 단말의 전송 모드 정보를 송수신하는 방법 및 장치
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
WO2013129985A1 (en) * 2012-03-02 2013-09-06 Telefonaktiebolaget L M Ericsson (Publ) Radio base station and method therein for transforming a data transmission signal
US9107056B2 (en) * 2012-04-18 2015-08-11 Qualcomm Incorporated Small cell activation procedure
US9510365B2 (en) * 2012-04-26 2016-11-29 Lg Electronics Inc. Signal-transceiving method, and apparatus therefor
PL2850902T3 (pl) * 2012-05-16 2017-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Sposób i układ w sieci komunikacyjnej
EP2869478A4 (en) * 2012-07-02 2016-02-24 Lg Electronics Inc METHOD AND DEVICE FOR DELIVERING CHANNEL STATE INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
JP2015531206A (ja) * 2012-08-07 2015-10-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 中断及び測定性能を制御するためのマルチキャリアシステムにおける方法及び装置
US9843986B2 (en) * 2012-08-23 2017-12-12 Interdigital Patent Holdings, Inc. Method and apparatus for performing device-to-device discovery
WO2014088174A1 (ko) * 2012-12-03 2014-06-12 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
CN103338518B (zh) * 2012-12-31 2016-12-28 上海华为技术有限公司 一种发送rrc信令的方法、基站和系统
KR102087039B1 (ko) * 2013-01-18 2020-03-10 삼성전자 주식회사 이차원 평면 배열 안테나를 사용하는 무선 통신 시스템에서 채널 상태 정보 기준 신호 전송 및 하이브리드 공간분할 다중화와 공간분할 다중 접속 방법 및 장치
WO2014112920A1 (en) * 2013-01-18 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Avoiding serving cell interruption

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144731A2 (ko) * 2011-04-20 2012-10-26 엘지전자 주식회사 무선 접속 시스템에서 액세스 포인트를 검출하기 위한 방법 및 장치
US20130064103A1 (en) * 2011-09-12 2013-03-14 Renesas Mobile Corporation Mechanism for signaling buffer status information

Also Published As

Publication number Publication date
EP2981129A4 (en) 2016-11-02
US20230269648A1 (en) 2023-08-24
EP3780715A1 (en) 2021-02-17
US11678244B2 (en) 2023-06-13
WO2014157898A1 (ko) 2014-10-02
EP2981129B1 (en) 2020-07-08
CN105247920B (zh) 2019-06-11
KR20140118650A (ko) 2014-10-08
US20160050605A1 (en) 2016-02-18
US20210235351A1 (en) 2021-07-29
EP2981129A1 (en) 2016-02-03
CN105247920A (zh) 2016-01-13
US10979953B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
US11678244B2 (en) Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
US11576167B2 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
US10791480B2 (en) Method and device for transmitting and receiving data in mobile communication system
KR102184046B1 (ko) 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
KR20140022711A (ko) 이동통신 시스템에서 핸드 오버를 수행하는 방법 및 장치
WO2014190550A1 (zh) 一种通讯方法、基站及用户设备
KR20190113472A (ko) 무선 통신 시스템에서 측정을 위한 장치 및 방법
KR20130018188A (ko) 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 전송하는 방법 및 장치
KR20230145006A (ko) 비지상 네트워크에서 rrc제어 메시지 기반으로 rrc연결을 해제하는 방법 및 장치
KR102503663B1 (ko) 비지상 네트워크에서 harq 피드백 여부를 판단하는 방법 및 장치
KR102485110B1 (ko) 비지상 네트워크에서 랜덤 액세스와 연결 상태 불연속 수신을 수행하는 방법 및 장치
KR102503657B1 (ko) 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant