WO2014190550A1 - 一种通讯方法、基站及用户设备 - Google Patents

一种通讯方法、基站及用户设备 Download PDF

Info

Publication number
WO2014190550A1
WO2014190550A1 PCT/CN2013/076577 CN2013076577W WO2014190550A1 WO 2014190550 A1 WO2014190550 A1 WO 2014190550A1 CN 2013076577 W CN2013076577 W CN 2013076577W WO 2014190550 A1 WO2014190550 A1 WO 2014190550A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
base station
data allocation
information
allocation information
Prior art date
Application number
PCT/CN2013/076577
Other languages
English (en)
French (fr)
Inventor
张健
曾清海
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13885486.4A priority Critical patent/EP2993937B1/en
Priority to BR112015029872-9A priority patent/BR112015029872B1/pt
Priority to PT17182897T priority patent/PT3301847T/pt
Priority to RU2015156103A priority patent/RU2631251C2/ru
Priority to EP17182897.3A priority patent/EP3301847B1/en
Priority to CN201380003046.2A priority patent/CN104396304B/zh
Priority to JP2016515592A priority patent/JP6478246B2/ja
Priority to MX2015016393A priority patent/MX352077B/es
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020177020940A priority patent/KR101807685B1/ko
Priority to PCT/CN2013/076577 priority patent/WO2014190550A1/zh
Priority to KR1020157036419A priority patent/KR101764284B1/ko
Publication of WO2014190550A1 publication Critical patent/WO2014190550A1/zh
Priority to US14/951,091 priority patent/US10484997B2/en
Priority to ZA2015/08700A priority patent/ZA201508700B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method, a base station, and a user equipment. Background technique
  • CCs Component Carriers
  • the user equipment User Equipment, UE
  • component carriers may be provided by the same base station or by different base stations; the former is called intra-base station carrier aggregation (Intra-BS CA), and the latter is called inter-base station carrier aggregation. (Inter-BS CA).
  • Intra-BS CA intra-base station carrier aggregation
  • Inter-BS CA inter-base station carrier aggregation
  • a plurality of component carriers of a common site are provided by a base station, or a plurality of non-co-sites provided by a base station and its remote radio head (RRH) respectively Component carriers.
  • the base station configures carrier aggregation for UEs located in the common coverage area of the plurality of component carriers according to specific radio conditions (e.g., channel quality, pilot signal strength, etc.) and traffic conditions.
  • the UE may establish a wireless connection relationship with one or more base stations participating in the carrier aggregation configuration, that is, establish network communication with the serving cells in the jurisdiction of multiple base stations.
  • a base station (hereinafter referred to as a first base station) is responsible for data offload/aggregation, and the first base station transmits a part of downlink data, such as a Packet Data Convergence Protocol (PDCP) protocol data unit. (Protocol Data Unit, PDU), Radio Link Control (RLC) PDU is transmitted to one or more other base stations (hereinafter referred to as a second base station).
  • PDCP Packet Data Convergence Protocol
  • PDU Packet Data Convergence Protocol
  • RLC Radio Link Control
  • FIG. 1 is a schematic diagram of carrier aggregation between base stations in an LTE system, where the first base station eNB1 and the second base station e NB2 independently schedule UEs.
  • the base station schedules the UE.
  • RRC Radio Resource Control
  • the multiple base stations participating in the carrier aggregation separately schedule the UE respectively.
  • the first base station eNB1 sends the first transport block TBI to the UE.
  • the second base station eNB2 sends the second transport block TB2 to the UE, and the sum of the number of bits corresponding to the first transport block TBI and the second transport block TB2 exceeds the bearer capability of the UE, so that the UE fails to receive one of the transport blocks or fails to receive all. .
  • the embodiments of the present invention provide a communication method, a base station, and a user equipment, which are used to solve the problem that data reception failure occurs when multiple base stations separately schedule UEs in a carrier aggregation process between base stations.
  • a communication method including:
  • the first base station sends the first data to the UE according to the first data allocation information determined by the radio access capability of the user equipment UE;
  • the first base station instructs the second base station to send second data to the UE according to the second data allocation information determined by the radio access capability of the UE, where the second base station performs carrier aggregation with the first base station. ;
  • the sum of the data amounts of the first data and the second data that are sent by the first base station and the second base station to the UE in the same transmission time interval does not exceed the UE according to the UE.
  • the first data allocation information includes: the first base station sends a data allocation threshold of the first data to the UE, and/or the a base station sends the data distribution time-sharing information of the first data to the UE; the second data allocation information includes a data allocation threshold of the second data sent by the second base station to the UE, and Or the second base station sends the data distribution time-sharing information of the second data to the UE.
  • the data allocation threshold includes at least one of the following parameters: The maximum number of downlink shared transport channels received in the DL-SCH transport block; the maximum number of bits of a DL-SCH transport block received in a unit TTI; the total number of bits in the soft channel; the maximum supported stratum in downlink spatial multiplexing; The maximum number of packet data convergence protocol PDCP service data units SDU.
  • the data allocation information includes data distribution time-sharing information
  • the data distribution time-sharing information includes subframe information
  • the first base station or the second base station sends data to the UE according to the subframe information.
  • the first base station sends a subframe bitmap to the UE, where the subframe bitmap includes a first base station a subframe number occupied by the UE by sending the first data, and a subframe number occupied by the second base station to send the second data to the UE.
  • the first base station instructs the second base station to send data to the UE in a corresponding subframe.
  • the data distribution threshold includes the first base station or The second base station sends a multiple input multiple output MIMO mode used by the data to the UE, where the MIMO mode is a downlink spatial multiplexing maximum support layer number.
  • the first base station receives a signal quality parameter sent by the UE and identifier information corresponding to the UE; Determining, by the first base station, the radio access capability parameter of the UE according to the identifier information corresponding to the UE; the first base station determining, according to the signal quality parameter, and the radio access capability parameter of the UE, Decoding first data allocation information, and determining second data allocation information of the second base station.
  • the first base station determines the first data allocation information and the second data according to a preset period. Allocating information; or the first base station determining the first data allocation information and the second data allocation information according to the measurement report or the quality of service QoS reported by the UE.
  • the first base station sends the measurement report to the second base station, indicating that the second base station is configured according to the The measurement report updates the second data allocation information; the first base station receives the updated second data allocation information sent by the second base station.
  • the first data allocation information and the second data allocation information further include a data allocation effective time; the first base station according to the wireless access by the UE
  • the first data allocation information determined by the capability is used to send the first data to the UE, where the method includes: the time at which the first base station corresponds to the data allocation time included in the first data allocation information, according to the first data allocation information
  • the UE sends the first data
  • the first base station instructs the second base station to send the second data to the UE according to the second data allocation information determined by the radio access capability of the UE, specifically:
  • the base station instructs the second base station to send the second data to the UE according to the second data allocation information at a time corresponding to a data allocation effective time included in the second data allocation information.
  • the first base station receives the hybrid automatic retransmission request HARQ feedback information or the wireless chain sent by the UE
  • the path controls the RLC status report, and adjusts the rate at which data is sent to the UE according to the HARQ feedback information or the RLC status report.
  • a communication method including: Receiving, by the second base station, data allocation information determined by the radio access capability of the user equipment UE by the first base station;
  • the first base station and the second base station carrier are aggregated, and the sum of the data amounts sent by the first base station and the second base station to the UE in the same transmission time interval TTI does not exceed the UE according to the The sum of the amount of data that the UE's radio access capability can receive.
  • the second base station sends data to the UE at a time corresponding to the data allocation effective time according to the data allocation effective time included in the data allocation information.
  • the data allocation information includes: a data allocation threshold for the second base station to send data to the UE, and/or the second base station to the The data of the data sent by the UE is allocated time-sharing information.
  • the data allocation information includes data distribution time-sharing information
  • the data distribution time-sharing information includes subframe information
  • the method further includes: the second base station The UE sends a subframe bitmap, where the subframe bitmap includes a subframe number occupied by the first base station to send data to the UE, and a subframe number occupied by the second base station to send data to the UE.
  • the data distribution threshold includes a multiple input multiple output MIMO mode used by the second base station to send data to the UE, where the MIMO mode is a downlink spatial multiplexing maximum support layer number.
  • the second base station sends an updated update to the first base station according to the measurement report reported by the UE Data allocation information.
  • the second base station receives the hybrid automatic repeat request HARQ feedback information or the radio link control RLC status report sent by the UE, and adjusts to send data to the UE according to the HARQ feedback information or the RLC status report. s speed.
  • a communication method including:
  • the first data allocation information and the second data allocation information are determined by the first base station according to the radio receiving capability of the UE, and the UE receives the first base station to send in the same transmission time interval
  • the sum of the data amount of the first data and the second data sent by the second base station does not exceed the sum of the data amounts that the UE can receive according to its own radio access capability.
  • the first data allocation information includes: the first base station sends a data allocation threshold of the first data to the UE, and/or the a base station sends the data distribution time-sharing information of the first data to the UE; the second data allocation information includes a data allocation threshold of the second data sent by the second base station to the UE, and Or the second base station sends the data distribution time-sharing information of the second data to the UE.
  • the data allocation information includes data distribution time-sharing information
  • the data distribution time-sharing information includes subframe information
  • the first base station or the second base station sends data to the UE according to the subframe information.
  • the UE receives a subframe bitmap sent by the first base station and/or the second base station, where the subframe bit is The figure includes the subframe number that the first base station sends to the UE, and the subframe number that the second base station uses to send the second data to the UE; a subframe bitmap, in the subframe corresponding to the subframe number that the first base station uses to send the first data to the UE, receiving the first data sent by the first base station; And sending, by the base station, the second data sent by the second base station to each subframe corresponding to the subframe number occupied by the second data.
  • the UE acquires a first data sending rate corresponding to the first base station, and the second base station pair a second data transmission rate; when the UE determines that the absolute value of the difference between the first data transmission rate and the second data transmission rate is greater than a preset threshold, notifying the first base station or the second The base station adjusts the data transmission rate.
  • a base station including:
  • a sending unit configured to send first data to the UE according to the first data allocation information determined by the radio access capability of the user equipment UE;
  • the indication unit is configured to instruct the carrier aggregation base station to send second data to the UE according to the second data allocation information determined by the radio access capability of the UE, where the carrier aggregation base station performs carrier aggregation with the base station; And the sum of the data amounts of the first data and the second data that are sent by the base station and the carrier aggregation base station to the UE in the same transmission time interval TTI does not exceed the radio access of the UE according to the UE The sum of the amount of data that the capability can receive.
  • a base station including:
  • a receiving unit configured to receive data allocation information determined by the first base station by the radio access capability of the user equipment UE, and send the data allocation information to the data sending unit;
  • a sending unit configured to receive data allocation information sent by the receiving unit, and send data to the UE according to the data allocation information, where the first base station and the base station carrier are aggregated, and the base station is in the same
  • the sum of the amount of data transmitted to the UE within the transmission time interval TTI does not exceed the sum of the amount of data that the UE can receive according to the radio access capability of the UE.
  • a user equipment including:
  • a data receiving unit configured to receive first data that is sent by the first base station according to the first data distribution information, where the data receiving unit is further configured to receive second data that is sent by the second base station according to the second data distribution information;
  • the first data allocation information and the second data allocation information are determined by the first base station according to the radio receiving capability of the UE, and the UE receives the first data and the first data sent by the first base station in the same transmission time interval TTI.
  • the sum of the data amounts of the second data sent by the second base station does not exceed the sum of the data amounts that the UE can receive according to its own radio access capability.
  • the first base station sends the first data to the UE according to the first data allocation information determined by the radio access capability of the UE
  • the second base station is configured according to the radio by the UE according to the first base station.
  • the second data allocation information determined by the access capability sends the second data to the UE.
  • the first base station and the second base station carrier are aggregated, and the first base station and the second base station send data to the UE in the same TTI. The sum of the quantities does not exceed the sum of the amount of data that the UE's radio access capability can receive.
  • multiple base stations participating in carrier aggregation can be allocated to allocate downlink resources to the UE, so that the amount of data sent to the UE satisfies the radio access capability, thereby ensuring the correctness of the data received by the UE.
  • FIG. 1 is a schematic diagram of information interaction when multiple base stations separately schedule UEs in the prior art
  • FIG. 2 is a system architecture diagram of a multi-base station scheduling UE in an embodiment of the present invention
  • FIG. 3 is a first flowchart of a communication process in which a plurality of base stations respectively schedule UEs according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 1 of information interaction when a plurality of base stations separately schedule UEs according to an embodiment of the present invention
  • FIG. 6 is a second schematic diagram of information interaction when multiple base stations separately schedule UEs according to an embodiment of the present invention
  • FIG. 7 is a second flowchart of a communication process for scheduling multiple UEs by multiple base stations according to an embodiment of the present invention
  • FIG. 9 is a detailed flowchart of a communication process for a UE to separately schedule UEs according to an embodiment of the present invention
  • FIG. 10 is a flowchart of multiple base stations scheduling UEs in a specific application scenario according to an embodiment of the present invention; Communication process flow chart one;
  • 11 is a flow chart 2 of a communication process in which a plurality of base stations separately schedule UEs in a specific application scenario according to an embodiment of the present invention
  • FIG. 12 is a flow chart 3 of a communication process in which a plurality of base stations respectively schedule UEs in a specific application scenario according to an embodiment of the present invention
  • FIG. 13 is a flow chart 4 of a communication process in which a plurality of base stations respectively schedule UEs in a specific application scenario according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a base station in a process of scheduling a UE by multiple base stations according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of a base station in a process of scheduling UEs by multiple base stations according to an embodiment of the present invention
  • FIG. 16 is a schematic diagram of a multiple base station in an embodiment of the present invention
  • FIG. 17 is a schematic diagram of a base station device in a process of scheduling a UE by multiple base stations according to an embodiment of the present invention
  • FIG. 18 is a schematic diagram 2 of a base station device in a process of scheduling a UE by multiple base stations according to an embodiment of the present invention
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset). And a portable device (ortable equipment), etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular" Telephone), a computer with wireless communication function, etc., and the user equipment can also be a portable, portable, handheld, computer built-in or vehicle-mounted mobile device.
  • RAN Radio Access Network
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame and the IP packet into each other as a router between the wireless terminal and the rest of the access network, wherein The remainder of the access network may include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE NodeB or eNB or e-NodeB, evolutional Node B
  • the first base station sends the first data to the UE according to the first data allocation information determined by the radio access capability of the UE, and the second base station according to the radio access capability of the UE by the first base station according to Transmitting, by the determined second data allocation information, the second data to the UE, where the first base station and the second base station carrier are aggregated, and the sum of the data amounts sent by the first base station and the second base station to the UE in the same TTI is not The sum of the amount of data that can be received by the wireless access capability of the UE.
  • multiple base stations participating in carrier aggregation can be allocated to allocate downlink resources to the UE, so that the amount of data sent to the UE satisfies the radio access capability, thereby ensuring the correctness of the data received by the UE.
  • the technical solution of the present invention is applicable to the 3G and 4G networks.
  • the LTE network is taken as an example for detailed description.
  • the network system architecture diagram is shown in FIG. 2, where the first base station is a base station responsible for data splitting/aggregation.
  • the first base station, the second base station 1 and the second base station 2 participate in carrier aggregation, and allocate downlink resources to the UE.
  • the network system of the present invention may include two base stations (ie, one first base station and one second base station), and may also include at least three base stations (ie, one first base station and at least two second base stations), In the embodiment of the present invention, two base stations in the network system are taken as an example for detailed description.
  • the detailed process of the first base station controlling the inter-base station carrier aggregation for data transmission is:
  • Step 300 The first base station sends the first data to the UE according to the first data allocation information determined by the radio access capability of the UE.
  • the sum of the data amounts sent by the first base station and the second base station to the UE in the same TTI does not exceed the sum of the data amounts that can be received by the radio access capability of the UE.
  • the radio access capabilities are different, and the downlink physical layer parameters of the eight LTE UE categories are specified in the relevant standards. Value (ie, the radio access capability of the UE), as shown in Table 1.
  • the UE category (UE-category) defines a combination of downlink capability and uplink capability corresponding to each type of UE.
  • the maximum number of DL-SCH transport block bits Received within a TTI is the maximum number of downlink shared transport channels (DL-SCH) received in the Transmission Time Interval (TTI).
  • the maximum number of bits of a DL-SCH transport block received within a TTI defines the maximum number of DL-SCH transport block bits that the UE can receive in one transport block within one DL-SCH TTI;
  • Total number of soft channel bits The number of available soft channel bits is determined by Hybrid Automatic Retransmission Request (HARQ) processing;
  • the parameter "Maximum number of supported layers for spatial multiplexing in DL” definition The maximum number of layers supported by the downlink multiple input multiple output (MIMO) antenna spatial multiplexing operation.
  • the length of the unit TTI is the length of one subframe (frame) (1 ms).
  • the maximum number of downlink PDCP service data units (SDUs) in a unit TTI is specified in the relevant standards, as shown in Table 2.
  • the process of the first base station determining the first data allocation information of the first base station and the second data allocation information of the second base station is: the first base station receiving the measurement report reported by the UE, and acquiring at least the carried in the measurement report a signal quality parameter of the serving cell of the base station and the identifier information corresponding to the UE; the first base station acquiring the first data allocation information of the first base station according to the signal quality parameter and the identifier information corresponding to the UE, and the foregoing Second data allocation information of the second base station, wherein the data allocation information includes a data distribution threshold, and/or data distribution time sharing information.
  • the data allocation information is obtained by the signal quality parameter, and the signal quality parameter is related to the serving cell in the jurisdiction of the first base station and the serving cell in the jurisdiction of the second base station, the wireless condition, and the data offload algorithm.
  • the flow control situation is related. Therefore, the first data allocation information and the second data allocation information are according to the load corresponding to the serving cell in the jurisdiction of the first base station and the serving cell in the jurisdiction of the second base station, the wireless condition, and the data offload algorithm. , the flow control situation changes Chemical.
  • the process of obtaining the first data allocation information and the second data allocation information by the first base station according to the foregoing signal quality parameter and the identifier information corresponding to the UE is: the first base station acquires the UE according to the identifier information corresponding to the UE. a radio access capability parameter; the first base station determines, according to the signal quality parameter and the radio access capability parameter of the UE, the first data allocation information of the first base station, and the second data allocation information of the second base station.
  • the first data allocation information of the first base station and the second data allocation information of the second base station are obtained by using the signal quality parameter, and when the signal quality of the serving cell in the jurisdiction of a certain base station is good, The base station is allocated a large amount of data transmission, so that the base station with better signal quality carries a larger amount of data transmission, which effectively increases the throughput of the system.
  • the foregoing data allocation information may further include a data allocation effective time, where the data allocation effective time is preset by the first base station, and the first base station sends the data allocation effective time to the second base station, so that the second base station The time at which the data is transmitted to the UE is processed according to the data allocation effective time.
  • the data distribution effective time may be in the form of a time point, such as a time stamp information, or may be in the form of an absolute time information system frame number, such as an SFN (frame number).
  • the first base station may determine, according to a preset period, first data allocation information that is used to send the first data to the UE, and determine that the second base station that performs carrier aggregation with the first base station sends the second data to the UE.
  • the second data allocation information of the data may further obtain the first data allocation information when the second data distribution information needs to be sent to the second base station according to the measurement report reported by the UE or the quality of service (QoS)
  • the second data allocation information is specifically: when the first base station determines, according to the measurement report or QoS reported by the UE, that the data volume sent by the first base station and the second base station to the UE is greater than the radio access capability of the UE, And determining, by the sum of the data amounts, first data allocation information for transmitting the first data to the UE, and determining that the second base station sends the second data allocation information of the second data to the UE.
  • the data allocation threshold included in the data allocation information is obtained by the radio access capability parameter of the UE corresponding to the UE.
  • the foregoing data allocation threshold includes one or any combination of the following parameters: a maximum DL-SCH transmission block number received in a unit TTI, and a unit TTI inscribed The maximum number of bits of a DL-SCH transport block, the total number of bits in the soft channel, the maximum number of supported layers in downlink spatial multiplexing, and the maximum number of PDCP SDUs in a unit TTI.
