WO2022036586A1 - Adaptive discontinuous reception cycle configuration for active flows - Google Patents

Adaptive discontinuous reception cycle configuration for active flows Download PDF

Info

Publication number
WO2022036586A1
WO2022036586A1 PCT/CN2020/109985 CN2020109985W WO2022036586A1 WO 2022036586 A1 WO2022036586 A1 WO 2022036586A1 CN 2020109985 W CN2020109985 W CN 2020109985W WO 2022036586 A1 WO2022036586 A1 WO 2022036586A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay budget
communication flow
data delay
request message
time duration
Prior art date
Application number
PCT/CN2020/109985
Other languages
French (fr)
Inventor
Nan Zhang
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/109985 priority Critical patent/WO2022036586A1/en
Publication of WO2022036586A1 publication Critical patent/WO2022036586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates to wireless communications, including adaptive discontinuous reception (DRX) cycle configuration for active flows.
  • DRX adaptive discontinuous reception
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support adaptive discontinuous reception (DRX) cycle configuration for active flows.
  • a user equipment UE
  • the UE may communicate with a base station to activate a communication flow to exchange data traffic for one or more services.
  • Each communication flow may have a data delay budget based on a quality of service (QoS) for that communication flow.
  • QoS quality of service
  • the UE may send a time duration request (e.g., may request a DRX cycle duration) to the base station that aligns with the data delay budget.
  • the base station may configure the UE with a DRX cycle based on the time duration request.
  • the base station and the UE may communicate data traffic via the one or more active communication flows during one or more of the DRX cycles based on the data delay budget and the DRX cycle having the time duration.
  • a method of wireless communications at a UE may include communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmitting, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receiving a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the apparatus may include means for communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmitting, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receiving a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that may be selected based on the second data delay budget.
  • transmitting the first request message may include operations, features, means, or instructions for transmitting, to the base station, the first request message that indicates the first time duration requested for the DRX cycle of the UE that may be selected based on a shorter of the first data delay budget and the second data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, and transmitting a second request message that indicates a second time duration requested for the DRX cycle that may be selected based on the second data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message, and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, where the first request message may be transmitted based on deactivating the second communication flow.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, communicating control signaling with the base station to deactivate the first communication flow, and transmitting a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
  • transmitting the first request message may include operations, features, means, or instructions for transmitting the first request message that may be a radio resource control (RRC) connected mode-DRX (C-DRX) cycle message.
  • RRC radio resource control
  • communicating control signaling with the base station to activate the first communication flow may include operations, features, means, or instructions for communicating control signaling that includes a non-access stratum (NAS) message to activate the first communication flow.
  • NAS non-access stratum
  • communicating control signaling with the base station to activate the first communication flow may include operations, features, means, or instructions for communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  • URLLC ultra-reliable low-latency communication
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • transmitting the first request message may include operations, features, means, or instructions for transmitting the first request message that may be an RRC request message.
  • a method of wireless communications at a base station may include communicating control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receiving, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmitting, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the apparatus may include means for communicating control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receiving, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmitting, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that may be selected based on the second data delay budget.
  • receiving the first request message may include operations, features, means, or instructions for receiving, from the UE, the first request message that indicates the first time duration requested for the DRX cycle of the UE that may be selected based on a shorter of the first data delay budget and the second data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, and receiving, from the UE, a second request message that indicates a second time duration requested for the DRX cycle that may be selected based on the second data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message, and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, where the first request message may be received based on deactivating the second communication flow.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, communicating control signaling with the UE to deactivate the first communication flow, and receiving a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
  • receiving the first request message may include operations, features, means, or instructions for receiving the first request message that may be an RRC C-DRX cycle message.
  • communicating control signaling with the UE to activate the first communication flow may include operations, features, means, or instructions for communicating the control signaling that includes a NAS message to activate the first communication flow.
  • communicating control signaling with the UE to activate the first communication flow may include operations, features, means, or instructions for communicating control signaling to activate an URLLC flow, an eMBB communication flow, an mMTC communication flow, or a combination thereof.
  • receiving the first request message may include operations, features, means, or instructions for receiving the first request message that may be an RRC request message.
  • FIGs. 1 and 2 illustrate examples of wireless communications systems that support adaptive discontinuous reception (DRX) cycle configuration for active flows in accordance with aspects of the present disclosure.
  • DRX adaptive discontinuous reception
  • FIGs. 3A and 3B illustrate examples of timelines that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • FIGs. 13 through 18 show flowcharts illustrating methods that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • a user equipment may communicate with a base station to activate one or more communication flows to exchange data traffic for one or more services. For example, a UE may send a flow activation request to the base station, and the base station may respond with a flow activation confirmation in response. In some cases, the UE may activate the communication flow based on a user performing an operation with the UE (e.g., opening an application, streaming data, sending data etc. ) . Each communication flow may have a data delay budget determined by the quality of service (QoS) for that communication flow.
  • QoS quality of service
  • a communication flow having a relatively high QoS may have a relatively short data delay budget (i.e., may have relatively short latency for communications, such as latency no more than 50 milliseconds (ms) )
  • a communication flow having a relatively low QoS may have a relatively long data delay budget (i.e., may have relatively long latency for communications, such as latency no more than 300 ms) .
  • the UE may operate according to a discontinuous reception (DRX) cycle, such as a connected mode-DRX (C-DRX) cycle.
  • DRX discontinuous reception
  • C-DRX connected mode-DRX
  • the UE may receive packets during an on duration of the DRX cycle and may enter an idle or sleep mode during an off duration of the DRX cycle to conserve power.
  • the UE may request an on duration of the DRX cycle independent of a QoS for an active communication flow between the UE and the base station.
  • the UE may power on unnecessarily (e.g., if the DRX cycle on duration is less than the data delay budget) , or the UE may miss a transmission while in an idle or sleep state (e.g., if the DRX cycle on duration is greater than the data delay budget) , which may cause inefficient power consumption at the UE or increased signaling latency between the UE and the base station.
  • a UE may transmit a time duration request to a base station to request a time duration of a DRX cycle that is capable of satisfying a data delay budget for an active communication flow. For example, the UE may request a duration of a DRX cycle based on the data delay budget for one or more active communication flows (e.g., a minimum data delay budget if there are multiple active communication flows) . In some cases, the data delay budget may satisfy one or more QoS parameters for the active communication flows.
  • the UE may transmit a scheduling request including the requested time duration for the DRX cycle for communications with the base station.
  • the base station may configure the UE with a DRX cycle time duration that satisfies the data delay budget. That is, the UE and the base station may communicate during one or more DRX cycles with an on duration and off duration that satisfy the data delay budget.
  • a user may activate an additional communication flow or deactivate a current communication flow at the UE. If the additional communication flow or the deactivated communication flow have data delay budgets shorter than the configured time duration, the UE may determine a new time duration for the DRX cycle and signal the time duration to the base station in a scheduling request. The base station may configure the UE with a new DRX cycle time duration that satisfies the change in data delay budget.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further described in the context of timelines and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to adaptive DRX cycle configuration for active flows.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE- Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE- Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may activate one or more communication flows for communicating with a base station 105. For example, the UE 115 may transmit a flow activation request to the base station 105, and the base station may transmit a flow activation confirmation to the UE 115 in response. Additionally or alternatively, the UE 115 may deactivate one or more communication flows for communicating with the base station 105. In some cases, if the UE 115 deactivates a communication flow, the control signaling may include a flow deactivate request and a flow deactivation confirmation. In some cases, a user of the UE 115 may activate a communication flow by performing an operation with the UE 115.
  • each communication flow may correspond to a service, such as an ultra-reliable low-latency communications (URLLC) service, an enhanced mobile broadband (eMBB) service, a massive machine type communications (mMTC) service, or the like and may have a data delay budget that satisfies one or more QoS parameters for the communication flow.
  • the base station 105 may use the data delay budget to schedule resources (e.g., time-frequency resources) for communications at the UE 115.
  • the UE 115 may operate according to a DRX cycle, such as a C-DRX cycle, to save power at the UE 115.
  • the base station 105 may configure the UE 115 (e.g., via RRC signaling) with an on duration for monitoring for data traffic and an off duration in which the UE 115 is in a sleep or idle mode.
  • the base station 105 may configure the UE 115 with a DRX cycle that affects the latency for communication flows (e.g., based on balancing power consumption and signaling latency at the UE 115) .
  • the data delay budget that satisfies one or more QoS parameters for a communication flow may be configured separately from the DRX cycle time durations (e.g., the on duration and the off duration) .
  • the UE 115 may power on unnecessarily (e.g., if the DRX cycle on duration is less than the data delay budget) , or the UE 115 may miss a transmission while in an idle or sleep state (e.g., if the DRX cycle on duration is greater than the data delay budget) , which may cause inefficient power consumption at the UE 115 or increased signaling latency between the UE 115 and the base station 105.
  • the UE 115 may determine a time duration for a DRX cycle based on a data delay budget for one or more communication flows, which may allow the base station 105 to configure the UE 115 with a DRX cycle that aligns with the data delay budget. For example, the UE 115 may determine the shortest data delay budget for the one or more communication flows based on one or more QoS parameters for each communication flow. The UE 115 may transmit a time duration request to the base station 105 based on the determined data delay budget. The base station 105 may configure the UE 115 with a scheduling request to monitor one or more resources (e.g., time-frequency resources) during an on duration of the DRX cycle based on the time duration request. The base station 105 and the UE 115 may communicate data traffic via the one or more active communication flows during one or more of the DRX cycles.
  • resources e.g., time-frequency resources
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100 and may include UE 115-a, communication link 125-a, and base station 105-a with coverage area 110-a, which may be examples of a UE 115, a communication link 125, and a base station 105 with a coverage area 110 as described with reference to FIG. 1.
  • UE 115-a may be configured with, or otherwise support, an adaptive DRX cycle time duration for data traffic between UE 115-a and base station 105-a via communication link 125-a.
  • UE 115-a and base station 105-a may communicate control information using uplink control link 205, downlink control link 210, or both to configure UE 115-a with a DRX cycle time duration that satisfies a data delay budget for one or more communication flows 215.
  • a UE 115 may activate one or more communication flows 215 for communicating with a base station 105.
  • UE 115-a and base station 105-a may communicate control signaling 220-a to activate flow 215-a, control signaling 220-b to activate flow 215-b, control signaling 220-c to activate flow 215-c, or any additional control signaling 220 to activate additional communication flows 215.
  • three communication flows 215 are shown, UE 115-a and base station 105-a may communicate using any number of communication flows 215.
  • the control signaling 220 may include a flow activation request and a flow activation confirmation.
  • UE 115-a may transmit a flow activation request to base station 105-a via uplink control link 210 and may receive a flow activation confirmation from base station 105-a via downlink control link 205.
  • the control signaling 220 may deactivate a current communication flow. For example, if UE 115-a has already activated communication flow 215-a, control signaling 220-a may deactivate communication flow 215-a.
  • the control signaling may include a flow deactivate request and a flow deactivation confirmation.
  • UE 115-a may transmit a flow deactivation request to base station 105-a via uplink communication link 210 and may receive a flow deactivation confirmation from base station 105-a via downlink communication link 205.
  • a user of the UE 115 may activate a communication flow 215 by performing an operation with the UE 115.
  • the user may initiate a voice call, may stream data, may open an application, etc.
  • each communication flow 215 may correspond to a service, such as an ultra-reliable low-latency communications (URLLC) service, an enhanced mobile broadband (eMBB) service, a massive machine type communications (mMTC) service, or the like and may have a data delay budget that satisfies one or more QoS parameters for the communication flow 215.
  • the data delay budget may include a packet transmission delay and may be determined by a core network (e.g., a core network 130 as described with reference to FIG.
  • the base station 105 may use the data delay budget to schedule resources (e.g., time-frequency resources) for communications at the UE 115. For example, the base station 105 may transmit radio resource control (RRC) signaling to schedule resources for communications at the UE 115 that satisfy a data service latency (e.g., the data delay budget) .
  • RRC radio resource control
  • the UE 115 may operate according to a DRX cycle, such as a C-DRX cycle, to save power at the UE 115.
  • the base station 105 may configure the UE 115 (e.g., via RRC signaling) with an on duration for monitoring for data traffic and an off duration in which the UE 115 is in a sleep or idle mode.
  • the UE 115 may monitor a downlink control channel (e.g., the physical downlink control channel (PDCCH) ) discontinuously using one or more parameters specified by the DRX cycle configuration.
  • a downlink control channel e.g., the physical downlink control channel (PDCCH)
  • the UE 115 may monitor the downlink control channel during an active time based on an on duration timer, a pending scheduling request transmitted on an uplink control channel, an uplink grant for a pending retransmission (e.g., a HARQ) , a downlink control channel indicating a new transmission has not been received, or a combination.
  • a pending scheduling request transmitted on an uplink control channel e.g., a HARQ
  • a pending retransmission e.g., a HARQ
  • the base station 105 may configure the UE 115 with a DRX cycle that affects the latency for communication flows 215 (e.g., based on balancing power consumption and signaling latency at the UE 115) .
