KR101865989B1 - 유체 변위 액추에이터를 구비하는 유체 분출 장치 및 관련된 방법 - Google Patents

유체 변위 액추에이터를 구비하는 유체 분출 장치 및 관련된 방법 Download PDF

Info

Publication number
KR101865989B1
KR101865989B1 KR1020147004973A KR20147004973A KR101865989B1 KR 101865989 B1 KR101865989 B1 KR 101865989B1 KR 1020147004973 A KR1020147004973 A KR 1020147004973A KR 20147004973 A KR20147004973 A KR 20147004973A KR 101865989 B1 KR101865989 B1 KR 101865989B1
Authority
KR
South Korea
Prior art keywords
fluid
actuator
channel
displacement
compressible
Prior art date
Application number
KR1020147004973A
Other languages
English (en)
Other versions
KR20140074283A (ko
Inventor
알렉산더 고브야디노브
키아누쉬 나엘리
토니 에스 크루즈어리브
Original Assignee
휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. filed Critical 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Publication of KR20140074283A publication Critical patent/KR20140074283A/ko
Application granted granted Critical
Publication of KR101865989B1 publication Critical patent/KR101865989B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/14241Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm having a cover around the piezoelectric thin film element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14338Multiple pressure elements per ink chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/12Embodiments of or processes related to ink-jet heads with ink circulating through the whole print head

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

하나의 실시형태에서, 유체 분출 장치 내에서 유체를 순환시키는 방법은 제 1 유체 공급구멍과 노즐 사이의 유체 채널 내에 비대칭적으로 위치되는 제 1 액추에이터로부터 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생하는 단계 및 이와 동시에 노즐과 제 2 유체 공급구멍 사이의 채널 내에 비대칭적으로 위치되는 제 2 액추에이터로부터 유체 변위를 발생하지 않는 단계를 포함한다.