  • the first base station and the second base station may send the preset data volume data to the UE according to the data allocation information, such as the UE.
  • the radio access capability parameter is TB
  • the data amount of the first base station transmitting data to the UE is TBI
  • the data amount of the second base station transmitting data to the UE is TB2, JL TB1+TB2 ⁇ TB, then the first When the base station and the second base station simultaneously send data to the UE, the total amount of data in the unit TTI will not exceed the carrying capacity of the UE, as shown in FIG.
  • the sum of the data distribution threshold included in the first data allocation information and the data distribution threshold included in the second data allocation information is equal to a sum of data amounts that can be received by the radio access capability of the UE.
  • the data distribution threshold includes multiple radio access capability parameters of the UE
  • the data amount information allocated by the first base station to the local and the second base station should satisfy the foregoing multiple parameters.
  • the first base station may further send the second data allocation information including the data allocation ratio and the radio access capability parameter of the UE to the second base station, and indicate the second base station according to the data allocation ratio and the radio access capability parameter of the UE. Get the data distribution threshold.
  • the data allocation information includes the subframe information
  • the first base station and the second base station may send data to the UE according to the subframe information, that is, the subframe information includes at least one sub-locally allocated by the first base station. a frame number, and at least one subframe number assigned by the first base station to the second base station.
  • the first base station is configured according to the foregoing at least one subframe number that is locally allocated (hereinafter referred to as a first subframe number) and at least one subframe number that is allocated to the second base station (hereinafter referred to as a second subframe number).
  • Obtaining a subframe bitmap that is, the subframe bitmap includes a subframe number occupied by the first base station and the second base station respectively transmitting data to the UE; the first base station is at the preset time
  • the UE sends the subframe bitmap to indicate that the UE switches to the discontinuous reception in the serving cell in the jurisdiction of the second base station when the UE is in the subframe corresponding to the first subframe number of the first base station according to the sending subframe bitmap.
  • the first base station may further send the subframe bitmap and the data allocation effective time to the UE at a preset time, and indicate that the UE is in the data allocation according to the data allocation effective time and the transmission subframe bitmap.
  • the foregoing preset time may be before the first base station sends the second data allocation information to the second base station, or may be the first base station sending the second data allocation information to the second base station, or may be the first base station. After transmitting the second data allocation information to the second base station; and, the first subframe number and the second subframe number are different.
  • the first subframe number is 1-5, indicating that the first base station is in the subframe 1-5 direction in one frame.
  • the UE transmits data, and the second subframe number is 6-10, indicating that the second base station transmits data to the UE in subframes 6-10 in one frame. That is, different base stations send data to the UE in different subframes. At this time, only one base station sends data to the UE in each subframe. After the base station acquires the radio access capability parameter of the UE, the base station can control sending to the UE. The amount of data satisfies the sum of the amount of data received by the UE's radio access capability.
  • the inactive state of the discontinuous reception means that the UE is not in the active time, and the UE does not listen to the Physical Downlink Control Channel (PDCCH) in the subframe corresponding to the inactive state, and does not receive the physical.
  • the Physical Downlink Shared Channel does not transmit information such as the Sounding Reference Signal (SRS) or the Channel Quality Indication (CQI), and is not in the physical uplink shared channel (Physical Uplink Shared Channel).
  • SRS Sounding Reference Signal
  • CQI Channel Quality Indication
  • PUSCH Physical Uplink Shared Channel
  • the UE when the first subframe number of the first base station is used, the UE may not monitor the PDCCH of the serving cell within the jurisdiction of the second base station, thereby effectively reducing the energy consumption of the UE.
  • the first base station when the subframe bitmap does not change, the first base station does not need to indicate that the UE performs state switching in the subframe corresponding to the first subframe number corresponding to each frame, and only in the specified frame.
  • the subframe corresponding to the one subframe number indicates that the UE performs the state switching.
  • the foregoing UE when each of the first base stations sends the subframe corresponding to the first subframe number of the first data, the foregoing UE is disabled.
  • the transceiver corresponding to the two base stations further reduces the energy consumption of the UE and improves the quality of the received signal of the UE.
  • the first base station After acquiring the second data allocation information corresponding to the second base station, the first base station sends the second data allocation information to the second base station.
  • the second data allocation information is sent to the second base station, where: the first base station determines that the subframe bitmap does not change, and the current subframe is not a child.
  • the second base station When the subframe corresponding to the first subframe number of the specified frame in the frame bitmap is used, the second base station is divided into Configuring a second subframe number; the first base station determines that the subframe bitmap changes, and the current subframe is not the subframe corresponding to the updated first subframe number of the specified frame in the updated subframe bitmap, The second base station allocates the updated second subframe number; or, when the first base station determines that the subframe bitmap does not change, and the current subframe is not the first subframe of the first frame after the time corresponding to the data allocation effective time When the subframe corresponding to the number is allocated, the second base station is allocated a second subframe number, and the first base station determines that the transmission subframe bitmap changes, and the subframe corresponding to the current subframe frame number is allocated to the second base station.
  • the first base station may send the foregoing transmission subframe bitmap only if the plurality of base stations simultaneously transmit downlink data in the unit TTI may exceed the UE receiving capability, for example, the UE aggregates two of the first base station jurisdictions. For the serving cell and the two serving cells within the jurisdiction of the second base station, when the radio conditions of each cell are good, for the UE of the UE capability category 6, the first base station and the second base station may simultaneously transmit data to the UE, which may exceed the UE wireless connection. Incoming capability parameters; and when the radio conditions of each serving cell are below a certain threshold, the UE receiving capability may not be exceeded. Therefore, the first base station can send the second data allocation information to the second base station only when the preset condition is met, which effectively saves signaling interaction between the devices and reduces system consumption.
  • the first base station may further send the second data allocation information that includes the data distribution threshold and the data distribution time-sharing information to the second base station, where the first base station locally allocates the third subframe number and the first MIMO mode, and Allocating a fourth subframe number and a second MIMO mode to the second base station, and transmitting second data allocation information including the fourth subframe number and the second MIMO mode to the second base station, where the MIMO mode is downlink spatial multiplexing
  • the third subframe number and the fourth subframe number may be the same (for example, the third transmission subframe number and the fourth transmission subframe number are both 0-4) or different (for example, the third transmission subframe number is 0-4,
  • the second transmission subframe number is 4-6).
  • Step 310 The first base station instructs the second base station to send data to the UE according to the second data allocation information determined by the radio access capability of the UE.
  • the first base station instructs the second base station to send the second data to the UE at the time corresponding to the data allocation effective time according to the second data allocation information.
  • the UE switches to the inactive state of discontinuous reception in the serving cell within the jurisdiction of the second base station; likewise, the second in the second base station When the subframe number is used, the UE switches to the inactive state of discontinuous reception in the serving cell within the jurisdiction of the first base station.
  • the UE may not listen to the PDCCH of the serving cell in the jurisdiction of the first base station, and close the transceiver corresponding to the first base station in the UE, thereby effectively reducing the energy consumption of the UE. .
  • the second base station directly sends the second data to the UE according to the data allocation information.
  • the first base station sends a measurement report to the second base station, indicating the first
  • the second base station updates the second data allocation information according to the measurement report; the first base station acquires the updated second data allocation information sent by the second base station.
  • the process of obtaining the measurement report by the foregoing second base station is: forwarding, by the first base station, the measurement report acquired by the first base station to the second base station; or, the second base station obtaining the measurement report reported by the UE.
  • the UE acquires and receives the first base station data transmission rate and the second base station data transmission rate, and determines that the absolute value of the first base station data transmission rate and the second base station data transmission rate difference is greater than the set threshold. Transmitting data to the first base station and the second base station to transmit rate adjustment information generated based on Hybrid Automatic Repeat ReQuest (HARQ) feedback information or Radio Link Control (RLC) status report,
  • the first base station acquires data transmission rate adjustment information sent by the UE, and adjusts a rate of sending data to the UE according to the data transmission rate adjustment information.
  • the first base station data transmission rate is a
  • the second base station data transmission rate is a2
  • al > a2 When al-a2 > a (preset threshold), the first base station adjusts information according to the data transmission rate to reduce the data.
  • Send rate see Figure 6.
  • a detailed process for the second base station to send data to the UE according to the indication of the first base station is:
  • Step 700 The second base station receives data allocation information determined by the radio access capability of the UE by the first base station.
  • the data distribution information includes a data distribution threshold, and/or data distribution time-sharing information.
  • the first base station and the second base station carrier are aggregated.
  • the total amount of data sent by the first base station and the second base station to the UE in the same TTI does not exceed the sum of the data amounts that can be received by the radio access capability of the UE. If the data distribution information includes a data allocation effective time, the second base station transmits data to the UE at the time corresponding to the data distribution effective time according to the data allocation information.
  • the second base station acquires a threshold value for locally allocated data according to the data allocation information, and/or data distribution time-sharing information.
  • the second base station acquires one or any combination of the following parameters as the data allocation threshold according to the data allocation information: the maximum number of DL-SCH transmission block bits received in the allocated unit TTI, and the allocated unit TTI The maximum number of bits of a DL-SCH transport block received, the total number of allocated soft channels, the maximum number of supported downlink spatial multiplexing layers, and the maximum number of PDCP SDUs in a unit TTI after allocation.
  • the second base station sends data to the UE according to the subframe information carried in the data distribution information, and the corresponding subframe included in the subframe information.
  • the data allocation information includes the data distribution time-sharing information and the data allocation threshold, the second base station according to the subframe information and the MIMO mode carried in the data allocation information, and the corresponding subframes included in the subframe information are according to the MIMO mode. , send data to the UE.
  • the second base station sends a subframe bitmap to the UE, and indicates, according to the data allocation effective time and the subframe bitmap, when the subframe corresponding to the subframe number of the second base station sends data, at the first base station. Switching to the inactive state of discontinuous reception in the serving cell within the jurisdiction. If the data transmission information further includes a data allocation effective time, the second base station sends a subframe bitmap and a data allocation effective time to the UE, and indicates that the UE corresponds to the data allocation effective time and the subframe bitmap when the data allocation effective time is met.
  • the second base station in the frame transmits the subframe corresponding to the subframe number of the data, it switches to the inactive state of the discontinuous reception in the serving cell within the jurisdiction of the first base station; wherein, in the data transmission subframe bitmap The subframe number corresponding to the data sent by the first base station and the subframe number corresponding to the data sent by the second base station are included.
  • the second base station directly sends data to the UE according to the data allocation information, in order to ensure The accuracy of the process of the inter-base station carrier aggregation configuration.
  • the second base station obtains locally generated data allocation information according to the measurement report of the UE; and when the second base station determines the data allocation information sent by the first base station and the locally generated When the data allocation information is different, the locally allocated data allocation information is sent to the first base station, and the first base station is notified to update the data allocation information sent by the first base station to the second base station according to the locally allocated data allocation information.
  • the second base station receives the data transmission rate adjustment information generated by the UE based on the HARQ feedback information or the RLC status report, and adjusts the rate of sending data to the UE according to the data transmission rate adjustment information.
  • the detailed process of receiving data by the UE according to the downlink resources allocated by the first base station and the second base station is:
  • Step 800 The UE receives the first data that is sent by the first base station according to the first data allocation information.
  • the first data distribution information includes a data distribution threshold, and/or data distribution time-sharing information.
  • the UE When the first data allocation information includes the data distribution threshold, the UE receives the data of the corresponding data amount sent by the first base station according to the data distribution threshold; when the first data allocation information includes the data distribution time-sharing information, the UE And receiving, by the first base station, data sent on a subframe corresponding to the first subframe number included in the data distribution time-sharing information.
  • the UE when the subframe is in the subframe corresponding to the first subframe number, the UE switches to the inactive state of discontinuous reception in the serving cell managed by the second base station, which effectively reduces energy consumption of the UE.
  • Step 810 The UE receives second data that is sent by the second base station according to the second data allocation information.
  • the first base station and the second base station are aggregated, and the sum of the data amount of the first data sent by the first base station and the second data sent by the second base station is not exceeded by the UE in the same network.
  • the second data allocation information is sent by the first base station to the second base station.
  • the UE receives the second data sent by the second base station in the subframe corresponding to the second subframe number included in the second data distribution time-sharing information.
  • the UE switches to the inactive state of the discontinuous reception in the serving cell managed by the first base station, which effectively reduces the energy consumption of the UE.
  • the UE acquires a first data sending rate corresponding to the first base station and a second data sending rate corresponding to the second base station; when the UE determines that the absolute value of the difference between the first data sending rate and the second data sending rate is greater than a preset
  • the data is sent to the first base station or the second base station to send the rate adjustment information generated based on the HARQ feedback information or the RLC status report, and the first base station or the second base station is notified to adjust the data transmission rate.
  • the data transmission rate may be determined according to a sequence number corresponding to the data block.
  • Step 900 The first base station determines that the first data allocation information used by the first data is sent to the UE, and determines that the second base station sends the second data allocation information used by the second data to the UE.
  • the data distribution information includes a data distribution threshold, and/or data distribution time-sharing information; and the data distribution information further includes a data allocation effective time.
  • the data distribution threshold may include any one of the following parameters and a combination thereof: the maximum number of DL-SCH transmission block bits received in a unit TTI, the maximum number of bits of a DL-SCH transmission block received in a unit TTI, and the total number of soft channels.
  • the data distribution time-sharing information is the subframe information, and includes at least one first subframe number of the first base station, at least one third subframe number; and at least one second subframe number of the second base station and at least one fourth Subframe number.
  • Step 910 The first base station sends the first data to the UE according to the first data allocation information.
  • the first base station allocates time-sharing information according to the allocation information, and the first base station allocates time-sharing information according to the first base station according to the data.
  • the first data is sent to the UE in the subframe corresponding to the first subframe number.
  • the first base station allocates the subframe according to the third subframe number of the first base station in the time-sharing information according to the first MIMO mode according to the first MIMO mode.
  • the UE sends the first data.
  • the UE when the subframe corresponding to the first subframe number is in the foregoing, the UE is in the second base station jurisdiction Switching to the inactive state of discontinuous reception in the serving cell within the perimeter.
  • the first base station receives the data transmission rate adjustment information sent by the UE, and adjusts the rate of sending data to the UE according to the data transmission rate adjustment information.
  • Step 920 The second base station sends the second data to the UE according to the second data allocation information.
  • the second base station may send data to the UE at a time corresponding to the data allocation effective time, thereby ensuring that the first base station and the second base station are in the The agreed time sends data to the UE, facilitating the first base station to coordinate data distribution between multiple base stations.
  • the second base station sends data to the UE that does not exceed the data amount corresponding to the data allocation threshold according to the data allocation threshold. If the data allocation information is time-sharing information, the second base station sends the second data to the UE according to the subframe corresponding to the second subframe number of the second base station in the data distribution time-sharing information. If the data allocation information includes the data distribution time-sharing information and the data distribution threshold, the second base station sends the UE to the UE according to the second MIMO mode according to the subframe corresponding to the fourth subframe number of the second base station in the data distribution time-sharing information. send data.
  • the UE when the subframe is in the subframe corresponding to the second subframe number, the UE switches to the inactive state of discontinuous reception in the serving cell within the jurisdiction of the first base station.
  • the second base station receives the data transmission rate adjustment information sent by the UE, and adjusts the rate of sending data to the UE according to the foregoing data transmission rate adjustment information.
  • the following is a detailed description of the detailed process of data transmission, in which the first base station and the second base station are included in the inter-base station carrier aggregation configuration system, and the UE is the sixth type of UE in Table 1 as an example.
  • the first base station acquires first data allocation information used by the first base station to send the first data to the UE according to the measurement report reported by the UE, and second data allocation information used by the second base station to send the second data to the UE, and the data is allocated.
  • the information only contains the data distribution threshold, as shown in Figure 10, the detailed flow of data transmission is:
  • Step 1000 The first base station acquires a first data allocation that is locally allocated and includes a data allocation threshold Information, and send data to the UE that the amount of data satisfies the first data allocation information.
  • Step 1010 The first base station sends the second data allocation information including the data distribution threshold to the second base station.
  • the UE corresponds to the sixth type of UE in Table 1, and the reference to the standard 1 indicates that the radio access capability parameter of the UE corresponding to the UE is: the maximum DL-SCH transmission block number parameter received in the unit TTI.
  • the value of "301504", the first base station divides the radio access capability parameter of the UE, and divides the data according to the same amount of data corresponding to the first base station and the second base station, and the first base station and the second base station respectively assign parameters.
  • the value is 150752.
  • the first base station transmits the maximum DL-SCH transport block bit number parameter 150752 as a data distribution threshold to the second base station.
  • the actual transmission function exceeds 150752, and the first eNB or the second base station transmits the maximum DL-SCH transmission to the UE in any TTI.
  • the number of block bits should also be less than or equal to 150752.
  • the maximum number of support layers for downlink spatial multiplexing can also be used as the data distribution threshold.
  • the first base station divides the maximum support layer number parameter value, for example, according to the first base station and the second base station.
  • the first base station and the second base station are respectively divided into two layers, and the first base station sends the downlink spatial multiplexing maximum support layer parameter value 2 as a data distribution threshold to the second base station.
  • the maximum support layer parameter value of the first base station and the second base station is 4, the maximum supported layer of downlink spatial multiplexing sent by the first base station or the second base station to the UE in any TTI should be less than or equal to 2.
  • multiple radio access capability parameters of the UE may be used as data distribution thresholds to ensure that the radio access capability of the UE is not exceeded.
  • the data allocation threshold allocated by the first base station should satisfy the radio access capability parameters of the plurality of UEs at the same time.
  • Step 1020 The second base station receives the second data allocation information, obtains a data distribution threshold carried in the second data allocation information, and sends data to the UE that the data volume meets the data distribution threshold.
  • the second base station acquires the locally generated third data allocation information according to the measurement report of the UE; and when the second base station determines the first data distribution threshold obtained by the data distribution information sent by the first base station, and locally generated When the data distribution threshold is different, the above-mentioned locally generated The third data distribution information notifying the first base station to update the second data allocation information according to the locally allocated third data allocation information; the second base station receiving the updated second data allocation information, and according to the updated second data allocation information Send data to the UE.
  • the first base station acquires first data allocation information used by the first base station to send data to the UE according to the measurement report reported by the UE, and second data allocation information used by the second base station to send data to the UE, and the data allocation information includes data distribution points.
  • Time information and data distribution effective time refer to Figure 11, the detailed process of data transmission is:
  • Step 1100 The first base station allocates time-sharing information according to the data carried in the first data allocation information that is allocated locally, and sends the first data to the UE in the subframe corresponding to the first subframe number, and indicates that the UE is in the first sub-frame.
  • the subframe corresponding to the frame number is switched to the inactive state of discontinuous reception in the serving cell within the jurisdiction of the second base station.
  • Step 1110 The first base station sends the second data allocation information including the data distribution time-sharing information and the data allocation effective time to the second base station.
  • the first base station acquires a subframe bitmap according to the first subframe number (such as 1, 4, 7) and the second subframe number (such as 2, 3, 8) carried in the data distribution time-sharing information. And transmitting the subframe bitmap and the data allocation effective time as the second data allocation information to the second base station.
  • the first subframe number such as 1, 4, 7
  • the second subframe number such as 2, 3, 8
  • the data allocation effective time can be expressed as an absolute time information system frame number SFN+ sub-number subframe subframeq
  • the data distribution time-sharing information changes according to the load corresponding to the serving cell in the jurisdiction of the first base station and the serving cell in the jurisdiction of the second base station, the wireless condition, and the data offload algorithm and the flow control situation.