  • the data delay budget that satisfies one or more QoS parameters for a communication flow 215 may be configured separately from the DRX cycle time durations (e.g., the on duration and the off duration) .
  • the UE 115 may power on unnecessarily (e.g., if the DRX cycle duration is less than the data delay budget) , or the UE 115 may miss a transmission while in an idle or sleep state (e.g., if the DRX cycle on duration is greater than the data delay budget) , which may cause inefficient power consumption at the UE 115 or increased signaling latency between the UE 115 and the base station 105.
  • the UE 115 may determine a time duration for a DRX cycle based on a data delay budget for one or more communication flows 215, which may allow the base station 105 to configure the UE 115 with a DRX cycle that aligns with the data delay budget.
  • UE 115-a and base station 105-a may communicate control signaling 220-a and control signaling 220-b to activate communication flow 215-a and communication flow 215-b, respectively.
  • the control signaling 220 may include a NAS message.
  • communication flow 215-a may have a first data delay budget (e.g., 300 ms) and communication flow 215-b may have a second data delay budget (e.g., 200 ms) .
  • UE 115-a may determine a data delay budget for the communication flow with a relatively short latency for the one or more QoS parameters (e.g., the communication flow 215 from the set of one or more activated flows having the minimum latency value) .
  • UE 115-a may determine communication flow 215-b with the second data delay budget has the shortest latency requirement (e.g., 200 ms) relative to communication flow 215-a.
  • UE 115-a may transmit a time duration request 225-a to base station 105-a for a DRX cycle based on the data delay budget for communication flow 215-b (e.g., a time duration request of 200 ms) .
  • the time duration request 225 may be an RRC C-DRX cycle message.
  • Base station 105-a may configure UE 115-a with a scheduling request to monitor one or more resources (e.g., time-frequency resources) during an on duration of the DRX cycle based on the time duration request 225-a.
  • base station 105-a may transmit DRX control message 230-a to UE 115-a (e.g., via the downlink control link 205 using RRC signaling) .
  • a DRX control message 230 may include an indication of the resources UE 115-a should monitor (e.g., an on duration and an off duration) .
  • Base station 105-a and UE 115-a may communicate data traffic via communication flow 215-a and communication flow 215-b for one or more DRX cycles (e.g., as specified in control message 230-a) .
  • UE 115-a and base station 105-a may communicate control signaling 220-c to activate communication flow 215-c subsequent to activating communication flow 215-a and communication flow 215-b.
  • Communication flow 215-c may have a third data delay budget. If the third data delay budget is shorter than the first data delay budget for communication flow 215-a and the second data delay budget for communication flow 215-b, UE 115-a may transmit an updated time duration request 225 (e.g., time duration request 225-b) . For example, UE 115-a may transmit time duration request 225-b to base station 105-b based on the shorter, third data delay budget.
  • Base station 105-a may transmit DRX control message 230-b to UE 115-a in response to time duration request 225-b.
  • DRX control message 230-b may configure UE 115-a with an updated DRX cycle (e.g., a shorter on duration) , which is described in further detail with respect to FIG. 3A. If the third data delay budget is longer than the first data delay budget for communication flow 215-a and the second data delay budget for communication flow 215-b, UE 115-a may not transmit an updated time duration request 225, which is described in further detail with respect to FIG. 3B.
  • UE 115-a and base station 105-a may communicate control signaling to deactivate a communication flow 215. If UE 115-a deactivates a communication flow 215 with a short data delay budget relative to the data delay budgets for the remaining communication flows 215, then UE 115-a may transmit an updated time duration request 225 including the next shortest data delay budget for the remaining communication flows 215 to base station 105-b, which is described in further detail with respect to FIG. 3A.
  • UE 115-a may not transmit an updated time duration request 225, which is described in further detail with respect to FIG. 3B.
  • FIGs. 3A and 3B illustrate example of timelines 300 that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • timeline 300-a and timeline 300-b may implement aspects of wireless communications system 100, wireless communications system 200, or both. Aspects of timelines 300 may be implemented by a UE 115, a base station 105, or both, as described with reference to FIGs. 1 and 2.
  • timelines 300 may illustrate a process for determining a DRX cycle 305 based on a data delay budget at a UE 115.
  • the UE 115 may identify the shortest data delay budget (e.g., minimum required latency of a flow) for one or more active communication flows and may request a DRX cycle 305 based on the shortest data delay budget.
  • Timeline 300-a may illustrate an example of a DRX cycle 305 update at a UE 115 based on activating a new communication flow or deactivating an existing communication flow with the shortest data delay budget.
  • Timeline 300-b may illustrate an example of a DRX cycle 305 that is not updated at a UE 115 based on activating a new communication flow or deactivating an existing communication flow with a data delay budget longer than the shortest data delay budget.
  • a UE 115 may transmit data or control messages to a base station 105 in an uplink direction 310 (e.g., on an uplink control channel or uplink shared channel) . Additionally or alternatively, the UE 115 may receive data or control message from the base station 105 in a downlink direction 315 (e.g., on a downlink control channel or downlink shared channel) . In some examples, the UE 115 and the base station 105 may communicate control signaling to activate or deactivate a communication flow, as described with reference to FIG. 2. For example, the UE 115 may transmit a flow activation or deactivation request 320 to the base station 105 and may receive a flow activation or deactivation confirmation 325 from the base station 105 in response.
  • the UE 115 may transmit a flow activation request 320-a and 320-b to activate a communication flow with the base station 105.
  • the base station 105 may transmit flow activation confirmation 325-a and flow activation confirmation 325-b in response.
  • the data delay budget corresponding to the activated communication flow may be shorter relative to the data delay budget for other activated communication flows.
  • the UE 115 may transmit a time duration request 330 (e.g., time duration request 330-a and time duration request 330-b) to a base station 105 based on the shorter data delay budget corresponding to the activated communication flow.
  • the time duration request 330 may indicate a requested time duration of the DRX cycle.
  • the time duration request 330 may include an indication of a communication latency that satisfies one or more QoS parameters for the communication flow (e.g., the data delay budget) .
  • Time duration request 330-a may indicate a requested duration of DRX cycle 305-a (e.g., a DRX cycle 305 in a period set of DRX cycles 305)
  • time duration request 330-b may indicate a requested of DRX cycle 305-b.
  • the base station 105 may transmit a DRX control message 335 indicating one or more resources (e.g., in a scheduling request) for the UE 115 to monitor during a DRX cycle 305 and the duration in time of the DRX cycle 305.
  • the DRX control message 335 may include an indication of an on duration 340 in which the UE monitors for data traffic 345 and an off duration 350 in which the UE is in an idle or sleep mode.
  • the UE 115 may receive DRX control message 335-a in response to time duration request 330-a.
  • DRX control message 335-a may include an indication of on duration 340-a to monitor for data traffic 345-a and off duration 350-a for DRX cycle 305-a.
  • the UE 115 may receive DRX control message 335-b in response to time duration request 330-b.
  • DRX control message 335-b may include an indication of on duration 340-b to monitor for data traffic 345-b and off duration 350-b for DRX cycle 305-b.
  • the UE 115 may operate according to DRX cycle 305-a in timeline 300-a and DRX cycle 305-b in timeline 300-b for any number of cycles. That is, the UE 115 may continue to monitor for data traffic 345 during the on duration 340 and enter an idle or sleep mode during the off duration 350.
  • the UE 115 may receive another flow activation or deactivation request 320-c.
  • the base station 105 may respond with a flow activation or deactivation response 325-c.
  • the activated communication flow may have a shorter data delay budget relative to the communication flow activated by activation request 320-a.
  • the UE 115 may transmit another time duration request 330-c based on the activated communication flow having a shorter data delay budget than any of the other activated communication flows.
  • the time duration request 330-c may include an indication of a duration in time of DRX cycle 305-c based on the data delay budget for the activated communication flow. For example, the time duration request 330-c may request to extend or shorten the duration in time of DRX cycle 305-c.
  • the UE 115 may deactivate an existing communication flow with the shortest data delay budget.
  • the UE 115 may transmit a time duration request 330-c to lengthen the DRX cycle, which may conserve power at the UE 115 while satisfying the latency requirements of the remaining active communication flows. That is, if the existing communication flow that is deactivated has the shortest data delay budget (e.g., relative to any of the remaining communication flows) , the UE 115 may transmit a time duration request 330-c including an indication of the next shortest data delay budget for the remaining active communication flows.
  • the base station 105 may transmit DRX control message 335-c in response to time duration request 330-c.
  • DRX control message 335-c may include an indication of DRX cycle 305-c (e.g., on duration 340-c and off duration 350-c) .
  • on duration 340-c may be based on the data delay budget indicated in time duration request 330-c.
  • the UE 115 may monitor for data traffic 345-c during on duration 340-c and may enter a sleep or idle mode during off duration 350-c. The UE 115 may continue to operate according to DRX cycle 305-c for any number of cycles.
  • the UE 115 may activate or deactivate a communication flow with a longer data delay budget than the shortest data delay budget for other active communication flows at the UE 115.
  • the UE 115 may maintain the DRX cycle duration because the latency requirement of the remaining communication flows remains the same (e.g., determined based on the shortest data delay budget) .
  • the UE 115 may receive a flow activation or deactivation request 320-d.
  • the base station 105 may respond with a flow activation or deactivation response 325-d.
  • the activated communication flow may have a longer data delay budget relative to the communication flow activated by activation request 320-b.
  • the UE 115 may not transmit another time duration request based on the activated communication flow having a relatively long data delay budget. Additionally or alternatively, if an existing communication flow is deactivated that has a long data delay budget relative to the remaining communication flows, the UE 115 may not transmit a time duration request. In some cases, the UE 115 may continue to operate according to DRX cycle 305-b. For example, the UE 115 may monitor for data traffic 345-d during on duration 340-b and may enter a sleep or idle mode during off duration 350-b. The UE 115 may continue to operate according to DRX cycle 305-b for any number of cycles.
  • FIG. 4 illustrates an example of a process flow 400 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications system 100, wireless communications system 200, or both as well as timelines 300.
  • the process flow 400 may illustrate an example of a UE 115, such as UE 115-b, or a base station 105, such as base station 105-b, determining a DRX cycle based on a data delay budget for a communication flow.
  • Alternative examples of the following may be implemented, where some processes are performed in a different order than described or are not performed. In some cases, processes may include additional features not mentioned below, or further processes may be added.
  • UE 115-b and base station 105-b may communicate control signaling to activate a first communication flow for first data traffic.
  • the control signaling may include a NAS message to activate the first communication flow.
  • the first communication flow may have one or more QoS parameters that specify a first data delay budget for traffic of the flow (e.g., a latency QoS parameter for traffic of the flow) .
  • the control signaling may include UE 115-b transmitting a communication flow activation request to base station 105-b, and base station 105-b transmitting a flow activation confirmation to UE 115-b in response to the request.
  • the first communication flow may be an URLLC flow, an eMBB communication flow, an MTC flow, or a combination.
  • UE 115-b may have three active flows with three packet delay budgets of 200 ms, 300 ms, and 50 ms, respectively.
  • UE 115-b and base station 105-b may optionally communicate control signaling to activate a second communication flow for second data traffic.
  • the second communication flow may have a second data delay budget.
  • UE 115-b and base station 105-b may communicate control signaling to deactivate a second communication flow (e.g., previously activated) for second data traffic.
  • the second communication flow may have a shorter data delay budget than the first data delay budget.
  • the second communication flow may have a longer data delay budget than the first data delay budget.
  • UE 115-b may transmit a first request message including a time duration for a DRX cycle the UE 115-b selected based on a data delay budget.
  • the second data delay budget may be shorter than the first data delay budget, so the time duration may be based on the second data delay budget.
  • the first data delay budget may be shorter than the second data delay budget, so the time duration may be based on the first data delay budget.
  • UE 115-b may transmit the first request message based on deactivating the second communication flow with the shorter data delay budget than the first data delay budget at 410.
  • the first request message may include an RRC C-DRX message.
  • UE 115-b may transmit the first request message via RRC signaling.
  • UE 115-b may determine the three data delay budgets during run time for the three active communication flows from 405 and the shortest data delay budget (e.g., 50 ms) based on the three data delay budgets.
  • the time duration in the first request message may be the shortest data delay budget, or 50 ms.
  • UE 115-b may use run time statistics for the one or more activated flows to determine the data delay budgets based on an average latency of the one or more activated flows, network congestion, or the like.
  • UE 115-b may receive a DRX control message from base station 105-b.
  • the DRX control message may configure UE 115-b to operate using the DRX cycle having the first time duration indicated in the request message.
  • the DRX control message may configure UE 115-b to operate according to a latency of 50 ms.
  • UE 115-b and base station 105-b may communicate data traffic over the first communication flow based on the first data delay budget and the DRX cycle having the time duration from 415.
  • UE 115-b and base station 105-b may communicate control signaling to activate a third communication flow for third data traffic.
  • the third communication flow may have a third data delay budget.
  • the third data delay budget may be shorter than the first data delay budget, the second data delay budget, or both.
  • UE 115-b and base station 105-b may communicate control signaling to deactivate a third communication flow for third data traffic or the first communication flow for the first data traffic if the second flow is activated.
  • the deactivated communication flow may have a shorter data delay budget than the first communication flow or the second communication flow, respectively.
  • UE 115-b may not transmit a second time duration request.
  • UE 115-b may transmit a second time duration request based on the third data delay budget if the third data delay budget is shorter than the first data delay budget and the second data delay budget if the second communication flow is activated. In some cases, UE 115-b may transmit the second time duration request based on the deactivated communication flow from 430 having a different data delay budget (e.g., shorter) than the remaining communication flows.
  • UE 115-b may receive a second DRX control message from base station 105-b configuring UE 115-b to operate using the DRX cycle having the second time duration based on the second request message at 435.
  • UE 115-b and base station 105-b may communicate data traffic for the first communication flow, the second communication flow, the third communication flow, or a combination based on the DRX cycle having the second time duration.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may enable a UE to transmit a time duration request to a base station based on a data delay budget for one or more communication flows, and receive an indication of a DRX cycle based on the time duration.
  • the time duration request may enable the UE to align the DRX cycle (e.g., the on duration and off duration) with a data delay budget for active communication flows, which may improve communication latency (e.g., related to unnecessarily long on durations for DRX cycles) , among other advantages.
  • a processor of a UE or a base station may reduce the impact or likelihood of inefficient resource utilization due to a misalignment of a DRX cycle and data delay budget while ensuring relatively efficient communications.