Description

유체 변위 액추에이터를 구비하는 유체 분출 장치 및 관련된 방법{FLUID EJECTION DEVICE WITH FLUID DISPLACEMENT ACTUATOR AND RELATED METHODS}
잉크젯 프린터 내의 유체 분출 장치는 액적의 드롭-온-디맨드(drop-on-demand) 분출을 제공한다. 잉크젯 프린터는 종이와 같은 인쇄 매체 상에 복수의 노즐을 통해 잉크 액적을 토출함으로써 이미지를 생성한다. 노즐은 전형적으로 하나 이상의 어레이로 배치되므로, 노즐로부터의 잉크 액적의 적절하게 시퀀싱(sequenced)된 분출에 의해, 프린트헤드와 인쇄 매체가 서로에 대해 상대 이동함에 따라 문자 또는 기타 이미지가 인쇄 매체 상에 인쇄된다. 특정 실시예에서, 써멀 잉크젯 프린트헤드는, 열을 발생하고 발사 챔버 내의 유체의 적은 부분을 기화시키기 위해 가열 요소를 통해 전류를 통전시킴으로써 노즐로부터 액적을 토출한다. 증기 기포에 의해 밀려난 유체의 일부는 노즐로부터 토출된다. 다른 실시예에서, 압전 잉크젯 프린트헤드는 노즐로부터 잉크 액적을 강제 배출시키는 압력 펄스를 생성하기 위해 압전 재료 액추에이터를 사용한다.
잉크젯 프린터가 합리적 비용으로 높은 인쇄 품질을 제공함에도 불구하고, 그 지속적인 개선은 부분적으로 다양한 작동상의 난제를 극복하는 것에 달려있다. 예를 들면, 인쇄 중 잉크로부터의 공기 기포의 방출은 잉크 유동 폐쇄, 액적 토출을 위한 불충분한 압력, 및 오지향(mis-directed)된 액적과 같은 문제를 초래할 수 있다. 색소-잉크 비히클 분리(Pigment-ink vehicle separation; PIVS)는 색소계 잉크를 사용하는 경우에 발생할 수 있는 또 하나의 문제이다. PIVS는 노즐 영역 내의 잉크로부터의 물의 증발 및 물에 대한 색소의 더 높은 친화성으로 인해 노즐 영역 근처의 잉크의 색소 농축 감수(depletion)의 결과이다. 보관 기간 또는 비사용 기간 중에, 색소 입자는 잉크 비히클로부터 침전되거나 또는 침강(crash)될 수도 있고, 이것은 프린트헤드 내의 발사 챔버 및 노즐로의 잉크의 유동을 방해하거나 차단할 수 있다. 물이나 용매의 증발과 같은 "디캡(decap)"에 관련되는 다른 요인도 PIVS 및 점성 잉크 플러그(plug) 형성의 원인이 될 수 있다. 디캡은 토출된 잉크 액적의 열화를 유발함이 없이 주위 환경에 언캡되고 노출된 상태에 잉크젯 노즐이 유지할 수 있는 시간의 길이이다. 디캡의 효과는 액적 궤도, 속도, 형상 및 색을 변화시킬 수 있고, 이들 모두는 잉크젯 프린터의 인쇄 품질에 악영향을 줄 수 있다.
위에서 언급된 바와 같이, 잉크젯 인쇄 시스템의 개발에서 다양한 난제가 여전히 극복되어야 한다. 예를 들면, 이와 같은 시스템에서 사용되는 잉크젯 프린트헤드는 때때로 잉크 막힘 및/또는 폐색의 문제를 갖는다. 잉크 막힘의 한 가지 원인은 프린트헤드 내의 공기 기포로서 축적되는 과도한 공기이다. 잉크가 잉크 리저버 내에 보관 중일 때와 같이 잉크가 공기에 노출되는 경우, 추가의 공기가 잉크 내로 용해된다. 프린트헤드의 발사 챔버로부터 잉크 액적의 토출 후의 후속 작용은 공기 기포로서 축적되는 과잉 공기를 잉크로부터 방출하는 것이다. 이 기포는 발사 챔버로부터 프린트헤드의 다른 영역으로 이동하고, 이곳에서 기포는 프린트헤드로의 잉크의 유동 및 프린트헤드 내에서의 잉크의 유동을 봉쇄할 수 있다. 챔버 내의 기포는 압력을 흡수하고, 노즐을 통해 유체 상에 가해지는 힘을 감소시키고, 이것은 액적 속도를 감소시키거나 토출을 저지한다.
색소계 잉크는 프린트헤드 내의 잉크 막힘 또는 폐색의 원인이 될 수도 있다. 잉크젯 인쇄 시스템은 색소계 잉크 및 염료계 잉크를 사용하고, 양자 유형의 잉크 모두 장점 및 단점을 가지고 있으나 색소계 잉크가 일반적으로 선호된다. 염료계 잉크에서, 염료 입자는 액체 내에 용해되므로 종이 내에 더 깊게 침투하는 경향을 갖는다. 이것은 염료계 잉크의 효율을 저하시키고, 잉크가 이미지의 에지에서 번지므로 이미지의 품질을 저하시킬 수 있다. 대조적으로, 색소계 잉크는 잉크 비히클 및 입자를 잉크 비히클 내에 현탁된 상태로 유지될 수 있도록 하는 분산제로 코팅된 불용성 색소 입자로 이루어진다. 이것은 색소 잉크가 종이 내로 침투하기 보다 종이의 표면 상에 체류하도록 도와 준다. 그러므로 색소 잉크는, 인쇄된 이미지 내의 동일한 색 강도(color intensity)를 생성하기 위해 더 적은 잉크가 요구되므로, 염료 잉크보다 더 효율적이다. 색소 잉크는 또한 물에 접촉했을 때 염료 잉크보다 덜 번지므로 염료 잉크보다 내구성 및 영속성이 우수한 경향이 있다.
그러나 색소계 잉크의 한가지 결점은 장기간의 보관 및 잉크젯 펜의 박스 개봉 후의 빈약한 성능을 유발하는 다른 극한 환경과 같은 요인으로 인해 잉크젯 프린트헤드 내에서 발생할 수 있는 잉크 막힘이다. 잉크젯 펜은 프린트헤드를 가지고 있고, 이 프린트헤드의 일단부는 잉크 공급원의 내부에 결합된다. 잉크 공급원은 프린트헤드 조립체 내에 내장된 것일 수 있고, 또는 펜의 외측의 프린터 상에 위치되어 프린트헤드 조립체를 통해 프린트헤드에 연결될 수 있다. 장기간에 걸친 보관 중에, 대형 색소 입자에 미치는 중력 효과, 불규칙 변동, 및/또는 분산제의 열화는 색소 응집, 침전 또는 침강을 초래할 수 있다. 하나의 위치에서 색소 입자의 축적은 프린트헤드 내의 발사 챔버 및 노즐로의 잉크 유동을 방해하거나 완전히 봉쇄할 수 있고, 그 결과 프린트헤드에 의한 박스 개봉 후의 성능을 악화시키고, 프린터의 이미지 품질을 감소시킨다. 잉크로부터의 물 및 용매의 증발과 같은 다른 요인도 PIVS 및/또는 증가된 잉크 점성도 및 점성 플러그 형성의 원인이 될 수 있고, 이것은 디캡 성능을 감소시킬 수 있고, 또 비사용 기간 후의 즉각적인 인쇄를 저지할 수 있다.
종래의 해결책은 프린트헤드를 통해 잉크를 순환시키기 위한 다양한 유형의 외부 펌프를 사용하는 것 뿐만 아니라 프린트헤드의 사용 전후에 프린트헤드를 점검하는 것과 주로 관련되었다. 예를 들면, 프린트헤드는 건조된 잉크에 의한 노즐의 폐색을 방지하기 위해 비사용 중에 전형적으로 캐핑(capped)된다. 노즐은 또한 사용 전에 잉크의 연속적 유동으로 프린트헤드를 퍼지하도록 노즐을 통해 잉크를 스피팅(spitting)함으로써 또는 외부 펌프를 사용함으로써 준비될 수 있다. 이러한 해결책의 결점은 점검 시간으로 인한 즉각적인(즉, 온 디맨드) 인쇄의 불능 및 작업 중 잉크의 소비로 인한 총 소유권 비용의 증가를 포함한다. 프린트헤드를 통한 잉크의 순환을 위한 외부 펌프의 사용은 전형적으로 번거롭고 고가이고, 노즐 입구의 배압(backpressure)을 유지하기 위한 복잡한 압력 조절기를 포함한다. 따라서, 디캡 성능, PIVS, 공기 및 입자의 축적, 및 잉크젯 인쇄 시스템 내의 잉크 막힘 및/또는 폐색의 다른 원인은 전체적인 인쇄 품질을 열화시킬 수 있고, 소유비용, 제작비용, 또는 양자 모두를 증가시킬 수 있다.
본 개시의 실시형태는 유체 분출 장치(예를 들면, 잉크젯 프린트헤드)의 유체 채널 및/또는 챔버 내의 유체의 마이크로 순환을 제공하는 일반적으로 압전형 및 기타 유형의 기계적으로 제어 가능한 유체 액추에이터를 통해 잉크젯 인쇄 시스템 내의 잉크 막힘 및/또는 폐색을 감소시킨다. 유체 채널 내에서 비대칭적으로(즉, 중심으로부터 벗어나거나 편심으로) 위치되는 유체 액추에이터 및 제어기는 압축성 유체 변위(즉, 전방 펌프 스트로크 시) 및 팽창성 또는 신장성 유체 변위(즉, 역전 펌프 스트로크 시)를 발생하는 전방 및 역전 작동 스트로크(즉, 펌프 스트로크)의 지속시간을 제어함으로써 유체 채널을 통해 그리고 유체 채널 내에서 방향성 유체 유동을 가능하게 한다.
하나의 실시형태에서, 유체 분출 장치는 유입구, 유출구 및 노즐을 가지는 유체 채널을 포함한다. 제 1 유체 변위 액추에이터는 유입구와 노즐 사이의 채널 내에 비대칭적으로 위치된다. 제 2 유체 변위 액추에이터는 유출구와 노즐 사이의 채널 내에 비대칭적으로 위치된다. 제어기는 적어도 하나의 액추에이터로부터 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생함으로써 채널을 통한 유체 유동을 제어한다.
하나의 실시형태에서, 유체 분출 장치 내에서 유체를 순환시키는 방법은 유입구와 노즐 사이의 유체 채널 내에 비대칭적으로 위치되는 제 1 액추에이터로부터 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생하는 단계 및 이와 동시에 노즐과 유출구 사이의 채널 내에 비대칭적으로 위치되는 제 2 액추에이터로부터 유체 변위를 발생하지 않는 단계를 포함한다. 하나의 실시형태에서, 본 방법은 제 2 액추에이터로부터 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생함과 동시에 상기 제 1 액추에이터로부터 유체 변위를 발생하지 않는 단계를 포함한다. 다른 실시형태에서, 본 방법은 양자 모두의 액추에이터로부터 압축성 및 팽창성 유체 변위를 발생하도록 제 1 및 제 2 액추에이터의 작동을 교대시키는 단계를 포함한다.
하나의 실시형태에서, 유체 분출 장치 내에서 유체를 순환시키는 방법은 압축성 및 팽창성 유체 변위를 발생하기 위해 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계를 포함하고, 여기서 제 1 및 제 2 액추에이터는 동시에 압축성 또는 팽창성 유체 변위를 발생하지 않도록 압축성 유체 변위와 팽창성 유체 변위 사이에서 교대한다. 제 1 액추에이터는 유입구와 노즐 사이의 유체 채널 내에 비대칭적으로 위치되고, 제 2 액추에이터는 노즐과 유출구 사이의 채널 내에 비대칭적으로 위치된다. 노즐 및 챔버는 액추에이터들 사이에 위치되고, 액추에이터들의 동시 작동은 액추에이터들 사이의 왕복 유체 유동을 발생한다. 하나의 실시형태에서, 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계는, 노즐로부터 유체 액적을 토출하기 위한 상이한 압축성 변위 크기를 가지는 동시적 압축성 유체 변위를 발생하고, 채널을 통해 순(net) 방향성 유체 유동을 발생하도록, 제 1 및 제 2 액추에이터를 작동시키는 단계를 포함한다.
이하, 본 실시형태를 첨부한 도면을 참조하여 예시로서 설명한다.
도 1은 하나의 실시형태에 따라 본 명세서에 개시된 바와 같은 유체 분출 장치를 장착하기에 적합한, 그리고 유체 분출 장치 내에서 유체를 순환하는 방법을 구현하기에 적합한 잉크젯 인쇄 시스템을 도시하고;
도 2는 하나의 실시형태에 따라 하나의 실시예의 유체 분출 장치의 부분 횡단면 측면도를 도시하고;
도 3a는 하나의 실시형태에 따라 정상 액적 분출 모드 내의 유체 분출 장치를 도시하고;
도 3b는 하나의 실시형태에 따라 정상 유체 재충전 모드의 유체 분출 장치를 도시하고;
도 3c는 하나의 실시형태에 따라 액적 토출 및 대응하는 유체 재충전을 발생하는 액추에이터 편향(X)을 달성하기 위해 액추에이터에 인가되는 하나의 실시예의 전압 파형(V)의 그래프를 도시하고;
도 4a는 하나의 실시형태에 따라 채널 내에서 압축성 유체 변위를 발생하는 전방 펌핑 스트로크에서 액추에이터가 유체 채널 내로 편향하는 정상 액적 분출 모드의 유체 분출 장치를 도시하고;
도 4b는 하나의 실시형태에 따라 초기 상태 또는 휴지 상태로 액추에이터가 복귀되는 정상 유체 재충전 모드의 유체 분출 장치를 도시하고;
도 4c는 하나의 실시형태에 따라 액적 토출 및 대응하는 유체 재충전을 발생하는 액추에이터 편향(X)을 달성하기 위해 액추에이터에 인가되는 하나의 실시예의 전압 파형(V)의 그래프를 도시하고;
도 5a 및 도 5b는 실시형태에 따라 유체 변위 액추에이터가 단일 액추에이터 펌핑 모드로 작동하는 유체 분출 장치의 횡단면도 및 액추에이터에 인가된 실시예의 전압 파형(V)의 그래프를 도시하고;