  • the first base station determines that the data distribution time-sharing information changes, the updated data distribution time-sharing information should be sent to the second base station.
  • Step 1120 The second base station receives the second data allocation information, acquires the data distribution time-sharing information carried in the second data allocation information, sends the second data to the UE in the subframe corresponding to the second subframe number, and indicates the UE.
  • the UE is switched to the inactive state of discontinuous reception in the serving cell under the jurisdiction of the first base station.
  • the transceiver corresponding to the second base station when the UE needs to receive the first data sent by the first base station, the transceiver corresponding to the second base station is turned off or each serving cell of the second base station service is deactivated; similarly, the UE only receives the second When the second data is sent by the base station, the transceiver corresponding to the first base station or each serving cell that deactivates the first base station service is turned off. When the UE needs to receive the data sent by the first base station or the second base station again, each serving cell within the jurisdiction of the first base station or each serving cell within the jurisdiction of the second base station is activated.
  • Switching the UE to the inactive state of the discontinuous reception means that, for each serving cell within the jurisdiction of the first base station, the UE receives the downlink data according to the same DRX rule, such as simultaneously listening to or not in each serving cell under the jurisdiction of the first base station. Listening to the physical downlink control channel; for each serving cell within the jurisdiction of the second base station, the UE receives downlink information according to the same DRX rule, such as simultaneously listening to or not monitoring the PDCCH in each serving cell under the jurisdiction of the second base station; And the second base station, the UE may not receive the downlink information according to the same DRX rule. For example, the UE monitors the PDCCH in each serving cell that is controlled by the first base station, and does not monitor the PDCCH in each serving cell that is controlled by the second base station.
  • the first base station acquires first data allocation information used by the first base station to send data to the UE according to the measurement report reported by the UE, and second data allocation information used by the second base station to send data to the UE, and the data allocation information includes data distribution points.
  • first data allocation information used by the first base station to send data to the UE according to the measurement report reported by the UE
  • second data allocation information used by the second base station to send data to the UE and the data allocation information includes data distribution points.
  • the time information and the data distribution threshold refer to Figure 12.
  • the detailed flow of data transmission is:
  • Step 1200 The first base station allocates time-sharing information according to the data carried in the first data allocation information, and sends the first data to the UE according to the first MIMO mode in the subframe corresponding to the third subframe number.
  • Step 1210 The first base station sends the second data allocation information including the data distribution time-sharing information and the data distribution threshold to the second base station.
  • the first base station acquires a subframe bitmap according to a third subframe number (such as 0-3) and a fourth subframe number (such as 0-3) carried in the data distribution time-sharing information, and acquires a first MIMO mode (such as Layer 3) allocated by the first base station and a second MIMO mode (such as Layer 1) allocated for the second base station, and sending the subframe bitmap and the data distribution threshold as data allocation information to the first Two base stations.
  • a third subframe number such as 0-3
  • a fourth subframe number such as 0-3 carried in the data distribution time-sharing information
  • Step 1220 The second base station receives the second data allocation information, and obtains the data distribution time-sharing information carried in the second data allocation information, and the subframe corresponding to the fourth subframe number is in the second MIMO mode to the UE. Send the second data.
  • the first base station acquires first data allocation information used by the first base station to send data to the UE according to the measurement report reported by the UE, and second data allocation information used by the second base station to send data to the UE, as shown in FIG.
  • a base station and the second base station determine a result according to the data distribution rate of the UE, and the detailed process of controlling data transmission is:
  • Step 1300 The UE receives the first data sent by the first base station, and acquires a first data sending rate corresponding to the first data.
  • Step 1310 The UE receives the second data sent by the second base station, and obtains a second data sending rate corresponding to the second data.
  • Step 1320 The UE compares the first data sending rate and the second data sending rate, and sends data sending rate adjustment information to the first base station and the second base station according to the comparison result.
  • the data transmission rate is obtained by using the sequence number of the received data block, and the RLC PDU is used as an example.
  • the RLC PDU sequence numbers sent by different base stations are compared.
  • the large difference i.e., the difference in sequence numbers
  • the UE determines the distance of the maximum RLC PDU sequence number sent by the first base station and the second base station in the preset time range. When the distance is greater than the preset threshold, the UE sends the RLC PDU faster.
  • the base station transmits data transmission rate reduction rate information and/or transmits data transmission rate increase information to a base station that transmits the RLC PDU slowly.
  • the foregoing data transmission rate may refer to the number of RLC PDUs or the amount of downlink data sent by the physical layer, such as the number of bits.
  • Step 1330 The first base station receives the data transmission rate adjustment information, and adjusts the data transmission rate according to the data transmission rate adjustment information.
  • Step 1340 The second base station receives the data transmission rate adjustment information, and adjusts the data transmission rate according to the data transmission rate adjustment information.
  • the present invention provides a base station, including a sending unit 140, and an indicating unit 141, where:
  • the sending unit 140 is configured to send first data to the UE according to the first data allocation information determined by the radio access capability of the UE;
  • the indication unit 141 is configured to instruct the carrier aggregation base station to send second data to the UE according to the second data allocation information determined by the radio access capability of the UE, where the carrier aggregation base station performs carrier aggregation with the base station; The sum of the data amounts of the first data and the second data sent by the base station and the carrier aggregation base station to the UE in the same TTI does not exceed the radio access capability of the UE according to the UE. The sum of the amount of data that can be received.
  • the foregoing base station further includes a determining unit 142, configured to determine, to the UE, first data allocation information that includes a data allocation threshold of the first data, and/or data allocation time-sharing information of the first data. And determining, by the carrier aggregation base station, second data allocation information including a data distribution threshold of the second data, and/or data distribution time-sharing information of the second data, to the UE.
  • the foregoing base station further includes an adjusting unit 143, configured to send the measurement report to the second base station, instructing the second base station to update the second data allocation information according to the measurement report; and receiving, by the second base station, Updated second data allocation information.
  • an adjusting unit 143 configured to send the measurement report to the second base station, instructing the second base station to update the second data allocation information according to the measurement report; and receiving, by the second base station, Updated second data allocation information.
  • the determining unit 142 is specifically configured to allocate at least any one of the following parameters as the data when the first data allocation information and the second data allocation information include the data allocation threshold Width: the number of bits of the DL-SCH transmission block received in the unit TTI; the maximum number of bits of a DL-SCH transmission block received in a unit TTI; the total number of bits of the soft channel; the maximum supported layer of downlink spatial multiplexing; PDCP in unit TTI The maximum number of SDUs.
  • the determining unit 142 is specifically configured to determine data distribution time-sharing information including subframe information, where The base station or the carrier aggregation base station transmits data to the UE according to the subframe information.
  • the sending unit 140 is further configured to: when the first data allocation information and the second data allocation information carry the subframe information, send a subframe bitmap to the UE, where the subframe bit The figure includes a subframe number occupied by the base station to send the first data to the UE, and the carrier aggregation base station to the The UE transmits the subframe number occupied by the second data.
  • the indication unit 141 is further configured to instruct the carrier aggregation base station to send data to the UE in a corresponding subframe.
  • the UE when the first subframe number of the first base station is used, the UE may not monitor the PDCCH of the serving cell in the scope of the second base station, thereby effectively reducing the energy consumption of the UE.
  • the determining unit 142 is further configured to determine a data allocation threshold of the MIMO mode that is used by the base station or the carrier aggregation base station to send data to the UE, where the MIMO mode is a downlink spatial multiplexing maximum support layer. number.
  • the determining unit 142 is specifically configured to: receive a signal quality parameter sent by the UE, and identifier information corresponding to the UE; and acquire, according to the identifier information corresponding to the UE, a radio access capability parameter of the UE; Determining the first data allocation information and determining the second data allocation information of the second base station by using the signal quality parameter and the radio access capability parameter of the UE.
  • the determining unit 142 is specifically configured to: determine the first data allocation information and the second data allocation information according to a preset period; or determine the first data allocation information according to the measurement report or QoS reported by the UE And the second data allocation information.
  • the first data allocation information of the first base station and the second data allocation information of the second base station are obtained by using the signal quality parameter, and when the signal quality of the serving cell in the jurisdiction of a certain base station is good, The base station is allocated a large amount of data transmission, so that the base station with better signal quality carries a larger amount of data transmission, which effectively increases the throughput of the system.
  • the determining unit 142 is specifically configured to: determine the first data allocation information and the second data allocation information respectively including a data allocation effective time.
  • the specific data is used to send the first data to the UE according to the first data allocation information at a time corresponding to the data allocation effective time included in the first data allocation information.
  • the indicating unit When the second data allocation information includes the data allocation effective time, the indicating unit
  • the device is configured to: send, by the carrier aggregation base station, the time corresponding to the data allocation effective time included in the second data allocation information, to send the Second data.
  • the adjusting unit 143 is further configured to: receive HARQ feedback information or an RLC status report sent by the UE, and adjust a rate of sending data to the UE according to the HARQ feedback information or the RLC status report.
  • the base station allocates data allocation information that satisfies the radio access capability of the UE for the base station itself and the carrier aggregation base station that performs carrier aggregation with the base station according to the radio access capability of the UE and the measurement report reported by the UE, thereby coordinating
  • the amount of downlink resources allocated by the multiple base stations participating in the carrier aggregation for the UE is such that the amount of data sent to the UE satisfies the amount of data that can be received by the radio access capability, thereby effectively ensuring the integrity and accuracy of the data received by the UE.
  • the present invention further provides a base station, including a receiving unit 150, and a sending unit 151, where:
  • the receiving unit 150 is configured to receive data allocation information determined by the first base station by the radio access capability of the UE, and send the data allocation information to the data sending unit.
  • the sending unit 151 is configured to receive data allocation information that is sent by the receiving unit, and send data to the UE according to the data allocation information, where the first base station and the base station carrier are aggregated, and the base station is in The sum of the amount of data sent to the UE in the same cell does not exceed the sum of the amount of data that the UE can receive according to the radio access capability of the UE.
  • the foregoing base station further includes an adjusting unit 152, configured to send updated data allocation information to the first base station according to the measurement report reported by the UE.
  • the sending unit 151 is specifically configured to: according to the data included in the data allocation information, the receiving unit 150 is configured to receive a data distribution threshold including sending data to the UE, and/or a data allocation. Data allocation information for time-sharing information.
  • the receiving unit 150 is specifically configured to receive data distribution time-sharing information including subframe information, where the base station uses the subframe information according to the subframe information The UE sends data.
  • the sending unit 151 is further configured to: when the subframe information is carried in the data allocation information, Sending, to the UE, a subframe bitmap, where the subframe bitmap includes a subframe number occupied by the first base station to send data to the UE, and a subframe number occupied by the base station to send data to the UE. .
  • the receiving unit 150 is further configured to receive a data allocation threshold that includes a MIMO mode used by the base station to send data to the UE, where the data allocation information includes the data allocation threshold.
  • the mode is the maximum supported layer of downlink spatial multiplexing.
  • the adjusting unit 152 is further configured to: receive the hybrid automatic repeat request HARQ feedback information or the radio link control RLC status report sent by the UE, and adjust the orientation according to the HARQ feedback information or the RLC status report. The rate at which the UE sends data.
  • the base station receives, according to the radio access capability of the UE and the measurement report reported by the UE, the data allocation information that is allocated to the base station to meet the radio access capability of the UE, thereby coordinating multiple participation in carrier aggregation.
  • the amount of downlink resources allocated by the base station to the UE is such that the amount of data sent to the UE satisfies the amount of data that can be received by the radio access capability, thereby effectively ensuring the integrity and accuracy of the data received by the UE.
  • the present invention provides a UE, including:
  • the data receiving unit 160 is configured to receive first data that is sent by the first base station according to the first data allocation information.
  • the data receiving unit 160 is further configured to receive second data that is sent by the second base station according to the second data allocation information, where the first data allocation information and the second data allocation information are used by the first base station according to the
  • the wireless receiving capability of the UE determines that the sum of the data received by the UE in the same TTI and the second data sent by the second base station does not exceed the wireless connection of the UE according to the UE. The sum of the amount of data that the incoming capability can receive.
  • the foregoing UE further includes an adjusting unit 161, configured to acquire a first data sending rate corresponding to the first base station and a second data sending rate corresponding to the second base station; when determining the first data sending rate and the first When the absolute value of the difference of the data transmission rate is greater than the preset threshold, the first base station or the second base station is notified to adjust the data transmission rate.
  • an adjusting unit 161 configured to acquire a first data sending rate corresponding to the first base station and a second data sending rate corresponding to the second base station; when determining the first data sending rate and the first When the absolute value of the difference of the data transmission rate is greater than the preset threshold, the first base station or the second base station is notified to adjust the data transmission rate.
  • the data receiving unit 160 is specifically configured to receive, by the first base station, the first data distribution that sends the data distribution threshold and/or the data distribution time-sharing information of the first data to the UE. Information.
  • the data receiving unit 160 is further configured to receive the second data allocation information that includes the data distribution threshold and/or the data distribution time-sharing information of the second data sent by the second base station to the UE.
  • the UE when the first subframe number of the first base station is used, the UE may not monitor the PDCCH of the serving cell in the scope of the second base station, thereby effectively reducing the energy consumption of the UE.
  • the data receiving unit 160 is specifically configured to receive the first base station or the second base station according to the The data transmitted by the subframe information included in the data distribution time-sharing information to the UE.
  • the data receiving unit 160 is further configured to: receive a subframe bitmap sent by the first base station and/or the second base station, where the subframe bitmap includes that the first base station sends the subframe to the UE a subframe number occupied by the first data and a subframe number that the second base station uses to send the second data to the UE; according to the subframe bitmap, the first base station sends the subframe number to the UE Receiving, in each subframe corresponding to the subframe number occupied by the first data, the first data sent by the first base station; and sending, by the second base station, the second data occupation to the UE And receiving, in each subframe corresponding to the frame number, the second data sent by the second base station.
  • the UE uses the foregoing technical solution, the UE monitors the data transmission rate of the first base station and the second base station, and when it is determined that the data transmission rate of the first base station and the data transmission rate of the second base station meet the preset condition, the first base station is notified or The second base station dynamically adjusts its corresponding data transmission rate, and the method for controlling the radio interface of the UE ensures that the amount of data received by the UE in the unit TTI satisfies the total amount of data that can be received by the radio access capability of the UE. , further improving the integrity of the UE receiving data.
  • the UE receives the data allocation information allocated by the first base station to the first base station itself and the second base station according to the radio access capability of the UE and the measurement report reported by the UE, thereby coordinating the multiple base stations participating in the carrier aggregation.
  • the amount of downlink resources allocated by the UE is such that the amount of data sent to the UE satisfies the amount of data that can be received by the radio access capability, thereby effectively ensuring the integrity and accuracy of the data received by the UE.
  • the present invention provides a base station apparatus comprising a memory 170, a processor 171, wherein:
  • a memory 170 configured to store an application
  • the processor 171 is configured to invoke an application in the memory 170 to: send the first data to the UE according to the first data allocation information determined by the radio access capability of the UE;
  • the processor 171 is further configured to invoke an application in the memory 170 to perform the following operations: instructing the carrier aggregation base station to send the second data to the UE according to the second data allocation information determined by the radio access capability of the UE
  • the carrier aggregation base station performs carrier aggregation with the base station; wherein, the sum of the data amounts of the first data and the second data sent by the base station and the carrier aggregation base station to the UE in the same TTI is not A sum of data amounts that the UE can receive according to the radio access capability of the UE is exceeded.
  • the processor 171 of the embodiment of the present invention can perform the operations of the first base station in the foregoing method embodiment, and details are not described herein again.
  • the base station allocates data allocation information that satisfies the radio access capability of the UE for the base station itself and the carrier aggregation base station that performs carrier aggregation with the base station according to the radio access capability of the UE and the measurement report reported by the UE, thereby coordinating
  • the amount of downlink resources allocated by the multiple base stations participating in the carrier aggregation for the UE is such that the amount of data sent to the UE satisfies the amount of data that can be received by the radio access capability, thereby effectively ensuring the integrity and accuracy of the data received by the UE.
  • the present invention provides a base station apparatus, including a transceiver 180, a memory 181, wherein:
  • the transceiver 180 is configured to receive data allocation information determined by the radio access capability of the UE by the first base station;
  • the transceiver 182 is further configured to: call an application in the memory 181 to: send data to the UE according to the data allocation information, where the first base station and the base station carrier are aggregated, and the base station is in The sum of the amount of data sent to the UE in the same TTI does not exceed the sum of the amount of data that the UE can receive according to the radio access capability of the UE.
  • the base station of the present invention can also perform the actions performed by the second base station in the foregoing method embodiment.
  • the transceiving action performed by the second base station may be performed by the transceiver 182.
  • the base station of the present invention may further include a processor, configured to use the HARQ feedback information or the RLC status report, adjusting the rate at which data is sent to the UE.
  • the base station receives, according to the radio access capability of the UE and the measurement report reported by the UE, the data allocation information that is allocated to the base station to meet the radio access capability of the UE, thereby coordinating multiple participation in carrier aggregation.
  • the amount of downlink resources allocated by the base station to the UE is such that the amount of data sent to the UE satisfies the amount of data that can be received by the radio access capability, thereby effectively ensuring the integrity and accuracy of the data received by the UE.
  • the present invention provides a user equipment, including a transceiver 190, where: a transceiver 190, configured to receive first data sent by a first base station according to first data allocation information; Receiving, by the second base station, the second data that is sent according to the second data allocation information, where the first data allocation information and the second data allocation information are determined by the first base station according to the wireless receiving capability of the UE, The sum of the data amounts of the first data sent by the first base station and the second data sent by the second base station in the same TTI does not exceed the total amount of data that the UE can receive according to the wireless access capability of the UE. .
  • the user equipment of the present invention can also perform the actions performed by the user equipment in the foregoing method embodiments.
  • the transceiver operation performed by the user equipment in the method embodiment may be performed by the transceiver 190.
  • the user equipment of the present invention may further include a processor, configured to notify the first base station or the second base station to adjust data when determining that the absolute value of the difference between the first data transmission rate and the second data transmission rate is greater than a preset threshold Send rate.
  • the UE receives the data allocation information allocated by the first base station to the first base station itself and the second base station according to the radio access capability of the UE and the measurement report reported by the UE, thereby coordinating the multiple base stations participating in the carrier aggregation.
  • the amount of downlink resources allocated by the UE is such that the amount of data sent to the UE satisfies the amount of data that can be received by the radio access capability, thereby effectively ensuring the integrity and accuracy of the data received by the UE.
  • the first base station determines the first data allocation information that is used by the first base station to send data to the UE, and determines that the second base station that performs carrier aggregation with the first base station sends data to the UE.
  • Data distribution information the first base station instructs the second base station to send data to the UE according to the determined second data allocation information, and the first base station sends data to the UE according to the determined first data allocation information; wherein the first base station and the first base station The sum of the amount of data sent by the two base stations to the UE in the same TTI is not The sum of the amount of data that can be received by the wireless access capability of the UE.
  • multiple base stations participating in carrier aggregation can be allocated to allocate downlink resources to the UE, so that the amount of data sent to the UE satisfies the radio access capability, thereby effectively ensuring the correctness of the data received by the UE.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention is applicable to one or more computer usable storage media (including but not limited to disk storage, including computer usable program code,
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明提供一种通讯方法、基站及用户设备,用于解决对于基站间载波聚合,当多个基站单独调度UE导致数据接收失败的问题。方法为,第一基站根据由UE的无线接入能力所确定的第一数据分配信息向该UE发送第一数据,第二基站根据由第一基站根据由上述UE的无线接入能力所确定的第二数据分配信息向上述UE发送第二数据;其中,上述第一基站和第二基站载波聚合,并且上述第一基站和第二基站在同一TTI内向上述UE发送的数据量总和不超过该UE的无线接入能力所能接收的数据量总和。采用本发明技术方案,能够协调参与载波聚合的多个基站为UE分配下行资源,使发送至UE的数据量满足其无线接入能力,从而保证了UE接收数据的正确性。

