KR101860328B1 - 장치 및 방법 - Google Patents

장치 및 방법 Download PDF

Info

Publication number
KR101860328B1
KR101860328B1 KR1020137010389A KR20137010389A KR101860328B1 KR 101860328 B1 KR101860328 B1 KR 101860328B1 KR 1020137010389 A KR1020137010389 A KR 1020137010389A KR 20137010389 A KR20137010389 A KR 20137010389A KR 101860328 B1 KR101860328 B1 KR 101860328B1
Authority
KR
South Korea
Prior art keywords
channel
data
output
carrier frequency
frequency
Prior art date
Application number
KR1020137010389A
Other languages
English (en)
Other versions
KR20130114146A (ko
Inventor
필립 마토스
Original Assignee
유럽피안 유니언
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유럽피안 유니언 filed Critical 유럽피안 유니언
Publication of KR20130114146A publication Critical patent/KR20130114146A/ko
Application granted granted Critical
Publication of KR101860328B1 publication Critical patent/KR101860328B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/246Acquisition or tracking or demodulation of signals transmitted by the system involving long acquisition integration times, extended snapshots of signals or methods specifically directed towards weak signal acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/31Acquisition or tracking of other signals for positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명에 따른 장치는 캐리어 주파수 및 데이터를 포함하는 제1 채널 성분과 제1 코드에 대해 상관 검출하여 제1 출력을 제공하는 제1 상관기; 제2 채널 성분과 제2 코드에 대해 상관 검출하여 제2 출력을 제공하도록 구성되며, 여기서 제2 채널 성분은 제1 채널 성분과 동일한 캐리어 주파수 및 제1 채널 성분과 동일한 데이터를 가지고, 제2 채널 성분 상의 상기 데이터가 제1 채널 성분 상의 데이터에 대해 지연되는 제2 상관기; 및 상기 제1 출력 상의 상기 데이터가 상기 제2 출력과 정렬되도록 상기 제1 및 제2 출력을 처리하여 상기 캐리어에 대한 주파수 정보를 제공하도록 구성된 처리기를 포함한다.

Description

장치 및 방법{Apparatus and method}
본 발명은 장치 및 방법에 관한 것으로, 상세하게는 신호 획득에 관한 것이나 이에 한정되는 것은 아니다.
지구 항법 위성 시스템(global navigation satellite system)의 일 예에 있어서, 주지된 공전 궤도를 따라 정확히 알려진 위치로 공전하는 위성이 사용된다. 이와 같은 위성들은 지구상의 수신기가 수신할 수 있는 신호를 송신한다. 네 개 이상의 위성에서 수신된 신호를 이용하여 수신기는 삼각법에 의해 위치를 판단할 수 있게 된다. 위성에서 송신되는 신호는 의사 난수(pseudo-random) 코드를 포함한다. 위치 판단의 정확도는 코드의 반복률, 수신기의 구성요소 및 대기 변수(atmospheric factors)에 따라 다르다.
갈릴레오(GALILEO)는 위성 위치 확인 서비스를 제공하기 위한 유럽형 위성 위치 확인 시스템이다. 갈릴레오는 GPS(global positioning system) 및 GLONASS 라는 두 개의 다른 위성 위치 확인 시스템과도 연동이 가능하도록 제안되었다. 본 명세서에서, GNSS라는 용어는 이들 위성 위치 추적 시스템들을 지칭한다.
현재 갈릴레오에는 위성 30개, 3 개의 궤도 내 가동 여분이 구비된 27개의 가동 위성이 있다. 갈릴레오 용으로 제안된 주파수 스펙트럼에는 두 개의 L-밴드가 있다. 하측의 L-밴드(E5a, E5b)는 1164 MHz 내지 1214 MHz 영역 내에서 작동한다. 또한 상측 L-밴드는 1559 MHz 내지 1591 MHz 에서 작동한다.
GPS 및 갈릴레오에 있어서, 위성에서 방송된 신호에는 유사 난수 코드가 포함되며 수신기에서 이를 처리하여 위치 데이터를 판단한다. 이러한 과정에는 우선 수신된 코드와 국부적으로 생성된 버전의 코드 간의 상대적 오프셋을 판단하는 단계(획득(acquisition) 단계) 및 그 다음 상대적 오프셋이 판단되면 위치를 판단하는 단계(트랙킹(tracking) 단계)가 포함된다. 획득 및 트랙킹 단계 모두 적분 기간에 걸쳐, 유사 난수 코드에서 지역적으로 생성된 버전과 수신된 신호의 상호관계에 연관되어 있다.