  • the time duration request techniques described herein may leverage an active communication flow with a short data delay budget relative to other active communication flows to determine a time duration for a DRX cycle, which may realize power savings at the UE (e.g., due to balancing power saving and QoS latency) , among other benefits.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate-array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate-array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 640.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a flow activation component 620, a data delay budget component 625, a control message component 630, and a data traffic component 635.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the flow activation component 620 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the data delay budget component 625 may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the control message component 630 may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the data traffic component 635 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the transmitter 640 may transmit signals generated by other components of the device 605.
  • the transmitter 640 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 640 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 640 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a flow activation component 710, a data delay budget component 715, a control message component 720, a data traffic component 725, and a request message component 730. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the flow activation component 710 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the data delay budget component 715 may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the control message component 720 may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the data traffic component 725 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that is selected based on the second data delay budget.
  • the data delay budget component 715 may transmit, to the base station, the first request message that indicates the first time duration requested for the DRX cycle of the UE that is selected based on a shorter of the first data delay budget and the second data delay budget.
  • the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget.
  • the data delay budget component 715 may transmit a second request message that indicates a second time duration requested for the DRX cycle that is selected based on the second data delay budget.
  • the control message component 720 may receive a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message.
  • the data traffic component 725 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
  • the flow activation component 710 may communicate control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, where the first request message is transmitted based on deactivating the second communication flow.
  • the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget. In some examples, the flow activation component 710 may communicate control signaling with the base station to deactivate the first communication flow. In some examples, the data delay budget component 715 may transmit a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
  • the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget.
  • the data traffic component 725 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
  • the flow activation component 710 may communicate control signaling with the base station to deactivate a second communication flow having a second data delay budget.
  • the data delay budget component 715 may determine not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
  • control signaling includes a NAS message to activate the first communication flow.
  • the flow activation component 710 may communicate control signaling to activate an URLLC flow, an eMBB communication flow, an mMTC communication flow, or a combination thereof.
  • the request message component 730 may transmit the first request message that is an RRC C-DRX cycle message. In some examples, the request message component 730 may transmit the first request message that is an RRC request message.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting adaptive DRX cycle configuration for active flows) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1040.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a flow activation component 1020, a data delay budget component 1025, a control message component 1030, and a data traffic component 1035.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the flow activation component 1020 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the data delay budget component 1025 may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the control message component 1030 may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the data traffic component 1035 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the transmitter 1040 may transmit signals generated by other components of the device 1005.
  • the transmitter 1040 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1040 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1040 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a flow activation component 1110, a data delay budget component 1115, a control message component 1120, a data traffic component 1125, and a request message component 1130. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the flow activation component 1110 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the data delay budget component 1115 may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the control message component 1120 may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the data traffic component 1125 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that is selected based on the second data delay budget.
  • the data delay budget component 1115 may receive, from the UE, the first request message that indicates the first time duration requested for the DRX cycle of the UE that is selected based on a shorter of the first data delay budget and the second data delay budget.
  • the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget.
  • the data delay budget component 1115 may receive, from the UE, a second request message that indicates a second time duration requested for the DRX cycle that is selected based on the second data delay budget.
  • the control message component 1120 may transmit, to the UE, a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message.
  • the data traffic component 1125 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
  • the flow activation component 1110 may communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, where the first request message is received based on deactivating the second communication flow.
  • the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget. In some examples, the flow activation component 1110 may communicate control signaling with the UE to deactivate the first communication flow. In some examples, the data traffic component 1125 may receive a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
  • the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget.
  • the data delay budget component 1115 may determine not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
  • the data traffic component 1125 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
  • the flow activation component 1110 may communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget.
  • the data delay budget component 1115 may determine not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget
  • control signaling includes a NAS message to activate the first communication flow.
  • the flow activation component 1110 may communicate control signaling to activate an URLLC flow, an eMBB communication flow, an mMTC communication flow, or a combination thereof.
  • the request message component 1130 may receive the first request message that is an RRC C-DRX cycle message. In some examples, the request message component 1130 may receive the first request message that is an RRC request message.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communications manager 1210 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1240
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting adaptive DRX cycle configuration for active flows) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
  • the UE may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a control message component as described with reference to FIGs. 5 through 8.
  • the UE may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a data traffic component as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
  • the UE may communicate control signaling with the base station to activate a second communication flow having a second data delay budget.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that is selected based on the second data delay budget.
  • the DRX cycle of the UE may be selected based on a shorter of the first data delay budget and the second data delay budget.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
  • the UE may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a control message component as described with reference to FIGs. 5 through 8.
  • the UE may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a data traffic component as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
  • the UE may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a control message component as described with reference to FIGs. 5 through 8.
  • the UE may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a data traffic component as described with reference to FIGs. 5 through 8.
  • the UE may communicate control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
  • the UE may transmit a second request message that indicates a second time duration requested for the DRX cycle that is selected based on the second data delay budget.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
  • the base station may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a data delay budget component as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a control message component as described with reference to FIGs. 9 through 12.
  • the base station may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
  • the base station may communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
  • the base station may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, where the first request message is received based on deactivating the second communication flow.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a data delay budget component as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a control message component as described with reference to FIGs. 9 through 12.
  • the base station may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
  • the base station may communicate control signaling with the UE to activate a second communication flow having a second data delay budget.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
  • the base station may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a data delay budget component as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a control message component as described with reference to FIGs. 9 through 12.
  • the base station may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
  • the base station may communicate control signaling with the UE to deactivate the first communication flow.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
  • the base station may receive a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
  • the operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
  • Embodiment 1 A method for wireless communications at a user equipment (UE) , comprising: communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow; transmitting, to the base station, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget; receiving a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  • UE user equipment
  • Embodiment 2 The method of embodiment 1, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  • Embodiment 3 The method of embodiment 2, wherein transmitting the first request message comprises: transmitting, to the base station, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  • Embodiment 4 The method of any of embodiments 1 to 3, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  • Embodiment 5 The method of embodiment 4, further comprising: receiving a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  • Embodiment 6 The method of any of embodiments 1 to 5, further comprising: communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is transmitted based at least in part on deactivating the second communication flow.
  • Embodiment 7 The method of any of embodiments 1 to 6, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget; communicating control signaling with the base station to deactivate the first communication flow; and transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  • Embodiment 8 The method of any of embodiments 1 to 7, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  • Embodiment 9 The method of embodiment 8, further comprising: communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  • Embodiment 10 The method of any of embodiments 1 to 9, further comprising: communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  • Embodiment 11 The method of any of embodiments 1 to 10, wherein transmitting the first request message comprises: transmitting the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  • C-DRX radio resource control connected mode-discontinuous reception
  • Embodiment 12 The method of any of embodiments 1 to 11, wherein communicating control signaling with the base station to activate the first communication flow comprises: communicating control signaling that comprises a non-access stratum message to activate the first communication flow.
  • Embodiment 13 The method of any of embodiments 1 to 12, wherein communicating control signaling with the base station to activate the first communication flow comprises: communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  • URLLC ultra-reliable low-latency communication
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • Embodiment 14 The method of any of embodiments 1 to 13, wherein transmitting the first request message comprises: transmitting the first request message that is a radio resource control (RRC) request message.
  • RRC radio resource control
  • Embodiment 15 A method for wireless communications at a base station, comprising: communicating control signaling with a user equipment (UE) to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow; receiving, from the UE, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget; transmitting, to the UE, a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  • UE user equipment
  • Embodiment 16 The method of embodiment 15, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  • Embodiment 17 The method of embodiment 16, wherein receiving the first request message comprises: receiving, from the UE, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  • Embodiment 18 The method of any of embodiments 15 to 17, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and receiving, from the UE, a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  • Embodiment 19 The method of embodiment 18, further comprising: transmitting, to the UE, a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  • Embodiment 20 The method of any of embodiments 15 to 19, further comprising: communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is received based at least in part on deactivating the second communication flow.
  • Embodiment 21 The method of any of embodiments 15 to 20, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget; communicating control signaling with the UE to deactivate the first communication flow; and receiving a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  • Embodiment 22 The method of any of embodiments 15 to 21, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  • Embodiment 23 The method of embodiment 22, further comprising: communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  • Embodiment 24 The method of any of embodiments 15 to 23, further comprising: communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  • Embodiment 25 The method of any of embodiments 15 to 24, wherein receiving the first request message comprises: receiving the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  • C-DRX radio resource control connected mode-discontinuous reception
  • Embodiment 26 The method of any of embodiments 15 to 25, wherein communicating control signaling with the UE to activate the first communication flow comprises: communicating the control signaling that comprises a non-access stratum message to activate the first communication flow.
  • Embodiment 27 The method of any of embodiments 15 to 26, wherein communicating control signaling with the UE to activate the first communication flow comprises: communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  • URLLC ultra-reliable low-latency communication
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • Embodiment 28 The method of any of embodiments 15 to 27, wherein receiving the first request message comprises: receiving the first request message that is a radio resource control (RRC) request message.
  • RRC radio resource control
  • Embodiment 29 An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of embodiments 1 to 14.
  • Embodiment 30 An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of embodiments 15 to 28.
  • Embodiment 31 An apparatus comprising at least one means for performing a method of any of embodiments 1 to 14.
  • Embodiment 32 An apparatus comprising at least one means for performing a method of any of embodiments 15 to 28.
  • Embodiment 33 A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of embodiments 1 to 14.
  • Embodiment 34 A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of embodiments 15 to 28.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) and a base station may communicate control signaling to activate a communication flow having a data delay budget for data traffic. The UE may transmit a request message that indicates a time duration for a discontinuous reception (DRX) cycle of the UE that is selected based on the data delay budget. The UE receives a control message from the base station configuring the UE to operate using the DRX cycle having the time duration. The UE and the base station communicate the data traffic of the communication flow based on the data delay budget and the DRX cycle having the time duration.