도 6은 하나의 실시형태에 따라 유체 변위 액추에이터가 교대 멀티 펄스 작동 모드로 작동하는 유체 분출 장치의 횡단면도를 도시하고;
도 7은 하나의 실시형태에 따라 유체 변위 액추에이터가 교대 멀티 펄스 작동 모드로 작동하는 유체 분출 장치의 횡단면도를 도시하고;
도 8은 하나의 실시형태에 따라 유체 변위 액추에이터가 동시 멀티 펄스 작동 모드로 작동하는 유체 분출 장치의 횡단면도를 도시하고;
도 9는 하나의 실시형태에 따라 유체 변위 액추에이터가 동시 멀티 펄스 작동 모드로 작동하는 유체 분출 장치의 횡단면도를 도시하고;
도 10은 하나의 실시형태에 따라 유체 변위 액추에이터가 동시 인페이즈(in-phase) 작동 모드로 작동하는 유체 분출 장치의 횡단면도를 도시하고;
도 11은 하나의 실시형태에 따라 유체 분출 장치 내에서 유체를 순환시키는 하나의 실시예의 방법의 흐름도를 도시하고;
도 12는 하나의 실시형태에 따라 유체 분출 장치 내에서 유체를 순환시키는 하나의 실시예의 방법의 흐름도를 도시한다.
도 1은, 본 개시의 하나의 실시형태에 따라 본 명세서에 개시된 바와 같이, 유체 분출 장치를 장착하기 위해, 그리고 유체 분출 장치 내에서 유체를 순환시키는 방법을 구현하기 위해 적합한 잉크젯 인쇄 시스템(100)을 도시한다. 이 실시형태에서, 유체 분출 장치(114)는 유체 액적 분사 프린트헤드(114)로서 개시된다. 잉크젯 인쇄 시스템(100)은 잉크젯 프린트헤드 조립체(102), 잉크 공급 조립체(104), 장착 조립체(106), 매체 수송 조립체(108), 전자 제어기(110), 및 잉크젯 인쇄 시스템(100)의 다양한 전기 콤포넌트에 전력을 제공하는 적어도 하나의 전력 공급부(112)를 포함한다. 잉크젯 프린트헤드 조립체(102)는 인쇄 매체(118) 상에 인쇄하기 위해 인쇄 매체(118)를 향해 복수의 오리피스 또는 노즐(116)을 통해 잉크의 액적을 토출하는 적어도 하나의 프린트헤드(114)를 포함한다. 인쇄 매체(118)는 종이, 카드용지, 투명지, 마일라(Mylar), 폴리에스터, 합판, 폼 보드(foam board), 직물, 캔버스 등과 같은 임의의 유형의 적절한 시트 또는 롤 재료(roll material)일 수 있다. 노즐(116)은 전형적으로, 잉크젯 프린트헤드 조립체(102)와 인쇄 매체(118)가 서로에 대해 상대적으로 이동될 때, 노즐(116)로부터 잉크의 적절하게 시퀀싱된(sequenced) 분출에 의해 문자, 심볼, 및/또는 기타 그래픽 또는 이미지가 인쇄 매체(118) 상에 인쇄되도록, 하나 이상의 컬럼 또는 어레이로 배치된다.
잉크 공급 조립체(104)는 공급 튜브와 같은 인터페이스 연결부를 통해 잉크 보관 리저버(120)로부터 프린트헤드 조립체(102)로 유체 잉크를 공급한다. 리저버(120)는 제거될 수 있고, 교환될 수 있고, 및/또는 재충전될 수 있다. 하나의 실시형태에서, 도 1a에 도시된 바와 같이, 잉크 공급 조립체(104) 및 잉크젯 프린트헤드 조립체(102)는 일방향 잉크 전달 시스템을 형성한다. 일방향 잉크 전달 시스템에서, 잉크젯 프린트헤드 조립체(102)에 공급되는 잉크의 실질적으로 전부는 인쇄 중에 소모된다. 다른 실시형태에서, 도 1b에 도시된 바와 같이, 잉크 공급 조립체(104) 및 잉크젯 프린트헤드 조립체(102)는 재순환 잉크 전달 시스템을 형성한다. 재순환 잉크 전달 시스템에서, 프린트헤드 조립체(102)에 공급되는 잉크의 일부만이 인쇄 중에 소모된다. 인쇄 중에 소모되지 않은 잉크는 잉크 공급 조립체(104)로 복귀된다.
하나의 실시형태에서, 잉크 공급 조립체(104)는 잉크 공급 조립체(104)가 압력 하에서 프린트헤드 조립체(102)에 잉크를 공급할 수 있도록 하는 펌프 및 압력 조절기(구체적으로 도시되지 않음)를 포함한다. 하나의 실시형태에서, 잉크는 잉크 컨디셔닝(conditioning) 조립체(105)를 통해 프린트헤드 조립체(102)에 공급된다. 잉크 컨디셔닝 조립체(105)에서의 컨디셔닝은 여과, 예비가열, 압력 급상승 흡수, 및 탈기(degassing)를 포함할 수 있다. 인쇄 시스템(100)의 정상 작동 중, 잉크는 프린트헤드 조립체(102)로부터 잉크 공급 조립체(104)에 음의 압력 하에서 흡인된다. 프린트헤드 조립체(102)의 유입구와 유출구 사이의 압력 차이는 노즐(116)에 적절한 배압을 제공하고, 이 배압은 통상적으로 약 음(negative)의 1 인치 내지 음의 10 인치의 H2O의 범위이다.
장착 조립체(106)는 매체 수송 조립체(108)에 대해 잉크젯 프린트헤드 조립체(102)를 위치시키고, 매체 수송 조립체(108)는 잉크젯 프린트헤드 조립체(102)에 대해 인쇄 매체(118)를 위치시킨다. 따라서, 인쇄 구역(122)은 잉크젯 프린트헤드 조립체(102)와 인쇄 매체(118) 사이의 영역 내에서 노즐(116)에 인접하여 한정된다. 하나의 실시형태에서, 잉크젯 프린트헤드 조립체(102)는 스캐닝 유형의 프린트헤드 조립체이다. 그러므로, 장착 조립체(106)는 인쇄 매체(118)를 스캐닝하도록 매체 수송 조립체(108)에 대해 잉크젯 프린트헤드 조립체(102)를 이동시키기 위한 캐리지(carriage)를 포함한다. 다른 실시형태에서, 잉크젯 프린트헤드 조립체(102)는 비스캐닝(non-scanning) 유형의 프린트헤드 조립체이다. 그러므로, 장착 조립체(106)는 매체 수송 조립체(108)에 대해 규정된 위치에 잉크젯 프린트헤드 조립체(102)를 고정하고, 동시에 매체 수송 조립체(108)는 잉크젯 프린트헤드 조립체(102)에 대해 인쇄 매체(118)를 위치시킨다.
전자 프린터 제어기(110)는 전형적으로 프로세서, 펌웨어, 소프트웨어, 휘발성 및 비휘발성 메모리 컴포넌트를 포함하는 하나 이상의 메모리 컴포넌트, 및 잉크젯 프린트헤드 조립체(102), 장착 조립체(106), 및 매체 수송 조립체(108)와 통신하고 또 잉크젯 프린트헤드 조립체(102), 장착 조립체(106), 및 매체 수송 조립체(108)를 제어하기 위한 기타 프린터 전자장치를 포함한다. 전자 제어기(110)는 컴퓨터와 같은 호스트 시스템으로부터 데이터(124)를 수신하고, 메모리 내에 데이터(124)를 일시적으로 저장한다. 전형적으로, 데이터(124)는 전자적 경로, 적외선 경로, 광학적 경로, 또는 기타 정보 전달 경로를 따라 잉크젯 인쇄 시스템(100)에 전송된다. 데이터(124)는, 예를 들면, 인쇄될 문서 및/또는 파일을 나타낸다. 그러므로, 데이터(124)는 잉크젯 인쇄 시스템(100)을 위한 인쇄 작업(print job)을 형성하고, 하나 이상의 인쇄 작업 커맨드 및/또는 커맨드 파라미터를 포함한다.
하나의 실시형태에서, 전자 프린터 제어기(110)는 노즐(116)로부터 잉크 액적을 분출하도록 잉크젯 프린트헤드 조립체(102)를 제어한다. 따라서, 전자 제어기(110)는 인쇄 매체(118) 상에 문자, 심볼, 및/또는 기타 그래픽 또는 이미지를 형성하는 토출된 잉크 액적의 패턴을 한정한다. 토출된 잉크 액적의 패턴은 인쇄 작업 커맨드 및/또는 커맨드 파라미터에 의해 결정된다. 하나의 실시형태에서, 전자 제어기(110)는 유체 분출 장치(114) 내에 일체화된 하나 이상의 유체 변위 액추에이터의 작동을 제어하기 위해 메모리 내에 저장된, 그리고 제어기(110)(즉 제어기(110)의 프로세서)에 의해 실행될 수 있는 소프트웨어 명령어 모듈을 포함한다. 소프트웨어 명령어 모듈은 단일 작동 모듈(126), 멀티 펄스 작동 모듈(128), 인챔버(in-chamber) 순환 모듈(130) 및 액적-토출 순환 모듈(132)을 포함한다. 일반적으로, 모듈(126, 128, 130, 132)은 유체 분출 장치(114) 내의 유체 변위 액추에이터에 의해 발생되는 압축성 및 팽창성 유체 변위(즉 각각 전방 및 역전 펌핑 스트로크)의 타이밍, 지속시간 및 진폭을 제어하기 위해 제어기(110)에 의해 실행된다. 제어기(110)에 의한 모듈(126, 128, 130, 132)의 실행은 유체 분출 장치(114) 내에서의 유체 유동의 방향, 유속 및 타이밍을 제어한다.
설명된 실시형태에서, 잉크젯 인쇄 시스템(100)은 유체 분출 장치(114)가 압전 잉크젯(PIJ) 프린트헤드(114)를 포함하는 드롭-온-디맨드 압전 잉크젯 인쇄 시스템이다. PIJ 프린트헤드(114)는 제어 및 구동 회로를 구비하는 박막 압전 유체 변위 액추에이터를 포함하는 다층 MEMS 다이 스택(die stack)을 포함한다. 액추에이터는 유체 채널 및/또는 챔버 내에서 유체 변위를 발생하도록 제어된다. 유체 변위는 노즐(116)을 통해 챔버로부터 액적을 토출할 수 있을 뿐만 아니라 채널을 통한 순 방향성 유체 유동 및/또는 챔버 내에서의 왕복 유체 이동을 발생할 수 있다. 하나의 실시형태에서, 잉크젯 프린트헤드 조립체(102)는 단일 PIJ 프린트헤드(114)를 포함한다. 다른 실시형태에서, 잉크젯 프린트헤드 조립체(102)는 PIJ 프린트헤드(114)의 넓은 어레이를 포함한다.
본 명세서에서 유체 분출 장치(114)가 압전 유체 변위 액추에이터를 가지는 PIJ 프린트헤드(114)로서 설명되었으나, 유체 분출 장치(114)는 이 특정의 실시형태에 제한되지 않는다. 다양한 다른 유형의 유체 변위 액추에이터를 구현하는 다른 유형의 유체 분출 장치(114)가 고찰된다. 예를 들면, 유체 분출 장치(114)는 정전기 (MEMS) 액추에이터, 기계/임팩트 구동되는 액추에이터, 음성(voice) 코일 액추에이터, 자왜 구동 액추에이터 등을 구현할 수 있다.
도 2는 본 개시의 하나의 실시형태에 따라 하나의 실시형태의 유체 분출 장치(114)의 부분 횡단 측면을 도시한다. 도 3 내지 도 10을 참조하여 이하에서 설명되는 확대되고 단순화된 부분 유체 분출 장치(114)는 도 2에 점선으로 강조되어 있다. 일반적으로, 유체 분출 장치(114)는 각각 상이한 기능성을 갖는 다중 다이 레이어(multiple die layer)를 구비하는 다이 스택(200)을 포함한다. 다이 스택(200) 내의 레이어는 제 1(즉, 저부) 기판 다이(202), 제 2 회로 다이(204)(또는 ASIC 다이), 제 3 액추에이터/챔버 다이(206), 제 4 캡 다이(208), 및 제 5 노즐 레이어(210)(또는 노즐 플레이트)를 포함한다. 일부의 실시형태에서, 캡 다이(208) 및 노즐 레이어(210)는 단일 레이어로서 일체화된다. 또한 통상적으로 노즐 레이어(210)의 최상부 상에 비습윤 레이어(도시되지 않음)가 있고, 이것은 노즐(116)의 주위에서 잉크의 퍼들링(puddling)을 방지하는데 도움을 주는 소수성 코팅을 포함한다. 다이 스택(200) 내의 각각의 레이어는, 비습윤 레이어 및 때때로 노즐 레이어(210)를 제외하고, 통상적으로 실리콘으로 형성된다. 일부의 실시형태에서, 노즐 레이어(210)는 스테인리스 강 또는 폴리이미드 또는 SU8과 같은 내구성 및 화학적으로 불활성인 폴리머로 형성될 수 있다. 레이어는 에폭시(도시되지 않음)와 같은 화학적으로 불활성인 접착제로 함께 접합된다. 도시된 실시형태에서, 다이 레이어는 압력 챔버(212)를 향해 그리고 압력 챔버(212)로부터 잉크를 안내하기 위한 슬롯, 채널 또는 구멍과 같은 유체 통로를 갖는다. 각각의 압력 챔버(212)는 챔버의 플로어(218) 내(즉, 챔버의 노즐측의 반대측)에 위치되는 제 1 유체 공급 구멍(214) 및 제 2 유체 공급 구멍(216)을 포함하고, 이것은 제 1 유체 매니폴드(220) 및 제 2 유체 매니폴드(222)를 포함하는 잉크 분배 매니폴드와 유체 연통된다. 압력 챔버(212)의 플로어(218)는 회로 레이어(204)의 표면에 의해 형성된다. 제 1 및 제 2 유체 공급 구멍(214, 216)은 챔버(212)의 플로어(218)의 대향 측 상에 위치되고, 이곳에서 제 1 및 제 2 유체 공급 구멍(214, 216)은 회로 레이어(204) 다이를 관통하여 잉크가 챔버(212)를 통해 순환될 수 있도록 한다. 유체 변위 액추에이터(224)(즉, 압전 액추에이터)는 챔버(212)에 대한 루프(roof)의 역할을 하는 그리고 챔버 플로어(218)의 대향측에 위치되는 가요성 멤브레인 상에 위치된다. 따라서, 유체 변위 액추에이터(224)는 노즐(116)과 동일한 챔버(212)의 측면 상(즉, 챔버의 루프 또는 최상부측 상)에 위치된다.