대역확산(spread spectrum) 시스템은 2차원에 해당(주파수 및 시간)하여 획득이 어려울 수 있다. 또한 외부에 비해 내부에서 신호 세기가 상당히 약하기 때문에 추가적 난제가 있으며, 실내에서 신호를 획득하기가 매우 어려워진다. 특히, GNSS를 실내에서 작동하려면 실외에서 얻어지는 것보다 최소 20dB은 감쇄된 신호로 수신되어야만 한다.
획득 과정은 주파수 및 위상 조절 범위(phase range)에 대응하는 셀(cells)을 발견하기 위한 시행착오에 의해 이루어진다. 시간 영역 내의 셀의 수는 예를 들면 4092개이다. 주파수 영역 내의 셀의 수는 신호 세기가 감소하면 증가한다. 그러나, 이는 온도 제어 수정 발진기(temperature controlled crystal oscillator, TCXO)를 이용하면 감소될 수 있다. 셀을 발견하기 위해 요구되는 시간은 내부의 경우 외부의 경우에 비해 100배 이상 증가한다. 예를 들면, 실내의 경우, 신호 세기가 약하기 때문에 각각의 셀마다 100 밀리 초가 소요된다. 따라서, 내부 수신기의 서치 시간은 상당량 증가하게 된다.
이러한 문제는 예를 들면 16개의 고속 푸리에 변환 채널과 같은 주파수 영역 내의 병행성(parallelism)을 이용하거나 병행 상관기들을 이용함으로써 시간 영역 내의 병행성을 이용하면 해결할 수 있을 것이다. 병행성을 얻기 위해서는 좀 더 고속의 클럭 및/또는 많은 하드웨어를 필요로 하기 때문에 단점이 될 수 있다. 또한, 좀 더 많은 하드웨어 및/또는 고속의 클럭으로 인해 파워 역시 증가한다.
이 모든 경우에 있어서, 기준 클럭은 안정도가 유지되어야 한다는 한계점이 존재하는데, 그렇지 않으면 실내에서 요구되는 감도(sensitivity)로 대역폭이 감소할 수 없다.
위에서 설명한 바와 같이, 실내 신호의 경우 실외의 경우보다 적어도 20 dB는 감쇄되어야 한다. 실내 신호를 위해 감도를 20 dB 증가시켜야 한다는 것은 적분은 100배 이상 길어짐을 의미한다. 그러나, 동조적분(coherent integration) 시간이 길어지고, 채널의 대역폭은 협소해지기 때문에 이를 이루기가 어렵다. 또한 그에 따라 좀 더 많은 서치가 수행되어야 하고, 획득 단계가 완료되기도 전에 신호는 주파수 사이를 방황하는 것처럼 나타나, 기준 발진기의 안정성이 한정적 용인으로 작용하게 된다. 따라서, 에너지의 확산이 일어나고, 이득(gain)이 방해된다.
또한, 변조 방법에 따라 적분 시간에 한계가 있을 수도 있다.
따라서, 이와 같은 신호로 적분을 수행하는 데에는 문제가 있을 수 있다. 적분 시간은 로컬 클럭의 정확도 및 위성 및 수신기 간의 상대적 이동에 의해 발생하는 주파수 변동에 의해 한정될 수 있다.
일부 실시예에 대하여 다음의 도면을 참조하여 예로 설명한다:
도 1은 일 실시예에 따른 회로도;
도 2는 파일럿 신호를 제공하는 일 실시예에 따른 회로도;
도 3은 일 실시예에 따른 방법; 및
도 4는 실시예들에 따른 예시적 수신기를 도시한 도이다.
본 발명의 일부 실시예에 대해서는 첨부되는 청구항을 참조할 수 있다.
본 명세서에 설명하는 실시예는 GNSS 신호 획득 및 트랙킹을 위한 GNSS 수신기에 관한 것이다. 일부 실시예의 경우 갈릴레오 또는 기타 위성 추적 시스템에 특히 적용 가능할 수 있으나 이에 한정되는 것은 아니다.
일부 실시예에 따르면, 방송 유사 난수 코드, 좀 더 상세하게는 GNSS 신호와 같은 항법 위성 신호의 일부로 송신되는 코드의 획득 및/또는 트랙킹에 관한 것이다.
일부 실시예에 있어서, 항법 위성 시스템용의 신호 획득의 문맥에서 설명할 것이나, 다른 실시예의 경우 기타 다른 신호의 획득에도 적용될 수 있다.