Description

一种通讯方法、 基站及用户设备
技术领域
本发明涉及通信技术领域, 尤其涉及一种通讯方法、 基站及用户设备。 背景技术
随着通信技术的飞速发展, 无线通信技术以其传输信息方便快捷, 以及成 本低廉的优势, 得到了广泛的应用。 而随着对无线通信系统中频谱资源需求的 不断增加, 无线通信系统频谱资源日益减少, 频谱资源作为一种不可再生资源, 一旦被某个通信系统占用, 就不能同时再被其他通信系统占用。 为了提高系统 带宽, 解决通信系统频谱资源与日益增长的无线通信需求之间的矛盾, 第三代 合作伙伴项目 ( The 3rd Generation Partnership Project, 3 GPP ) 长期演进高级系 统( Long Term Evolution Advanced, LTE-A )提出了频谱聚合即载波聚合 ( Carrier Aggregation, CA )技术。
釆用载波聚合技术, 能够将多个连续或者非连续的分量载波(Component Carrier, CC )聚合, 从而获得更大的带宽, 以提高峰值数据速率和系统吞吐量。 在通信系统中, 当配置载波聚合后, 用户设备(User Equipment, UE )可以通过 一个或者多个基站( Base Station, BS )管辖范围内的多个服务小区( Serving Cell ) 建立网络通信, 其中, 对应于不同的服务小区其分量载波的频率通常不同。
目前, 在载波聚合配置过程中, 分量载波可以由同一个基站提供, 也可以 由不同的基站提供; 前者被称为基站内载波聚合(Intra-BS CA ), 后者被称为基 站间载波聚合 ( Inter-BS CA )。
对于基站内载波聚合, 在 LTE-A系统中, 由基站提供共站址的多个分量载 波, 或者由基站和其远端射频头 (Remote Radio Head, RRH )分别提供的非共 站址的多个分量载波。 基站根据具体的无线条件 (如信道质量, 导频信号强度 等)和业务情况为位于上述多个分量载波共同覆盖区域内的 UE配置载波聚合。
对于基站间载波聚合, UE可以和一个或者多个参与载波聚合配置的基站建 立无线连接关系, 即和多个基站管辖范围内的服务小区建立网络通信。 在基站 间载波聚合配置过程中, 通常由一个基站(以下称为第一基站) 负责数据分流 / 汇聚, 该第一基站将一部分下行数据, 如分组数据汇聚协议 (Packet Data Convergence Protocol, PDCP )协议数据单元 ( Protocol Data Unit, PDU ), 无线 链路控制 (Radio Link Control, RLC ) PDU发送至其他一个或者多个基站 (以 下称为第二基站)。 由此可见, 对于基站间载波聚合, UE可以通过多个基站的 无线链路接收下行数据, 并且通过多个基站的无线链路发送上行数据, 且上述 至少一个第二基站接收到的 UE的上行数据都将发送至负责数据分流 /汇聚的第 一基站。参阅图 1所示为在 LTE系统中基站间载波聚合示意图, 第一基站 eNBl 和第二基站 eNB2分别独立调度 UE。
在无线通信系统中, UE与基站建立无线资源控制(Radio Resource Control, RRC )连接后, 基站对 UE进行调度。 对于基站间载波聚合, 参与载波聚合的多 个基站分别独立调度 UE, 在回程链路(backhaul ) 不理想的情况下, 参阅图 1 所示, 第一基站 eNBl向 UE发送第一传输块 TBI , 第二基站 eNB2向 UE发送 第二传输块 TB2,第一传输块 TBI与第二传输块 TB2对应的 bit数之和超过 UE 的承载能力, 从而导致 UE对其中一个传输块接收失败或者全部接收失败。
由此可见,在进行基站间载波聚合时,当多个基站向 UE发送数据量过大时, UE需要丟弃部分或者全部待接收数据, 从而导致数据接收错误。 发明内容
本发明实施例提供一种通讯方法、 基站及用户设备, 用以解决在基站间载 波聚合过程中, 当多个基站单独调度 UE导致数据接收失败的问题。
第一方面, 提供一种通讯方法, 包括:
第一基站根据由用户设备 UE 的无线接入能力所确定的第一数据分配信息 向所述 UE发送第一数据;
所述第一基站指示第二基站根据由所述 UE 的无线接入能力所确定的第二 数据分配信息向所述 UE发送第二数据 ,所述第二基站与所述第一基站进行载波 聚合; 其中,所述第一基站和所述第二基站在同一传输时间间隔 ΤΤΙ内向所述 UE 发送的所述第一数据和所述第二数据的数据量总和不超过所述 UE根据所述 UE 的无线接入能力所能接收的数据量总和。
结合第一方面, 在第一种可能的实现方式中, 所述第一数据分配信息包括 所述第一基站向所述 UE发送所述第一数据的数据分配阔值, 和 /或所述第一基 站向所述 UE发送所述第一数据的数据分配分时信息;所述第二数据分配信息包 括所述第二基站向所述 UE发送所述第二数据的数据分配阔值, 和 /或所述第二 基站向所述 UE发送所述第二数据的数据分配分时信息。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当 数据分配信息包括数据分配阈值时, 所述数据分配阈值包括以下参数中的至少 任意一种: 单位 ΤΤΙ内接收的最大下行共享传输信道 DL-SCH传输块 bit数; 单 位 TTI内接收的一个 DL-SCH传输块最大比特数; 软信道总 bit数; 下行空间复 用最大支持层数; 单位 TTI内下行分组数据会聚协议 PDCP业务数据单元 SDU 最大数目。
结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 当 数据分配信息包括数据分配分时信息时, 所述数据分配分时信息包括子帧信息, 用于所述第一基站或者第二基站根据所述子帧信息向所述 UE发送数据。
结合第一方面的第三种可能的实现方式中, 在第四种可能的实现方式中, 所述第一基站向所述 UE发送子帧位图, 所述子帧位图包含第一基站向所述 UE 发送所述第一数据所占用的子帧号和所述第二基站向所述 UE发送所述第二数 据所占用的子帧号。
结合第一方面的第三种可能的实现方式, 在第五种可能的实现方式中, 所 述第一基站指示所述第二基站在对应的子帧向所述 UE发送数据。
结合第一方面的第一种可能的实现方式, 或者第一方面的第五种可能的实 现方式中, 在第六种可能的实现方式中, 所述数据分配阔值包括所述第一基站 或所述第二基站向所述 UE发送数据使用的多输入多输出 MIMO模式, 其中, 所述 MIMO模式为下行空间复用最大支持层数。 结合第一方面的第一种至第六种可能的实现方式, 在第七种可能的实现方 式中,所述第一基站接收所述 UE发送的信号质量参数以及所述 UE对应的标识 信息; 所述第一基站根据所述 UE对应的标识信息, 获取所述 UE的无线接入能 力参数; 所述第一基站根据所述信号质量参数, 以及所述 UE的无线接入能力参 数, 确定所述第一数据分配信息, 并确定所述第二基站的第二数据分配信息。
结合第一方面的第一种至第六种可能的实现方式, 在第八种可能的实现方 式中, 所述第一基站按照预设周期确定所述第一数据分配信息和所述第二数据 分配信息; 或所述第一基站根据所述 UE上报的测量报告或服务质量 QoS确定 所述第一数据分配信息和所述第二数据分配信息。
结合第一方面的第八种可能的实现方式中, 在第九种可能的实现方式中, 所述第一基站向所述第二基站发送所述测量报告, 指示所述第二基站根据所述 测量报告更新所述第二数据分配信息; 所述第一基站接收所述第二基站发送的 更新的第二数据分配信息。
结合第一方面, 在第十种可能的实现方式中, 所述第一数据分配信息和所 述第二数据分配信息还分别包含数据分配生效时间;所述第一基站根据由 UE的 无线接入能力所确定的第一数据分配信息向所述 UE发送第一数据, 具体包括: 第一基站在第一数据分配信息中包含的数据分配时间对应的时刻, 根据所述第 一数据分配信息向所述 UE发送第一数据;所述第一基站指示第二基站根据由所 述 UE的无线接入能力所确定的第二数据分配信息向所述 UE发送第二数据,具 体包括: 所述第一基站指示所述第二基站在所述第二数据分配信息中包含的数 据分配生效时间对应的时刻,根据所述第二数据分配信息向所述 UE发送第二数 据。
结合第一方面的第一种至第十种可能的实现方式, 在第十一种可能的实现 方式中, 所述第一基站接收所述 UE发送的混合自动重传请求 HARQ反馈信息 或无线链路控制 RLC状态报告,并根据所述 HARQ反馈信息或 RLC状态报告, 调整向所述 UE发送数据的速率。
第二方面, 提供一种通讯方法, 包括: 第二基站接收第一基站由用户设备 UE 的无线接入能力所确定的数据分配 信息;
所述第二基站根据所述数据分配信息向所述 UE发送数据;
其中, 所述第一基站和所述第二基站载波聚合, 且所述第一基站和所述第 二基站在同一传输时间间隔 TTI内向所述 UE发送的数据量总和不超过所述 UE 根据所述 UE的无线接入能力所能接收的数据量总和。
结合第二方面, 在第一种可能的实现方式中, 第二基站根据所述数据分配 信息中包含的数据分配生效时间 , 在该数据分配生效时间对应的时刻向所述 UE 发送数据。
结合第二方面, 在第二种可能的实现方式中, 所述数据分配信息包括: 所 述第二基站向所述 UE发送数据的数据分配阔值,和 /或所述第二基站向所述 UE 发送数据的数据分配分时信息。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 当 所述数据分配信息包括数据分配分时信息时, 所述数据分配分时信息包括子帧 信息, 用于所述第二基站根据所述子帧信息向所述 UE发送数据。
结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 当 所述子帧信息包括子帧位图时, 所述方法还包括: 所述第二基站向所述 UE发送 子帧位图,所述子帧位图包含所述第一基站向所述 UE发送数据所占用的子帧号 和所述第二基站向所述 UE发送数据所占用的子帧号。
结合第二方面的第二种可能的实现方式, 或者第二方面的第三种可能的实 现方式, 在第五种可能的实现方式中, 当所述数据分配信息包括数据分配阔值 时 ,所述数据分配阔值包括所述第二基站向所述 UE发送数据使用的多输入多输 出 MIMO模式, 其中, 所述 MIMO模式为下行空间复用最大支持层数。
结合第二方面的第一种至第五种可能的实现方式, 在第六种可能的实现方 式中, 所述第二基站根据所述 UE上报的测量报告, 向所述第一基站发送更新的 数据分配信息。
结合第二方面的第一种至第六种可能的实现方式中, 在第七种可能的实现 方式中, 所述第二基站接收所述 UE发送的混合自动重传请求 HARQ反馈信息 或无线链路控制 RLC状态报告,并根据所述 HARQ反馈信息或 RLC状态报告, 调整向所述 UE发送数据的速率。
第三方面, 提供一种通讯方法, 包括:
用户设备 UE接收第一基站根据第一数据分配信息发送的第一数据; 所述 UE接收第二基站根据第二数据分配信息发送的第二数据;
其中, 所述第一数据分配信息以及所述第二数据分配信息由所述第一基站 根据所述 UE的无线接收能力确定,所述 UE在同一传输时间间隔 ΤΤΙ内接收所 述第一基站发送的第一数据和所述第二基站发送的第二数据的数据量总和不超 过所述 UE根据自身的无线接入能力所能接收的数据量总和。
结合第三方面, 在第一种可能的实现方式中, 所述第一数据分配信息包括 所述第一基站向所述 UE发送所述第一数据的数据分配阔值, 和 /或所述第一基 站向所述 UE发送所述第一数据的数据分配分时信息;所述第二数据分配信息包 括所述第二基站向所述 UE发送所述第二数据的数据分配阔值, 和 /或所述第二 基站向所述 UE发送所述第二数据的数据分配分时信息。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当 数据分配信息包括数据分配分时信息时, 所述数据分配分时信息包括子帧信息, 用于所述第一基站或者第二基站根据所述子帧信息向所述 UE发送数据。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所 述 UE接收所述第一基站和 /或第二基站发送的子帧位图, 所述子帧位图包含所 述第一基站向所述 UE发送所述第一数据占用的子帧号和所述第二基站向所述 UE发送所述第二数据占用的子帧号; 所述 UE按照所述子帧位图, 在所述第一 基站向所述 UE发送所述第一数据占用的子帧号对应的各子帧中 ,接收所述第一 基站发送的第一数据;在所述第二基站向所述 UE发送所述第二数据占用的子帧 号对应的各子帧中, 接收所述第二基站发送的第二数据。
结合第三方面的第一种至第三种可能的实现方式, 在第四种可能的实现方 式中 ,所述 UE获取所述第一基站对应的第一数据发送速率以及所述第二基站对 应的第二数据发送速率;当所述 UE判定所述第一数据发送速率与所述第二数据 发送速率的差值的绝对值大于预设阔值时, 通知所述第一基站或者第二基站调 整数据发送速率。
第四方面, 提供了一种基站, 包括:
发送单元,用于根据由用户设备 UE的无线接入能力所确定的第一数据分配 信息向所述 UE发送第一数据;
指示单元,用于指示载波聚合基站根据由所述 UE的无线接入能力所确定的 第二数据分配信息向所述 UE发送第二数据,所述载波聚合基站与所述基站进行 载波聚合; 其中, 所述基站和所述载波聚合基站在同一传输时间间隔 TTI 内向 所述 UE发送的所述第一数据和所述第二数据的数据量总和不超过所述 UE根据 所述 UE的无线接入能力所能接收的数据量总和。
第五方面, 提供了一种基站, 包括:
接收单元,用于接收第一基站由用户设备 UE的无线接入能力所确定的数据 分配信息, 并向数据发送单元发送该数据分配信息;
发送单元, 用于接收所述接收单元发送的数据分配信息, 并根据所述数据 分配信息向所述 UE发送数据; 其中, 所述第一基站和所述基站载波聚合, 且所 述基站在同一传输时间间隔 TTI内向所述 UE发送的数据量总和不超过所述 UE 根据 UE的无线接入能力所能接收的数据量总和。
第六方面, 提供了一种用户设备, 包括:
数据接收单元, 用于接收第一基站根据第一数据分配信息发送的第一数据; 所述数据接收单元, 还用于接收第二基站根据第二数据分配信息发送的第 二数据; 其中, 所述第一数据分配信息以及第二数据分配信息由所述第一基站 根据所述 UE的无线接收能力确定,所述 UE在同一传输时间间隔 TTI内接收所 述第一基站发送的第一数据和所述第二基站发送的第二数据的数据量总和不超 过所述 UE根据自身的无线接入能力所能接收的数据量总和。
本发明实施例中,第一基站根据由 UE的无线接入能力所确定的第一数据分 配信息向该 UE发送第一数据,第二基站根据由第一基站根据由上述 UE的无线 接入能力所确定的第二数据分配信息向上述 UE发送第二数据; 其中,上述第一 基站和第二基站载波聚合, 并且上述第一基站和第二基站在同一 TTI 内向上述 UE发送的数据量总和不超过该 UE的无线接入能力所能接收的数据量总和。 釆 用本发明技术方案, 能够协调参与载波聚合的多个基站为 UE分配下行资源,使 发送至 UE的数据量满足其无线接入能力, 从而保证了 UE接收数据的正确性。 附图说明
图 1为现有技术中多基站分别单独调度 UE时信息交互示意图;
图 2为本发明实施例中多基站调度 UE时系统架构图
图 3为本发明实施例中多基站分别调度 UE的通讯过程详细流程图一; 图 4为本发明实施例中多基站分别单独调度 UE时信息交互示意图一; 图 5为本发明实施例中为不同基站分配不同子帧信息的示意图;
图 6为本发明实施例中多基站分别单独调度 UE时信息交互示意图二; 图 7为本发明实施例中多基站分别调度 UE的通讯过程详细流程图二; 图 8为本发明实施例中多基站分别调度 UE的通讯过程详细流程图三; 图 9为本发明实施例中多基站分别调度 UE的通讯过程详细流程图四; 图 10为本发明实施例中具体应用场景下多基站分别调度 UE的通讯过程流 程图一;
图 11为本发明实施例中具体应用场景下多基站分别调度 UE的通讯过程流 程图二;
图 12为本发明实施例中具体应用场景下多基站分别调度 UE的通讯过程流 程图三;
图 13为本发明实施例中具体应用场景下多基站分别调度 UE的通讯过程流 程图四;
图 14为本发明实施例中多基站分别调度 UE过程中基站结构示意图一; 图 15为本发明实施例中多基站分别调度 UE过程中基站结构示意图二; 图 16为本发明实施例中多基站分别调度 UE过程中 UE结构示意图; 图 17为本发明实施例中多基站分别调度 UE过程中基站设备示意图一; 图 18为本发明实施例中多基站分别调度 UE过程中基站设备示意图二; 图 19为本发明实施例中多基站分别调度 UE过程中用户设备示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中 的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
应理解, 本发明的技术方案可以应用于各种通信系统, 例如: 全球移动通 讯( Global System of Mobile communication, GSM )系统、码分多址( Code Division Multiple Access, CDMA )系统、宽带码分多址( Wideband Code Division Multiple Access , WCDMA ) 系统、 通用分组无线业务( General Packet Radio Service , GPRS )、长期演进( Long Term Evolution, LTE )系统、先进的长期演进( Advanced long term evolution, LTE- A ) 系统、 通用移动通信系统 ( Universal Mobile Telecommunication System, UMTS )等。
还应理解, 在本发明实施例中, 用户设备( UE, User Equipment ) 包括但不 限于移动台 (MS , Mobile Station ) 、 移动终端 ( Mobile Terminal ) 、 移动电话 ( Mobile Telephone ) 、 手机 ( handset )及便携设备 ( ortable equipment )等, 该用户设备可以经无线接入网 (RAN, Radio Access Network )与一个或多个核 心网进行通信, 例如, 用户设备可以是移动电话 (或称为 "蜂窝" 电话) 、 具 有无线通信功能的计算机等, 用户设备还可以是便携式、 袖珍式、 手持式、 计 算机内置的或者车载的移动装置。
在本发明实施例中, 基站 (例如, 接入点)可以是指接入网中在空中接口 上通过一个或多个扇区与无线终端通信的设备。 基站可用于将收到的空中帧与 IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的路由器, 其中 接入网的其余部分可包括网际协议(IP )网络。基站还可协调对空中接口的属性 管理。 例如, 基站可以是 GSM或 CDMA 中的基站 (BTS, Base Transceiver Station ) , 也可以是 WCDMA中的基站 ( NodeB ) , 还可以是 LTE中的演进型基 站( NodeB或 eNB或 e-NodeB , evolutional Node B ), 本发明并不限定。
为了解决对于基站间载波聚合,当多个基站单独调度 UE导致数据接收失败 的问题。本发明实施例中, 第一基站根据由 UE的无线接入能力所确定的第一数 据分配信息向该 UE发送第一数据,第二基站根据由第一基站根据由上述 UE的 无线接入能力所确定的第二数据分配信息向上述 UE发送第二数据; 其中, 上述 第一基站和第二基站载波聚合, 并且上述第一基站和第二基站在同一 TTI 内向 上述 UE发送的数据量总和不超过该 UE的无线接入能力所能接收的数据量总 和。釆用本发明技术方案, 能够协调参与载波聚合的多个基站为 UE分配下行资 源, 使发送至 UE的数据量满足其无线接入能力, 从而保证了 UE接收数据的正 确性。
本发明技术方案适用于 3G以及 4G网络, 本发明实施例中, 以 LTE网络为 例进行详细介绍, 其网络系统架构图参阅图 2 所示, 其中, 第一基站为负责数 据分流 /汇聚的基站, 第一基站, 第二基站 1和第二基站 2参与载波聚合, 向 UE 分配下行资源。 本发明技术方案所述网络系统中可以包含两个基站 (即一个第 一基站和一个第二基站), 也可以包含至少三个基站(即一个第一基站和至少两 个第二基站),本发明实施例中,以网络系统中包含两个基站为例进行详细介绍。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图 3 所示, 本发明实施例中, 第一基站控制基站间载波聚合进行数据 发送的详细流程为:
步骤 300: 第一基站根据由 UE的无线接入能力所确定的第一数据分配信息 向该 UE发送第一数据。
本发明实施例中,第一基站和第二基站在同一 TTI内向 UE发送的数据量总 和不超过该 UE的无线接入能力所能接收的数据量总和。 对于不同类别的 UE, 其无线接入能力不同,在相关标准中规定了 8种 LTE UE类别的下行物理层参数 值(即 UE的无线接入能力), 参阅表 1所示。
表 1 下行物理层 UE类别参数值
Figure imgf000013_0001
由表 1可知, UE类别 ( UE-category )定义了各类 UE对应的下行能力和上 行能力的组合。 其中, 参数 "单位传输时间间隔 (Transmission Time Interval, TTI ) 内接收的最大下行共享传输信道(Downlink Shared Channel, DL-SCH )传 输块 bit数 ( Maximum number of DL-SCH transport Block bits Received within a TTI ) "定义了 UE在一个 DL-SCH TTI内能够接收的最大 DL-SCH传输块 bit数, 表示该类别 UE所支持的峰值数据速率; 参数 "单位 TTI内接收的一个 DL-SCH 传输块最大比特数 ( Maximum number of bits of a DL-SCH transport block received within a TTI ) "定义了 UE在一个 DL-SCH TTI内在一个传输块能够接收的最大 DL-SCH传输块 bit数;参数 "软信道总 bit数( Total number of soft channel bits ) " 定义了混合自动重传 ( Hybrid Automatic Retransmission request, HARQ )处理可 用的 (available )软信道 bit数; 参数 "下行空间复用最大支持层数(Maximum number of supported layers for spatial multiplexing in DL ),,定义了下行多输入多输 出( Multiple Input Multiple Output, MIMO )天线空间复用操作最大支持的层数。 在 LTE系统中, 单位 TTI的长度为一个子帧 ( subframe ) 的长度( 1ms )。