Description

ADAPTIVE DISCONTINUOUS RECEPTION CYCLE CONFIGURATION FOR ACTIVE FLOWS
FIELD OF TECHNOLOGY
The following relates to wireless communications, including adaptive discontinuous reception (DRX) cycle configuration for active flows.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S- OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support adaptive discontinuous reception (DRX) cycle configuration for active flows. Generally, the described techniques provide for a user equipment (UE) to determine a time duration for a DRX cycle based on a data delay budget for one or more communication flows for communicating with a base station. The UE may communicate with a base station to activate a communication flow to exchange data traffic for one or more services. Each communication flow may have a data delay budget based on a quality of  service (QoS) for that communication flow. The UE may send a time duration request (e.g., may request a DRX cycle duration) to the base station that aligns with the data delay budget. The base station may configure the UE with a DRX cycle based on the time duration request. The base station and the UE may communicate data traffic via the one or more active communication flows during one or more of the DRX cycles based on the data delay budget and the DRX cycle having the time duration.
A method of wireless communications at a UE is described. The method may include communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmitting, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receiving a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmitting, to the base station, a first request message that  indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receiving a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that may be selected based on the second data delay budget.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the first request message may include operations, features, means, or instructions for transmitting, to the base station, the first request message that indicates the first time duration requested for the DRX cycle of the UE that may be selected based on a shorter of the first data delay budget and the second data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication  flow having a second data delay budget that may be shorter than the first data delay budget, and transmitting a second request message that indicates a second time duration requested for the DRX cycle that may be selected based on the second data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message, and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, where the first request message may be transmitted based on deactivating the second communication flow.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, communicating control signaling with the base station to deactivate the first communication flow, and transmitting a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the first request message may include operations, features, means, or instructions for transmitting the first request message that may be a radio resource control (RRC) connected mode-DRX (C-DRX) cycle message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating control signaling with the base station to activate the first communication flow may include operations, features, means, or instructions for communicating control signaling that includes a non-access stratum (NAS) message to activate the first communication flow.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating control signaling with the base station to activate the first communication flow may include operations, features, means, or instructions for communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the first request message may include operations, features, means, or instructions for transmitting the first request message that may be an RRC request message.
A method of wireless communications at a base station is described. The method may include communicating control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receiving, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmitting, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for communicating control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receiving, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmitting, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicating the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that may be selected based on the second data delay budget.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the first request message may include operations, features, means, or instructions for receiving, from the UE, the first request message that indicates the first time duration requested for the DRX cycle of the UE that may be selected based on a shorter of the first data delay budget and the second data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, and receiving, from the UE, a second request message that indicates a second time duration requested for the DRX cycle that may be selected based on the second data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a second control message configuring the UE to operate using the  DRX cycle having the second time duration based on the second request message, and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget that may be shorter than the first data delay budget, where the first request message may be received based on deactivating the second communication flow.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, communicating control signaling with the UE to deactivate the first communication flow, and receiving a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating control signaling with the UE to deactivate a second communication flow  having a second data delay budget, and determining not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the first request message may include operations, features, means, or instructions for receiving the first request message that may be an RRC C-DRX cycle message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating control signaling with the UE to activate the first communication flow may include operations, features, means, or instructions for communicating the control signaling that includes a NAS message to activate the first communication flow.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating control signaling with the UE to activate the first communication flow may include operations, features, means, or instructions for communicating control signaling to activate an URLLC flow, an eMBB communication flow, an mMTC communication flow, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the first request message may include operations, features, means, or instructions for receiving the first request message that may be an RRC request message.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 and 2 illustrate examples of wireless communications systems that support adaptive discontinuous reception (DRX) cycle configuration for active flows in accordance with aspects of the present disclosure.
FIGs. 3A and 3B illustrate examples of timelines that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
FIGs. 13 through 18 show flowcharts illustrating methods that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some cases, a user equipment (UE) may communicate with a base station to activate one or more communication flows to exchange data traffic for one or more services. For example, a UE may send a flow activation request to the base station, and the base station may respond with a flow activation confirmation in response. In some cases, the UE may activate the communication flow based on a user performing an operation with the UE (e.g., opening an application, streaming data, sending data etc. ) . Each communication flow may  have a data delay budget determined by the quality of service (QoS) for that communication flow. For example, a communication flow having a relatively high QoS may have a relatively short data delay budget (i.e., may have relatively short latency for communications, such as latency no more than 50 milliseconds (ms) ) , while a communication flow having a relatively low QoS may have a relatively long data delay budget (i.e., may have relatively long latency for communications, such as latency no more than 300 ms) .
To conserve power, the UE may operate according to a discontinuous reception (DRX) cycle, such as a connected mode-DRX (C-DRX) cycle. For example, the UE may receive packets during an on duration of the DRX cycle and may enter an idle or sleep mode during an off duration of the DRX cycle to conserve power. In some cases, the UE may request an on duration of the DRX cycle independent of a QoS for an active communication flow between the UE and the base station. However, if the DRX cycle on duration does not align with one or more QoS parameters for an active communication flow, the UE may power on unnecessarily (e.g., if the DRX cycle on duration is less than the data delay budget) , or the UE may miss a transmission while in an idle or sleep state (e.g., if the DRX cycle on duration is greater than the data delay budget) , which may cause inefficient power consumption at the UE or increased signaling latency between the UE and the base station.
As described herein, a UE may transmit a time duration request to a base station to request a time duration of a DRX cycle that is capable of satisfying a data delay budget for an active communication flow. For example, the UE may request a duration of a DRX cycle based on the data delay budget for one or more active communication flows (e.g., a minimum data delay budget if there are multiple active communication flows) . In some cases, the data delay budget may satisfy one or more QoS parameters for the active communication flows. The UE may transmit a scheduling request including the requested time duration for the DRX cycle for communications with the base station. The base station may configure the UE with a DRX cycle time duration that satisfies the data delay budget. That is, the UE and the base station may communicate during one or more DRX cycles with an on duration and off duration that satisfy the data delay budget.
In some cases, a user may activate an additional communication flow or deactivate a current communication flow at the UE. If the additional communication flow or  the deactivated communication flow have data delay budgets shorter than the configured time duration, the UE may determine a new time duration for the DRX cycle and signal the time duration to the base station in a scheduling request. The base station may configure the UE with a new DRX cycle time duration that satisfies the change in data delay budget.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further described in the context of timelines and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to adaptive DRX cycle configuration for active flows.
FIG. 1 illustrates an example of a wireless communications system 100 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE- Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different  capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system  bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions  (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may  support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable  automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer  (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150.  The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF  transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial  multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of  transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.  For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the  MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some cases, a UE 115 may activate one or more communication flows for communicating with a base station 105. For example, the UE 115 may transmit a flow activation request to the base station 105, and the base station may transmit a flow activation confirmation to the UE 115 in response. Additionally or alternatively, the UE 115 may deactivate one or more communication flows for communicating with the base station 105. In some cases, if the UE 115 deactivates a communication flow, the control signaling may include a flow deactivate request and a flow deactivation confirmation. In some cases, a user of the UE 115 may activate a communication flow by performing an operation with the UE 115. For example, the user may initiate a voice call, may stream data, may open an application, etc. In some cases, each communication flow may correspond to a service, such as an ultra-reliable low-latency communications (URLLC) service, an enhanced mobile broadband (eMBB) service, a massive machine type communications (mMTC) service, or the like and may have a data delay budget that satisfies one or more QoS parameters for the communication flow. The base station 105 may use the data delay budget to schedule resources (e.g., time-frequency resources) for communications at the UE 115.
In some examples, the UE 115 may operate according to a DRX cycle, such as a C-DRX cycle, to save power at the UE 115. For example, the base station 105 may configure the UE 115 (e.g., via RRC signaling) with an on duration for monitoring for data traffic and an off duration in which the UE 115 is in a sleep or idle mode. In some cases, the base station 105 may configure the UE 115 with a DRX cycle that affects the latency for communication flows (e.g., based on balancing power consumption and signaling latency at the UE 115) . The data delay budget that satisfies one or more QoS parameters for a communication flow may be configured separately from the DRX cycle time durations (e.g., the on duration and the off duration) . However, if the DRX cycle on duration does not align with one or more QoS parameters for an active communication flow, the UE 115 may power on unnecessarily (e.g., if the DRX cycle on duration is less than the data delay budget) , or the UE 115 may miss a  transmission while in an idle or sleep state (e.g., if the DRX cycle on duration is greater than the data delay budget) , which may cause inefficient power consumption at the UE 115 or increased signaling latency between the UE 115 and the base station 105.
In some cases, the UE 115 may determine a time duration for a DRX cycle based on a data delay budget for one or more communication flows, which may allow the base station 105 to configure the UE 115 with a DRX cycle that aligns with the data delay budget. For example, the UE 115 may determine the shortest data delay budget for the one or more communication flows based on one or more QoS parameters for each communication flow. The UE 115 may transmit a time duration request to the base station 105 based on the determined data delay budget. The base station 105 may configure the UE 115 with a scheduling request to monitor one or more resources (e.g., time-frequency resources) during an on duration of the DRX cycle based on the time duration request. The base station 105 and the UE 115 may communicate data traffic via the one or more active communication flows during one or more of the DRX cycles.
FIG. 2 illustrates an example of a wireless communications system 200 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100 and may include UE 115-a, communication link 125-a, and base station 105-a with coverage area 110-a, which may be examples of a UE 115, a communication link 125, and a base station 105 with a coverage area 110 as described with reference to FIG. 1. In some examples, UE 115-a may be configured with, or otherwise support, an adaptive DRX cycle time duration for data traffic between UE 115-a and base station 105-a via communication link 125-a. For example, UE 115-a and base station 105-a may communicate control information using uplink control link 205, downlink control link 210, or both to configure UE 115-a with a DRX cycle time duration that satisfies a data delay budget for one or more communication flows 215.
In some cases, a UE 115 may activate one or more communication flows 215 for communicating with a base station 105. For example, UE 115-a and base station 105-a may communicate control signaling 220-a to activate flow 215-a, control signaling 220-b to activate flow 215-b, control signaling 220-c to activate flow 215-c, or any additional control  signaling 220 to activate additional communication flows 215. Although three communication flows 215 are shown, UE 115-a and base station 105-a may communicate using any number of communication flows 215. In some cases, the control signaling 220 may include a flow activation request and a flow activation confirmation. For example, UE 115-a may transmit a flow activation request to base station 105-a via uplink control link 210 and may receive a flow activation confirmation from base station 105-a via downlink control link 205. Additionally or alternatively, the control signaling 220 may deactivate a current communication flow. For example, if UE 115-a has already activated communication flow 215-a, control signaling 220-a may deactivate communication flow 215-a. In some cases, if the UE 115 deactivates a communication flow 215, the control signaling may include a flow deactivate request and a flow deactivation confirmation. For example, UE 115-a may transmit a flow deactivation request to base station 105-a via uplink communication link 210 and may receive a flow deactivation confirmation from base station 105-a via downlink communication link 205.
In some cases, a user of the UE 115 may activate a communication flow 215 by performing an operation with the UE 115. For example, the user may initiate a voice call, may stream data, may open an application, etc. In some cases, each communication flow 215 may correspond to a service, such as an ultra-reliable low-latency communications (URLLC) service, an enhanced mobile broadband (eMBB) service, a massive machine type communications (mMTC) service, or the like and may have a data delay budget that satisfies one or more QoS parameters for the communication flow 215. In some cases, the data delay budget may include a packet transmission delay and may be determined by a core network (e.g., a core network 130 as described with reference to FIG. 1) based on monitoring and analyzing one or more UE serve types, one or more packet types, one or more QoS parameters for a communication flow 215, or a combination. The base station 105 may use the data delay budget to schedule resources (e.g., time-frequency resources) for communications at the UE 115. For example, the base station 105 may transmit radio resource control (RRC) signaling to schedule resources for communications at the UE 115 that satisfy a data service latency (e.g., the data delay budget) .
In some examples, the UE 115 may operate according to a DRX cycle, such as a C-DRX cycle, to save power at the UE 115. For example, the base station 105 may configure  the UE 115 (e.g., via RRC signaling) with an on duration for monitoring for data traffic and an off duration in which the UE 115 is in a sleep or idle mode. When the base station 105 configures the UE 115 with a DRX cycle, the UE 115 may monitor a downlink control channel (e.g., the physical downlink control channel (PDCCH) ) discontinuously using one or more parameters specified by the DRX cycle configuration. For example, the UE 115 may monitor the downlink control channel during an active time based on an on duration timer, a pending scheduling request transmitted on an uplink control channel, an uplink grant for a pending retransmission (e.g., a HARQ) , a downlink control channel indicating a new transmission has not been received, or a combination.
In some cases, the base station 105 may configure the UE 115 with a DRX cycle that affects the latency for communication flows 215 (e.g., based on balancing power consumption and signaling latency at the UE 115) . The data delay budget that satisfies one or more QoS parameters for a communication flow 215 may be configured separately from the DRX cycle time durations (e.g., the on duration and the off duration) . However, if the DRX cycle duration does not align with one or more QoS parameters for an active communication flow, the UE 115 may power on unnecessarily (e.g., if the DRX cycle duration is less than the data delay budget) , or the UE 115 may miss a transmission while in an idle or sleep state (e.g., if the DRX cycle on duration is greater than the data delay budget) , which may cause inefficient power consumption at the UE 115 or increased signaling latency between the UE 115 and the base station 105.