저부 기판 다이(202)는 유체 통로(226)를 포함하고, 이 유체 통로(226)를 통해 유체는 제 1 및 제 2 유체 매니폴드(220, 222)를 통해 압력 챔버(212)를 향해 그리고 압력 챔버(212)로부터 유동할 수 있다. 기판 다이(202)는, 예를 들면, 과도전류(transient)의 개시 및 인접하는 노즐 내의 유체 토출에 기인되어 유체 분배 매니폴드(220, 222)를 통하는 맥동하는 유체 유동으로부터의 압력 상승을 완화시키도록 구성되는 컴플라이언스 박막(thin compliance film; 228)을 지지한다. 컴플라이언스 막(228)은 컴플라이언스의 후면 상에 공동부 또는 공기 공간(230)을 형성하는 기판 다이(202) 내의 간극에 걸쳐 연장하여 매니폴드 내에서의 유체 압력 상승에 따라 자유롭게 팽창될 수 있다.
회로 다이(204)는 다이 스택(200) 내의 제 2 다이로서, 기판 다이(202) 상측에 위치된다. 회로 다이(204)는 제 1 및 제 2 유체 매니폴드(220, 222)를 포함하는 유체 분배 매니폴드를 포함한다. 제 1 유체 매니폴드(220)는 제 1 유체 공급 구멍(214)을 통해 챔버(212)를 향한, 그리고 챔버(212)로부터의 유체 유동을 제공하고, 제 2 유체 공급 구멍(216)에 의해 챔버(212)로부터 제 2 유체 매니폴드(222) 내로의 유체의 배출이 허용된다. 회로 다이(204)는 또한 유체 바이패스 채널(232)을 포함하고, 이 유체 바이패스 채널(232)에 의해 제 1 유체 매니폴드(220) 내로 유입되는 일부의 유체는 압력 챔버(212)를 바이패스하여 바이패스(232)를 통해 제 2 유체 매니폴드(222) 내로 직접 유동할 수 있다. 회로 다이(204)는 ASIC(234) 내에 구현된, 그리고 그 상부 표면이 액추에이터/챔버 다이(206)에 인접하여 조립되는 CMOS 전기 회로(234)를 포함한다. ASIC(234)는 유체 변위 액추에이터(224)(즉, 압전 액추에이터)의 압력 맥동을 제어하는 분출 제어 회로를 포함한다. 회로 다이(204)는 또한 본드 와이어(238)의 외측의 다이(204)의 에지 상에 조립되는 압전 액추에이터 구동 회로/트랜지스터(236)(예를 들면, FET)를 포함한다. 구동 트랜지스터(236)는 ASIC(234) 내에서 제어 회로에 의해 제어(즉, 온 및 오프)된다.
회로 다이(204) 상측에 위치되는 다이 스택(200) 내의 다음 레이어는 액추에이터/챔버 다이(206)(이하, "액추에이터 다이(206)")이다. 액추에이터 다이(206)는 회로 다이(204)에 접착되고, 인접하는 회로 다이(204)를 포함하는 챔버 플로어(218)를 가지는 압력 챔버(212)를 포함한다. 위에서 언급된 바와 같이, 챔버 플로어(218)는 챔버 플로어(218)를 형성하는 회로 다이(204) 상에 조립되는 ASIC(234)과 같은 제어 회로를 추가로 포함한다. 액추에이터 다이(206)는 챔버의 루프의 역할을 하는 챔버 플로어(218)의 대향측에 위치되는 실리콘 다이옥사이드와 같은 가요성 멤브레인(240)인 박막을 추가로 포함한다. 유체 변위 액추에이터(224)는 가요성 멤브레인(240)의 상측에 접착된다. 본 실시형태에서, 유체 변위 액추에이터(224)는 인가된 전압에 따라 기계적으로 응력을 받는 압전세라믹 재료와 같은 박막 압전 재료를 포함한다. 작동되었을 때, 압전 액추에이터(224)는 물리적으로 팽창되거나 수축되고, 이것은 피에조세라믹 및 멤브레인(240)의 적층체의 굴곡을 유발한다. 이 굴곡은 챔버(212) 내에서 유체를 변위시키고, 압력 챔버(212) 내에서 압력파를 발생하고, 압력 챔버(212)는 노즐(116)을 통해 액적을 토출하고 및/또는 챔버(212) 및 제 1 및 제 2 유체 공급 구멍(214, 216) 내부에서 그리고 챔버(212) 및 제 1 및 제 2 유체 공급 구멍(214, 216)을 통하여 유체를 순환시킨다. 가요성 멤브레인(240) 및 유체 변위 액추에이터(224)(압전 액추에이터(224))는 압력 챔버(212)와 노즐(116) 사이에 연장되는 디센더(descender; 242)에 의해 분할된다. 따라서, 유체 변위 액추에이터(224)는 챔버(212)의 양측 상에 유체 변위 액추에이터(224) 또는 유체 변위 액추에이터(224)의 세그먼트를 가지는 분할된 액추에이터(224)이다.
캡 다이(208)는 액추에이터 다이(206)의 상측에 접착되고, 압전 액추에이터(224) 상에 유체 변위 액추에이터(224)를 봉입(encapsulating)하여 보호하는 밀봉된 캡 공동부(244)를 형성한다. 캡 다이(208)는 전술한 디센더(242)를 포함하고, 이것은 압력 챔버(212)와 노즐(116) 사이에 연장하는 캡 다이(208) 내의 채널로서, 유체 변위 액추에이터(224)로부터의 압력파에 의해 유발되는 액적 분출 이벤트 중에 챔버(212)로부터, 그리고 노즐(116)로부터 유체의 이동을 가능하게 한다. 노즐 레이어(210) 또는 노즐 플레이트는 캡 다이(208)의 최상부에 접착되고, 그 내부에 노즐(116)이 형성되어 있다.
도 3a는 본 개시의 하나의 실시형태에 따라 정상 액적 분출 모드에서 도 2와 같은 유체 분출 장치(114a)의 확대되고 단순화된 부분 횡단면도를 도시한다. 이 실시형태에서, 양자 모두의 유체 변위 액추에이터(224)는 충분한 외방(즉 볼록) 편향 및 변위로 동시에 작동하여 압력 챔버(212)로부터 노즐(116)을 통해 원하는 속도 및 체적으로 액적을 토출한다. 양자 모두의 유체 변위 액추에이터(224)는 전방 펌핑 스트로크로 외방향으로 편향되고, 이것은 압력 챔버(212) 내부 및 주변의 체적을 일시적으로 감소시켜 압축성 유체 변위를 발생한다. 양자 모두의 액추에이터(224)의 동시 압축성 유체 변위로부터의 압력파에 의해, 유체가 노즐(116)로부터 토출될 뿐만 아니라, (유체 유동 화살표로 표시된 바와 같이) 각각 제 1 및 제 2 유체 공급 구멍(214, 216)을 통해 매니폴드(220, 222)로 유체 유동이 생성된다.
도 3b는 본 개시의 하나의 실시형태에 따라 정상 유체 재충전 모드에서 유체 분출 장치(114a)의 확대되고 단순화된 부분 횡단면도를 도시한다. 이 실시형태에서, 액추에이터(224)의 평탄 상태 또는 중립 상태로 역방향으로의 동시 역전 또는 내방향 편향에 의해, 유체는 압력 챔버(212) 내로 역방향으로 흡인되어 다음 번의 액적 토출에 대비하여 챔버를 재충전한다. 일부의 실시형태에서, 액추에이터(224)의 역전(reverse) 또는 내방향 편향은 액추에이터(224)를 오목한 편향 상태에서 그 평탄 상태 또는 중립 상태를 지나 캡 공동부(244) 내로 상승하도록 편향시킨다. 도 3b에 도시된 바와 같이, 양자 모두의 유체 변위 액추에이터(224)는 그 초기의 평탄 상태 또는 중립 상태(즉, 휴지 상태)로 역방향으로 편향되었다. 초기 상태로의 역방향 편향은 역전 펌핑 스트로크에서 압력 챔버(212)의 내부 및 주위의 공간으로부터 액추에이터를 후퇴시키고, 이것은 챔버 영역 내의 체적을 증가시키고, 팽창성 유체 변위를 발생시킨다. 팽창성 유체 변위는 (유체 유동 화살표로 표시된 바와 같이) 각각의 매니폴드(220, 222)로부터 제 1 및 제 2 유체 공급 구멍(214)을 통해 챔버(212) 내로 역방향으로 유체 유동을 생성하고, 다음 번의 액적 분출 이벤트를 대비하여 유체로 챔버(212)를 재충전한다. 도 3a 및 도 3b에 도시된 바와 같은 정상 액적 토출 및 유체 재충전 중에 압력 챔버(212)를 재충전하기 위한 유체의 이동 이외에 유체의 미소순환(micro-circulation)은 발생하지 않는다.
도 3c는 본 개시의 하나의 실시형태에 따라 액적 토출 및 대응하는 유체 재충전을 발생하는 도 3a 및 도 3b에 도시된 액추에이터 편향(X)을 달성하기 위해 액추에이터(224)에 가해지는 하나의 실시예의 전압 파형(V)의 그래프(302)를 도시한다. 인가된 전압이 증가하는 경우, 액추에이터(224)는 외방향(즉, 볼록) 편향으로 편향되고, 이 편향은 압축성 유체 변위를 발생한다(즉, 유체는 챔버(212)의 내부 및 주변의 영역 내에서 압축됨에 따라 변위된다). 인가된 전압 감소하는 경우, 액추에이터(224)는 그 초기의 평탄 상태 또는 중립 상태(즉, 휴지 상태)로 역방향으로 편향되고, 이것은 팽창성 유체 변위를 발생한다(즉, 유체는 챔버(212)의 내부 및 주변의 체적이 증가되도록 역방향으로 당겨짐에 따라 변위된다). 도 3c의 점선의 전압 파형은 교류 전압 구동 파형을 나타내는 것으로서, 그 음의 전압 진폭에 의해 액추에이터(224)는 그 정상 휴지 상태를 지나 캡 다이(208)의 캡 공동부(244) 내로 내방향(즉, 오목)으로 편향되고, 일시적으로 챔버(212)의 내부 및 주변의 체적을 증가시키고, 더 큰 팽창성 유체 변위를 발생한다. 따라서, 점선의 전압 파형에 의해 액추에이터(224)는 채널(500) 내로 외방향으로 편향되어 압축성 유체 변위를 발생하고, 다음에 반대방향 편향으로 그 정상 휴지 위치를 지나 역방향으로 편향되고, 이것에 의해 액추에이터(224)는 캡 공동부(244) 내로 상방으로 확장되어 더 큰 팽창성 유체 변위를 발생한다. 도 3c의 전압 파형에 의해 도시되어 있지 않으나, 압전 액추에이터가 평탄한 위치 또는 중립 위치(즉, 오목 형상)를 초과하여 편향될 때마다. 전압은 (펌핑이든 재순환이든) 실제로 챔버 내로의 액추에이터의 편향에 비해 훨씬 낮다. 피에조세라믹의 분극에 대항하여 작용하는 전기장이 분극(감분극(depoling))의 열화를 방지하도록 되어 있고, 이것은 후속 편향을 감소시켜 프린팅 및 펌핑 성능을 열화시킬 수 있다.
유체 변위 액추에이터(224)가 챔버(212)의 노즐 측 상에(즉, 노즐(116)로서 챔버(212)의 동일 측면 상의 캡 다이 레이어(208) 내에) 위치되는 것으로서 전체를 통해 설명되었으나, 도 4에 도시된 다른 실시형태에서, 액추에이터(224)는 노즐 측의 대향측인 회로 다이 레이어(204)(도 22 참조) 상에 위치될 수 있다. 또 다른 실시형태(도시되지 않음)에서, 유체 변위 액추에이터(224)는 챔버(212)의 노즐 측 및 노즐(116)의 반대 측 상의 양자 모두에 위치될 수 있다. 도 4는, 본 개시의 하나의 실시형태에 따라, 노즐(116)의 대향측의 회로 다이 레이어(204) 상에 위치되는 유채 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 단순화 횡단면도를 도시한다.
도 4a에서, 유체 분출 장치(114a)는 도 3a에 관련하여 설명된 것과 유사한 정상 액적 분출 모드로 도시되어 있고, 액추에이터(224)는 본 개시의 하나의 실시형태에 따라 압축성 유체 변위를 생성하는 외방향(즉, 볼록) 편향 또는 전방 펌핑 스트로크로 편향된다. 도 4b에서, 유체 분출 장치(114a)는 도 3b에 관련하여 설명된 것과 유사한 정상 유체 재충전 모드로 도시되어 있고, 액추에이터(224)는 본 개시의 하나의 실시형태에 따라 초기의 평탄 상태 또는 중립 상태(즉, 휴지 상태)로 역방향으로 편향된다. 액추에이터는 팽창성 유체 변위를 발생하는 역방향 펌핑 스트로크로 역방향으로 후퇴하고, 챔버(212)는 유체로 재충전된다.