일부 실시예에 있어서, 특히 확산 스펙트럼 신호의 획득에 대해 적용가능하다.
일부 실시예에 있어서, 본 명세서에 기술된 실시예에 도시된 회로에 균등한 소프트웨어를 제공하기 위해 적용될 수 있다. 일부 실시예의 경우는 하드웨어용으로만 적용될 수 있다. 일부 실시예는 하드웨어 및 소프트웨어 모두에 적용될 수 있다.
획득 회로는 위치 추적 기능을 제공하는 적절한 장치 어디에도 채용될 수 있다. 상기 장치는 휴대용장치이거나 대형 장치의 일부일 수 있다. 예를 들면, 일부 실시예의 경우, 위성 항법 장치, 핸드폰과 같은 이동 통신 장치와 같은 통신 장치, 또는 위치 정보를 요하는 장치 어디에도 채용될 수 있다. 위성 항법 장치는 독립형이거나, 자동차, 기차, 항공기, 열기구 풍선, 선박, 보트, 트럭, 헬리콥터 및 기타 다양한 수송 수단의 각기 다른 형태의 수송기에 채용되는 장치일 수 있다.
이하 설명하는 일부 실시예에 의하면, 일체형 회로 또는 일련의 일체형 회로들(칩 세트)에 채용된다. 그러나, 다른 실시예에 따라 개별적(discrete) 회로에서 적어도 부분적으로 실시될 수 있음을 주지해야 할 것이다.
갈리레오 및 GPS-III L1C(GPS 버전 중 하나임)는 둘 다 L1 상에서 2-성분 개방형 민간 신호(dual component open civil signals)를 제공한다. 데이터-다운로드가(트랙킹 품질을 제한하기는 하지만 필요) 한 목표이고, 데이터-이동에 저해되지 않는 정확한 고 감도 트랙킹이 다음 목표이다.
트랙킹의 경우에는 효과가 좋으나, 트랙킹이 있기 전에 수신기가 신호를 획득해야만 한다. 즉, 정확한 시간 및 주파수 고정(lock)을 수행해야만 한다. 일반적으로는 순차적으로 수행되지 않는다. 둘 다 정확해야만, 신호 에너지가 회수된다.
그러나, 상호상관(cross-correlation) 및 간섭제거(interference rejection)와 같은 기타 다른 품질 개선 방법으로 인해 확산 코드의 길이가 증가할 수 있으며, 예를 들면 GPA C/A 코드의 경우 1ms 이던 것에서 갈릴레오에서 4ms로, 또는 GPS-III에서 10ms로 증가할 수 있다. 이는 자승 검파(square law)에 기준 할 때 획득 작업이 더 어려워짐을 의미한다.
또한, 통신율이 빠르다는 것은 GPS C/A의 20ms에서 갈릴레오의 4 ms 및 GPS-III의 10ms로 데이터 에지(data edes)의 발생 빈도가 상당수 증가하는 문제를 의미한다. 지난 25년간 소비자가 요구하는 감도는 40dB CNo에서 10dB CNo(실내)로 증가(1000배)했으며, 이는 신호 획득의 어려움이 대략 100배는 증가했음을 의미한다. 또한, 25년 전에는 스타트업(start up)을 위해 10분이 걸려도 용인되었으나, 지금의 소비자는 즉각적인 반응을 요구하고 있다.
더 많은 파워를 송신하는 등의 단순한 방법은 경우에 따라 올바른 선택이 아닐 수 있다. 각각의 신호를 열잡음(thermal noise) 이하로 유지하기 위해서는 많은 위성이 공존해야 함을 의미한다. 각각의 구성 요소의 파워를 상승시키면 다른 시스템 전체에 더 큰 광대역 잡음을 일으키게 되고, 유사한 코드 특성을 가진 경우 상호상관이 더욱 증가한다.
이와 같이 파일럿 상의 변동(transition)으로 인한 획득의 문제에 대해 논했으며, 적어도 일부 실시예에 있어서 순수 파일럿(pure pilot)을 전송하는 등은 해결책이 될 수 없을 것이다. 근대 수신기들의 감도의 관점에서 볼 때, 하늘 및 수신기 내부 및 인접한 곳의 클럭 두 곳에서 오는 허위 에너지 기여 요소(spurious energy contributors)들이 많다. 이들 허위 에너지 기여 요소들은 파일럿으로 오인되어 허위 획득을 일으킬 수 있다. 따라서, 파일럿 상에 소정 데이터 패턴이 제공되어 사전에 알려져야 한다.