In some cases, the UE 115 may determine a time duration for a DRX cycle based on a data delay budget for one or more communication flows 215, which may allow the base station 105 to configure the UE 115 with a DRX cycle that aligns with the data delay budget. For example, UE 115-a and base station 105-a may communicate control signaling 220-a and control signaling 220-b to activate communication flow 215-a and communication flow 215-b, respectively. The control signaling 220 may include a NAS message. In some cases, communication flow 215-a may have a first data delay budget (e.g., 300 ms) and communication flow 215-b may have a second data delay budget (e.g., 200 ms) . In some cases, UE 115-a may determine a data delay budget for the communication flow with a relatively short latency for the one or more QoS parameters (e.g., the communication flow 215 from the set of one or more activated flows having the minimum latency value) . For  example, UE 115-a may determine communication flow 215-b with the second data delay budget has the shortest latency requirement (e.g., 200 ms) relative to communication flow 215-a. Thus, UE 115-a may transmit a time duration request 225-a to base station 105-a for a DRX cycle based on the data delay budget for communication flow 215-b (e.g., a time duration request of 200 ms) .
The time duration request 225 may be an RRC C-DRX cycle message. Base station 105-a may configure UE 115-a with a scheduling request to monitor one or more resources (e.g., time-frequency resources) during an on duration of the DRX cycle based on the time duration request 225-a. For example, base station 105-a may transmit DRX control message 230-a to UE 115-a (e.g., via the downlink control link 205 using RRC signaling) . A DRX control message 230 may include an indication of the resources UE 115-a should monitor (e.g., an on duration and an off duration) . Base station 105-a and UE 115-a may communicate data traffic via communication flow 215-a and communication flow 215-b for one or more DRX cycles (e.g., as specified in control message 230-a) .
In some cases, UE 115-a and base station 105-a may communicate control signaling 220-c to activate communication flow 215-c subsequent to activating communication flow 215-a and communication flow 215-b. Communication flow 215-c may have a third data delay budget. If the third data delay budget is shorter than the first data delay budget for communication flow 215-a and the second data delay budget for communication flow 215-b, UE 115-a may transmit an updated time duration request 225 (e.g., time duration request 225-b) . For example, UE 115-a may transmit time duration request 225-b to base station 105-b based on the shorter, third data delay budget. Base station 105-a may transmit DRX control message 230-b to UE 115-a in response to time duration request 225-b. DRX control message 230-b may configure UE 115-a with an updated DRX cycle (e.g., a shorter on duration) , which is described in further detail with respect to FIG. 3A. If the third data delay budget is longer than the first data delay budget for communication flow 215-a and the second data delay budget for communication flow 215-b, UE 115-a may not transmit an updated time duration request 225, which is described in further detail with respect to FIG. 3B.
Additionally or alternatively, UE 115-a and base station 105-a may communicate control signaling to deactivate a communication flow 215. If UE 115-a deactivates a communication flow 215 with a short data delay budget relative to the data delay budgets for the remaining communication flows 215, then UE 115-a may transmit an updated time duration request 225 including the next shortest data delay budget for the remaining communication flows 215 to base station 105-b, which is described in further detail with respect to FIG. 3A. In some other cases, if UE 115-a deactivates a communication flow 215 with a long data delay budget relative to the data delay budgets for the remaining communication flows 215, UE 115-a may not transmit an updated time duration request 225, which is described in further detail with respect to FIG. 3B.
FIGs. 3A and 3B illustrate example of timelines 300 that support adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. In some examples, timeline 300-a and timeline 300-b may implement aspects of wireless communications system 100, wireless communications system 200, or both. Aspects of timelines 300 may be implemented by a UE 115, a base station 105, or both, as described with reference to FIGs. 1 and 2. For example, timelines 300 may illustrate a process for determining a DRX cycle 305 based on a data delay budget at a UE 115. In some cases, the UE 115 may identify the shortest data delay budget (e.g., minimum required latency of a flow) for one or more active communication flows and may request a DRX cycle 305 based on the shortest data delay budget. Timeline 300-a may illustrate an example of a DRX cycle 305 update at a UE 115 based on activating a new communication flow or deactivating an existing communication flow with the shortest data delay budget. Timeline 300-b may illustrate an example of a DRX cycle 305 that is not updated at a UE 115 based on activating a new communication flow or deactivating an existing communication flow with a data delay budget longer than the shortest data delay budget.
In some cases, a UE 115 may transmit data or control messages to a base station 105 in an uplink direction 310 (e.g., on an uplink control channel or uplink shared channel) . Additionally or alternatively, the UE 115 may receive data or control message from the base station 105 in a downlink direction 315 (e.g., on a downlink control channel or downlink shared channel) . In some examples, the UE 115 and the base station 105 may communicate control signaling to activate or deactivate a communication flow, as described with reference  to FIG. 2. For example, the UE 115 may transmit a flow activation or deactivation request 320 to the base station 105 and may receive a flow activation or deactivation confirmation 325 from the base station 105 in response. In some cases, as illustrated in timelines 300, the UE 115 may transmit a flow activation request 320-a and 320-b to activate a communication flow with the base station 105. The base station 105 may transmit flow activation confirmation 325-a and flow activation confirmation 325-b in response.
In some cases, the data delay budget corresponding to the activated communication flow may be shorter relative to the data delay budget for other activated communication flows. The UE 115 may transmit a time duration request 330 (e.g., time duration request 330-a and time duration request 330-b) to a base station 105 based on the shorter data delay budget corresponding to the activated communication flow. The time duration request 330 may indicate a requested time duration of the DRX cycle. For example, the time duration request 330 may include an indication of a communication latency that satisfies one or more QoS parameters for the communication flow (e.g., the data delay budget) . Time duration request 330-a may indicate a requested duration of DRX cycle 305-a (e.g., a DRX cycle 305 in a period set of DRX cycles 305) , while time duration request 330-b may indicate a requested of DRX cycle 305-b.
The base station 105 may transmit a DRX control message 335 indicating one or more resources (e.g., in a scheduling request) for the UE 115 to monitor during a DRX cycle 305 and the duration in time of the DRX cycle 305. For example, the DRX control message 335 may include an indication of an on duration 340 in which the UE monitors for data traffic 345 and an off duration 350 in which the UE is in an idle or sleep mode. The UE 115 may receive DRX control message 335-a in response to time duration request 330-a. DRX control message 335-a may include an indication of on duration 340-a to monitor for data traffic 345-a and off duration 350-a for DRX cycle 305-a. Similarly, the UE 115 may receive DRX control message 335-b in response to time duration request 330-b. DRX control message 335-b may include an indication of on duration 340-b to monitor for data traffic 345-b and off duration 350-b for DRX cycle 305-b. In some cases, the UE 115 may operate according to DRX cycle 305-a in timeline 300-a and DRX cycle 305-b in timeline 300-b for any number of cycles. That is, the UE 115 may continue to monitor for data traffic 345 during the on duration 340 and enter an idle or sleep mode during the off duration 350.
In some cases, as illustrated in timeline 300-a, the UE 115 may receive another flow activation or deactivation request 320-c. The base station 105 may respond with a flow activation or deactivation response 325-c. In some cases, if a new communication flow is activated, the activated communication flow may have a shorter data delay budget relative to the communication flow activated by activation request 320-a. The UE 115 may transmit another time duration request 330-c based on the activated communication flow having a shorter data delay budget than any of the other activated communication flows. The time duration request 330-c may include an indication of a duration in time of DRX cycle 305-c based on the data delay budget for the activated communication flow. For example, the time duration request 330-c may request to extend or shorten the duration in time of DRX cycle 305-c.
In some cases, the UE 115 may deactivate an existing communication flow with the shortest data delay budget. The UE 115 may transmit a time duration request 330-c to lengthen the DRX cycle, which may conserve power at the UE 115 while satisfying the latency requirements of the remaining active communication flows. That is, if the existing communication flow that is deactivated has the shortest data delay budget (e.g., relative to any of the remaining communication flows) , the UE 115 may transmit a time duration request 330-c including an indication of the next shortest data delay budget for the remaining active communication flows. The base station 105 may transmit DRX control message 335-c in response to time duration request 330-c. DRX control message 335-c may include an indication of DRX cycle 305-c (e.g., on duration 340-c and off duration 350-c) . In some cases, on duration 340-c may be based on the data delay budget indicated in time duration request 330-c. The UE 115 may monitor for data traffic 345-c during on duration 340-c and may enter a sleep or idle mode during off duration 350-c. The UE 115 may continue to operate according to DRX cycle 305-c for any number of cycles.
In some other cases, as illustrated in timeline 300-b, the UE 115 may activate or deactivate a communication flow with a longer data delay budget than the shortest data delay budget for other active communication flows at the UE 115. Thus, the UE 115 may maintain the DRX cycle duration because the latency requirement of the remaining communication flows remains the same (e.g., determined based on the shortest data delay budget) . The UE 115 may receive a flow activation or deactivation request 320-d. The base station 105 may  respond with a flow activation or deactivation response 325-d. In some cases, if a new communication flow is activated, the activated communication flow may have a longer data delay budget relative to the communication flow activated by activation request 320-b. The UE 115 may not transmit another time duration request based on the activated communication flow having a relatively long data delay budget. Additionally or alternatively, if an existing communication flow is deactivated that has a long data delay budget relative to the remaining communication flows, the UE 115 may not transmit a time duration request. In some cases, the UE 115 may continue to operate according to DRX cycle 305-b. For example, the UE 115 may monitor for data traffic 345-d during on duration 340-b and may enter a sleep or idle mode during off duration 350-b. The UE 115 may continue to operate according to DRX cycle 305-b for any number of cycles.
FIG. 4 illustrates an example of a process flow 400 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of wireless communications system 100, wireless communications system 200, or both as well as timelines 300. The process flow 400 may illustrate an example of a UE 115, such as UE 115-b, or a base station 105, such as base station 105-b, determining a DRX cycle based on a data delay budget for a communication flow. Alternative examples of the following may be implemented, where some processes are performed in a different order than described or are not performed. In some cases, processes may include additional features not mentioned below, or further processes may be added.
At 405, UE 115-b and base station 105-b may communicate control signaling to activate a first communication flow for first data traffic. The control signaling may include a NAS message to activate the first communication flow. The first communication flow may have one or more QoS parameters that specify a first data delay budget for traffic of the flow (e.g., a latency QoS parameter for traffic of the flow) . In some cases, the control signaling may include UE 115-b transmitting a communication flow activation request to base station 105-b, and base station 105-b transmitting a flow activation confirmation to UE 115-b in response to the request. In some examples, the first communication flow may be an URLLC flow, an eMBB communication flow, an MTC flow, or a combination. In some examples, UE  115-b may have three active flows with three packet delay budgets of 200 ms, 300 ms, and 50 ms, respectively.
At 410, UE 115-b and base station 105-b may optionally communicate control signaling to activate a second communication flow for second data traffic. The second communication flow may have a second data delay budget. Additionally or alternatively, UE 115-b and base station 105-b may communicate control signaling to deactivate a second communication flow (e.g., previously activated) for second data traffic. In some cases, the second communication flow may have a shorter data delay budget than the first data delay budget. In some other cases, the second communication flow may have a longer data delay budget than the first data delay budget.
At 415, UE 115-b may transmit a first request message including a time duration for a DRX cycle the UE 115-b selected based on a data delay budget. In some cases, the second data delay budget may be shorter than the first data delay budget, so the time duration may be based on the second data delay budget. In some other cases, the first data delay budget may be shorter than the second data delay budget, so the time duration may be based on the first data delay budget. In some examples, UE 115-b may transmit the first request message based on deactivating the second communication flow with the shorter data delay budget than the first data delay budget at 410. In some cases, the first request message may include an RRC C-DRX message. UE 115-b may transmit the first request message via RRC signaling. In some examples, UE 115-b may determine the three data delay budgets during run time for the three active communication flows from 405 and the shortest data delay budget (e.g., 50 ms) based on the three data delay budgets. The time duration in the first request message may be the shortest data delay budget, or 50 ms. In some examples, UE 115-b may use run time statistics for the one or more activated flows to determine the data delay budgets based on an average latency of the one or more activated flows, network congestion, or the like.
At 420, UE 115-b may receive a DRX control message from base station 105-b. The DRX control message may configure UE 115-b to operate using the DRX cycle having the first time duration indicated in the request message. For example, the DRX control message may configure UE 115-b to operate according to a latency of 50 ms.
At 425, UE 115-b and base station 105-b may communicate data traffic over the first communication flow based on the first data delay budget and the DRX cycle having the time duration from 415.
At 430, UE 115-b and base station 105-b may communicate control signaling to activate a third communication flow for third data traffic. The third communication flow may have a third data delay budget. In some cases, the third data delay budget may be shorter than the first data delay budget, the second data delay budget, or both. Additionally or alternatively, UE 115-b and base station 105-b may communicate control signaling to deactivate a third communication flow for third data traffic or the first communication flow for the first data traffic if the second flow is activated. The deactivated communication flow may have a shorter data delay budget than the first communication flow or the second communication flow, respectively. In some cases, if the deactivated communication flow is longer than remaining communication flows, then UE 115-b may not transmit a second time duration request.
At 435, UE 115-b may transmit a second time duration request based on the third data delay budget if the third data delay budget is shorter than the first data delay budget and the second data delay budget if the second communication flow is activated. In some cases, UE 115-b may transmit the second time duration request based on the deactivated communication flow from 430 having a different data delay budget (e.g., shorter) than the remaining communication flows.
At 440, UE 115-b may receive a second DRX control message from base station 105-b configuring UE 115-b to operate using the DRX cycle having the second time duration based on the second request message at 435.
At 445, UE 115-b and base station 105-b may communicate data traffic for the first communication flow, the second communication flow, the third communication flow, or a combination based on the DRX cycle having the second time duration.
FIG. 5 shows a block diagram 500 of a device 505 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505  may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages. One implementation may enable a UE to transmit a time duration request to a base station based on a data delay budget for one or more communication flows, and receive an indication of a DRX cycle based on the time duration. The time duration request may enable the UE to align the DRX cycle (e.g., the on duration and off duration) with a data delay budget for active communication flows, which may improve communication latency (e.g., related to unnecessarily long on durations for DRX cycles) , among other advantages.
Based on implementing the time duration request based on a data delay budget as described herein, a processor of a UE or a base station (e.g., a processor controlling the receiver 510, the communications manager 515, the transmitter 520, or a combination thereof) may reduce the impact or likelihood of inefficient resource utilization due to a  misalignment of a DRX cycle and data delay budget while ensuring relatively efficient communications. For example, the time duration request techniques described herein may leverage an active communication flow with a short data delay budget relative to other active communication flows to determine a time duration for a DRX cycle, which may realize power savings at the UE (e.g., due to balancing power saving and QoS latency) , among other benefits.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate-array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 640. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a flow activation component 620, a data delay budget component 625, a control message component 630, and a data traffic component 635. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The flow activation component 620 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow.
The data delay budget component 625 may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The control message component 630 may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The data traffic component 635 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
The transmitter 640 may transmit signals generated by other components of the device 605. In some examples, the transmitter 640 may be collocated with a receiver 610 in a  transceiver module. For example, the transmitter 640 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 640 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a flow activation component 710, a data delay budget component 715, a control message component 720, a data traffic component 725, and a request message component 730. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The flow activation component 710 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The data delay budget component 715 may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The control message component 720 may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The data traffic component 725 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
In some examples, the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that is selected based on the second data delay budget. In some examples, the data delay budget component 715 may transmit, to the base station, the first request message that indicates the first time duration requested for the DRX cycle of the UE that is selected based on a shorter of the first data delay budget and the second data delay budget.
In some examples, the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget. In some examples, the data delay budget component 715 may transmit a second request message that indicates a second time duration requested for the DRX cycle that is selected based on the second data delay budget. In some examples, the control message component 720 may receive a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message. In some examples, the data traffic component 725 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