도 4c는 본 개시의 하나의 실시형태에 따라 액적 토출 및 대응하는 유체 재충전을 발생하는 도 4a 및 도 4b에 도시된 액추에이터 편향(X)을 달성하기 위해 액추에이터(224)에 인가되는 하나의 실시형태의 전압 파형(V)의 그래프(400)를 도시한다. 인가된 전압이 증가하는 경우, 이것에 의해 압축성 유체 변위를 발생하는 액추에이터(224)의 외방향(즉, 볼록) 편향이 유발되고, 인가된 전압이 감소하는 경우, 이것에 의해 액추에이터(224)는 초기의 평탄 상태 또는 중립 상태를 향해 역방향의 내방향(즉, 오목) 편향을 유발하여, 팽창성 유체 변위를 발생한다. 도 4c의 점선 전압 파형은 교류 전압 구동 파형을 나타내는 것으로서, 그 음의 전압 진폭에 의해 액추에이터(224)는 그 정상 휴지 상태를 지나 회로 레이어(204) 내의 공동부 내로 편향되고, 일시적으로 챔버(212)의 내부 및 주변의 체적을 증가시키고, 팽창성 유체 변위를 발생한다. 따라서, 점선의 전압 파형에 의해 액추에이터(224)는 외방향으로 편향되어 압축성 유체 변위를 발생하고, 다음에 반대방향 편향으로 그 정상 휴지 위치를 지나 역방향으로 편향되고, 이것에 의해 액추에이터(224)는 회로 레이어(204) 내로 확장되어 더 큰 팽창성 유체 변위를 발생한다. 도 3a 및 도 3b에 관하여 위에서 설명된 바와 같이, 도 4a 및 도 4b에 도시된 바와 같이 정상 액적 토출 및 유체 재충전 중에, 압력 챔버(212)를 재충전하기 위한 유체의 이동 이외에 유체의 미소순환은 발생하지 않는다.
도 5 내지 도 10은 유체 분출 장치(114)(예를 들면, 잉크젯 프린트헤드)의 유체 채널 및/또는 챔버 내의 유체의 미소-순환을 제공하는 유채 변위 액추에이터(224)의 작동의 모드를 도시한다. 일반적으로, 유체 채널 내에서 비대칭적으로(즉, 중심으로부터 벗어나거나 편심으로) 위치되고 또한 비대칭적 지속시간을 갖는 압축성 및 팽창성 유체 변위를 발생하도록 (예를 들면, 제어기(110)에 의해) 제어되는 유체 액추에이터(224)는 노즐(116)을 통해 액적을 토출하기 위한 유체 액적 토출기로서 뿐만 아니라 유체 채널을 통해 그리고 유체 채널 내에서의 유체를 순환시키기 위한 유체 순환 요소(즉, 펌프)의 양자 모두로서 기능한다. 따라서, 이러한 설명을 촉진하기 위해, 유체 채널(500)이 도 5 내지 도 10의 각각의 경우에 유체 분출 장치(114a) 내에 한정되어 도시되어 있다. 유체 채널(500)은 유체 분출 장치(114a) 내에서 제 1 유체 공급 구멍(214)의 제 1 유체 매니폴드(220)로부터 제 2 유체 공급 구멍(216)의 제 2 유체 매니폴드(222)의 주위까지 연장하는 유체 체적을 포함한다. 챔버(212)는 유체 채널(500)의 일부이고, 유체 채널(500)은 챔버(212)를 통해 연장한다. 따라서, 본 명세서에서 유체 채널(500)에 대한 관련성은 또한 채널(500)의 일부 및 일구획으로서의 챔버(212)를 포함한다. 2 개의 유체 변위 액추에이터(224)의 각각은 채널(500)의 길이에 비대칭적으로(즉, 중심에서 벗어나게 또는 편심적으로) 유체 채널(500) 내에 위치된다. 챔버(212) 2 개의 액추에이터(224) 사이에 위치된다.
도 5는 본 개시의 하나의 실시형태에 따라 단일 액추에이터 펌핑 모드로 작동하는 유체 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 간략화된 횡단면도를 도시한다. 도 5a 및 도 5b의 양자 모두에서, 도면의 우측에 단일 액추에이터(224)가 임의로 도시되어 있고, 채널(500)을 통한 순(net) 유체 유동을 달성하기 위한 유압 펌프로서 작동하는 액추에이터인 것으로서 설명된다. 대향 유동 효과는 도면의 좌측의 단일 액추에이터(224)가 유압 펌프로서 작동할 때 달성된다. 제어기(110)는 단일 작동 모듈(126) 내의 소프트웨어 명령어의 실행에 의해 도 5의 액추에이터(224)의 단일 액추에이터 펌핑 모드 작동을 제어한다. 따라서, 제어기(110)는 모듈(126)의 실행을 통해, 단일 액추에이터 유체 펌핑 효과를 제공하기 위해 임의의 소정의 시간에서 작동하는 (좌측 또는 우측의) 액추에이터(224)를 결정한다. 도 5a 및 도 5b는 또한 유체 유동 방향 화살표로 표시되는 채널(500)을 통한 펌핑 효과 및 결과적인 순 유체 유동을 발생시키는 도시된 액추에이터 편향(X)을 달성하도록 액추에이터(224)에 가해지는 하나의 실시예의 전압 파형(V)의 그래프를 도시한다. 노즐(116)의 최상부의 대문자 X는 노즐(116)을 통한 유체 유동이 없음을 나타낸다.
일반적으로, 관성 펌핑 메커니즘은 2 가지 요인에 기초하여 유체 채널(500) 내에서 유채 변위 액추에이터(224)로부터 펌핑 효과를 가능하게 한다. 이들 요인은 채널의 길이에 대한 채널(500) 내의 액추에이터(224)의 비대칭(즉, 중심으로부터 벗어나거나 편심으로) 배치, 및 액추에이터(224)의 비대칭 작동이다. 도 5에 도시된 바와 같이, 2 개의 유채 변위 액추에이터(224)의 각각은 채널(500) 내에서 채널의 길이에 대해 비대칭적으로(즉, 중심으로부터 벗어나거나 편심으로) 위치된다. 이러한 비대칭 액추에이터 배치는, 액추에이터(224)의 비대칭 작동(즉, 유체 변위의 타이밍, 지속시간 및 진폭의 제어)과 함께, 액추에이터(224)의 관성 펌핑 메커니즘을 가능하게 한다.
일반적으로 도 5a 및 도 5b를 참조하면, 유체 채널(500) 내의 액추에이터(224)의 비대칭 위치는 제 1 유체 공급 구멍(214)으로부터 액추에이터(224)까지 연장하는 채널(500)의 짧은 측 및 액추에이터(224)로부터 제 2 유체 공급 구멍(216)까지 연장하는 채널(500)의 긴 측을 생성한다. 채널(500) 내의 액추에이터(224)의 비대칭 위치는 채널(500) 내의 유체 다이오드특성(diodicity)(순 유체 유동)을 구동하는 관성 메커니즘을 생성한다. 액추에이터(224)로부터 유체 변위는 2개의 대향 방향으로 유체를 가압하는 채널(500) 내에서 전파되는 파(wave)를 발생한다. 채널(500)의 더 긴 측 내에 수용되는 유체의 더 큰 체적 부분의 유체는 전방 유체 액추에이터 펌프 스트로크(즉, 압축성 유체 변위를 유발하는 채널(500) 내로의 액추에이터(224)의 편향)의 말기에 더 큰 기계적 관성을 갖는다. 그러므로, 이러한 더 큰 체적의 유체는 채널(500)의 더 짧은 측 내의 유체보다 느리게 방향을 역전시킨다. 채널(500)의 더 짧은 측 내의 유체는 역전 유체 액추에이터 펌프 스트로크(액추에이터(224)의 초기 휴지 상태로 역방향으로 또는 더욱이 팽창성 유체 변위를 유발하는 액추에이터(224)의 편향) 중에 기계적 운동량을 획득하기 위해 더 많은 시간을 갖는다. 따라서, 역전 스트로크의 말기에, 채널(500)의 더 짧은 측 내의 유체는 채널(500)의 더 긴 측 내의 유체보다 더 많은 기계적 운동량을 갖는다. 그 결과, 순 유체 유동은 도 5a 및 5b에 흑색 방향 화살표로 표시된 바와 같이 채널(500)의 더 짧은 측으로부터 채널(500)의 더 긴 측을 향하는 방향으로 이동한다. 순 유체 유동은 2 개의 유체 요소(즉, 채널(500)의 짧은 측 및 긴 측)의 비균등 관성 특성의 결과이다.
채널(500) 내의 액추에이터(224)의 비대칭 작동은 유채 변위 액추에이터(224)의 관성 펌핑 메커니즘을 유효하게 하는 제 2 요인이다. 도 5a에서 유체 분출 장치(114a)의 우측의 액추에이터(224)의 작동은 액추에이터(224)의 더 짧은 압축성 변위(즉, 변위는 채널(500) 내로 액추에이터(224)의 더 큰 편향 상태에서 더 짧은 지속시간을 갖는다) 및 더 긴 팽창성 변위(즉, 변위는 채널(500) 외로 액추에이터(224)의 더 작은 편향 상태에서 더 긴 지속시간을 갖는다)를 보여준다. 하나의 실시형태에서, 액추에이터(224)의 비대칭 작동은 그래프(502)의 공액 경사(conjugated ramp) 전압 파형을 통해 제어기(110)에 의해 제어된다. 유사한 공액 경사 전압 파형이 액추에이터(224)의 비대칭 작동을 제어하는 것으로서 시종일관 설명됨에도 불구하고, 다른 유형의 구동 파형을 사용하여 비대칭 방식으로 액추에이터(224)의 작동을 제어하는 것이 달성될 수 있다. 도 5a에서 액추에이터(224)와 그래프(502)의 공액 경사 전압 파형 사이의 점선 화살표는, 더 강한 압축성 변위가 시간적으로 짧고 더 급격하게 경사를 이룬 전압 변화와 관련되고, 한편 더 작은 팽창성 변위는 시간적으로 더 길고 완만하게 경사를 이룬 전압 변화와 관련된다는 것을 보여준다. 파형의 지속시간 및 진폭은 액추에이터(224)로부터의 변위의 지속시간 및 크기를 제어한다. 따라서, 제어기(110)에 의해 제어되는 비대칭 지속시간 및 진폭을 가지는 전압 구동 파형은 액추에이터(224)의 비대칭 작동을 구동한다. 액추에이터(224)의 이러한 방식의 비대칭 작동의 경우, 채널(500)을 통한 순 유체 유동의 방향은 제 1 유체 공급 구멍(214)에서의 짧은 측으로부터 제 2 유체 공급 구멍(216)에서의 긴 측을 향한다. 이것과 동일한 방식의 비대칭 작동이 도 5a의 좌측의 액추에이터(224)에 관하여 실시되는 경우, 채널(500)을 통한 순 유체 유동의 방향은 반전되는 것에 주의해야 한다.
도 5b에서 유체 분출 장치(114a)의 우측의 액추에이터(224)는 도 5a에 도시된 것과 반대 방식으로 작동하는 것으로 도시되어 있다. 도 5b의 우측의 액추에이터(224)의 작동은 액추에이터(224)의 더 긴 압축성 변위(즉, 변위는 채널(500) 내로 액추에이터(224)의 더 작은 편향 상태에서 더 긴 지속시간을 갖는다) 및 더 짧은 팽창성 변위(즉, 변위는 채널(500) 외로 액추에이터(224)의 더 큰 편향 상태에서 더 짧은 지속시간을 갖는다)를 보여준다. 점선 화살표 및 그래프(502)의 공액 경사 전압 파형은, 더 강한/더 약한 압축성 변위가 시간적으로 길고 완만한 경사를 이루는 전압 변화와 관련되고, 한편 더 작은 팽창성 변위가 시간적으로 더 짧고 급격한 경사를 이루는 전압 변화와 관련되는 것을 보여준다. 액추에이터(224)의 이러한 방식의 비대칭 작동의 경우, 채널(500)을 통한 순 유체 유동의 방향은 도 5a에 도시된 것으로부터 반전된다. 채널(500)을 통한 순 유체 유동의 방향은 제 2 유체 공급 구멍(216)에서의 긴 측으로부터 제 1 유체 공급 구멍(214)에서의 짧은 측을 향한다. 이것과 동일한 방식의 비대칭 작동이 도 5a의 좌측의 액추에이터(224)에 관하여 실시되는 경우, 채널(500)을 통한 순 유체 유동의 방향은 반전되는 것에 주의해야 한다.
도 6은 본 개시의 하나의 실시형태에 따라 교대 멀티 펄스 작동 모드로 작동하는 유체 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 간략화된 횡단면도를 도시한다. 제어기(110)에 의해 실행되는 멀티 펄스 작동 모듈(128)은 상이한 압축성 및 팽창성 유체 변위 조합으로 액추에이터를 작동시키도록 멀티 펄스 작동으로 액추에이터(224)를 제어한다. 멀티 펄스 작동은 채널(500)을 통한 더 강한 순 방향성 유체 유동을 유발하는 이중 펌핑 작용을 제공한다.
도 6에 도시된 바와 같이, 멀티 펄스 작동 모듈(128)은 좌우측 액추에이터(224)를 교대 방식으로 작동되도록 제어한다. 예를 들면, 먼저 좌측 액추에이터는 압축성 유체 변위 및 팽창성 유체 변위를 발생한다. 좌측 액추에이터의 더 강한 압축성 변위 및 더 큰 편향은 시간적으로 더 짧고 더 급격하게 경사를 이루는 그래프(600)의 공액 경사 전압 파형 내의 전압 변화와 관련되고(점선의 화살표), 한편 좌측 액추에이터의 팽창성 변위 및 더 작은 편향은 시간적으로 더 길고 더 완만하게 경사를 이루는 전압 변화와 관련된다. 상기 도 5의 설명에서 언급된 바와 같이, 좌측 액추에이터의 이러한 작동은 제 2 유체 공급 구멍(216)에서의 (좌측 액추에이터에 관하여) 채널(500)의 짧은 측으로부터 제 1 유체 공급 구멍(214)에서의 긴 측을 향하는 방향으로 채널(500)을 통한 순 유체 유동을 유발한다.