이하 상세히 설명하겠으나, 데이터는 신호의 일 부분에서 다만 심볼 하나 이전에 알려질 수 있다.
파일럿의 의의는 장기간의 동조 적분이 가능하도록 하여 획득 시의 에너지 수집 및/또는 트랙킹 시의 무 잡음 또는 저 잡음의 PLL(phase locked loop)로 가동하기 위함이다.
수신기는 데이터 비트들이 검출되기까지는 원시 상관기 출력(raw correlator outputs)을 저장하다가, 데이터 비트를 스트립핑(strip)함으로서, 데이터 검출에서 낮은 에러율을 가지는 PLL의 지속적 적분이 가능하도록 한다. 다른 수신기들은 인터넷 등과 같은 통신 링크를 이용하여 적극적으로 데이터 스트립핑을 수행함으로서 제거 대상 데이터 비트를 알게 된다.
시간적 보조가 가능한 경우, 수신기 내의 제2 코드의 사전 배열이 가능하며, 이에 따라 신호의 코드 제거 및 완전 적분이 가능해진다. 정밀 시간(fine time, 10us)의 경우 부적합할 수 있으나, 간략 시간(coarse time, 2 초)의 경우 정확도는 훨씬 증가한다. 요구도는 4 ms보다 훨씬 개선되어, 즉 2 ms가 된다.
아무 보조가 없을 경우, 수신기 내의 32 kHz 시간(watch crystal)은 100ppm을 가리킬 수 있으며, 즉 40초 이후에 4ms 에러가 있을 수 있음을 나타낸다. 품질이 좋은 수신기의 경우 상기 시간을 사전에 조율하려고 할 수 있겠으나, 수신기의 off 상태 시 기록되지 않은 작동 및 대기 모드 사이의 전압의 변동, 및 미지의 온도 프로파일로 인해 아주 어려운 작업이 된다.
약 100 mS에서 최고 감도로 제2 코드를 아무 보조 없이 획득하기 위한 방법이 있다. 이는 메모리가 구비된 소프트웨어 수신기들에서는 효율이 좋으나, 일반 수신기의 경우 실행이 불가능하다. 이와 같이 함으로써 25 연속 4ms 에포크(epochs)의 전체 획득 엔진 결과(4092 IQ 쌍(pairs))를 기록할 수 있다. 이들은 그 다음으로 25개의 제2 가능 코드 위상에 대해 후처리 되어 이상적인 결과를 제공한다. 그러나, 4092 × 2 × 25 × 16 비트를 가능하게 하려면, 각각의 획득 채널마다 메모리 409 kbytes가 요구된다. 일반적인 응용에 의하면, 8개의 획득 채널이 제공되어야 3.2 Mbytes 메모리 요구조건을 충족할 수 있다.
도 1은 바람직한 일 실시예를 수행하기 위한 회로도를 도시한다. 도 1에서는 신호 내부의 실수부(I) 및 이들 실수부의 처리가 도시됨을 주지해야 할 것이다. 허수부(Q)에 대해서도 유사한 회로 및 처리가 제공될 수 있다.
제1 신호가 제1 믹서(101)로 입력된다. 제1 신호는 갈릴레오와 같은 GNSS 시스템의 E1C 신호일 수 있다. E1C 신호는 파일럿 신호일 수 있으나, E1C는 또한 데이터도 전달한다는 점에서 기존의 파일럿 신호와는 구분된다. 제1 신호는 캐리어, 제1 확산 코드(c) 및 데이터를 포함할 수 있으며, C 채널에 있을 수 있다. E1C 신호의 주파수는 위성 도플러, 사용자 도플러 및 기준 발진기 에러로 인해 상대적으로 알려지지 않는다. 신호의 주파수는 F + x 로 표현할 수 있으며, 여기서 x 는 양 또는 음의 수량을 나타낼 수 있다. F는 위성이 신호를 송신하려는 주파수이고, x는 상기 언급된 하나 이상의 요인으로 인한 에러를 나타내며, 또는 사실상 기타 다른 요인의 에러를 나타낼 수도 있다.
제1 믹서(101)는 E1C 신호와 주지의 확산 코드(c)를 믹싱한다. 제1 믹서(101)에서 나온 출력은 제1 상관기(102)로 입력된다. 제1 상관기(102)는 제1 믹서(102)의 출력과 주지의 확산 코드(c)에 대해 상관 검출(correlate)한다.