在相关标准中规定了对于单位 TTI内下行 PDCP业务数据单元( service data unit, SDU ) 的最大数目, 参阅表 2所示。
表 2 单位 TTI内下行 PDCP SDU的最大数目
Figure imgf000014_0001
表 1以及表 2中所有参数均为表征 UE无线接入能力的参数。
本发明实施例中, 第一基站确定自身的第一数据分配信息以及第二基站的 第二数据分配信息的过程为: 上述第一基站接收 UE上报的测量报告,获取该测 量报告中携带的至少一个基站的服务小区的信号质量参数以及该 UE对应的标 识信息; 上述第一基站根据上述信号质量参数, 以及上述 UE对应的标识信息, 获取该第一基站的第一数据分配信息, 以及上述第二基站的第二数据分配信息, 其中, 数据分配信息包含数据分配阔值, 和 /或, 数据分配分时信息。 由上述过 程可知, 数据分配信息由信号质量参数获得, 而信号质量参数与第一基站管辖 范围内的服务小区和第二基站管辖范围内的服务小区对应的负荷, 无线条件, 以及数据分流算法, 流量控制情况相关, 因此, 第一数据分配信息和第二数据 分配信息根据上述第一基站管辖范围内的服务小区和第二基站管辖范围内的服 务小区对应的负荷, 无线条件, 以及数据分流算法, 流量控制情况的变化而变 化。
在上述过程中, 第一基站根据上述信号质量参数以及 UE对应的标识信息, 获取第一数据分配信息以及第二数据分配信息的过程为:第一基站根据 UE对应 的标识信息,获取该 UE的无线接入能力参数; 第一基站根据信号质量参数以及 UE的无线接入能力参数, 确定上述第一基站的第一数据分配信息, 以及确定上 述第二基站的第二数据分配信息。 本发明实施例中, 通过信号质量参数获取第 一基站的第一数据分配信息以及第二基站的第二数据分配信息, 当某个基站管 辖范围内的服务小区对应的信号质量较好时, 可以为该基站分配较大的数据发 送量, 从而使信号质量较好的基站承载较大的数据发送量, 有效增加了系统的 吞吐量。
可选的, 上述数据分配信息还可以包含数据分配生效时间, 该数据分配生 效时间由第一基站预先设置, 且该第一基站将上述数据分配生效时间发送至第 二基站,使该第二基站根据该数据分配生效时间对自身向 UE发送数据的时间作 出处理。其中,该数据分配生效时间可以为时间点的形式,如时间戳( time stamp ) 信息; 也可以为绝对时间信息系统帧号的形式, 如 SFN (帧号)。
在基站间载波聚合配置过程中,第一基站可以按照预设周期确定向 UE发送 第一数据的第一数据分配信息, 并确定与第一基站进行载波聚合的第二基站向 上述 UE发送第二数据的第二数据分配信息; 第一基站还可以根据 UE上报的测 量报告或服务质量(Quality of Service, QoS )判定需要向第二基站发送第二数 据分配信息时, 获取第一数据分配信息和第二数据分配信息, 具体为: 当第一 基站根据 UE上报的测量报告或 QoS, 判定该第一基站和第二基站同时向上述 UE发送的数据量大于该 UE的无线接入能力所能接收的数据量总和时, 确定向 上述 UE发送第一数据的第一数据分配信息,并确定上述第二基站向上述 UE发 送第二数据的第二数据分配信息。
本发明实施例中, 上述数据分配信息中包含的数据分配阔值由 UE对应的 UE的无线接入能力参数获得。 具体的, 上述数据分配阔值包含以下参数中的一 项或者任意组合: 单位 TTI内接收的最大 DL-SCH传输块 bit数、单位 TTI内接 收的一个 DL-SCH传输块最大比特数、 软信道总 bit数、 下行空间复用最大支持 层数、 单位 TTI内 PDCP SDU最大数目。 当第一基站将包含数据分配阔值的第 二数据分配信息发送至第二基站后, 第一基站和该第二基站即可根据数据分配 信息向 UE发送预设数据量的数据, 如 UE的无线接入能力参数为 TB, 上述第 一基站向该 UE发送数据的数据量为 TBI ,上述第二基站向该 UE发送数据的数 据量为 TB2, JL TB1+TB2 < TB, 则当上述第一基站和第二基站同时向 UE发送 数据时, 单位 TTI内总数据量将不会超过该 UE的承载能力, 参阅图 4所示。 可 选的, 第一数据分配信息中包含的数据分配阔值与第二数据分配信息中包含的 数据分配阔值之和等于上述 UE的无线接入能力所能接收的数据量总和。当上述 数据分配阔值包含多项 UE的无线接入能力参数时,则第一基站为本地以及第二 基站分配的数据量信息应同时满足上述多项参数。 此外, 第一基站还可以将包 含数据分配比例以及 UE 的无线接入能力参数的第二数据分配信息发送至上述 第二基站,指示该第二基站根据数据分配比例以及 UE的无线接入能力参数获取 数据分配阔值。
此外, 本发明实施例中, 数据分配信息中包含子帧信息, 第一基站和第二 基站可以根据该子帧信息向 UE发送数据,即子帧信息包含第一基站为本地分配 的至少一个子帧号, 以及第一基站为上述第二基站分配的至少一个子帧号。
可选的, 第一基站根据上述为本地分配的至少一个子帧号 (以下称为第一 子帧号)以及为第二基站分配的至少一个子帧号(以下称为第二子帧号), 获取 发送子帧位图 ( subframe bitmap ), 即该子帧位图中包含第一基站以及第二基站 向 UE发送数据所分别占用的子帧号; 上述第一基站在预设的时刻向上述 UE发 送该子帧位图,指示该 UE根据发送子帧位图当处于上述第一基站的第一子帧号 对应的子帧时, 在第二基站管辖范围内的服务小区切换至不连续接收的非活动 状态; 此外, 第一基站还可以在预设的时刻将子帧位图以及数据分配生效时间 发送至上述 UE, 指示该 UE根据数据分配生效时间以及发送子帧位图当处于数 据分配生效时间对应的时刻之后的第一基站的第一子帧号对应的子帧时, 在第 二基站管辖范围内的服务小区中切换至不连续接收的非活动状态, 参阅图 5 所 其中, 上述预设的时刻可以为第一基站向第二基站发送第二数据分配信息 之前, 也可以为第一基站向第二基站发送第二数据分配信息的过程中, 还可以 为第一基站向第二基站发送第二数据分配信息之后; 并且, 上述第一子帧号和 第二子帧号不同。 例如, 第一子帧号为 1-5表示第一基站在一帧中的子帧 1-5向
UE发送数据, 第二子帧号为 6-10表示第二基站在一帧中的子帧 6-10向 UE发 送数据。 即不同的基站在不同的子帧向 UE发送数据, 此时, 在每一个子帧中仅 有一个基站向 UE发送数据, 该基站获取 UE的无线接入能力参数后, 即可控制 向 UE发送的数据量满足 UE的无线接入能力所接收的数据量总和。
在上述过程中, 不连续接收的非活动状态指 UE 不处于活动时间 (active time ), UE在非活动状态对应的子帧不监听物理下行控制信道( Physical Downlink Control Channel, PDCCH ), 不接收物理下行共享信道 ( Physical Downlink Shared Channel, PDSCH ), 不发送周期性探测参考信号 ( Sounding Reference Signal, SRS )、 信道质量指示(Channel Quality Indication, CQI )等信息, 不在物理上行 共享信道(Physical Uplink Shared Channel, PUSCH )上发送上行信息等。 由此 可见, 釆用本发明技术方案, 在第一基站的第一子帧号时, UE可以不对第二基 站所管辖范围内服务小区的 PDCCH进行监听等, 从而有效降低了 UE的能耗。
本发明实施例中, 当上述子帧位图未发生变化时, 第一基站无须在每一个 帧对应的第一子帧号对应的子帧均指示 UE进行状态切换,仅在指定帧中的第一 子帧号对应的子帧指示上述 UE进行状态切换, 釆用上述技术方案, 当处于每一 个第一基站发送第一数据的第一子帧号对应的子帧时,关闭上述 UE中上述第二 基站对应的收发器, 从而进一步降低了 UE的能量消耗, 提高了 UE接收信号的 质量。
上述第一基站获取第二基站对应的第二数据分配信息之后即向第二基站发 送第二数据分配信息。 可选的, 当第一基站判定满足预设条件时, 才向上述第 二基站发送第二数据分配信息, 具体为: 当第一基站判定子帧位图未发生变化, 且当前子帧不是子帧位图中指定帧的第一子帧号对应的子帧时, 为第二基站分 配第二子帧号; 第一基站判定子帧位图发生变化, 且当前子帧不是更新后的子 帧位图中指定帧的更新后的第一子帧号对应的子帧时, 为第二基站分配更新后 的第二子帧号; 或者, 当第一基站判定子帧位图未发生变化, 且当前子帧不是 数据分配生效时间对应的时刻之后的第一个帧的第一子帧号对应的子帧时, 为 第二基站分配第二子帧号, 第一基站判定发送子帧位图发生变化, 且当前子帧 帧号对应的子帧时, 为第二基站分配更新后的第二子帧号。 由此可见, 第一基 站可以仅在判断单位 TTI内多个基站同时发送下行数据可能超过 UE接收能力的 情况下才发送上述发送子帧位图,如 UE聚合了第一基站管辖范围内的两个服务 小区以及第二基站管辖范围内的两个服务小区, 在各小区无线条件较好时, 对 于 UE能力类别 6的 UE,第一基站和第二基站同时向 UE发送数据可能超过 UE 无线接入能力参数; 而在各服务小区无线条件低于一定门限时, 可能不会超过 UE接收能力。 因此, 釆用上述技术方案, 能够仅在满足预设条件时, 第一基站 才向第二基站发送第二数据分配信息, 有效节约了各个设备之间的信令交互, 降氐了系统消耗。
第一基站还可以向第二基站发送同时包含数据分配阔值和数据分配分时信 息的第二数据分配信息,具体为:第一基站为本地分配第三子帧号和第一 MIMO 模式, 以及为第二基站分配第四子帧号和第二 MIMO模式, 并将包含第四子帧 号和第二 MIMO模式的第二数据分配信息发送至第二基站, 其中, MIMO模式 为下行空间复用最大支持层数。 上述第三子帧号和第四子帧号可以相同 (如第 三发送子帧号和第四发送子帧号均为 0-4 )或不同 (如第三发送子帧号为 0-4, 第二发送子帧号为 4-6 )。
步骤 310: 第一基站指示第二基站根据由上述 UE的无线接入能力所确定的 第二数据分配信息向该 UE发送数据。
本发明实施例中, 当数据分配信息中包含数据分配生效时间时, 第一基站 指示第二基站根据第二数据分配信息,在数据分配生效时间对应的时刻向 UE发 送第二数据。 在步骤 300中, 在第一基站的第一子帧号, UE在第二基站管辖范围内的服 务小区中切换至不连续接收的非活动状态的过程; 同样的, 在第二基站的第二 子帧号时, UE在第一基站管辖范围内的服务小区中切换至不连续接收的非活动 状态。 当处于第二子帧号对应的子帧时, UE可以不对第一基站管辖范围内服务 小区的 PDCCH进行监听等, 并且关闭 UE中第一基站对应的收发器, 从而有效 降低了 UE的能耗。
在上述过程中, 第二基站根据数据分配信息直接向 UE发送第二数据, 为了 保证基站间载波聚合配置过程的准确性, 可选的, 第一基站向第二基站发送测 量报告, 指示该第二基站根据测量报告更新第二数据分配信息; 第一基站获取 上述第二基站发送的更新的第二数据分配信息。 上述第二基站获取测量报告的 过程为: 由第一基站将自身获取的测量报告转发至第二基站; 或者, 第二基站 获得 UE上报的测量报告。
本发明实施例中, UE获取接收第一基站数据发送速率和第二基站数据发送 速率, 并判定第一基站数据发送速率与上述第二基站数据发送速率差值的绝对 值大于设定阔值时, 向第一基站和上述第二基站发送数据发送基于混合自动重 传请求 (Hybrid Automatic Repeat reQuest, HARQ )反馈信息或无线链路控制 ( Radio Link Control , RLC )状态报告生成的速率调整信息, 上述第一基站获 取 UE发送的数据发送速率调整信息, 并根据数据发送速率调整信息, 调整向 UE发送数据的速率。 例如, 第一基站数据发送速率为 al , 第二基站数据发送速 率为 a2, 且 al > a2, 当 al-a2 > a (预设阔值) 时, 第一基站根据数据发送速率 调整信息降低数据发送速率, 参阅图 6所示。
参阅图 7所示,本发明实施例中, 第二基站根据第一基站的指示向 UE发送 数据的详细流程为:
步骤 700: 第二基站接收第一基站由 UE的无线接入能力所确定的数据分配 信息。
本发明实施例中, 上述数据分配信息包含数据分配阔值, 和 /或, 数据分配 分时信息。 上述第一基站与第二基站载波聚合。 步骤 710: 第二基站根据数据分配信息向 UE发送数据。
本发明实施例中,第一基站和第二基站在同一 TTI内向 UE发送的数据量总 和不超过该 UE的无线接入能力所能接收的数据量总和。若上述数据分配信息包 含数据分配生效时间, 则第二基站根据数据分配信息, 在数据分配生效时间对 应的时刻向上述 UE发送数据。
第二基站根据该数据分配信息获取为本地分配的数据分配阔值, 和 /或, 数 据分配分时信息。
在上述过程中, 第二基站根据数据分配信息获取以下参数中的一项或者任 意组合作为数据分配阔值: 分配后的单位 TTI内接收的最大 DL-SCH传输块 bit 数、 分配后的单位 TTI内接收的一个 DL-SCH传输块最大比特数、 分配后的软 信道总 bit数、分配后的下行空间复用最大支持层数、分配后的单位 TTI内 PDCP SDU最大数目。
若上述数据分配信息中包含数据分配分时信息时, 第二基站根据该数据分 配信息中携带的子帧信息,在该子帧信息中包含的相应子帧向 UE发送数据。若 上述数据分配信息中包含数据分配分时信息和数据分配阈值, 则第二基站根据 该数据分配信息中携带的子帧信息以及 MIMO模式, 在该子帧信息中包含的相 应子帧按照 MIMO模式, 向 UE发送数据。
可选的, 第二基站向 UE发送子帧位图, 指示 UE根据数据分配生效时间以 及子帧位图, 当处于该第二基站发送数据的子帧号对应的子帧时, 在第一基站 管辖范围内的的服务小区中切换至不连续接收的非活动状态。 若数据发送信息 中还包含数据分配生效时间,则第二基站向 UE发送子帧位图以及数据分配生效 时间,指示该 UE根据上述数据分配生效时间以及子帧位图当处于数据分配生效 时间对应的帧中的第二基站发送数据的子帧号对应的子帧时, 在第一基站管辖 范围内的服务小区中切换至不连续接收的非活动状态; 其中, 上述数据发送子 帧位图中包含第一基站发送数据对应的子帧号以及第二基站发送数据对应的子 帧号。
在上述过程中, 第二基站根据数据分配信息直接向 UE发送数据, 为了保证 基站间载波聚合配置过程的准确性,可选的,上述第二基站根据 UE的测量报告, 获取本地生成的数据分配信息; 当第二基站判定根据第一基站发送的数据分配 信息与本地生成的数据分配信息不同时, 向第一基站发送上述本地分配的数据 分配信息, 通知第一基站根据上述本地分配的数据分配信息更新之前第一基站 向第二基站发送的数据分配信息。
特殊的, 第二基站接收 UE发送的基于 HARQ反馈信息或 RLC状态报告生 成的数据发送速率调整信息, 并根据上述数据发送速率调整信息, 调整向该 UE 发送数据的速率。
参阅图 8所示, 本发明实施例中, UE按照第一基站以及第二基站分配的下 行资源接收数据的详细流程为:
步骤 800: UE接收第一基站根据第一数据分配信息发送的第一数据。
本发明实施例中, 上述第一数据分配信息包含数据分配阔值, 和 /或, 数据 分配分时信息。
当上述第一数据分配信息中包含数据分配阔值时, UE接收第一基站根据数 据分配阔值发送的相应数据量的数据; 当上述第一数据分配信息中包含数据分 配分时信息时, UE接收第一基站在数据分配分时信息中包含的第一子帧号对应 的子帧上发送的数据。
可选的, 在处于上述第一子帧号对应的子帧时, UE在第二基站管辖的服务 小区中切换至不连续接收的非活动状态, 有效降低了 UE的能耗。
步骤 810: UE接收第二基站根据第二数据分配信息发送的第二数据。
本发明实施例中, 上述第一基站与第二基站载波聚合, 且 UE在同一 ΤΉ 内接收上述第一基站发送的第一数据和上述第二基站发送的第二数据的数据量 总和不超过该 UE根据自身的无线接入能力所能接收的数据量总和。
上述第二数据分配信息由第一基站发送至上述第二基站。 UE接收第二基站 在第二数据分配分时信息中包含的第二子帧号对应的子帧上发送的第二数据。
可选的, 在处于上述第二子帧号对应的子帧时, UE在第一基站管辖的服务 小区中切换至不连续接收的非活动状态, 有效降低了 UE的能耗。 特殊的, UE获取第一基站对应的第一数据发送速率以及第二基站对应的第 二数据发送速率;当 UE判定第一数据发送速率与第二数据发送速率的差值的绝 对值大于预设阔值时, 向第一基站或者第二基站发送数据发送基于 HARQ反馈 信息或 RLC状态报告生成的速率调整信息, 通知第一基站或者第二基站调整数 据发送速率。 本发明实施例中, 上述数据发送速率可以根据数据块对应的序号 来判定。
参阅图 9所示, 本发明实施例中, 数据发送的详细流程为:
步骤 900:第一基站确定自身向 UE发送第一数据使用的第一数据分配信息, 并确定第二基站向该 UE发送第二数据使用的第二数据分配信息。
本发明实施例中, 上述数据分配信息包含数据分配阔值, 和 /或, 数据分配 分时信息; 并且, 上述数据分配信息还包括数据分配生效时间。
上述数据分配阔值可以包含以下参数中的任意一项及其组合: 单位 TTI 内 接收的最大 DL-SCH传输块 bit数、单位 TTI内接收的一个 DL-SCH传输块最大 比特数、 软信道总 bit数、 下行空间复用最大支持层数、 单位 ΤΉ内 PDCP SDU 最大数目。
上述数据分配分时信息即为子帧信息, 包含第一基站的至少一个第一子帧 号, 至少一个第三子帧号; 以及第二基站的至少一个第二子帧号和至少一个第 四子帧号。
步骤 910: 第一基站根据第一数据分配信息向上述 UE发送第一数据。
本发明实施例中, 若第一数据分配信息为数据分配阔值, 则第一基站根据 据分配信息为数据分配分时信息, 则上述第一基站根据该数据分配分时信息中 第一基站的第一子帧号对应的子帧上向上述 UE发送第一数据。若第一数据分配 信息为数据分配分时信息和数据分配阈值, 则第一基站根据该数据分配分时信 息中第一基站的第三子帧号对应的子帧上, 按照第一 MIMO模式向上述 UE发 送第一数据。
可选的,在处于上述第一子帧号对应的子帧时, 上述 UE在第二基站管辖范 围内的服务小区中切换至不连续接收的非活动状态。
特殊的, 上述第一基站接收 UE发送的数据发送速率调整信息, 并根据上述 数据发送速率调整信息, 调整向该 UE发送数据的速率。
步骤 920: 第二基站根据上述第二数据分配信息向上述 UE发送第二数据。 本发明实施例中, 当上述数据分配信息中包含数据分配生效时间时, 上述 第二基站可以在该数据分配生效时间对应的时刻向上述 UE发送数据,从而保证 了第一基站和第二基站在约定的时间向 UE发送数据,便于第一基站协调多基站 之间的数据分配。
若数据分配信息为数据分配阔值,则第二基站根据该数据分配阔值向 UE发 送不超过数据分配阈值对应的数据量的数据。 若数据分配信息为数据分配分时 信息, 则第二基站根据该数据分配分时信息中该第二基站的第二子帧号对应的 子帧上向上述 UE发送第二数据。若数据分配信息包含数据分配分时信息和数据 分配阔值, 则第二基站根据该数据分配分时信息中第二基站的第四子帧号对应 的子帧上, 按照第二 MIMO模式向 UE发送数据。
可选的, 在处于上述第二子帧号对应的子帧时, UE在第一基站管辖范围内 的服务小区中切换至不连续接收的非活动状态。
特殊的, 第二基站接收 UE发送的数据发送速率调整信息, 并根据上述数据 发送速率调整信息, 调整向 UE发送数据的速率。
下面结合具体的应用场景, 以基站间载波聚合配置系统中包含第一基站和 一个第二基站, 且 UE为表 1中的第六类 UE为例, 详细介绍数据发送的详细流 程。
实现方式一
第一基站根据 UE上报的测量报告获取第一基站向该 UE发送第一数据使用 的第一数据分配信息,以及第二基站向上述 UE发送第二数据使用的第二数据分 配信息, 且数据分配信息仅包含数据分配阔值, 则参阅图 10所示, 数据发送的 详细流程为:
步骤 1000: 第一基站获取为本地分配的包含数据分配阔值的第一数据分配 信息, 并向 UE发送数据量满足第一数据分配信息的数据。
步骤 1010: 第一基站将包含数据分配阔值的第二数据分配信息发送至第二 基站。
本发明实施例中, UE对应表 1 中的第六类 UE, 则参阅标 1可知, 该 UE 对应的 UE的无线接入能力参数为: 单位 TTI内接收的最大 DL-SCH传输块 bit 数参数值 "301504" , 则第一基站对上述 UE的无线接入能力参数进行划分, 如 按照第一基站与第二基站对应的数据量相同进行划分, 则第一基站和第二基站 各分得参数值 150752。第一基站将最大 DL-SCH传输块 bit数参数 150752 作为 数据分配阔值发送至第二基站。 此时, 即使第一基站或第二基站分别配置了多 个服务小区和多层 MIMO, 其实际发送功能力超过 150752, 第一基站或第二基 站在任一 TTI 内向 UE发送的最大 DL-SCH传输块 bit数也应小于或者等于 150752。
此外, 还可以将下行空间复用最大支持层数作为数据分配阔值。 例如, 对 于 UE能力类别为 6的 UE, 其下行空间复用最大支持层数参数值 4, 第一基站 对该最大支持层数参数值进行划分, 如按照第一基站和第二基站均分的划分方 式, 第一基站和第二基站分别分得 2层, 则第一基站将下行空间复用最大支持 层数参数值 2作为数据分配阔值发送至第二基站。 此时, 即使第一基站和第二 基站的最大支持层数参数值为 4, 第一基站或第二基站在任一 TTI向 UE发送的 下行空间复用最大支持层数应小于或者等于 2。
可选的, 可以将多项 UE的无线接入能力参数同时作为数据分配阔值,确保 不超过 UE的无线接入能力。此时, 第一基站分配的数据分配阔值应当同时满足 上述多项 UE的无线接入能力参数。
步骤 1020: 第二基站接收第二数据分配信息, 获取第二数据分配信息中携 带的数据分配阔值, 向 UE发送数据量满足数据分配阔值的数据。