좌측 액추에이터가 작동 중에 시간 지연 후, 멀티 펄스 작동 모듈(128)은 압축성 유체 변위 및 팽창성 유체 변위를 발생하도록 우측 액추에이터를 작동시킨다. 이 시간 지연은 적어도 좌측 액추에이터의 작동을 포함하도록 충분히 긴 지속시간을 갖지만, 일부의 실시형태에서는 우측 액추에이터의 작동이 좌측 액추에이터의 작동 직후에 개시되지 않도록 더 긴 지속시간을 가질 수 있다. 그래프(600)는 시간적으로 더 길고 더 완만하게 경사를 이루는 전압 변화와 관련되는 압축성 변위보다 시간적으로 더 짧고 더 급격하게 경사를 이루는 전압 변화와 (점선의 화살표에 의해) 관련되는 것을 보여준다. 상기 도 5의 설명에서 언급된 바와 같이, 우측 액추에이터의 이러한 작동은 제 2 유체 공급 구멍(216)에서의 (우측 액추에이터에 관하여) 채널(500)의 긴 측으로부터 제 1 유체 공급 구멍(214)에서의 짧은 측을 향하는 방향으로 채널(500)을 통한 순 유체 유동을 유발한다. 그래프(600) 및 다음의 식에 의해 한정되는 위상(phase)의 좌측 및 우측 액추에이터로부터의 이중 작용 펌핑은 하나의 액추에이터만이 펌프로서 작동하는 경우에 얻을 수 있는 것보다 더 강한 채널(500)을 통한 순 유체 유동을 유발한다.
시간 지연: t = d/v
(v: 순환 유동 속도(flow rate)/속도(velocity); d: 좌측 및 우측 액추에이터 사이의 평균 거리)
위상 지연: Φ = 2πt/T
(T: 작동 주기 = 1/(작동 주파수))
멀티 펄스 작동 모듈(128)은 채널(500) 및 제 1 및 제 2 유체 공급 구멍(214, 216)을 통해 양 방향으로의 유체 유동을 제어하기 위해 우측 및 좌측 액추에이터(224) 및 작동 조건(예를 들면, 지속시간, 진폭, 주파수)을 제어한다. 하나의 실시예만이 설명되었으나, 이러한 멀티 펄스 모드를 위한 다수의 상이한 작동 조합을 이용할 수 있다.
도 7은 본 개시의 하나의 실시형태에 따라 교대 멀티 펄스 작동 모드로 작동하는 유체 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 간략화된 횡단면도를 도시한다. 이 실시형태에서, 제어기(110)에 의해 실행되는 멀티 펄스 작동 모듈(128)은 도 6에 관하여 설명된 것과 반대의 유체 변위를 갖는 교대 방식으로 좌측 및 우측 액추에이터를 작동시키는 멀티 펄스 작동으로 액추에이터(224)를 제어한다. 따라서, 이 멀티 펄스 작동은 도 6의 실시형태의 반대 방향으로 채널(500)을 통해 강한 순 방향성 유체 유동을 유발하는 이중 펌핑 작용을 제공한다.
도 7의 그래프(700)에서 도시된 바와 같이, 멀티 펄스 작동 모듈(128)은 교대 방식으로 작동되도록 우측 및 좌측 액추에이터(224)를 제어한다. 그러나, 도 7의 실시형태에서, 팽창성 및 압축성 유체 변위는 반전된다. 도 7은 시간적으로 더 짧고 더 급격한 경사를 이루는 전압 변화와 (점선의 화살표에 의해) 관련되는 좌측 액추에이터의 더 강한 팽창성 변위 및 더 큰 편향을 보여준다. 도 7은 시간적으로 더 길고 점진적으로 경사를 이루는 전압 변화와 (점선의 화살표에 의해) 관련되는 좌측 액추에이터의 더 약한 압축성 변위 및 더 작은 편향을 보여준다. 좌측 액추에이터의 이러한 작동은 제 1 유체 공급 구멍(216)에서의 (좌측 액추에이터에 관하여) 채널(500)의 긴 측으로부터 제 2 유체 공급 구멍(216)에서의 짧은 측을 향하는 방향으로 채널(500)을 통한 순 유체 유동을 유발한다. 그래프(600) 및 위에서 설명된 시간 및 위상 지연 식에 의해 한정되는 위상의 좌측 및 우측 액추에이터로부터의 이중 작용 펌핑은 하나의 액추에이터만이 펌프로서 작동하는 경우에 얻을 수 있는 것보다 더 강한 채널(500)을 통한 순 유체 유동을 유발한다.
도 8은 본 개시의 하나의 실시형태에 따라 동시 멀티 펄스 작동 모드로 작동하는 유체 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 간략화된 횡단면도를 도시한다. 이 실시형태에서, 멀티 펄스 작동 모듈(128)은, 우측 및 좌측 액추에이터(224)가 동시에 (즉, 시간 지연 없이) 그러나 상호 반대의 변위 상태로 작동되도록, 우측 및 좌측 액추에이터(224)를 제어한다. 즉, 우측 액추에이터가 더 큰 편향을 가지는 짧은 팽창성 유체 변위를 가지는 동안에 좌측 액추에이터는 더 큰 편향을 가지는 짧은 압축성 유체 변위를 가진다. 마찬가지로, 우측 액추에이터가 더 작은 편향 상태에서 긴 팽창성 유체 변위를 가지는 동안에 좌측 액추에이터는 더 작은 편향을 가지는 긴 압축성 유체 변위를 갖는다. 위에서 언급된 바와 같이, 이러한 유체 변위는 제 1 유체 공급 구멍(214)으로부터 제 2 유체 공급 구멍(216)으로 채널(500)을 통한 순 방향성 유체 유동을 생성한다.
도 9는 본 개시의 하나의 실시형태에 따라 동시 멀티 펄스 작동 모드로 작동하는 유체 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 간략화된 횡단면도를 도시한다. 이 실시형태에서, 인챔버 순환 모듈(130)은, 우측 및 좌측 액추에이터(224)가 동시에 그리고 상이한 변위 위상으로 작동되도록, 우측 및 좌측 액추에이터(224)를 제어한다. 따라서, 도 9에 도시된 바와 같이, 좌측 액추에이터가 짧은 지속시간의 팽창성 유체 변위 후 긴 지속시간의 압축성 유체 변위를 가지는 동안에 우측 액추에이터는 긴 지속시간의 압축성 변위 후에 짧은 지속시간의 팽창성 변위를 각각 갖는다. 시간 지연 후, 액추에이터(224)의 작동은 그래프(900)에 표시된 바와 같이 압축성 및 팽창성 유체 변위가 반전된 상태에서 계속된다. 액추에이터의 작동은 이러한 방식으로 압축성 및 팽창성 유체 변위를 반복적으로 교대시킴으로써 채널(500)(더 구체적으로는, 채널(500)의 챔버(212) 부분) 내에서의 유체의 이동을 생성하고, 이것에 의해 유체는 좌측 액추에이터와 우측 액추에이터 사이에서 이동됨으로써 챔버(212) 내에 국부적 유체 순환 루프(902)를 형성한다.
도 10은 본 개시의 하나의 실시형태에 따라 동시 인페이즈 작동 모드로 작동하는 유체 변위 액추에이터(224)를 구비하는 유체 분출 장치(114a)의 간략화된 횡단면도를 도시한다. 이 실시형태에서, 액적-토출 순환 모듈(132)은, 우측 및 좌측 액추에이터(224)가 동시에 그리고 동일한 압축성 변위 위상으로 작동되도록, 우측 및 좌측 액추에이터(224)를 제어한다. 도 3a에 관하여 위에서 설명된 바와 같이, 좌측 및 우측 액추에이터의 양자 모두의 이와 같은 유형의 동시적, 동일 위상의 압축성 변위 작동은 전형적으로 액적 토출을 유발한다. 이것은 도 10의 실시형태에서도 사실이다. 그러나, 도 10의 실시형태에서, 그래프(1000)에 도시된 바와 같이 좌측 및 우측 액추에이터(224)를 구동하는 전압 파형의 진폭은 상이하다. 따라서, 좌측 액추에이터에 의한 것보다 우측 액추에이터에 의해 생성되는 유체 변위가 더 크다. 액적-토출 순환 모듈(132)은 노즐(116)을 통한 유체 액적을 토출하기 위해 충분한 에너지를 가지는 동시 압축성 유체 변위를 발생하도록 우측 및 좌측 액추에이터(224)를 제어한다. 또한, 우측 액추에이터로부터 여분의 압축성 유체 변위는 채널(500) 내에서 제 1 유체 공급 구멍(214)으로부터 제 2 유체 공급 구멍(216)을 향하는 순 방향성 유체 유동이 발생한다. 또 다른 실시형태(도시되지 않음)에서, 좌측 액추에이터는 우측 액추에이터보다 큰 전압 파형으로 구동될 수 있고, 좌측 액추에이터로부터 추가의 압축성 유체 변위를 생성하고, 이것은 채널(500) 내에서 제 2 유체 공급 구멍(216)으로부터 제 1 유체 공급 구멍(214)을 향하는 순 방향성 유체 유동을 발생한다.
도 11은 본 개시의 하나의 실시형태에 따라 유체 분출 장치(114)(예를 들면, 프린트헤드) 내에서 유체를 순환시키는 하나의 실시예의 방법의 흐름도를 도시한다. 방법(1100)은 도 1 내지 도 10에 관하여 본 명세서에서 설명되는 실시형태와 관련된다. 방법(1100)은 제 1 액추에이터(224)로부터 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생함과 동시에 제 2 액추에이터(224)로부터 유체 변위를 발생하지 않는 단계를 갖는 블록(1102)에서 개시된다. 제 1 액추에이터는 제 1 유체 공급 구멍(214)과 노즐(116) 사이의 유체 채널(500) 내에 비대칭적으로 위치되고, 제 2 액추에이터는 노즐과 제 2 유체 공급 구멍(216) 사이의 채널 내에 비대칭적으로 위치된다.
하나의 실시형태에서, 압축성 및 팽창성 유체 변위를 발생하는 단계는 제 1 지속시간의 압축성 유체 변위를 발생하는 단계 및 제 2 지속시간과 상이한 제 2 지속시간의 팽창성 유체 변위를 발생하는 단계를 포함한다. 하나의 실시형태에서, 제 1 지속시간은 제 2 지속시간보다 짧고, 유체 변위는 제 1 방향으로 채널을 통해 유체의 유동을 유발한다. 하나의 실시형태에서, 제 1 지속시간은 제 2 지속시간보다 길고, 유체 변위는 제 2 방향으로 채널을 통해 유체의 유동을 유발한다. 하나의 실시형태에서, 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생하는 단계는 기계 독출 가능한 소프트웨어 모듈을 실행하는 단계를 포함하고, 이 기계 독출 가능한 소프트웨어 모듈에 의해 제어기는 제 1 액추에이터의 전압 파형 구동 작동을 제어한다.
하나의 실시형태에서, 압축성 유체 변위를 유발하는 단계는, 채널 내의 영역이 감소되도록 채널 내로 제 1 액추에이터를 굴곡시키는 단계를 포함한다. 하나의 실시형태에서, 하나의 실시형태에서, 팽창성 유체 변위를 유발하는 단계는, 채널 내의 영역이 증가되도록 채널 외로 제 1 액추에이터를 굴곡시키는 단계를 포함한다.
방법(1100)은 제 2 액추에이터로부터 상이한 지속시간의 압축성 및 팽창성 유체 변위를 발생함과 동시에 제 1 액추에이터로부터 유체 변위를 발생하지 않는 단계를 구비하는 블록(1104)에서 계속된다.
방법(1100)의 블록(1106)에, 양자 모두의 액추에이터로부터 압축성 및 팽창성 유체 변위를 발생하기 위해 제 1 및 제 2 액추에이터의 작동을 교대하는 단계가 있다. 하나의 실시형태에서, 작동을 교대하는 단계는 제 1 액추에이터를 작동시킴과 동시에 제 2 액추에이터를 작동시키지 않는 단계를 포함한다. 본 실시형태는 제 1 액추에이터를 작동시키는 중에 시간 지연을 실행하는 단계를 포함하고, 이 시간 지연은 적어도 제 1 액추에이터의 작동 시간만큼 지속된다. 시간 지연이 만료된 후, 본 방법은 제 2 액추에이터를 작동시키는 단계를 포함한다. 하나의 실시형태에서, 제 2 액추에이터의 작동 중에 제 1 액추에이터의 작동은 시간 지연 만큼 지연된다. 제 2 액추에이터의 작동 후, 제 1 액추에이터가 작동된다.
도 12는 본 개시의 하나의 실시형태에 따라 유체 분출 장치(114)(예를 들면, 프린트헤드) 내에서 유체를 순환시키는 다른 실시예의 방법(1200)의 흐름도를 도시한다. 방법(1200)은 도 1 내지 도 10에 관하여 본 명세서에서 설명되는 실시형태와 관련된다. 방법(1200)은 압축성 및 팽창성 유체 변위를 발생하기 위해 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계로서, 제 1 및 제 2 액추에이터는 동시에 압축성 또는 팽창성 유체 변위를 발생하지 않도록 압축성 유체 변위와 팽창성 유체 변위 사이에서 교대하는, 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계를 구비하는 블록(1202)에서 개시된다.
하나의 실시형태에서, 제 1 액추에이터는 제 1 유체 공급 구멍(214)과 노즐(116) 사이의 유체 채널(500) 내에 비대칭적으로 위치되고, 제 2 액추에이터는 노즐(116)과 제 2 유체 공급 구멍(216) 사이의 채널 내에 비대칭적으로 위치된다. 하나의 실시형태에서, 노즐(116) 및 챔버(212)는 액추에이터들 사이에 위치되고, 동시 작동은 액추에이터들 사이의 왕복 유체 유동을 생성한다.
방법(1200)의 블록(1204)에서, 제 1 및 제 2 액추에이터는 노즐로부터 유체 액적을 토출하기 위한 상이한 압축성 변위 크기를 가지는 동시적 압축성 유체 변위를 발생하도록, 그리고 채널을 통해 순 방향성 유체 유동을 생성하도록 작동된다.