제1 상관기(102)에서 나온 출력은 제3 믹서(103)로 입력되고, B-C 블록(108)으로 입력된다.
도 1을 참조하면, 제2 신호가 제2 믹서(105)로 입력된다. 위와 유사하게, 제2 신호는 갈릴레오와 같은 GNSS 시스템의 E1B 신호일 수 있다. E1B 신호는 데이터 신호일 수 있다. 제2 신호는 캐리어, 제1 확산 코드(b) 및 데이터를 포함할 수 있으며, B 채널 상에 위치할 수 있다. E1B 신호의 주파수는 E1C 신호의 것과 동일하다. 제2 믹서(105)는 E1B 신호와 주지의 확산 코드(b)를 믹싱한다. 제2 믹서(105)의 출력은 제2 상관기(106)로 입력된다. 제2 상관기(106)는 제2 믹서(106)의 출력과 주지의 확산 코드(b)에 대해 상관 검출한다.
제2 상관기(106)의 출력은 지연(delay) 블록(107)으로 입력된다. 지연 블록(107)의 출력을 지연시킴으로써 신호 내에 실린 데이터가 1 심볼 만큼 지연된다. 지연 블록(107)의 출력은 제3 믹서(103)로 입력되고 B-C 블록(108)으로 입력된다. 갈릴레오 상에서는 심볼 당 단지 하나의 코드 에포크가 있으므로, 최대 파워를 제공하는 상관기 빈(bin)의 코드와 동일하기 때문에 심볼의 시작과 끝에 어려움이 없다.
제3 믹서(103)는 제1 상관기(102)의 출력을 지연 블록(107)의 출력과 믹싱한다. 도 1을 참조하면, 제3 믹서(103)는 실수부를 입력으로 포함한다. 이와 유사하게 처리된 대응되는 실수부(Q, 미도시) 역시 믹서(103)로 입력될 수 있음은 이해될 것이다. 따라서, 믹서(103)는 완전한 복소수 곱셈을 제공한다.
제3 믹서(103)로 입력된 신호에는, 상기 언급된 요인으로 인한 주파수 천이 및 오프셋을 포함하는 캐리어 신호에서 나온 주파수 성분이 실려 있다. 실제 예에서는, 제1 및 제2 믹서로 입력된 E1C 및 E1b 신호들은 미리 다운컨버팅(downconverted)되어 캐리어 주파수(F)를 제외한 오프셋 주파수(x)만을 포함하고 있을 수 있다. 그러나, 일부 실시예의 경우, 캐리어 주파수(F) 성분이 제거되지 않을 수도 있다.
제3 믹서(103)로 입력된 신호 또한 각각의 신호 내에 동일한 데이터를 싣고 있다. 지연 블록(107)은 E1B에 실린 데이터를 E1C에 실린 데이터로 재배열한다. 지연 블록(107)의 출력 상의 데이터는 지연으로 인해 한 개 데이터 심볼 만큼 뒤처진 것으로 따라서 E1C 채널 상의 지연 데이터에 일치한다.
제3 믹서(103)는 제1 상관기(102)의 출력과 지연 블록(107)의 출력을 믹싱한다. 각각의 입력 신호 내에 실린 데이터의 믹싱을 통해 믹싱에서 데이터를 효과적으로 제거한다. 즉, 양측의 입력 신호 상에 배열된 데이터가 효과적으로 평준화(squared)되며 실질적으로 통일화(unity) 된다.
제3 믹서(103)의 출력은 제3 상관기(104)로 입력되고, 여기서 적분되어, 본 발명의 실시예가 적용될 수 있는 GNSS 수신기에 수신된 신호의 코드 및 주파수를 트랙킹하기 위한 피드백 진폭 및 위상을 생성하게 된다.
IQmix 처리는 상관기에서 나온 출력 샘플 각각과 그 이전의 출력 샘플간의 곱셈형식이다. 이 과정은 이전 샘플의 사용이 가능하도록 지연하면 이루어진다.
가장 단순한 경우가 I.I' + Q.Q'로 스칼라 출력이다. 그러나, 이는 이전 샘플의 켤레복소수와 완전한 복소곱(complex multiply)이 가능하게 되어, 위상각이 신호의 잔류 회전(residual rotation), 또는 주파수를 나타내는 완전 복소곱 출력을 제공하는 혜택이 있다. 일관적(constant) 주파수를 위해, 적분 가능한 수는 상수가 된다.