本发明实施例中, 第二基站根据 UE的测量报告,获取本地生成的第三数据 分配信息; 当第二基站判定根据第一基站发送的数据分配信息获取的第一数据 分配阔值与本地生成的数据分配阔值不同时, 向第一基站发送上述本地生成的 第三数据分配信息, 通知第一基站根据上述本地分配的第三数据分配信息更新 第二数据分配信息; 第二基站接收更新后的第二数据分配信息, 并根据更新后 的第二数据分配信息向 UE发送数据。
实现方式二
第一基站根据 UE上报的测量报告获取第一基站向 UE发送数据使用的第一 数据分配信息, 以及第二基站向上述 UE发送数据使用的第二数据分配信息,且 数据分配信息包含数据分配分时信息以及数据分配生效时间, 则参阅图 11 , 数 据发送的详细流程为:
步骤 1100: 第一基站根据为本地分配的第一数据分配信息中携带的数据分 配分时信息, 在第一子帧号对应的子帧向 UE发送第一数据, 以及指示 UE当处 于第一子帧号对应的子帧时, 在第二基站管辖范围内的服务小区中切换至不连 续接收的非活动状态。
步骤 1110: 第一基站将包含数据分配分时信息和数据分配生效时间的第二 数据分配信息发送至第二基站。
本发明实施例中,第一基站根据数据分配分时信息中携带的第一子帧号(如 1、 4、 7 )和第二子帧号 (如 2、 3、 8 )获取子帧位图, 并将该子帧位图以及数 据分配生效时间作为第二数据分配信息发送至第二基站。
本发明实施例中,数据分配生效时间可表示为绝对时间信息系统帧号 SFN+ 子贞号 subframe„
数据分配分时信息根据第一基站管辖范围内的服务小区和第二基站管辖范 围内的服务小区对应的负荷, 无线条件, 以及数据分流算法, 流量控制情况的 变化而变化。 第一基站确定上述数据分配分时信息发生变化时, 应将更新后的 数据分配分时信息发送至上述第二基站。
步骤 1120: 第二基站接收第二数据分配信息, 获取第二数据分配信息中携 带的数据分配分时信息,在第二子帧号对应的子帧向上述 UE发送第二数据, 以 及指示上述 UE当处于第二子帧号对应的子帧时,在第一基站管辖的服务小区中 切换至不连续接收的非活动状态。 本发明实施例中, 当 UE需要接收第一基站发送的第一数据时, 关闭对应于 第二基站的收发器或者去激活第二基站服务的各个服务小区; 类似的,在 UE仅 接收第二基站发送的第二数据时, 关闭对应于第一基站的收发器或者去激活第 一基站服务的各个服务小区。当 UE再次需要接收第一基站或第二基站发送的数 据时, 激活第一基站管辖范围内的各个服务小区或第二基站管辖范围内的各个 服务小区。将 UE切换至不连续接收的非活动状态是指,对于第一基站管辖范围 内的各个服务小区, UE按照相同的 DRX规律接收下行数据, 如同时在第一基 站管辖的各个服务小区监听或不监听物理下行控制信道; 对于第二基站管辖范 围内的各个服务小区, UE按照相同的 DRX规律接收下行信息, 如同时在第二 基站管辖的各个服务小区监听或不监听 PDCCH; 而对于第一基站和第二基站, UE可以不按照相同的 DRX规律接收下行信息, 例如 UE在第一基站管辖的各 个服务小区监听 PDCCH, 而在第二基站管辖的各个服务小区不监听 PDCCH。
实现方式三
第一基站根据 UE上报的测量报告获取第一基站向 UE发送数据使用的第一 数据分配信息, 以及第二基站向上述 UE发送数据使用的第二数据分配信息,且 数据分配信息包含数据分配分时信息以及数据分配阔值, 则参阅图 12, 数据发 送的详细流程为:
步骤 1200: 第一基站根据第一数据分配信息中携带的数据分配分时信息, 在第三子帧号对应的子帧按照第一 MIMO模式向 UE发送第一数据。
步骤 1210: 第一基站将包含数据分配分时信息和数据分配阔值的第二数据 分配信息发送至第二基站。
本发明实施例中,第一基站根据数据分配分时信息中携带的第三子帧号(如 0-3 )和第四子帧号 (如 0-3 )获取子帧位图, 以及获取为第一基站分配的第一 MIMO模式(如 3层)和为第二基站分配的第二 MIMO模式(如 1层), 并将该 子帧位图以及数据分配阔值作为数据分配信息发送至第二基站。
步骤 1220: 第二基站接收第二数据分配信息, 获取第二数据分配信息中携 带的数据分配分时信息, 在第四子帧号对应的子帧按照第二 MIMO模式向 UE 发送第二数据。
实现方式四
第一基站根据 UE上报的测量报告获取第一基站向 UE发送数据使用的第一 数据分配信息, 以及第二基站向上述 UE发送数据使用的第二数据分配信息, 则 参阅图 13所示, 第一基站和第二基站根据 UE的数据分配速率判定结果, 控制 数据发送的详细流程为:
步骤 1300: UE接收第一基站发送的第一数据, 并获取上述第一数据对应的 第一数据发送速率。
步骤 1310: UE接收第二基站发送的第二数据, 并获取上述第二数据对应的 第二数据发送速率。
步骤 1320: UE比较上述第一数据发送速率以及第二数据发送速率, 并根据 比较结果向第一基站以及第二基站发送数据发送速率调整信息。
本发明实施例中,上述数据发送速率通过接收的数据块的序号获得,以 RLC PDU分流为例, 具体为: 当无线资源以及调度的不平衡时, 将导致不同基站发 送的 RLC PDU序号存在较大差异(即序号之差较大), 从而使得 UE需要更大 的 RLC发送窗口和 /或接收窗口。 如图 5所示, 对于下行数据接收, UE判断预 设时间范围内第一基站和第二基站发送的最大 RLC PDU序列号的距离, 当距离 大于预设门限时, UE向发送 RLC PDU较快的基站发送数据发送速率降低速率 信息和 /或向发送 RLC PDU较慢的基站发送数据发送速率增加信息。 上述数据 发送速率可以指 RLC PDU个数或者物理层发送的下行数据量如 bit数。
步骤 1330: 第一基站接收上述数据发送速率调整信息, 并根据该数据发送 速率调整信息调整数据发送速率。
步骤 1340: 第二基站接收上述数据发送速率调整信息, 并根据该数据发送 速率调整信息调整数据发送速率。
釆用上述技术方案,能够加快或减緩一个或者多个基站对应的 RLC PDU的 数据发送速率, 从而使得 UE对应的 RLC接收窗口或重排序窗口减小, 减轻了 对 "总层 2緩冲区大小" 的压力。 基于上述技术方案, 参阅图 14所示, 本发明提供一种基站, 包括发送单元 140, 指示单元 141 , 其中:
发送单元 140, 用于根据由 UE的无线接入能力所确定的第一数据分配信息 向所述 UE发送第一数据;
指示单元 141 , 用于指示载波聚合基站根据由所述 UE的无线接入能力所确 定的第二数据分配信息向所述 UE发送第二数据 ,所述载波聚合基站与所述基站 进行载波聚合; 其中, 所述基站和所述载波聚合基站在同一 TTI 内向所述 UE 发送的所述第一数据和所述第二数据的数据量总和不超过所述 UE根据所述 UE 的无线接入能力所能接收的数据量总和。
此外, 上述基站还包括确定单元 142, 用于确定向所述 UE发送包括所述第 一数据的数据分配阔值, 和 /或所述第一数据的数据分配分时信息的第一数据分 配信息;以及确定所述载波聚合基站向所述 UE发送包括所述第二数据的数据分 配阔值, 和 /或所述第二数据的数据分配分时信息的第二数据分配信息。
上述基站还包括调整单元 143 , 用于向所述第二基站发送所述测量报告, 指 示所述第二基站根据所述测量报告更新所述第二数据分配信息; 接收所述第二 基站发送的更新的第二数据分配信息。
其中, 当所述第一数据分配信息和所述第二数据分配信息包括所述数据分 配阔值时, 所述确定单元 142, 具体用于将以下参数中的至少任意一种作为所述 数据分配阔值: 单位 TTI内接收的 DL-SCH传输块 bit数; 单位 TTI内接收的一 个 DL-SCH传输块最大比特数; 软信道总 bit数; 下行空间复用最大支持层数; 单位 TTI内 PDCP SDU最大数目。
当所述第一数据分配信息和所述第二数据分配信息包括所述数据分配分时 信息时, 所述确定单元 142, 具体用于确定包括子帧信息的数据分配分时信息, 其中, 所述基站或者所述载波聚合基站根据所述子帧信息向所述 UE发送数据。
所述发送单元 140,还用于: 当所述第一数据分配信息和所述第二数据分配 信息中携带所述子帧信息时, 向所述 UE发送子帧位图, 所述子帧位图包含所述 基站向所述 UE发送所述第一数据所占用的子帧号和所述载波聚合基站向所述 UE发送所述第二数据所占用的子帧号。
所述指示单元 141 , 还用于指示所述载波聚合基站在对应的子帧向所述 UE 发送数据。
本发明实施例中, 在第一基站的第一子帧号时, UE可以不对第二基站所管 辖范围内服务小区的 PDCCH进行监听等, 从而有效降低了 UE的能耗。
所述确定单元 142, 还用于确定包含所述基站或所述载波聚合基站向所述 UE发送数据使用的 MIMO模式的数据分配阔值, 其中, 所述 MIMO模式为下 行空间复用最大支持层数。
所述确定单元 142, 具体用于: 接收所述 UE发送的信号质量参数以及所述 UE对应的标识信息; 根据所述 UE对应的标识信息, 获取所述 UE的无线接入 能力参数; 根据所述信号质量参数, 以及所述 UE的无线接入能力参数, 确定所 述第一数据分配信息, 并确定所述第二基站的第二数据分配信息。
所述确定单元 142, 具体用于: 按照预设周期确定所述第一数据分配信息和 所述第二数据分配信息; 或根据所述 UE上报的测量报告或 QoS确定所述第一 数据分配信息, 以及所述第二数据分配信息。
本发明实施例中, 通过信号质量参数获取第一基站的第一数据分配信息以 及第二基站的第二数据分配信息, 当某个基站管辖范围内的服务小区对应的信 号质量较好时, 可以为该基站分配较大的数据发送量, 从而使信号质量较好的 基站承载较大的数据发送量, 有效增加了系统的吞吐量。
所述确定单元 142, 具体用于: 确定分别包含数据分配生效时间的所述第一 数据分配信息和所述第二数据分配信息。
当所述第一数据分配信息包含所述数据分配生效时间时, 所述发送单元
140, 具体用于: 在所述第一数据分配信息中包含的所述数据分配生效时间对应 的时刻, 根据所述第一数据分配信息向所述 UE发送所述第一数据。
当所述第二数据分配信息包含所述数据分配生效时间时, 所述指示单元
141 , 具体用于: 指示所述载波聚合基站在所述第二数据分配信息中包含的所述 数据分配生效时间对应的时刻,根据所述第二数据分配信息向所述 UE发送所述 第二数据。
所述调整单元 143 , 还用于: 接收所述 UE发送的 HARQ反馈信息或 RLC 状态报告, 并根据所述 HARQ反馈信息或所述 RLC状态报告, 调整向所述 UE 发送数据的速率。
本发明实施例中, 基站根据 UE的无线接入能力以及 UE上报的测量报告, 为基站本身以及与该基站进行载波聚合的载波聚合基站分配满足 UE 的无线接 入能力的数据分配信息,从而协调参与载波聚合的多个基站为 UE分配的下行资 源量,使发送至 UE的数据量满足其无线接入能力所能接收的数据量,有效保证 了 UE接收数据的完整性和准确性。
参阅图 15所示, 本发明还提供了一种基站, 包括接收单元 150, 发送单元 151 , 其中:
接收单元 150, 用于接收第一基站由 UE的无线接入能力所确定的数据分配 信息, 并向数据发送单元发送该数据分配信息;
发送单元 151 , 用于接收所述接收单元发送的数据分配信息, 并根据所述数 据分配信息向所述 UE发送数据; 其中, 所述第一基站和所述基站载波聚合, 且 所述基站在同一 ΤΉ内向所述 UE发送的数据量总和不超过所述 UE根据 UE的 无线接入能力所能接收的数据量总和。
此外, 上述基站还包括调整单元 152, 用于根据 UE上报的测量报告, 向所 述第一基站发送更新的数据分配信息。
其中, 所述发送单元 151 , 具体用于: 根据所述数据分配信息中包含的数据 所述接收单元 150 ,具体用于接收包括向所述 UE发送数据的数据分配阔值, 和 /或数据分配分时信息的数据分配信息。
当所述数据分配信息包括所述数据分配分时信息时, 所述接收单元 150, 具 体用于接收包括子帧信息的数据分配分时信息, 用于所述基站根据所述子帧信 息向所述 UE发送数据。
所述发送单元 151 , 还用于: 当所述数据分配信息中携带所述子帧信息时, 向所述 UE发送子帧位图,所述子帧位图包含所述第一基站向所述 UE发送数据 所占用的子帧号和所述基站向所述 UE发送数据所占用的子帧号。
当所述数据分配信息包括所述数据分配阔值时, 所述接收单元 150, 还用于 接收包括所述基站向所述 UE发送数据使用的 MIMO模式的数据分配阔值, 其 中, 所述 MIMO模式为下行空间复用最大支持层数。
所述调整单元 152, 还用于: 接收所述 UE发送的混合自动重传请求 HARQ 反馈信息或无线链路控制 RLC状态报告, 并根据所述 HARQ反馈信息或所述 RLC状态报告, 调整向所述 UE发送数据的速率。
本发明实施例中,基站接收第一基站根据 UE的无线接入能力以及 UE上报 的测量报告, 为上述基站分配的满足 UE的无线接入能力的数据分配信息,从而 协调参与载波聚合的多个基站为 UE分配的下行资源量,使发送至 UE的数据量 满足其无线接入能力所能接收的数据量,有效保证了 UE接收数据的完整性和准 确性。
参阅图 16所示, 本发明提供了一种 UE, 包括:
数据接收单元 160,用于接收第一基站根据第一数据分配信息发送的第一数 据;
所述数据接收单元 160,还用于接收第二基站根据第二数据分配信息发送的 第二数据; 其中, 所述第一数据分配信息以及第二数据分配信息由所述第一基 站根据所述 UE的无线接收能力确定,所述 UE在同一 TTI内接收所述第一基站 发送的第一数据和所述第二基站发送的第二数据的数据量总和不超过所述 UE 根据自身的无线接入能力所能接收的数据量总和。
此外, 上述 UE还包括调整单元 161 , 用于获取所述第一基站对应的第一数 据发送速率以及所述第二基站对应的第二数据发送速率; 当判定所述第一数据 发送速率与第二数据发送速率的差值的绝对值大于预设阔值时, 通知所述第一 基站或者第二基站调整数据发送速率。
其中, 所述数据接收单元 160, 具体用于接收包括所述第一基站向所述 UE 发送所述第一数据的数据分配阔值和 /或数据分配分时信息的所述第一数据分配 信息。
所述数据接收单元 160, 还用于接收包括所述第二基站向所述 UE发送所述 第二数据的数据分配阔值和 /或数据分配分时信息的所述第二数据分配信息。
本发明实施例中, 在第一基站的第一子帧号时, UE可以不对第二基站所管 辖范围内服务小区的 PDCCH进行监听等, 从而有效降低了 UE的能耗。
当所述第一数据分配信息和所述第二数据分配信息包括所述数据分配分时 信息时, 所述数据接收单元 160, 具体用于接收所述第一基站或者所述第二基站 根据所述数据分配分时信息中包含的子帧信息向所述 UE发送的数据。
所述数据接收单元 160, 还用于: 接收所述第一基站和 /或所述第二基站发 送的子帧位图,所述子帧位图包含所述第一基站向所述 UE发送所述第一数据占 用的子帧号和所述第二基站向所述 UE发送所述第二数据占用的子帧号;按照所 述子帧位图 ,在所述第一基站向所述 UE发送所述第一数据占用的子帧号对应的 各子帧中, 接收所述第一基站发送的所述第一数据; 在所述第二基站向所述 UE 发送所述第二数据占用的子帧号对应的各子帧中, 接收所述第二基站发送的所 述第二数据。
釆用上述技术方案, UE监测第一基站与第二基站的数据发送速率, 当判定 上述第一基站的数据发送速率与第二基站的数据发送速率满足预设条件时, 即 通知第一基站或者第二基站动态调整其各自对应的数据发送速率,通过对 UE无 线接口流量控制的方法保证了 UE在单位 TTI内所接收到的数据量满足该 UE的 无线接入能力所能接收的数据量总和, 进一步提高了 UE接收数据的完整性。
本发明实施例中, UE接收第一基站根据 UE的无线接入能力以及 UE上报 的测量报告, 为第一基站本身以及第二基站分配的数据分配信息, 从而协调参 与载波聚合的多个基站为 UE分配的下行资源量,使发送至 UE的数据量满足其 无线接入能力所能接收的数据量, 有效保证了 UE接收数据的完整性和准确性。
参阅图 17所示,本发明提供了一种基站设备,包括存储器 170,处理器 171 , 其中:
存储器 170, 用于存储应用程序; 处理器 171 , 用于调用存储器 170中的应用程序执行如下操作: 根据由 UE 的无线接入能力所确定的第一数据分配信息向所述 UE发送第一数据;
所述处理器 171 , 还用于调用存储器 170中的应用程序执行如下操作: 指示 载波聚合基站根据由所述 UE的无线接入能力所确定的第二数据分配信息向所述 UE发送第二数据, 所述载波聚合基站与所述基站进行载波聚合; 其中, 所述基 站和所述载波聚合基站在同一 TTI内向所述 UE发送的所述第一数据和所述第二 数据的数据量总和不超过所述 UE根据所述 UE的无线接入能力所能接收的数据 量总和。
本方明实施例的处理器 171可以执行上述方法实施例中第一基站的动作, 在 此不再赘述。
本发明实施例中, 基站根据 UE的无线接入能力以及 UE上报的测量报告, 为 基站本身以及与该基站进行载波聚合的载波聚合基站分配满足 UE的无线接入能 力的数据分配信息,从而协调参与载波聚合的多个基站为 UE分配的下行资源量, 使发送至 UE的数据量满足其无线接入能力所能接收的数据量,有效保证了 UE接 收数据的完整性和准确性。
参阅图 18所示, 本发明提供了一种基站设备, 包括收发器 180, 存储器 181 , 其中:
收发器 180, 用于接收第一基站由 UE的无线接入能力所确定的数据分配信 息;
存储器 181 , 用于存储应用程序;
收发器 182, 还用于调用存储器 181中的应用程序执行如下操作: 根据所述 数据分配信息向所述 UE发送数据; 其中, 所述第一基站和所述基站载波聚合, 且所述基站在同一 TTI内向所述 UE发送的数据量总和不超过所述 UE根据 UE的 无线接入能力所能接收的数据量总和。
本发明的基站还可以执行上述方法实施例中第二基站所执行的动作。 其中, 第二基站所执行的收发动作可以由收发器 182执行。
进一步, 本发明的基站还可以包括处理器,用于根据 HARQ反馈信息或所述 RLC状态报告, 调整向 UE发送数据的速率。
本发明实施例中,基站接收第一基站根据 UE的无线接入能力以及 UE上报 的测量报告, 为上述基站分配的满足 UE的无线接入能力的数据分配信息,从而 协调参与载波聚合的多个基站为 UE分配的下行资源量,使发送至 UE的数据量 满足其无线接入能力所能接收的数据量,有效保证了 UE接收数据的完整性和准 确性。
参阅图 19所示, 本发明提供了一种用户设备, 包括收发器 190, 其中: 收发器 190, 用于接收第一基站根据第一数据分配信息发送的第一数据; 收发器 190, 还用于接收第二基站根据第二数据分配信息发送的第二数据; 其中, 所述第一数据分配信息以及第二数据分配信息由所述第一基站根据所述 UE的无线接收能力确定, 所述 UE在同一TTI内接收所述第一基站发送的第一数 据和所述第二基站发送的第二数据的数据量总和不超过所述 UE根据自身的无线 接入能力所能接收的数据量总和。
本发明的用户设备还可以执行上述方法实施例中用户设备所执行的动作。 其中, 方法实施例中用户设备所执行的收发动作可以由收发器 190执行。
进一步, 本发明的用户设备还可以包括处理器, 用于判定第一数据发送速 率与第二数据发送速率的差值的绝对值大于预设阔值时, 通知第一基站或者第 二基站调整数据发送速率。
本发明实施例中, UE接收第一基站根据 UE的无线接入能力以及 UE上报的 测量报告, 为第一基站本身以及第二基站分配的数据分配信息, 从而协调参与 载波聚合的多个基站为 UE分配的下行资源量,使发送至 UE的数据量满足其无线 接入能力所能接收的数据量, 有效保证了 UE接收数据的完整性和准确性。
综上所述, 本发明实施例中, 第一基站确定自身向 UE发送数据使用的第一 数据分配信息, 并确定与第一基站进行载波聚合的第二基站向该 UE发送数据使 用的第二数据分配信息; 第一基站指示第二基站根据上述确定的第二数据分配 信息向 UE发送数据, 以及第一基站根据确定的第一数据分配信息向 UE发送数 据; 其中,上述第一基站和第二基站在同一 TTI内向上述 UE发送的数据量总和不 超过该 UE的无线接入能力所能接收的数据量总和。 釆用本发明技术方案, 能够 协调参与载波聚合的多个基站为 UE分配下行资源,使发送至 UE的数据量满足其 无线接入能力, 从而有效保证了 UE接收数据的正确性。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计 算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结 合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个其中包 含有计算机可用程序代码的计算机可用存储介质 (包含但不限于磁盘存储器、
CD-ROM, 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品 的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 / 或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程和 /或 方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式 处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流 程或多个流程和 /或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备 以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的 指令产生包含指令装置的制造品, 该指令装置实现在流程图一个流程或多个流 程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使 得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处 理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基 本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要 求意欲解释为包含优选实施例以及落入本发明范围的所有变更和修改。 离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属 于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和 变型在内。