Claims (19)

  1. 유체 분출 장치에 있어서,
    제 1 유체 공급구멍, 제 2 유체 공급구멍, 노즐 및 상기 노즐에 대응하는 챔버를 가지는 유체 채널;
    상기 제 1 유체 공급구멍과 상기 노즐 사이의 상기 유체 채널 내에 중심으로부터 벗어나게 위치되고, 상기 유체 채널 내의 체적을 증감시켜서 상기 유체 채널 내에서 압축성 및 팽창성 유체 변위를 각각 발생시키는 제 1 유체 변위 액추에이터;
    상기 제 2 유체 공급구멍과 상기 노즐 사이의 상기 유체 채널 내에 중심으로부터 벗어나게 위치되고, 상기 유체 채널 내의 체적을 증감시켜서 상기 유체 채널 내에서 압축성 및 팽창성 유체 변위를 각각 발생시키는 제 2 유체 변위 액추에이터;
    상기 제 1 및 제 2 유체 변위 액추에이터가, 상기 노즐을 통해 유체 액적을 토출하기 위한 유체 액적 토출기로서 그리고 상기 유체 채널 내에서의 유체를 순환시키기 위한 유체 순환 요소로서 기능하도록, 상기 제 1 및 제 2 유체 변위 액추에이터를 제어하는 제어기를 포함하는
    유체 분출 장치.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 채널을 통한 방향성 유체 유동을 유발하도록 상기 제 1 액추에이터 또는 상기 제 2 액추에이터 중의 하나를 작동시키기 위한 단일 작동 모듈을 더 포함하는
    유체 분출 장치.
  4. 제 1 항에 있어서,
    상기 채널, 상기 제 1 유체 공급구멍 및 상기 제 2 유체 공급구멍을 통과하지만 상기 노즐을 통과하지 않는 방향성 유체 유동을 유발하도록 상기 액추에이터의 양자 모두를 교대로 작동시키기 위해 상기 제어기에 의해 실행될 수 있는 멀티 펄스 작동 모듈을 더 포함하는
    유체 분출 장치.
  5. 제 1 항에 있어서,
    상기 챔버 내에서 유체를 순환시키지만 상기 제 1 유체 공급구멍, 상기 제 2 유체 공급구멍, 또는 상기 노즐을 통과하지 않도록 유체를 순환시키는 역위상 액추에이터 편향을 발생하기 위해 상기 액추에이터들을 동시에 작동시키기 위한 상기 제어기에 의해 실행될 수 있는 인챔버(in-chamber) 순환 모듈을 더 포함하는
    유체 분출 장치.
  6. 제 1 항에 있어서,
    상기 노즐을 통과하도록 유체 액적을 토출하고, 상기 채널을 통해 방향성 유체 유동을 유발하는 인페이즈(in-phase) 액추에이터 편향을 발생하기 위해 상기 액추에이터들을 동시에 작동시키기 위해 상기 제어기에 의해 실행될 수 있는 액적-토출 순환 모듈을 더 포함하는
    유체 분출 장치.
  7. 제 1 항에 따른 유체 분출 장치 내에서 유체를 순환시키는 방법에 있어서,
    제 1 유체 공급구멍과 노즐 사이의 유체 채널 내에 중심으로부터 벗어나게 위치되는 제 1 액추에이터로부터 압축성 및 팽창성 유체 변위의 지속시간이 서로 상이하도록 상기 압축성 및 팽창성 유체 변위를 발생하는 단계 및 이와 동시에 상기 노즐과 제 2 유체 공급구멍 사이의 유체 채널 내에 중심으로부터 벗어나게 위치되는 제 2 액추에이터로부터 유체 변위를 발생하지 않는 단계를 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  8. 제 7 항에 있어서,
    상기 제 2 액추에이터로부터 압축성 및 팽창성 유체 변위의 지속시간이 서로 상이하도록 상기 압축성 및 팽창성 유체 변위를 발생함과 동시에 상기 제 1 액추에이터로부터 유체 변위를 발생하지 않는 단계를 더 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  9. 제 8 항에 있어서,
    양자 모두의 액추에이터로부터 압축성 및 팽창성 유체 변위를 발생하도록 상기 제 1 및 제 2 액추에이터의 작동을 교대하는 단계를 더 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  10. 제 9 항에 있어서,
    상기 제 1 및 제 2 액추에이터의 작동을 교대하는 단계는,
    상기 제 1 액추에이터를 작동시킴과 동시에 상기 제 2 액추에이터를 작동시키지 않는 단계;
    상기 제 1 액추에이터를 작동시키는 중에 시간 지연을 실행하는 단계로서, 상기 시간 지연은 적어도 상기 제 1 액추에이터의 작동 시간만큼 지속되는, 시간 지연을 실행하는 단계; 및
    상기 시간 지연이 만료된 후, 상기 제 2 액추에이터를 작동시키는 단계를 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  11. 제 10 항에 있어서,
    상기 제 1 및 제 2 액추에이터의 작동을 교대하는 단계는,
    상기 제 2 액추에이터의 작동 중에 상기 시간 지연 만큼 상기 제 1 액추에이터의 작동을 지연시키는 단계; 및
    상기 제 2 액추에이터의 작동 후에 상기 제 1 액추에이터를 작동시키는 단계를 더 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  12. 제 7 항에 있어서,
    압축성 및 팽창성 유체 변위의 지속시간이 서로 상이하도록 상기 압축성 및 팽창성 유체 변위를 발생하는 단계는,
    제 1 지속시간의 압축성 유체 변위를 발생하는 단계; 및
    상기 제 1 지속시간과 상이한 제 2 지속시간의 팽창성 유체 변위를 발생하는 단계를 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  13. 제 12 항에 있어서,
    상기 제 1 지속시간은 상기 제 2 지속시간보다 짧고, 상기 유체 변위는 제 1 방향으로 상기 채널을 통해 유체의 유동을 유발하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  14. 제 13 항에 있어서,
    상기 제 1 지속시간은 상기 제 2 지속시간보다 길고, 상기 유체 변위는 제 2 방향으로 상기 채널을 통해 유체의 유동을 유발하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  15. 제 7 항에 있어서,
    압축성 유체 변위를 유발하는 단계는, 상기 채널 내의 체적이 감소되도록 상기 채널 내로 상기 제 1 액추에이터를 굴곡시키는 단계를 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  16. 제 7 항에 있어서,
    팽창성 유체 변위를 유발하는 단계는, 상기 채널 내의 체적이 증가되도록 상기 채널 외로 상기 제 1 액추에이터를 굴곡시키는 단계를 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  17. 제 7 항에 있어서,
    압축성 및 팽창성 유체 변위의 지속시간이 서로 상이하도록 상기 압축성 및 팽창성 유체 변위를 발생하는 단계는 기계 독출 가능한 소프트웨어 모듈을 실행하는 단계를 포함하고, 상기 기계 독출 가능한 소프트웨어 모듈에 의해 제어기는 상기 제 1 액추에이터의 파형 구동 작동을 제어하게 되는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  18. 제 1 항에 따른 유체 분출 장치 내에서 유체를 순환시키는 방법에 있어서,
    압축성 및 팽창성 유체 변위를 발생하기 위해 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계로서, 상기 제 1 및 제 2 액추에이터는 동시에 압축성 또는 팽창성 유체 변위를 발생하지 않도록 압축성 유체 변위와 팽창성 유체 변위 사이에서 교대하는, 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계를 포함하고;
    상기 제 1 액추에이터는 제 1 유체 공급구멍과 노즐 사이의 유체 채널 내에 중심으로부터 벗어나게 위치되고, 상기 제 2 액추에이터는 노즐과 제 2 유체 공급구멍 사이의 유체 채널 내에 중심으로부터 벗어나게 위치되고, 노즐과 챔버는 상기 액추에이터들 사이에 위치되고, 상기 동시 작동은 상기 액추에이터들 사이의 챔버 내에서 왕복의 유체 유동을 생성하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
  19. 제 18 항에 있어서,
    상기 제 1 및 제 2 액추에이터를 동시에 작동시키는 단계는, 상기 노즐로부터 유체 액적을 토출하기 위한 상이한 압축성 변위 크기를 가지는 동시적 압축성 유체 변위를 발생하고, 상기 채널을 통해 순(net) 방향성 유체 유동을 생성하도록, 상기 제 1 및 제 2 액추에이터를 작동시키는 단계를 포함하는
    유체 분출 장치 내에서 유체를 순환시키는 방법.
KR1020147004973A 2011-08-31 2011-08-31 유체 변위 액추에이터를 구비하는 유체 분출 장치 및 관련된 방법 KR101865989B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/050072 WO2013032471A1 (en) 2011-08-31 2011-08-31 Fluid ejection device with fluid displacement actuator and related methods