IQmix를 CA 코드 신호의 20개의 개별적 코드 에포크에 사용하면, 각각의 데이터 비트 전이에 있어서, 출력은 1 주기 동안 역변환(invert)된다. 통계학적으로, 40ms마다 1 회 나타나는 부정적(negative) 기간으로, 즉 산출량(yield)이 38/40으로 dB로 볼 때 그다지 큰 손실은 아니다.
주기가 20ms로 작동하는 경우, 적분 이전에 데이터 비트의 판단 및 제거가 수행되므로, 오류 판단이 있지 않은 한 손실은 발생하지 않는다.
이제 수신기 측에서 B 채널에 지연을 삽입하게 되면, B 및 C 채널의 데이터가 배열된다. IQmix는 따라서 B 채널 상의 신호를 이용하여 믹서(103)에 의해 지연기(107)로부터 이동되고, C 채널 상의 신호를 이용하여 상관기(102)로부터 이동된다. 따라서, IQmix 배열의 경우 시간(n)과 시간(n+1)에서 캐리어가 나타나며, 따라서 내포적으로(implicitly) 위상 및 주파수를 측정한다. 그러나, 이들 각각의 데이터 성분이 배열되고 동일하기 때문에, 결과적으로 데이터 평준화(squared)라는 결과가 나오며, 이는 항상 +1로 무시 가능한 정도이다. 상기 데이터는 +1 또는 -1이다.
이러한 진폭 및 위상 피드백을 이용하여 수신 신호에서 좀 더 정확히 주파수 성분을 제거할 수 있게 된다. 다시 말해, 연관 에러 범위를 포함한 예상 주파수의 넓은 범위가 아닌, 신호가 실제로 수신된 주파수 상에서 처리가 이루어지는 것이다.
IQmix 출력은 시간에 대해 일관적(constant)이며, 여기서 진폭은 신호진폭(DC, 단극 스칼라(unipolar scalar))(이에 더해서, AC, 즉 양극인 잡음)을 나타내고, 위상은 주파수(또한, DC, 즉 AC/양극 잡음을 나르는 단극 스칼라)를 나타낸다.
따라서, 진폭과 위상 모두가 운송 수단 및 클럭 역학을 제외하면 제약 없이 적분이 가능하며, 따라서 양쪽의 제로-중심의 평균 잡음 성분이 0이 된다.
제1 상관기(102)의 출력 및 지연 블록(107)의 출력은 또한 B-C 블록(108)으로 입력된다. B-C 블록은 제2 상관기(102)의 출력과 지연 블록(10)의 출력 사이의 차이점을 검출하도록 작동할 수 있다. B-C 블록의 입력에는 동일한 캐리어 정보가 담겨 있다. 다시 말해, 양측의 입력 모두 동일한 주파수 및 오프셋 값을 가지고 있으며, B-C 블록(108)에 의해 취소된다. B-C 블록은 상기 두 개의 입력 신호에서 데이터를 추출하고 데이터 신호를 출력한다.
따라서, B-C 블록(108)에는 동일한 데이터를 가진 입력이 나타나며, 영 주파수 에러로 정확히 트랙킹을 수행하면, 동일한 캐리어 위상이 나타난다. 그러나, 이들의 잡음 성분은 독립적으로, 이는 둘이 각기 상이한 코드 역확산을 거치고 또한 각기 상이한 타임슬롯에서 유래했기 때문이다. 따라서, 데이터 추출 및 PLL 작업의 경우 모두에서 필요하다면 3dB 개선된 신호대 잡음비(SNR, signal to noise ratio)를 준다.
B-C 블록(108)은 C 채널에서 나온 입력 및 B 채널에서 나온 입력의 에너지를 합한다. 위에서 설명한 바와 같이, 이들 입력들의 데이터는 동일하되, 잡음은 독립적이기 때문에, B-C 블록에서 신호는 곱이 되면서 잡음은 그렇지 않게 되어, SNR의 개선 효과가 있다. 일부 실시예에 따르면, C-채널 상의 데이터는 역변환된 상태로 전송되기 때문에 B-C 블록(108)은 B+(-C) 블록이 될 수 있다. 상기의 방식으로, E1C 및 E1B 신호 간의 공유된 캐리어 주파수는 제2 신호의 획득의 필요 없이도 빠르고 정확한 획득 및 위성 트랙킹이 가능하다는 장점이 있다.