Claims

权 利 要 求
1、 一种通讯方法, 其特征在于, 包括:
第一基站根据由用户设备 UE 的无线接入能力所确定的第一数据分配信息 向所述 UE发送第一数据;
所述第一基站指示第二基站根据由所述 UE 的无线接入能力所确定的第二 数据分配信息向所述 UE发送第二数据 ,所述第二基站与所述第一基站进行载波 聚合;
其中,所述第一基站和所述第二基站在同一传输时间间隔 TTI内向所述 UE 发送的所述第一数据和所述第二数据的数据量总和不超过所述 UE根据所述 UE 的无线接入能力所能接收的数据量总和。
2、 如权利要求 1所述的方法, 其特征在于, 所述第一数据分配信息包括所 述第一基站向所述 UE发送所述第一数据的数据分配阔值, 和 /或所述第一基站 向所述 UE发送所述第一数据的数据分配分时信息;
所述第二数据分配信息包括所述第二基站向所述 UE发送所述第二数据的 数据分配阔值, 和 /或所述第二基站向所述 UE发送所述第二数据的数据分配分 时信息。
3、 如权利要求 2所述的方法, 其特征在于, 当所述第一数据分配信息和所 述第二数据分配信息包括所述数据分配阈值时, 所述数据分配阈值包括以下参 数中的至少任意一种:
单位 TTI内接收的最大下行共享传输信道 DL-SCH传输块 bit数; 单位 TTI内接收的一个 DL-SCH传输块最大比特数;
软信道总 bit数;
下行空间复用最大支持层数;
单位 TTI内下行分组数据会聚协议 PDCP业务数据单元 SDU最大数目。
4、 如权利要求 2所述的方法, 其特征在于, 当所述第一数据分配信息和所 述第二数据分配信息包括所述数据分配分时信息时, 所述数据分配分时信息包 括子帧信息, 用于所述第一基站或者所述第二基站根据所述子帧信息向所述 UE 发送数据。
5、 如权利要求 4所述的方法, 其特征在于, 还包括:
所述第一基站向所述 UE发送子帧位图,所述子帧位图包含所述第一基站向 所述 UE发送所述第一数据所占用的子帧号和所述第二基站向所述 UE发送所述 第二数据所占用的子帧号。
6、 如权利要求 4所述的方法, 其特征在于, 还包括:
所述第一基站指示所述第二基站在对应的子帧向所述 UE发送数据。
7、 如权利要求 2或 4所述的方法, 其特征在于, 所述数据分配阔值包括所 述第一基站或所述第二基站向所述 UE发送数据使用的多输入多输出 MIMO模 式, 其中, 所述 MIMO模式为下行空间复用最大支持层数。
8、 如权利要求 1-7任一项所述的方法, 其特征在于, 还包括:
所述第一基站接收所述 UE发送的信号质量参数以及所述 UE对应的标识信 息;
所述第一基站根据所述 UE对应的标识信息,获取所述 UE的无线接入能力 参数;
所述第一基站根据所述信号质量参数, 以及所述 UE的无线接入能力参数, 确定所述第一数据分配信息, 并确定所述第二基站的第二数据分配信息。
9、 如权利要求 1-7任一项所述的方法, 其特征在于, 还包括:
所述第一基站按照预设周期确定所述第一数据分配信息和所述第二数据分 配信息; 或
所述第一基站根据所述 UE上报的测量报告或服务质量 QoS确定所述第一 数据分配信息和所述第二数据分配信息。
10、 如权利要求 9所述的方法, 其特征在于, 还包括:
所述第一基站向所述第二基站发送所述测量报告, 指示所述第二基站根据 所述测量报告更新所述第二数据分配信息;
所述第一基站接收所述第二基站发送的更新的第二数据分配信息。
11、 如权利要求 1 所述的方法, 其特征在于, 所述第一数据分配信息和所 述第二数据分配信息还分别包含数据分配生效时间;
所述第一基站根据由所述 UE 的无线接入能力所确定的第一数据分配信息 向所述 UE发送第一数据, 具体包括:
所述第一基站在所述第一数据分配信息中包含的所述数据分配生效时间对 应的时刻, 根据所述第一数据分配信息向所述 UE发送所述第一数据;
所述第一基站指示所述第二基站根据由所述 UE 的无线接入能力所确定的 第二数据分配信息向所述 UE发送第二数据, 具体包括:
所述第一基站指示所述第二基站在所述第二数据分配信息中包含的所述数 据分配生效时间对应的时刻,根据所述第二数据分配信息向所述 UE发送所述第 二数据。
12、 如权利要求 1-11任一项所述的方法, 其特征在于, 还包括:
所述第一基站接收所述 UE发送的混合自动重传请求 HARQ反馈信息或无 线链路控制 RLC状态报告,并根据所述 HARQ反馈信息或所述 RLC状态报告, 调整向所述 UE发送数据的速率。
13、 一种通讯方法, 其特征在于, 包括:
第二基站接收第一基站由用户设备 UE 的无线接入能力所确定的数据分配 信息;
所述第二基站根据所述数据分配信息向所述 UE发送数据;
其中, 所述第一基站和所述第二基站载波聚合, 且所述第一基站和所述第 二基站在同一传输时间间隔 TTI内向所述 UE发送的数据量总和不超过所述 UE 根据所述 UE的无线接入能力所能接收的数据量总和。
14、 如权利要求 13所述的方法, 其特征在于, 所述第二基站根据所述数据 分配信息向所述 UE发送数据, 具体包括:
所述第二基站根据所述数据分配信息中包含的数据分配生效时间, 在该数 据分配生效时间对应的时刻向所述 UE发送数据。
15、 如权利要求 13所述的方法, 其特征在于, 所述数据分配信息包括: 所 述第二基站向所述 UE发送数据的数据分配阔值,和 /或所述第二基站向所述 UE 发送数据的数据分配分时信息。
16、 如权利要求 15所述的方法, 其特征在于, 当所述数据分配信息包括所 述数据分配分时信息时, 所述数据分配分时信息包括子帧信息, 用于所述第二 基站根据所述子帧信息向所述 UE发送数据。
17、 如权利要求 16所述的方法, 其特征在于, 当所述子帧信息包括子帧位 图时, 所述方法还包括:
所述第二基站向所述 UE发送所述子帧位图,所述子帧位图包含所述第一基 站向所述 UE发送数据所占用的子帧号和所述第二基站向所述 UE发送数据所占 用的子帧号。
18、 如权利要求 15或 16所述的方法, 其特征在于, 当所述数据分配信息 包括所述数据分配阔值时,所述数据分配阔值包括所述第二基站向所述 UE发送 数据使用的多输入多输出 MIMO模式, 其中, 所述 MIMO模式为下行空间复用 最大支持层数。
19、 如权利要求 13-18任一项所述的方法, 其特征在于, 还包括: 所述第二基站根据所述 UE上报的测量报告,向所述第一基站发送更新的数 据分配信息。
20、 如权利要求 13-19任一项所述的方法, 其特征在于, 还包括: 所述第二基站接收所述 UE发送的混合自动重传请求 HARQ反馈信息或无 线链路控制 RLC状态报告,并根据所述 HARQ反馈信息或所述 RLC状态报告, 调整向所述 UE发送数据的速率。
21、 一种通讯方法, 其特征在于, 包括:
用户设备 UE接收第一基站根据第一数据分配信息发送的第一数据; 所述 UE接收第二基站根据第二数据分配信息发送的第二数据;
其中, 所述第一数据分配信息以及所述第二数据分配信息由所述第一基站 根据所述 UE的无线接收能力确定,所述 UE在同一传输时间间隔 TTI内接收所 述第一基站发送的所述第一数据和所述第二基站发送的所述第二数据的数据量 总和不超过所述 UE根据自身的无线接入能力所能接收的数据量总和。
22、 如权利要求 21所述的方法, 其特征在于, 所述第一数据分配信息包括 所述第一基站向所述 UE发送所述第一数据的数据分配阔值, 和 /或所述第一基 站向所述 UE发送所述第一数据的数据分配分时信息;
所述第二数据分配信息包括所述第二基站向所述 UE发送所述第二数据的 数据分配阔值, 和 /或所述第二基站向所述 UE发送所述第二数据的数据分配分 时信息。
23、 如权利要求 22所述的方法, 其特征在于, 当所述第一数据分配信息和 所述第二数据分配信息包括所述数据分配分时信息时, 所述数据分配分时信息 包括子帧信息, 用于所述第一基站或者所述第二基站根据所述子帧信息向所述 UE发送数据。
24、 如权利要求 23所述的方法, 其特征在于, 所述 UE接收所述第一基站 根据所述第一数据分配信息发送的第一数据, 并接收所述第二基站根据所述第 二数据分配信息发送的第二数据, 包括:
所述 UE接收所述第一基站和 /或所述第二基站发送的子帧位图, 所述子帧 位图包含所述第一基站向所述 UE发送所述第一数据占用的子帧号和所述第二 基站向所述 UE发送所述第二数据占用的子帧号;
所述 UE按照所述子帧位图,在所述第一基站向所述 UE发送所述第一数据 占用的子帧号对应的各子帧中, 接收所述第一基站发送的所述第一数据;
在所述第二基站向所述 UE发送所述第二数据占用的子帧号对应的各子帧 中, 接收所述第二基站发送的所述第二数据。
25、 如权利要求 21-24任一项所述的方法, 其特征在于, 还包括: 所述 UE 获取所述第一基站对应的第一数据发送速率以及所述第二基站对 应的第二数据发送速率;
当所述 UE判定所述第一数据发送速率与所述第二数据发送速率的差值的 绝对值大于预设阔值时, 通知所述第一基站或者所述第二基站调整数据发送速 率。
26、 一种基站, 其特征在于, 包括:
发送单元,用于根据由用户设备 UE的无线接入能力所确定的第一数据分配 信息向所述 UE发送第一数据;
指示单元,用于指示载波聚合基站根据由所述 UE的无线接入能力所确定的 第二数据分配信息向所述 UE发送第二数据,所述载波聚合基站与所述基站进行 载波聚合; 其中, 所述基站和所述载波聚合基站在同一传输时间间隔 TTI 内向 所述 UE发送的所述第一数据和所述第二数据的数据量总和不超过所述 UE根据 所述 UE的无线接入能力所能接收的数据量总和。
27、 如权利要求 26所述的基站, 其特征在于, 还包括确定单元, 用于确定 向所述 UE发送包括所述第一数据的数据分配阔值, 和 /或所述第一数据的数据 分配分时信息的所述第一数据分配信息; 以及确定所述载波聚合基站向所述 UE 发送包括所述第二数据的数据分配阔值, 和 /或所述第二数据的数据分配分时信 息的所述第二数据分配信息。
28、 如权利要求 27所述的基站, 其特征在于, 当所述第一数据分配信息和 所述第二数据分配信息包括所述数据分配阔值时, 所述确定单元, 具体用于将 以下参数中的至少任意一种作为所述数据分配阔值: 单位 TTI 内接收的最大下 行共享传输信道 DL-SCH传输块 bit数;单位 TTI内接收的一个 DL-SCH传输块 最大比特数; 软信道总 bit数; 下行空间复用最大支持层数; 单位 TTI内下行分 组数据会聚协议 PDCP业务数据单元 SDU最大数目。
29、 如权利要求 27所述的基站, 其特征在于, 当所述第一数据分配信息和 所述第二数据分配信息包括所述数据分配分时信息时, 所述确定单元, 具体用 于确定包括子帧信息的数据分配分时信息, 其中, 所述基站或者所述载波聚合 基站根据所述子帧信息向所述 UE发送数据。
30、 如权利要求 29所述的基站, 其特征在于, 所述发送单元, 还用于: 当所述第一数据分配信息和所述第二数据分配信息中携带所述子帧信息 时, 向所述 UE发送子帧位图, 所述子帧位图包含所述基站向所述 UE发送所述 第一数据所占用的子帧号和所述载波聚合基站向所述 UE发送所述第二数据所 占用的子帧号。
31、 如权利要求 29所述的基站, 其特征在于, 所述指示单元, 还用于指示 所述载波聚合基站在对应的子帧向所述 UE发送数据。
32、 如权利要求 27或 29所述的基站, 其特征在于, 所述确定单元, 还用 于确定包含所述基站或所述载波聚合基站向所述 UE发送数据使用的多输入多 输出 MIMO模式的数据分配阔值, 其中, 所述 MIMO模式为下行空间复用最大 支持层数。
33、 如权利要求 26-32任一项所述的基站, 其特征在于, 所述确定单元, 具 体用于:
接收所述 UE发送的信号质量参数以及所述 UE对应的标识信息;根据所述 UE对应的标识信息, 获取所述 UE的无线接入能力参数; 根据所述信号质量参 数, 以及所述 UE的无线接入能力参数, 确定所述第一数据分配信息, 并确定所 述第二基站的第二数据分配信息。
34、 如权利要求 26-33任一项所述的基站, 其特征在于, 所述确定单元, 具 体用于:
按照预设周期确定所述第一数据分配信息和所述第二数据分配信息; 或根 据所述 UE上报的测量报告或服务质量 QoS确定所述第一数据分配信息, 以及 所述第二数据分配信息。
35、 如权利要求 34所述的基站, 其特征在于, 还包括调整单元, 用于: 向所述第二基站发送所述测量报告, 指示所述第二基站根据所述测量报告 更新所述第二数据分配信息; 接收所述第二基站发送的更新的第二数据分配信 息。
36、 如权利要求 26所述的基站, 其特征在于, 所述确定单元, 具体用于: 确定分别包含数据分配生效时间的所述第一数据分配信息和所述第二数据 分配信息。
37、 如权利要求 36所述的基站, 其特征在于, 当所述第一数据分配信息包 含所述数据分配生效时间时, 所述发送单元, 具体用于: 在所述第一数据分配信息中包含的所述数据分配生效时间对应的时刻, 根 据所述第一数据分配信息向所述 UE发送所述第一数据。
38、 如权利要求 36所述的基站, 其特征在于, 当所述第二数据分配信息包 含所述数据分配生效时间时, 所述指示单元, 具体用于:
指示所述载波聚合基站在所述第二数据分配信息中包含的所述数据分配生 效时间对应的时刻, 根据所述第二数据分配信息向所述 UE发送所述第二数据。
39、 如权利要求 27-38任一项所述的基站, 其特征在于, 所述调整单元, 还 用于:
接收所述 UE发送的混合自动重传请求 HARQ反馈信息或无线链路控制 RLC状态报告, 并根据所述 HARQ反馈信息或所述 RLC状态报告, 调整向所 述 UE发送数据的速率。
40、 一种基站, 其特征在于, 包括:
接收单元,用于接收第一基站由用户设备 UE的无线接入能力所确定的数据 分配信息, 并向发送单元发送该数据分配信息;
发送单元, 用于接收所述接收单元发送的所述数据分配信息, 并根据所述 数据分配信息向所述 UE发送数据; 其中, 所述第一基站和所述基站载波聚合, 且所述基站在同一传输时间间隔 TTI内向所述 UE发送的数据量总和不超过所述 UE根据所述 UE的无线接入能力所能接收的数据量总和。
41、 如权利要求 40所述的基站, 其特征在于, 所述发送单元, 具体用于: 根据所述数据分配信息中包含的数据分配生效时间, 在该数据分配生效时 间对应的时刻向所述 UE发送数据。
42、 如权利要求 40所述的基站, 其特征在于, 所述接收单元, 具体用于接 收包括向所述 UE发送数据的数据分配阔值, 和 /或数据分配分时信息的数据分 配信息。
43、 如权利要求 42所述的基站, 其特征在于, 当所述数据分配信息包括所 述数据分配分时信息时, 所述接收单元, 具体用于接收包括子帧信息的数据分 配分时信息, 用于所述基站根据所述子帧信息向所述 UE发送数据。
44、 如权利要求 43所述的基站, 其特征在于, 所述发送单元, 还用于: 当所述数据分配信息中携带所述子帧信息时, 向所述 UE发送子帧位图, 所 述子帧位图包含所述第一基站向所述 UE发送数据所占用的子帧号和所述基站 向所述 UE发送数据所占用的子帧号。
45、 如权利要求 42或 43所述的基站, 其特征在于, 当所述数据分配信息 包括所述数据分配阔值时, 所述接收单元, 还用于接收包括所述基站向所述 UE 发送数据使用的多输入多输出 MIMO模式的数据分配阔值, 其中, 所述 MIMO 模式为下行空间复用最大支持层数。
46、 如权利要求 40-45任一项所述的基站, 其特征在于, 还包括调整单元, 用于:
根据所述 UE上报的测量报告, 向所述第一基站发送更新的数据分配信息。
47、 如权利要求 40-46任一项所述的基站, 其特征在于, 所述调整单元, 还 用于:
接收所述 UE发送的混合自动重传请求 HARQ反馈信息或无线链路控制 RLC状态报告, 并根据所述 HARQ反馈信息或所述 RLC状态报告, 调整向所 述 UE发送数据的速率。
48、 一种用户设备 UE, 其特征在于, 包括:
数据接收单元, 用于接收第一基站根据第一数据分配信息发送的第一数据; 所述数据接收单元, 还用于接收第二基站根据第二数据分配信息发送的第 二数据; 其中, 所述第一数据分配信息以及所述第二数据分配信息由所述第一 基站根据所述 UE的无线接收能力确定,所述 UE在同一传输时间间隔 TTI内接 收所述第一基站发送的所述第一数据和所述第二基站发送的所述第二数据的数 据量总和不超过所述 UE根据自身的无线接入能力所能接收的数据量总和。
49、 如权利要求 48所述的 UE, 其特征在于, 所述数据接收单元, 具体用 于接收包括所述第一基站向所述 UE发送所述第一数据的数据分配阔值和 /或数 据分配分时信息的所述第一数据分配信息。
50、 如权利要求 48或 49所述的 UE, 其特征在于, 所述数据接收单元, 还 用于接收包括所述第二基站向所述 UE发送所述第二数据的数据分配阔值和 /或 数据分配分时信息的所述第二数据分配信息。
51、 如权利要求 49或 50所述的 UE, 其特征在于, 当所述第一数据分配信 息和所述第二数据分配信息包括所述数据分配分时信息时, 所述数据接收单元, 具体用于接收所述第一基站或者所述第二基站根据所述数据分配分时信息中包 含的子帧信息向所述 UE发送的数据。
52、 如权利要求 51所述的 UE, 其特征在于, 所述数据接收单元, 还用于: 接收所述第一基站和 /或所述第二基站发送的子帧位图, 所述子帧位图包含 所述第一基站向所述 UE发送所述第一数据占用的子帧号和所述第二基站向所 述 UE发送所述第二数据占用的子帧号; 按照所述子帧位图,在所述第一基站向 所述 UE发送所述第一数据占用的子帧号对应的各子帧中 ,接收所述第一基站发 送的所述第一数据;在所述第二基站向所述 UE发送所述第二数据占用的子帧号 对应的各子帧中, 接收所述第二基站发送的所述第二数据。
53、 如权利要求 48-52任一项所述的 UE, 其特征在于, 还包括调整单元, 用于:
获取所述第一基站对应的第一数据发送速率以及所述第二基站对应的第二 数据发送速率; 当判定所述第一数据发送速率与第二数据发送速率的差值的绝 对值大于预设阔值时, 通知所述第一基站或者所述第二基站调整数据发送速率。
PCT/CN2013/076577 2013-05-31 2013-05-31 一种通讯方法、基站及用户设备 WO2014190550A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2016515592A JP6478246B2 (ja) 2013-05-31 2013-05-31 通信方法、基地局およびユーザ機器
PT17182897T PT3301847T (pt) 2013-05-31 2013-05-31 Método de comunicação, estação base e equipamento de utilizador
RU2015156103A RU2631251C2 (ru) 2013-05-31 2013-05-31 Способ обмена информацией, базовая станция и устройство пользователя
EP17182897.3A EP3301847B1 (en) 2013-05-31 2013-05-31 Communication method, base station and user equipment
CN201380003046.2A CN104396304B (zh) 2013-05-31 2013-05-31 一种通讯方法、基站及用户设备
EP13885486.4A EP2993937B1 (en) 2013-05-31 2013-05-31 Communication method, base station and user equipment
MX2015016393A MX352077B (es) 2013-05-31 2013-05-31 Metodo de comunicacion, estacion base y equipo de usuario.
BR112015029872-9A BR112015029872B1 (pt) 2013-05-31 2013-05-31 Método de comunicação, estação de base e equipamento de usuário
KR1020177020940A KR101807685B1 (ko) 2013-05-31 2013-05-31 통신 방법, 기지국 및 사용자 장치
PCT/CN2013/076577 WO2014190550A1 (zh) 2013-05-31 2013-05-31 一种通讯方法、基站及用户设备
KR1020157036419A KR101764284B1 (ko) 2013-05-31 2013-05-31 통신 방법, 기지국 및 사용자 장치
US14/951,091 US10484997B2 (en) 2013-05-31 2015-11-24 Communication method, base station and user equipment
ZA2015/08700A ZA201508700B (en) 2013-05-31 2015-11-26 Communication method, base station and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076577 WO2014190550A1 (zh) 2013-05-31 2013-05-31 一种通讯方法、基站及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/951,091 Continuation US10484997B2 (en) 2013-05-31 2015-11-24 Communication method, base station and user equipment