In some examples, the flow activation component 710 may communicate control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, where the first request message is transmitted based on deactivating the second communication flow.
In some examples, the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget. In some examples, the flow activation component 710 may communicate control signaling with the base station to deactivate the first communication flow. In some examples, the data delay budget component 715 may transmit a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
In some examples, the flow activation component 710 may communicate control signaling with the base station to activate a second communication flow having a second data delay budget. In some examples, the data traffic component 725 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
In some examples, the flow activation component 710 may communicate control signaling with the base station to deactivate a second communication flow having a second data delay budget. In some examples, the data delay budget component 715 may determine  not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget.
In some examples, the control signaling includes a NAS message to activate the first communication flow. In some examples, the flow activation component 710 may communicate control signaling to activate an URLLC flow, an eMBB communication flow, an mMTC communication flow, or a combination thereof.
The request message component 730 may transmit the first request message that is an RRC C-DRX cycle message. In some examples, the request message component 730 may transmit the first request message that is an RRC request message.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020109985-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting adaptive DRX cycle configuration for active flows) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a block diagram 900 of a device 905 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications  manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1040. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to adaptive DRX cycle configuration for active flows, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010  may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a flow activation component 1020, a data delay budget component 1025, a control message component 1030, and a data traffic component 1035. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The flow activation component 1020 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The data delay budget component 1025 may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The control message component 1030 may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The data traffic component 1035 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
The transmitter 1040 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1040 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1040 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1040 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include a flow activation component 1110, a data delay budget component 1115, a control message component 1120, a data traffic component 1125, and a request message component 1130.  Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The flow activation component 1110 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The data delay budget component 1115 may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The control message component 1120 may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The data traffic component 1125 may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
In some examples, the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that is selected based on the second data delay budget. In some examples, the data delay budget component 1115 may receive, from the UE, the first request message that indicates the first time duration requested for the DRX cycle of the UE that is selected based on a shorter of the first data delay budget and the second data delay budget.
In some examples, the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget. In some examples, the data delay budget component 1115 may receive, from the UE, a second request message that indicates a second time duration requested for the DRX cycle that is selected based on the second data delay budget. In some examples, the control message component 1120 may transmit, to the UE, a second control message configuring the UE to operate using the DRX cycle having the second time duration based on the second request message. In some examples, the data traffic component 1125 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the second time duration.
In some examples, the flow activation component 1110 may communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, where the first request message is received based on deactivating the second communication flow.
In some examples, the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget. In some examples, the flow activation component 1110 may communicate control signaling with the UE to deactivate the first communication flow. In some examples, the data traffic component 1125 may receive a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget.
In some examples, the flow activation component 1110 may communicate control signaling with the UE to activate a second communication flow having a second data delay budget. In some examples, the data delay budget component 1115 may determine not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget. In some examples, the data traffic component 1125 may communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based on the DRX cycle having the first time duration.
In some examples, the flow activation component 1110 may communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget. In some examples, the data delay budget component 1115 may determine not to update the first time duration requested for the DRX cycle based on the second data delay budget being longer than the first data delay budget
In some examples, the control signaling includes a NAS message to activate the first communication flow. In some examples, the flow activation component 1110 may communicate control signaling to activate an URLLC flow, an eMBB communication flow, an mMTC communication flow, or a combination thereof.
The request message component 1130 may receive the first request message that is an RRC C-DRX cycle message. In some examples, the request message component 1130 may receive the first request message that is an RRC request message.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communications manager 1210 may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow, receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message, and communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting adaptive DRX cycle configuration for active flows) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a flowchart illustrating a method 1300 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
At 1310, the UE may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
At 1315, the UE may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a control message component as described with reference to FIGs. 5 through 8.
At 1320, the UE may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The operations of 1320 may be performed according to the methods described herein. In  some examples, aspects of the operations of 1320 may be performed by a data traffic component as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
At 1410, the UE may communicate control signaling with the base station to activate a second communication flow having a second data delay budget. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
At 1415, the UE may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, where the first request message indicates the first time duration requested for the DRX cycle of the UE that is selected based on the second data delay budget. For example, the DRX cycle of the UE may be selected based on a shorter of the first data delay budget and the second data delay budget. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
At 1420, the UE may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a control message component as described with reference to FIGs. 5 through 8.
At 1425, the UE may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a data traffic component as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
At 1510, the UE may transmit, to the base station, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
At 1515, the UE may receive a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a control message component as described with reference to FIGs. 5 through 8.
At 1520, the UE may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a data traffic component as described with reference to FIGs. 5 through 8.
At 1525, the UE may communicate control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a flow activation component as described with reference to FIGs. 5 through 8.
At 1530, the UE may transmit a second request message that indicates a second time duration requested for the DRX cycle that is selected based on the second data delay budget. The operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a data delay budget component as described with reference to FIGs. 5 through 8.
FIG. 16 shows a flowchart illustrating a method 1600 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the base station may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
At 1610, the base station may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a data delay budget component as described with reference to FIGs. 9 through 12.
At 1615, the base station may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a control message component as described with reference to FIGs. 9 through 12.
At 1620, the base station may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
FIG. 17 shows a flowchart illustrating a method 1700 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
At 1710, the base station may communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
At 1715, the base station may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget, where the first request message is received based on deactivating the second communication flow. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a data delay budget component as described with reference to FIGs. 9 through 12.
At 1720, the base station may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a control message component as described with reference to FIGs. 9 through 12.
At 1725, the base station may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
FIG. 18 shows a flowchart illustrating a method 1800 that supports adaptive DRX cycle configuration for active flows in accordance with aspects of the present disclosure. The  operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1805, the base station may communicate control signaling with a UE to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
At 1810, the base station may communicate control signaling with the UE to activate a second communication flow having a second data delay budget. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
At 1815, the base station may receive, from the UE, a first request message that indicates a first time duration requested for a DRX cycle of the UE that is selected based on the first data delay budget. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a data delay budget component as described with reference to FIGs. 9 through 12.
At 1820, the base station may transmit, to the UE, a control message configuring the UE to operate using the DRX cycle having the first time duration based on the first request message. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a control message component as described with reference to FIGs. 9 through 12.
At 1825, the base station may communicate the first data traffic of the first communication flow based on the first data delay budget and the DRX cycle having the first time duration. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
At 1830, the base station may communicate control signaling with the UE to deactivate the first communication flow. The operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a flow activation component as described with reference to FIGs. 9 through 12.
At 1835, the base station may receive a second request message that indicates a second time duration requested for the DRX cycle based on the second data delay budget being different than the first data delay budget. The operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a data traffic component as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Embodiment 1: A method for wireless communications at a user equipment (UE) , comprising: communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow; transmitting, to the base station, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget; receiving a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
Embodiment 2: The method of embodiment 1, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
Embodiment 3: The method of embodiment 2, wherein transmitting the first request message comprises: transmitting, to the base station, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
Embodiment 4: The method of any of embodiments 1 to 3, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
Embodiment 5: The method of embodiment 4, further comprising: receiving a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
Embodiment 6: The method of any of embodiments 1 to 5, further comprising: communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is transmitted based at least in part on deactivating the second communication flow.
Embodiment 7: The method of any of embodiments 1 to 6, further comprising: communicating control signaling with the base station to activate a second communication  flow having a second data delay budget; communicating control signaling with the base station to deactivate the first communication flow; and transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
Embodiment 8: The method of any of embodiments 1 to 7, further comprising: communicating control signaling with the base station to activate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
Embodiment 9: The method of embodiment 8, further comprising: communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
Embodiment 10: The method of any of embodiments 1 to 9, further comprising: communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
Embodiment 11: The method of any of embodiments 1 to 10, wherein transmitting the first request message comprises: transmitting the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
Embodiment 12: The method of any of embodiments 1 to 11, wherein communicating control signaling with the base station to activate the first communication flow comprises: communicating control signaling that comprises a non-access stratum message to activate the first communication flow.
Embodiment 13: The method of any of embodiments 1 to 12, wherein communicating control signaling with the base station to activate the first communication flow comprises: communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication  flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
Embodiment 14: The method of any of embodiments 1 to 13, wherein transmitting the first request message comprises: transmitting the first request message that is a radio resource control (RRC) request message.
Embodiment 15: A method for wireless communications at a base station, comprising: communicating control signaling with a user equipment (UE) to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow; receiving, from the UE, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget; transmitting, to the UE, a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
Embodiment 16: The method of embodiment 15, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
Embodiment 17: The method of embodiment 16, wherein receiving the first request message comprises: receiving, from the UE, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
Embodiment 18: The method of any of embodiments 15 to 17, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and receiving, from the UE, a second request message that indicates a second time duration  requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
Embodiment 19: The method of embodiment 18, further comprising: transmitting, to the UE, a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
Embodiment 20: The method of any of embodiments 15 to 19, further comprising: communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is received based at least in part on deactivating the second communication flow.
Embodiment 21: The method of any of embodiments 15 to 20, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget; communicating control signaling with the UE to deactivate the first communication flow; and receiving a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
Embodiment 22: The method of any of embodiments 15 to 21, further comprising: communicating control signaling with the UE to activate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
Embodiment 23: The method of embodiment 22, further comprising: communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
Embodiment 24: The method of any of embodiments 15 to 23, further comprising: communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget; and determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
Embodiment 25: The method of any of embodiments 15 to 24, wherein receiving the first request message comprises: receiving the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
Embodiment 26: The method of any of embodiments 15 to 25, wherein communicating control signaling with the UE to activate the first communication flow comprises: communicating the control signaling that comprises a non-access stratum message to activate the first communication flow.
Embodiment 27: The method of any of embodiments 15 to 26, wherein communicating control signaling with the UE to activate the first communication flow comprises: communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
Embodiment 28: The method of any of embodiments 15 to 27, wherein receiving the first request message comprises: receiving the first request message that is a radio resource control (RRC) request message.
Embodiment 29: An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of embodiments 1 to 14.
Embodiment 30: An apparatus for wireless communications comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of embodiments 15 to 28.
Embodiment 31: An apparatus comprising at least one means for performing a method of any of embodiments 1 to 14.
Embodiment 32: An apparatus comprising at least one means for performing a method of any of embodiments 15 to 28.
Embodiment 33: A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of embodiments 1 to 14.
Embodiment 34: A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of embodiments 15 to 28.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller,  microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with  lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the  disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (86)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    transmitting, to the base station, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    receiving a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  2. The method of claim 1, further comprising:
    communicating control signaling with the base station to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  3. The method of claim 2, wherein transmitting the first request message comprises:
    transmitting, to the base station, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  4. The method of any of claims 1 to 3, further comprising:
    communicating control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and
    transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  5. The method of claim 4, further comprising:
    receiving a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and
    communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  6. The method of any of claims 1 to 5, further comprising:
    communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is transmitted based at least in part on deactivating the second communication flow.
  7. The method of any of claims 1 to 6, further comprising:
    communicating control signaling with the base station to activate a second communication flow having a second data delay budget;
    communicating control signaling with the base station to deactivate the first communication flow; and
    transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  8. The method of any of claims 1 to 7, further comprising:
    communicating control signaling with the base station to activate a second communication flow having a second data delay budget; and
    determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  9. The method of claim 8, further comprising:
    communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  10. The method of any of claims 1 to 9, further comprising:
    communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget; and
    determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  11. The method of any of claims 1 to 10, wherein transmitting the first request message comprises:
    transmitting the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  12. The method of claim any of claims 1 to 11, wherein communicating control signaling with the base station to activate the first communication flow comprises:
    communicating control signaling that comprises a non-access stratum message to activate the first communication flow.
  13. The method of claim any of claims 1 to 12, wherein communicating control signaling with the base station to activate the first communication flow comprises:
    communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  14. The method of any of claims 1 to 13, wherein transmitting the first request message comprises:
    transmitting the first request message that is a radio resource control (RRC) request message.
  15. A method for wireless communications at a base station, comprising:
    communicating control signaling with a user equipment (UE) to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    receiving, from the UE, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    transmitting, to the UE, a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  16. The method of claim 15, further comprising:
    communicating control signaling with the UE to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  17. The method of claim 16, wherein receiving the first request message comprises:
    receiving, from the UE, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  18. The method of any of claims 15 to 17, further comprising:
    communicating control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and
    receiving, from the UE, a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  19. The method of claim 18, further comprising:
    transmitting, to the UE, a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and
    communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  20. The method of any of claims 15 to 19, further comprising:
    communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is received based at least in part on deactivating the second communication flow.
  21. The method of any of claims 15 to 20, further comprising:
    communicating control signaling with the UE to activate a second communication flow having a second data delay budget;
    communicating control signaling with the UE to deactivate the first communication flow; and
    receiving a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  22. The method of any of claims 15 to 21, further comprising:
    communicating control signaling with the UE to activate a second communication flow having a second data delay budget; and
    determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  23. The method of claim 22, further comprising:
    communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  24. The method of any of claims 15 to 23, further comprising:
    communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget; and
    determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  25. The method of any of claims 15 to 24, wherein receiving the first request message comprises:
    receiving the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  26. The method of any of claims 15 to 25, wherein communicating control signaling with the UE to activate the first communication flow comprises:
    communicating the control signaling that comprises a non-access stratum message to activate the first communication flow.
  27. The method of any of claims 15 to 26, wherein communicating control signaling with the UE to activate the first communication flow comprises:
    communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  28. The method of any of claims 15 to 27, wherein receiving the first request message comprises:
    receiving the first request message that is a radio resource control (RRC) request message.
  29. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    transmit, to the base station, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    receive a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    communicate the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  30. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the base station to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  31. The apparatus of claim 30, wherein the instructions to transmit the first request message are executable by the processor to cause the apparatus to:
    transmit, to the base station, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  32. The apparatus of any of claims 29 to 31, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and
    transmit a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  33. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and
    communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  34. The apparatus of any of claims 29 to 33, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is transmitted based at least in part on deactivating the second communication flow.
  35. The apparatus of any of claims 29 to 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the base station to activate a second communication flow having a second data delay budget;
    communicate control signaling with the base station to deactivate the first communication flow; and
    transmit a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  36. The apparatus of any of claims 29 to 35, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the base station to activate a second communication flow having a second data delay budget; and
    determine not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  37. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  38. The apparatus of any of claims 29 to 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the base station to deactivate a second communication flow having a second data delay budget; and
    determine not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  39. The apparatus of any of claims 29 to 38, wherein the instructions to transmit the first request message are executable by the processor to cause the apparatus to:
    transmit the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  40. The apparatus of any of claims 29 to 39, wherein the instructions to communicate control signaling with the base station to activate the first communication flow are executable by the processor to cause the apparatus to:
    communicate control signaling that comprises a non-access stratum message to activate the first communication flow.
  41. The apparatus of any of claims 29 to 40, wherein the instructions to communicate control signaling with the base station to activate the first communication flow are executable by the processor to cause the apparatus to:
    communicate control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  42. The apparatus of any of claims 29 to 41, wherein the instructions to transmit the first request message are executable by the processor to cause the apparatus to:
    transmit the first request message that is a radio resource control (RRC) request message.
  43. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    communicate control signaling with a user equipment (UE) to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    receive, from the UE, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    transmit, to the UE, a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    communicate the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the UE to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  45. The apparatus of claim 44, wherein the instructions to receive the first request message are executable by the processor to cause the apparatus to:
    receive, from the UE, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  46. The apparatus of any of claims 43 to 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and
    receive, from the UE, a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  47. The apparatus of claim 46, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and
    communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  48. The apparatus of any of claims 43 to 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is received based at least in part on deactivating the second communication flow.
  49. The apparatus of any of claims 43 to 48, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the UE to activate a second communication flow having a second data delay budget;
    communicate control signaling with the UE to deactivate the first communication flow; and
    receive a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  50. The apparatus of any of claims 43 to 49, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the UE to activate a second communication flow having a second data delay budget; and
    determine not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  51. The apparatus of claim 50, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  52. The apparatus of any of claims 43 to 51, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate control signaling with the UE to deactivate a second communication flow having a second data delay budget; and
    determine not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  53. The apparatus of any of claims 43 to 52, wherein the instructions to receive the first request message are executable by the processor to cause the apparatus to:
    receive the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  54. The apparatus of any of claims 43 to 53, wherein the instructions to communicate control signaling with the UE to activate the first communication flow are executable by the processor to cause the apparatus to:
    communicate the control signaling that comprises a non-access stratum message to activate the first communication flow.
  55. The apparatus of any of claims 43 to 54, wherein the instructions to communicate control signaling with the UE to activate the first communication flow are executable by the processor to cause the apparatus to:
    communicate control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  56. The apparatus of any of claims 43 to 55, wherein the instructions to receive the first request message are executable by the processor to cause the apparatus to:
    receive the first request message that is a radio resource control (RRC) request message.
  57. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for communicating control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    means for transmitting, to the base station, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    means for receiving a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    means for communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  58. The apparatus of claim 57, further comprising:
    means for communicating control signaling with the base station to activate a second communication flow having a second data delay budget, wherein the first request  message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  59. The apparatus of claims 58, wherein the means for transmitting the first request message comprises:
    means for transmitting, to the base station, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  60. The apparatus of any of claims 57 to 59, further comprising:
    means for communicating control signaling with the base station to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and
    means for transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  61. The apparatus of claim 60, further comprising:
    means for receiving a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and
    means for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  62. The apparatus of any of claims 57 to 61, further comprising:
    means for communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is transmitted based at least in part on deactivating the second communication flow.
  63. The apparatus of any of claims 57 to 62, further comprising:
    means for communicating control signaling with the base station to activate a second communication flow having a second data delay budget;
    means for communicating control signaling with the base station to deactivate the first communication flow; and
    means for transmitting a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  64. The apparatus of any of claims 57 to 63, further comprising:
    means for communicating control signaling with the base station to activate a second communication flow having a second data delay budget; and
    means for determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  65. The apparatus of claim 64, further comprising:
    means for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  66. The apparatus of any of claims 57 to 65, further comprising:
    means for communicating control signaling with the base station to deactivate a second communication flow having a second data delay budget; and
    means for determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  67. The apparatus of any of claims 57 to 66, wherein the means for transmitting the first request message comprises:
    means for transmitting the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  68. The apparatus of any of claims 57 to 67, wherein the means for communicating control signaling with the base station to activate the first communication flow comprises:
    means for communicating control signaling that comprises a non-access stratum message to activate the first communication flow.
  69. The apparatus of any of claims 57 to 68, wherein the means for communicating control signaling with the base station to activate the first communication flow comprises:
    means for communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  70. The apparatus of any of claims 57 to 69, wherein the means for transmitting the first request message comprises:
    means for transmitting the first request message that is a radio resource control (RRC) request message.
  71. An apparatus for wireless communications at a base station, comprising:
    means for communicating control signaling with a user equipment (UE) to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    means for receiving, from the UE, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    means for transmitting, to the UE, a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    means for communicating the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  72. The apparatus of claim 71, further comprising:
    means for communicating control signaling with the UE to activate a second communication flow having a second data delay budget, wherein the first request message indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on the second data delay budget.
  73. The apparatus of claim 72, wherein the means for receiving the first request message comprises:
    means for receiving, from the UE, the first request message that indicates the first time duration requested for the discontinuous reception cycle of the UE that is selected based at least in part on a shorter of the first data delay budget and the second data delay budget.
  74. The apparatus of any of claims 71 to 73, further comprising:
    means for communicating control signaling with the UE to activate a second communication flow having a second data delay budget that is shorter than the first data delay budget; and
    means for receiving, from the UE, a second request message that indicates a second time duration requested for the discontinuous reception cycle that is selected based at least in part on the second data delay budget.
  75. The apparatus of claim 71, further comprising:
    means for transmitting, to the UE, a second control message configuring the UE to operate using the discontinuous reception cycle having the second time duration based at least in part on the second request message; and
    means for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the second time duration.
  76. The apparatus of any of claims 71 to 75, further comprising:
    means for communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget that is shorter than the first data delay budget, wherein the first request message is received based at least in part on deactivating the second communication flow.
  77. The apparatus of any of claims 71 to 76, further comprising:
    means for communicating control signaling with the UE to activate a second communication flow having a second data delay budget;
    means for communicating control signaling with the UE to deactivate the first communication flow; and
    means for receiving a second request message that indicates a second time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being different than the first data delay budget.
  78. The apparatus of any of claims 71 to 78, further comprising:
    means for communicating control signaling with the UE to activate a second communication flow having a second data delay budget; and
    means for determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  79. The apparatus of claim 78, further comprising:
    means for communicating the first data traffic of the first communication flow and second data traffic of the second communication flow based at least in part on the discontinuous reception cycle having the first time duration.
  80. The apparatus of any of claims 71 to 79, further comprising:
    means for communicating control signaling with the UE to deactivate a second communication flow having a second data delay budget; and
    means for determining not to update the first time duration requested for the discontinuous reception cycle based at least in part on the second data delay budget being longer than the first data delay budget.
  81. The apparatus of any of claims 71 to 80, wherein the means for receiving the first request message comprises:
    means for receiving the first request message that is a radio resource control connected mode-discontinuous reception (C-DRX) cycle message.
  82. The apparatus of any of claims 71 to 81, wherein the means for communicating control signaling with the UE to activate the first communication flow comprises:
    means for communicating the control signaling that comprises a non-access stratum message to activate the first communication flow.
  83. The apparatus of any of claims 71 to 82, wherein the means for communicating control signaling with the UE to activate the first communication flow comprises:
    means for communicating control signaling to activate an ultra-reliable low-latency communication (URLLC) flow, an enhanced mobile broadband (eMBB) communication flow, a massive machine type communications (mMTC) communication flow, or a combination thereof.
  84. The apparatus of any of claims 71 to 83, wherein the means for receiving the first request message comprises:
    means for receiving the first request message that is a radio resource control (RRC) request message.
  85. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    communicate control signaling with a base station to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    transmit, to the base station, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    receive a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    communicate the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
  86. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    communicate control signaling with a user equipment (UE) to activate a first communication flow having a first data delay budget for first data traffic of the first communication flow;
    receive, from the UE, a first request message that indicates a first time duration requested for a discontinuous reception cycle of the UE that is selected based at least in part on the first data delay budget;
    transmit, to the UE, a control message configuring the UE to operate using the discontinuous reception cycle having the first time duration based at least in part on the first request message; and
    communicate the first data traffic of the first communication flow based at least in part on the first data delay budget and the discontinuous reception cycle having the first time duration.
PCT/CN2020/109985 2020-08-19 2020-08-19 Adaptive discontinuous reception cycle configuration for active flows WO2022036586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109985 WO2022036586A1 (en) 2020-08-19 2020-08-19 Adaptive discontinuous reception cycle configuration for active flows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109985 WO2022036586A1 (en) 2020-08-19 2020-08-19 Adaptive discontinuous reception cycle configuration for active flows