일부 응용에 있어서, 특히 고정형(stationary) 응용에 있어서, 파일럿 신호가 필요할 수 있다. 파일럿 신호란, 데이터는 운반하지 않기 때문에 장기간에 걸쳐 통합이 가능하고, 따라서 아주 정확하게 위치를 판단할 수 있도록 하는 신호를 말한다. 그러나, 일부 실시예의 경우, E1C 및 E1B 신호가 데이터를 운반하는 경우가 있으므로 파일럿 신호로 적합하지 않다.
도 2는 일부 실시예에 따라 회수된 파일럿 신호를 도시한다.
도 2에 따르면, 제1 믹서(101)로 제1 신호(E1C)가 입력된다. 제1 믹서(101)에는 주지된 확산 코드(c) 입력이 추가된다. 제1 믹서의 출력이 제1 상관기(102)로 입력된다. 제1 상관기(102)의 출력은 제3 믹서(103) 및 B-C 블록(108)로 입력된다.
또한 도 2에 따르면, 제2 신호(E1B)가 제2 믹서(105)로 입력된다. 제2 믹서(105)에는 주지된 확산 코드(b)가 추가로 입력된다. 제2 믹서(105)의 출력은 제2 상관기(106)로 입력된다. 상관기(106)의 출력은 지연 블록(107)으로 입력된다. 지연 블록(107)의 출력은 제3 믹서(103) 및 B-C 블록(107)으로 입력된다.
제3 믹서(103)의 출력은 제3 상관기(104)로 입력된다.
도 2의 상기 요소들은 도 1의 요소와 동일하며, 기능 역시 유사하므로, 이들 요소들에 대해서는 추가 설명은 하지 않는다.
제2 상관기(106)의 출력은 데이터 블록(201)으로 추가 입력된다. 데이터 블록(201)은 제4 믹서(202)의 입력을 제공한다. B-C 블록(108)의 출력은 또한 제4 믹서(202)로 입력된다. 제4 믹서(202)의 출력은 파일럿 신호를 제공한다.
따라서, 사용자가 레거시(legacy) 순수 파일럿을 필요로 하는 경우, (B-C) 스트림 중 어느 하나에서 3dB 신호 개선 및 종래의 데이터 제거에 의해 생성될 수 있다. 여기서, 데이터는 B-C 스트림의 출력에서 스트립핑 되어 순수 파일럿만 남게 된다.
그러나, 하드웨어 형식의 수신기에서 지연이 없는 파일럿을 요할 경우, 데이터는 B 채널에서만 추출될 수 있다(도 2 참조). 이러한 방법은 3dB 이득의 혜택은 얻을 수 없으나, C 채널이 입력되기 전에 활용이 가능하다. 입력되는 C 스트림은 그 다음으로 B 채널의 데이터-심볼과 곱해져 누적될 수 있다. 여기서 사용되는 스트림은 순수 C, 또는 도시된 바와 같이 B-C 스트림일 수도 있다. B-C 스트림 캐리어의 경우 잡음이 덜하고, 3dB가 더 세지만, 캐리어에 더해진 B 내부에 존재하는 지연으로 인해, 고-역동적(high-dynamics) 작동에 있어서는 반응도가 다소 낮을 수 있다.
도 3은 일부 실시예에 따라 수행되는 방법을 도시한다.
단계 301에서, E1C 신호가 C-채널 상에 수신된다. 이러한 신호는 주지된 제1 확산 코드(c)와 믹싱 및 상관 검출을 거친다(단계 303).
단계 302에서, E1B 신호가 B-채널 상에 수신된다. 이러한 신호는 주지된 제1 확산 코드(b)와 믹싱 및 상관 검출을 거치며(단계 303), 그 다음으로 1 데이터 심볼 만큼 지연된다(단계 305).
단계 303에서 나온 상관 검출 신호 및 단계 304의 지연 및 상관 검출된 출력은 상호 복소수 곱셈 된다(단계 306). 단계 306의 복소수 곱셈 이후의 출력은 상관 검출을 거친다(단계 307). 단계 306 및 307 결과, 본 명세서에 따른 신호 E1C 및 지연된 신호 E1B의 IQmix가 제공된다.
단계 307의 상관 검출 신호들은 그 다음으로 코드 및 주파수 트랙킹을 위한 진폭 및 위상으로 출력된다(단계 309).
단계 303의 상관 검출 출력 및 단계 305의 지연된 상관 검출 출력은 각각의 입력 신호의 에너지가 더해지도록 서로 더해져(단계 308), 그 결과 각각 입력 신호의 에너지가 더해진다. 이는 도 1 및 도 2의 B-C 블록(108)에 의해 수행될 수 있다. 단계 310의 출력으로 인해 데이터 신호 및 캐리어 신호를 위한 PLL(Phase-lock loop) 신호가 제공된다.