Publications (2)

Publication Number Publication Date
KR20140074283A KR20140074283A (ko) 2014-06-17
KR101865989B1 true KR101865989B1 (ko) 2018-06-08

Family

ID=47756698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147004973A KR101865989B1 (ko) 2011-08-31 2011-08-31 유체 변위 액추에이터를 구비하는 유체 분출 장치 및 관련된 방법

Country Status (7)

Country Link
US (1) US8991954B2 (ko)
EP (1) EP2750894B1 (ko)
JP (1) JP5731712B2 (ko)
KR (1) KR101865989B1 (ko)
CN (1) CN103781630B (ko)
BR (1) BR112014004800B1 (ko)
WO (1) WO2013032471A1 (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527804B (en) * 2014-07-02 2016-07-27 Xaar Technology Ltd Droplet deposition apparatus
TW201625425A (zh) * 2014-09-17 2016-07-16 滿捷特科技公司 具有連接至橫向驅動電路之頂式致動器的噴墨噴嘴裝置
FR3027380A1 (fr) * 2014-10-17 2016-04-22 Commissariat Energie Atomique Dispositif de refroidissement par liquide caloporteur pour composants electroniques
BR112017008530B1 (pt) 2014-10-31 2022-10-18 Hewlett-Packard Development Company, L.P Método para operar um dispositivo de ejeção de fluido e dispositivo de ejeção de fluido
ITUB20156035A1 (it) 2015-11-30 2017-05-30 St Microelectronics Srl Dispositivo di eiezione di fluido con canale di restringimento, e metodo di fabbricazione dello stesso
JP6929640B2 (ja) * 2016-01-08 2021-09-01 キヤノン株式会社 記録素子基板および液体吐出ヘッド
JP6851800B2 (ja) * 2016-01-08 2021-03-31 キヤノン株式会社 液体吐出装置および液体吐出ヘッド
CN109070077B (zh) 2016-04-28 2022-04-01 惠普发展公司,有限责任合伙企业 微流体过滤
CN113022137B (zh) * 2017-03-15 2022-08-23 惠普发展公司,有限责任合伙企业 流体喷射管芯
JP7021536B2 (ja) * 2017-03-28 2022-02-17 セイコーエプソン株式会社 液体吐出装置およびその制御方法
US10343400B2 (en) * 2017-03-28 2019-07-09 Seiko Epson Corporation Liquid discharge apparatus and method for controlling the same
JP6919267B2 (ja) 2017-03-28 2021-08-18 セイコーエプソン株式会社 液体吐出装置および液体吐出方法
US10611144B2 (en) 2017-06-09 2020-04-07 Fujifilm Dimatix, Inc. Fluid ejection devices with reduced crosstalk
JP7057071B2 (ja) 2017-06-29 2022-04-19 キヤノン株式会社 液体吐出モジュール
JP7005196B2 (ja) * 2017-07-07 2022-01-21 キヤノン株式会社 液体吐出ヘッド及び液体吐出装置
TWI667189B (zh) 2017-08-31 2019-08-01 研能科技股份有限公司 微機電之流體控制裝置
JP7027763B2 (ja) * 2017-09-27 2022-03-02 ブラザー工業株式会社 液体吐出装置
JP7289423B2 (ja) * 2017-09-29 2023-06-12 キヤノン株式会社 液体吐出装置および液体吐出ヘッド
US11065883B2 (en) 2017-11-27 2021-07-20 Hewlett-Packard Development Company, L.P. Cross-die recirculation channels and chamber recirculation channels
EP3691903B1 (en) * 2017-12-02 2023-03-22 Hewlett-Packard Development Company, L.P. Fluid circulation and ejection
GB201803177D0 (en) 2018-02-27 2018-04-11 3C Project Man Limited Droplet ejector
JP7069875B2 (ja) * 2018-03-14 2022-05-18 セイコーエプソン株式会社 液体吐出ヘッドおよび液体吐出装置
US20210039391A1 (en) * 2018-04-26 2021-02-11 Hewlett-Packard Development Company, L.P. Fluid ejection unit with circulation loop and fluid bypass
US11097536B2 (en) 2018-12-28 2021-08-24 Canon Kabushiki Kaisha Driving method of liquid feeding apparatus
JP7205224B2 (ja) * 2018-12-28 2023-01-17 セイコーエプソン株式会社 液滴吐出装置および液滴吐出ヘッド
US11090935B2 (en) 2018-12-28 2021-08-17 Canon Kabushiki Kaisha Liquid ejection module
US11453213B2 (en) 2018-12-28 2022-09-27 Canon Kabushiki Kaisha Driving method of liquid feeding apparatus
EP3703954A4 (en) * 2019-01-09 2021-11-24 Hewlett-Packard Development Company, L.P. FLUID FEED PORT DIMENSIONS
JP7275768B2 (ja) * 2019-04-01 2023-05-18 ブラザー工業株式会社 液体吐出ヘッド
WO2020242450A1 (en) 2019-05-28 2020-12-03 Hewlett-Packard Development Company, L.P. Printing fluid recirculation
WO2021021136A1 (en) 2019-07-30 2021-02-04 Hewlett-Packard Development Company L.P. Uniform print head surface coating
EP4041554A1 (en) * 2019-12-06 2022-08-17 Hewlett-Packard Development Company, L.P. Recirculation fluid ejection device
WO2021183124A1 (en) * 2020-03-11 2021-09-16 Hewlett-Packard Development Company, L.P. Recirculation bypass
JP7500301B2 (ja) 2020-06-19 2024-06-17 キヤノン株式会社 液体吐出モジュール

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110086946A (ko) * 2010-01-25 2011-08-02 삼성전기주식회사 잉크젯 프린트 헤드

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023625A (en) * 1988-08-10 1991-06-11 Hewlett-Packard Company Ink flow control system and method for an ink jet printer
CA1319561C (en) * 1988-08-10 1993-06-29 Steven J. Bares Ink flow control system and method for an ink jet printer
JPH07251504A (ja) * 1994-03-16 1995-10-03 Nikon Corp インクジェットプリンタヘッド
JP2858958B2 (ja) * 1994-06-15 1999-02-17 シチズン時計株式会社 インクジェットヘッドの駆動方法
US5818485A (en) * 1996-11-22 1998-10-06 Xerox Corporation Thermal ink jet printing system with continuous ink circulation through a printhead
JPH10250110A (ja) 1997-03-14 1998-09-22 Toshiba Corp インクジェット記録装置
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
JP3629405B2 (ja) * 2000-05-16 2005-03-16 コニカミノルタホールディングス株式会社 マイクロポンプ
SG105459A1 (en) 2000-07-24 2004-08-27 Micron Technology Inc Mems heat pumps for integrated circuit heat dissipation
JP4617799B2 (ja) 2004-09-24 2011-01-26 富士ゼロックス株式会社 インクジェット記録ヘッドのメンテナンス方法及びインクジェット記録装置
US7604327B2 (en) 2004-09-24 2009-10-20 Brother Kogyo Kabushiki Kaisha Liquid ejection apparatus and method for controlling liquid ejection apparatus
JP2006147937A (ja) 2004-11-22 2006-06-08 Tdk Corp 圧電素子及び液体制御用圧電装置
JP2007118309A (ja) 2005-10-26 2007-05-17 Fujifilm Corp インクジェット記録ヘッド及びこれを備えた画像形成装置
JP2007203610A (ja) * 2006-02-02 2007-08-16 Konica Minolta Holdings Inc 液滴吐出ヘッド及び液滴吐出装置
KR100798371B1 (ko) * 2006-09-27 2008-01-28 삼성전기주식회사 잉크젯 헤드
KR101306005B1 (ko) * 2006-09-29 2013-09-12 삼성전자주식회사 잉크순환시스템과 잉크젯 기록장치 및 잉크 순환방법
JP4875997B2 (ja) 2007-02-16 2012-02-15 富士フイルム株式会社 液体吐出ヘッドおよび液体吐出装置
JP2009279816A (ja) 2008-05-21 2009-12-03 Riso Kagaku Corp インクジェットプリンタ
CN102292217B (zh) * 2009-01-12 2014-09-24 株式会社Enjet 液滴喷射装置及方法
JP5335580B2 (ja) * 2009-06-30 2013-11-06 キヤノン株式会社 液体吐出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110086946A (ko) * 2010-01-25 2011-08-02 삼성전기주식회사 잉크젯 프린트 헤드

Also Published As

Publication number Publication date
JP5731712B2 (ja) 2015-06-10
CN103781630A (zh) 2014-05-07
JP2014527490A (ja) 2014-10-16
BR112014004800B1 (pt) 2021-01-26
WO2013032471A1 (en) 2013-03-07
US20140118431A1 (en) 2014-05-01
US8991954B2 (en) 2015-03-31
EP2750894A1 (en) 2014-07-09
BR112014004800A2 (pt) 2017-03-28
CN103781630B (zh) 2016-06-01
EP2750894B1 (en) 2016-04-27
EP2750894A4 (en) 2015-04-01
KR20140074283A (ko) 2014-06-17

Similar Documents

Publication Publication Date Title
KR101865989B1 (ko) 유체 변위 액추에이터를 구비하는 유체 분출 장치 및 관련된 방법
KR101908758B1 (ko) 유체 토출 장치에서 슬롯으로부터 슬롯으로의 순환
EP2571696B1 (en) Fluid ejection device with circulation pump
JP5777706B2 (ja) 循環ポンプを具備する流体噴射装置
US8721061B2 (en) Fluid ejection device with circulation pump
US9381739B2 (en) Fluid ejection assembly with circulation pump
TWI508866B (zh) 具雙層頂帽之流體噴出裝置
US20200223225A1 (en) Fluid ejection device
JP6646158B2 (ja) プリントヘッド再循環
US20130208034A1 (en) Liquid ejecting apparatus and method for controlling thereof
US20130235105A1 (en) Liquid ejecting apparatus
US10780705B2 (en) Fluid ejection device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right