Publications (1)

Publication Number Publication Date
WO2022036586A1 true WO2022036586A1 (en) 2022-02-24

Family

ID=80322419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109985 WO2022036586A1 (en) 2020-08-19 2020-08-19 Adaptive discontinuous reception cycle configuration for active flows

Country Status (1)

Country Link
WO (1) WO2022036586A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150305056A1 (en) * 2014-04-18 2015-10-22 Apple Inc. Deterministic RRC Connections
US20160050605A1 (en) * 2013-03-26 2016-02-18 Samsung Electronics Co., Ltd. Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor
WO2019147438A1 (en) * 2018-01-26 2019-08-01 Qualcomm Incorporated Low latency operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160050605A1 (en) * 2013-03-26 2016-02-18 Samsung Electronics Co., Ltd. Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor
US20150305056A1 (en) * 2014-04-18 2015-10-22 Apple Inc. Deterministic RRC Connections
WO2019147438A1 (en) * 2018-01-26 2019-08-01 Qualcomm Incorporated Low latency operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA CORPORATION, NSN: "DRX for dual connectivity", 3GPP DRAFT; R2-140348 DRX FOR DUAL CONNECTIVITY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, 9 February 2014 (2014-02-09), Prague, Czech Republic, XP050737563 *

Similar Documents

Publication Publication Date Title
US20240080874A1 (en) Default quasi-colocation for single downlink control information-based multiple transmission reception points
US11968736B2 (en) Discontinuous transmission and discontinuous reception configurations for sidelink communications
US20210377914A1 (en) Transmit beam selection schemes for multiple transmission reception points
WO2021168645A1 (en) Beam switching techniques for uplink transmission
US20210067997A1 (en) Sounding reference signal channel measurement for sidelink communication
WO2022047777A1 (en) Channel state information reference signal triggering when secondary cell dormancy is configured
US20210360732A1 (en) Discontinuous downlink channel monitoring
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
WO2021047539A1 (en) Uplink transmission timing patterns
WO2021226956A1 (en) Monitoring for downlink repetitions
US11659549B2 (en) Timing for cross scheduling and reference signal triggering
US11596004B2 (en) Activation and deactivation of random access channel occasions
US11671956B2 (en) Beam measurement on sidelink
US11444720B2 (en) Wireless device transmit and receive capability in sidelink control information
WO2022000484A1 (en) Wake-up signal design for multiple multicast sessions
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
WO2022036586A1 (en) Adaptive discontinuous reception cycle configuration for active flows
US11985604B2 (en) Pathloss reference signal update for multiple beams
US11778549B2 (en) Bandwidth part control for network power saving
US11272496B2 (en) Narrowband retuning in wireless communications
WO2022011678A1 (en) On-demand system information downlink control channel repetition
WO2022170556A1 (en) Additional user equipment identifier for paging response
WO2021226916A1 (en) Packet sequence number based network resynchronization
WO2022061566A1 (en) Resource selection under congested conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949797

Country of ref document: EP

Kind code of ref document: A1