Publications (1)

Publication Number Publication Date
WO2014190550A1 true WO2014190550A1 (zh) 2014-12-04

Family

ID=51987906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076577 WO2014190550A1 (zh) 2013-05-31 2013-05-31 一种通讯方法、基站及用户设备

Country Status (11)

Country Link
US (1) US10484997B2 (zh)
EP (2) EP3301847B1 (zh)
JP (1) JP6478246B2 (zh)
KR (2) KR101764284B1 (zh)
CN (1) CN104396304B (zh)
BR (1) BR112015029872B1 (zh)
MX (1) MX352077B (zh)
PT (1) PT3301847T (zh)
RU (1) RU2631251C2 (zh)
WO (1) WO2014190550A1 (zh)
ZA (1) ZA201508700B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532373A (ja) * 2013-08-08 2016-10-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複数のアクセスノード間でユーザ機器処理能力を割り振るための技術
CN108075870A (zh) * 2016-11-16 2018-05-25 电信科学技术研究院 站间载波聚合调度的方法和装置
CN109151909A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 数据处理方法及装置
EP3419368A4 (en) * 2016-02-15 2019-01-16 NTT DoCoMo, Inc. USER DEVICE, BASE STATION AND COMMUNICATION PROCESS
CN111654918A (zh) * 2015-07-03 2020-09-11 华为技术有限公司 一种通信方法及装置
CN113412649A (zh) * 2019-06-11 2021-09-17 Oppo广东移动通信有限公司 监听控制信道的方法、终端设备和网络设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9930722B2 (en) * 2014-07-07 2018-03-27 Qualcomm Incorporated Discontinuous reception techniques
US10728791B2 (en) * 2014-10-27 2020-07-28 General Electric Company Wireless interface virtualization
US10397891B2 (en) * 2016-08-02 2019-08-27 Htc Corporation Device and method of handling multiple cellular radio operations
JP6843228B2 (ja) 2016-08-10 2021-03-17 インターデイジタル パテント ホールディングス インコーポレイテッド 低減された待ち時間システムにおけるタイミングアドバンスおよび処理能力
KR102307472B1 (ko) * 2017-03-22 2021-10-01 에스케이텔레콤 주식회사 이중 연결 네트워크에서의 연계 기지국의 데이터 전송 속도를 추정하는 방법 및 그 방법이 적용된 기지국
US11063879B2 (en) * 2017-04-12 2021-07-13 New York University Determining a receive window of a receiving device that reduces bufferbloat in a wireless communications system, such as that caused by TCP dynamics over millimeter wave links
CN110574416B (zh) * 2017-05-05 2021-12-03 华为技术有限公司 一种信号处理方法及装置
EP3503650B1 (en) * 2017-12-21 2020-07-22 ASUSTek Computer Inc. Method and apparatus for transmission and reception in backhaul link in a wireless communication system
US11445487B2 (en) 2018-06-15 2022-09-13 At&T Intellectual Property I, L.P. Single user super position transmission for future generation wireless communication systems
US11140668B2 (en) * 2018-06-22 2021-10-05 At&T Intellectual Property I, L.P. Performance of 5G MIMO
EP3830998B1 (en) 2018-08-02 2024-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Nr peak rate and transport block size
CN112602343A (zh) * 2018-08-09 2021-04-02 Oppo广东移动通信有限公司 能力上报的方法和设备
US20200154267A1 (en) * 2018-11-12 2020-05-14 Qualcomm Incorporated Configuring a maximum number of layers
US10945281B2 (en) 2019-02-15 2021-03-09 At&T Intellectual Property I, L.P. Facilitating improved performance of multiple downlink control channels in advanced networks
GB2587653B (en) * 2019-10-03 2023-04-26 Samsung Electronics Co Ltd Flow control
US20210144569A1 (en) * 2019-11-08 2021-05-13 Qualcomm Incorporated Indication of user equipment capability for beam failure detection and beam management
US11277735B1 (en) * 2020-09-08 2022-03-15 T-Mobile Innovations Llc Multiple input multiple output (MIMO) layer control for wireless user equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041928A1 (en) * 2006-10-03 2008-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Method for transmission of mbms control information in a radio access network
CN102387508A (zh) * 2011-11-01 2012-03-21 中兴通讯股份有限公司 一种lte-a系统中载波聚合的方法和装置
CN103052116A (zh) * 2011-10-14 2013-04-17 华为技术有限公司 传输速率控制方法、移动性管理实体和通讯系统

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL159361A0 (en) * 2001-06-26 2004-06-01 Qualcomm Inc Method and apparatus for adaptive server selection in a data communication system
FI20020385A (fi) * 2002-02-28 2003-08-29 Nokia Corp Menetelmä ja järjestely kyvykkyyttä koskevien tietojen vaihtamiseksi solukkoradiojärjestelmässä
JP2005277612A (ja) * 2004-03-24 2005-10-06 Nec Corp 移動通信システム、無線基地局及びそれらに用いる送信電力制御方法
EP1981305B1 (en) * 2005-10-04 2013-06-26 Sharp Kabushiki Kaisha A paging method, a mobile station device and a base station device for executing the same
US9137844B2 (en) * 2007-10-04 2015-09-15 Qualcomm Incorporated Method and apparatus for handling user equipment capability information
CA2679611A1 (en) * 2007-03-01 2008-09-12 Ntt Docomo, Inc. Base station apparatus and communication control method
BRPI0808045A2 (pt) * 2007-03-01 2014-06-24 Ntt Docomo Inc Aparelho de estação base e método de controle de comunicação
JP5069740B2 (ja) * 2007-03-01 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法
US8249009B2 (en) * 2007-05-01 2012-08-21 Ntt Docomo, Inc. User equipment terminal, base station apparatus, and communication control method in mobile communication system
GB2452698B (en) 2007-08-20 2010-02-24 Ipwireless Inc Apparatus and method for signaling in a wireless communication system
RU2499363C2 (ru) * 2007-09-07 2013-11-20 Нтт Докомо, Инк. Способ мобильной связи, коммутационная станция мобильной связи, базовая радиостанция и мобильная станция
US8855040B1 (en) * 2008-04-21 2014-10-07 Google Inc. Cross-cell MIMO
US9288021B2 (en) * 2008-05-02 2016-03-15 Qualcomm Incorporated Method and apparatus for uplink ACK/NACK resource allocation
US8559298B2 (en) * 2008-06-30 2013-10-15 Qualcomm Incorporated Method and apparatus for automatic handover optimization
US8965429B2 (en) * 2008-08-08 2015-02-24 Nokia Siemens Networks Oy Fine-grain and backward-compliant resource allocation
JP4961040B2 (ja) * 2008-09-22 2012-06-27 シャープ株式会社 基地局装置、移動局装置、移動通信システムおよび通信方法
CN101686497B (zh) * 2008-09-24 2013-04-17 华为技术有限公司 小区负荷均衡方法、小区负荷评估方法及装置
US9232452B2 (en) * 2008-10-31 2016-01-05 Htc Corporation Method of handling an inter rat handover in wireless communication system and related communication device
US7974627B2 (en) * 2008-11-11 2011-07-05 Trueposition, Inc. Use of radio access technology diversity for location
JP5264451B2 (ja) * 2008-12-03 2013-08-14 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、移動局及びネットワーク装置
KR20150023886A (ko) * 2008-12-03 2015-03-05 인터디지탈 패튼 홀딩스, 인크 캐리어 집적에 대한 업링크 파워 헤드룸 보고
US9084119B2 (en) * 2009-01-07 2015-07-14 Qualcomm Incorporated Carrier reuse in a multicarrier wireless communication environment
US8867999B2 (en) * 2009-01-26 2014-10-21 Qualcomm Incorporated Downlink interference cancellation methods
KR20100088554A (ko) * 2009-01-30 2010-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 및 전송 방법 및 장치
CN105072692A (zh) * 2009-02-02 2015-11-18 三菱电机株式会社 移动体通信系统
US9397876B2 (en) * 2009-02-20 2016-07-19 Broadcom Corporation Synchronization and frame structure determination of a base station
US9106378B2 (en) * 2009-06-10 2015-08-11 Qualcomm Incorporated Systems, apparatus and methods for communicating downlink information
BR112012005602B1 (pt) * 2009-09-14 2021-08-17 Apple Inc Recepção de informação referente a capacidades de tecnologia de acessso de rádio de uma estação móvel
US8942192B2 (en) * 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
JP5555246B2 (ja) * 2009-10-06 2014-07-23 株式会社Nttドコモ 基地局装置及びユーザ装置
WO2011043396A1 (ja) * 2009-10-06 2011-04-14 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び移動通信方法
US9232462B2 (en) * 2009-10-15 2016-01-05 Qualcomm Incorporated Methods and apparatus for cross-cell coordination and signaling
WO2011055986A2 (en) * 2009-11-08 2011-05-12 Lg Electronics Inc. A method and a base station for transmitting a csi-rs, and a method and a user equipment for receiving the csi-rs
US8824968B2 (en) * 2009-12-10 2014-09-02 Lg Electronics Inc. Method and apparatus for reducing inter-cell interference in a wireless communication system
JP2011130088A (ja) * 2009-12-16 2011-06-30 Sony Corp 端末装置、ハンドオーバのための方法、基地局及び無線通信システム
JP5124597B2 (ja) * 2010-01-08 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置、基地局及び方法
CN102754458B (zh) * 2010-02-12 2015-09-16 黑莓有限公司 操作无线通信网络中的用户设备的方法、操作无线通信网络中的基站的方法、用户设备和基站
US8908582B2 (en) * 2010-02-12 2014-12-09 Qualcomm Incorporated User equipment operation mode and channel or carrier prioritization
EP3550916B1 (en) * 2010-03-03 2021-01-20 BlackBerry Limited Method and apparatus to signal use-specific capabilities of mobile stations to establish data transfer sessions
EP2364041B1 (en) * 2010-03-03 2012-09-19 Research In Motion Limited Method and apparatus to signal use-specific capabilities of mobile stations to establish data transfer sessions
WO2011114461A1 (ja) * 2010-03-17 2011-09-22 富士通株式会社 無線通信システム、通信制御方法基地局及び移動端末
JP5138724B2 (ja) * 2010-04-15 2013-02-06 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局及び方法
CN102845088A (zh) * 2010-04-16 2012-12-26 京瓷株式会社 无线通信系统、高功率基站、低功率基站及通信控制方法
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US8422429B2 (en) * 2010-05-04 2013-04-16 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
JP5866124B2 (ja) * 2010-06-04 2016-02-17 エルジー エレクトロニクス インコーポレイティド 端末の非周期的サウンディング参照信号トリガリングベースのsrs伝送方法及び非周期的srsを伝送するためのアップリンク伝送電力制御方法
US8606257B2 (en) * 2010-06-25 2013-12-10 Htc Corporation Apparatuses and methods for mobile capability signaling
EP2403186B1 (en) * 2010-07-02 2017-12-27 Vodafone IP Licensing limited Telecommunication networks
CN103069882B (zh) * 2010-08-13 2016-09-07 瑞典爱立信有限公司 用户设备在授权频谱和非授权频谱中的双重操作
US8738041B2 (en) * 2010-08-16 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Nodes and methods for enhancing positioning
WO2012044246A1 (en) * 2010-09-30 2012-04-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and nodes for handling measurements
CN102448173B (zh) * 2010-09-30 2015-04-29 华为技术有限公司 资源协调处理方法、设备以及基站
WO2012041422A2 (en) * 2010-09-30 2012-04-05 Panasonic Corporation Timing advance configuration for multiple uplink component carriers
AU2011308576C1 (en) * 2010-10-01 2016-03-03 Interdigital Patent Holdings, Inc. Systems and methods for uplink feedback for high-speed downlink packet access (HSDPA)
US8885496B2 (en) * 2010-10-08 2014-11-11 Sharp Kabushiki Kaisha Uplink control information transmission on backward compatible PUCCH formats with carrier aggregation
US8824307B2 (en) * 2010-10-13 2014-09-02 Qualcomm Incorporated Communicating between user equipment (UE) and independent serving sectors in a wireless communications system
US9084265B2 (en) * 2010-10-21 2015-07-14 Telefonaktiebolaget L M Ericsson (Publ) Spectrum sharing in multi-RAT radio base stations
KR20140023259A (ko) * 2010-11-05 2014-02-26 블랙베리 리미티드 캐리어 집성을 위한 harq 소프트 비트 버퍼 분할
US8675528B2 (en) * 2010-11-15 2014-03-18 Sharp Laboratories Of America, Inc. Configuring uplink control information (UCI) reporting
US9560635B2 (en) * 2010-11-17 2017-01-31 Nokia Technologies Oy Apparatus and method to reduce interference between frequency-division duplex and time-division duplex signals in a communication system
KR101740371B1 (ko) * 2010-11-22 2017-06-08 삼성전자 주식회사 셀룰라 이동 통신 시스템의 안테나 할당 장치 및 방법
KR102049729B1 (ko) * 2011-01-05 2019-11-28 선 페이턴트 트러스트 단말 장치, 통신 방법, 기지국 장치 및 집적 회로
JP5655867B2 (ja) * 2011-01-27 2015-01-21 日本電気株式会社 基地局、移動局、通信制御システム、及び通信制御方法
US9374767B2 (en) * 2011-03-09 2016-06-21 Intel Deutschland Gmbh Communication devices and methods for network signaling
DK2698018T3 (da) * 2011-04-13 2019-09-23 Ericsson Telefon Ab L M Fremgangsmåde og indretning til bestemmelse af et antal MIMO-lag
US9072072B2 (en) * 2011-04-29 2015-06-30 Qualcomm Incorporated Methods and apparatuses for managing simultaneous unicast and multicast/broadcast services in a wireless communication system
US9398578B2 (en) * 2011-05-03 2016-07-19 Lg Electronics Inc. Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
WO2012167957A1 (en) * 2011-06-08 2012-12-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for reporting a downlink channel quality
US20130010620A1 (en) * 2011-07-10 2013-01-10 Esmael Dinan Connection Reconfiguration in a Multicarrier OFDM Network
CN103703858B (zh) * 2011-08-09 2020-01-17 瑞典爱立信有限公司 蜂窝无线电通信中移动性信息的交换
US9191899B2 (en) * 2011-09-05 2015-11-17 Lg Electronics Inc. Terminal apparatus for controlling uplink signal transmission power and method for same
KR101150846B1 (ko) * 2011-09-05 2012-06-13 엘지전자 주식회사 셀 측정 방법 및 그를 위한 정보 전송 방법
US9185613B2 (en) * 2011-09-12 2015-11-10 Ofinno Technologies, Llc Handover in heterogeneous wireless networks
JP2013077284A (ja) * 2011-09-12 2013-04-25 Canon Inc 情報処理装置及びプログラム、制御方法
US9204411B2 (en) * 2011-09-12 2015-12-01 Qualcomm Incorporated Support of multiple timing advance groups for user equipment in carrier aggregation in LTE
US9628242B2 (en) * 2011-09-26 2017-04-18 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
WO2013062356A2 (ko) * 2011-10-26 2013-05-02 엘지전자 주식회사 무선 통신 시스템에서 셀간 간섭 조정 방법 및 장치
WO2013067405A1 (en) * 2011-11-04 2013-05-10 Interdigital Patent Holdings, Inc. Methods of multiple point hsdpa transmission in single or different frequencies
WO2013067709A1 (en) * 2011-11-07 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Downlink transmission coordinated scheduling
EP2777187A1 (en) * 2011-11-11 2014-09-17 Telefonaktiebolaget LM Ericsson (PUBL) Methods and apparatus for performing measurements in adaptive downlink power transmission
US20130121216A1 (en) * 2011-11-11 2013-05-16 Qualcomm Incorporated Method and apparatus for soft buffer management for harq operation
US8879496B2 (en) * 2011-12-19 2014-11-04 Ofinno Technologies, Llc Beamforming codeword exchange between base stations
KR102031093B1 (ko) * 2012-01-11 2019-10-11 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 방법 및 장치
US8462688B1 (en) * 2012-01-25 2013-06-11 Ofinno Technologies, Llc Base station and wireless device radio resource control configuration
US8897248B2 (en) * 2012-01-25 2014-11-25 Ofinno Technologies, Llc Multicarrier signal transmission in wireless communications
EP3937551A3 (en) * 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
US9357543B2 (en) * 2012-04-18 2016-05-31 Lg Electronics Inc. Method and apparatus for receiving downlink data in wireless communication system
US8989112B2 (en) * 2012-04-27 2015-03-24 Nokia Siemens Networks Oy eICIC carrier aggregation using extension carriers
WO2013169184A2 (en) * 2012-05-11 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Scheduling a user equipment in a communication system
KR20130126427A (ko) * 2012-05-11 2013-11-20 주식회사 팬택 다중 요소 반송파 시스템에서 단말의 성능정보의 전송장치 및 방법
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
US9713056B2 (en) * 2012-09-15 2017-07-18 Fujitsu Limited Switching and aggregation of small cell wireless traffic
US9119071B2 (en) * 2012-10-26 2015-08-25 Telefonaktiebolaget L M Ericsson (Publ) Methods controlling extended range areas in heterogeneous networks and related network nodes
US9173200B2 (en) * 2013-02-28 2015-10-27 Intel Mobile Communications GmbH Communication terminal, network component, base station and method for communicating
US9060365B2 (en) * 2013-03-12 2015-06-16 Qualcomm Incorporated Method and apparatus for sharing decoding time across transport blocks
WO2014182340A1 (en) * 2013-05-09 2014-11-13 Intel IP Corporation Reduction of buffer overflow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041928A1 (en) * 2006-10-03 2008-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Method for transmission of mbms control information in a radio access network
CN103052116A (zh) * 2011-10-14 2013-04-17 华为技术有限公司 传输速率控制方法、移动性管理实体和通讯系统
CN102387508A (zh) * 2011-11-01 2012-03-21 中兴通讯股份有限公司 一种lte-a系统中载波聚合的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2993937A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532373A (ja) * 2013-08-08 2016-10-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複数のアクセスノード間でユーザ機器処理能力を割り振るための技術
US10448406B2 (en) 2013-08-08 2019-10-15 Qualcomm Incorporated Techniques for allocating user equipment processing capability among multiple access nodes
CN111654918A (zh) * 2015-07-03 2020-09-11 华为技术有限公司 一种通信方法及装置
CN111654918B (zh) * 2015-07-03 2024-03-05 华为技术有限公司 一种通信方法及装置
EP3419368A4 (en) * 2016-02-15 2019-01-16 NTT DoCoMo, Inc. USER DEVICE, BASE STATION AND COMMUNICATION PROCESS
CN108075870A (zh) * 2016-11-16 2018-05-25 电信科学技术研究院 站间载波聚合调度的方法和装置
CN108075870B (zh) * 2016-11-16 2020-11-10 电信科学技术研究院 站间载波聚合调度的方法和装置
CN109151909A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 数据处理方法及装置
CN113412649A (zh) * 2019-06-11 2021-09-17 Oppo广东移动通信有限公司 监听控制信道的方法、终端设备和网络设备

Also Published As

Publication number Publication date
US10484997B2 (en) 2019-11-19
CN104396304B (zh) 2018-05-18
EP3301847B1 (en) 2019-07-10
JP2016520273A (ja) 2016-07-11
US20160081076A1 (en) 2016-03-17
JP6478246B2 (ja) 2019-03-06
KR101764284B1 (ko) 2017-08-03
MX352077B (es) 2017-11-08
RU2015156103A (ru) 2017-07-05
KR20170089984A (ko) 2017-08-04
PT3301847T (pt) 2019-09-12
CN104396304A (zh) 2015-03-04
KR20160013974A (ko) 2016-02-05
EP2993937A4 (en) 2016-05-25
BR112015029872A2 (pt) 2017-07-25
EP3301847A1 (en) 2018-04-04
EP2993937B1 (en) 2017-09-27
MX2015016393A (es) 2016-04-11
KR101807685B1 (ko) 2017-12-11
BR112015029872B1 (pt) 2022-09-13
EP2993937A1 (en) 2016-03-09
RU2631251C2 (ru) 2017-09-20
ZA201508700B (en) 2016-11-30

Similar Documents

Publication Publication Date Title
US11678244B2 (en) Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
US10484997B2 (en) Communication method, base station and user equipment
KR102349361B1 (ko) 5g 및 lte 시스템 및 장치에서의 단절없는 이동
JP6980836B2 (ja) データ送信方法、ユーザ機器、および基地局
JP6744321B2 (ja) ワイヤレス通信における動的なデバイス能力シグナリングのための方法および装置
CN107113291B (zh) 演进的数据压缩方案信令
CN107667559B (zh) 在无线通信系统中使用不同的无线连接技术提供多连接的装置和方法
JP2019068452A (ja) マルチ無線アクセス技術キャリアアグリゲーションを実行するための方法、装置、およびシステム
US11006433B2 (en) Bearer establishment method, user equipment, and base station
WO2014101061A1 (zh) 控制上行载波聚合的方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515592

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/016393

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013885486

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013885486

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015029872

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157036419

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201508768

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015156103

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015029872

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151127