도 4는 일 실시예에 다른 예시적 수신기의 블록도이다.
GNSS 수신기(400)는 갈릴레오 수신기 또는 기타 다른 GNSS 시스템의 수신기일 수 있다. GNSS 수신기(400)는, GNSS 시스템에서 위성으로부터 신호를 수신하기 위한 신호 수신부(401)를 포함한다. 신호 수신부(401)는 예를 들면 필터링 및 다운-컨버젼과 같은 기본 신호 처리를 수행함으로써 획득 및 트랙킹 블록(402)에 적합한 형태의 신호를 제공한다. 획득 및 트랙킹 블록은 도 3에 따른 방법을 수행하거나, 도 1 및/또는 도 2에 따른 처리를 수행할 수 있다.
신호 수신부(401)는 또한 획득 및 트랙킹 블록(402)에서 데이터를 수신하고 GNSS 수신기(400)의 위치 계산을 수행하기 위한 위치 계산 블록(404)을 포함할 수 있다. GNSS 수신기(400)는 획득 및 트랙킹 블록(402) 및 위치 계산 블록(404)이 이용하기 위한 메모리(403)를 더 포함할 수 있다.
각각의 블록들(402, 404)은 개별적인 메모리를 가지거나, 또는 추가 처리 블록을 구비하여 메모리를 공유할 수 있음을 이해할 것이다. 또한, 점선(405) 내로 표시된 기능 블록들은 단일의 처리기로 적용될 수 있음 또한 이해할 것이다. 복수 개의 처리기들이 사용될 수 있음을 이해할 것이다. 상기 방법은 하나 이상의 집적 회로 상에서 수행될 수 있음을 이해할 것이다.
여기 첨부되는 도면에서 모든 구성요소들은 I 및 Q 내에 존재함을 이해할 것이다. 실수부는 다만 설명을 돕기 위해 도시되었다.
일부 실시예에 따르면, 상기의 제1 신호 및 제2 신호를 포함할 수 있다. 따라서, 제1 신호는 캐리어, 제1 확산 코드(c) 및 데이터를 포함할 수 있으며, C 채널 상에 존재할 수 있다. 제2 신호는 캐리어, 제1 확산 코드(b)를 포함할 수 있으며, B 채널 상에 존재할 수 있다. 제1 채널의 데이터는 제2 채널 상의 데이터와 동일하며, 하나의 심볼로 도시되었다. 대체 실시예에 따르면, 지연의 정도는 n 심볼일 수 있다. N 은 1 이상의 정수일 수 있다.
본 발명의 일부 실시예에 따르면, 상기 제1 및 제2 신호를 송신하기 위해 구성된 송신기 및/또는 제1 및 제2 신호를 송신하도록 송신기를 제어하도록 구성된 제어 회로가 포함된다. 송신기는 위성 또는 지상의 송신기로 제공될 수 있다.
각 채널은 위성에서 지연될 수 있다. 상기 실시에에 따르면, C 채널이 지연된다. 다른 실시예들에 따르면, B 채널이 지연될 수 있다.
또한, 본 발명의 실시예에 대해서 우선 위성 항법 신호에서 데이터를 획득하기 위한 문맥으로 설명하였다. 그러나, 본 발명의 실시예는 동일한 캐리어 주파수로 각기 상이한 확산 코드를 가지고 공동의 소스에서 전송된 두 개 이상의 신호를 처리하기 위해 적용이 가능하다.
본 발명의 실시예에 대한 설명은 신호의 획득 및 트랙킹의 문맥에서 이루어졌다. 획득 개념에서 특정 장점이 얻어질 수 있다. 기타 다른 실시예 또한 기타 다른 적절한 신호에 적용될 수 있음은 이해될 것이다.

Claims (41)

  1. 캐리어 주파수 및 데이터를 포함하는 제1 채널과 제1 코드에 대해 상관 검출하여 제1 출력을 제공하도록 구성된 제1 상관기;
    상기 제1 채널과 동일한 캐리어 주파수 및 상기 제1 채널 상의 데이터와 동일하며 상기 제1 채널 상의 데이터에 대해 지연된 데이터를 가지는 제2 채널과, 제2 코드에 대해 상관 검출하여 제2 출력을 제공하고, 상기 제2 코드는 상기 제1 코드와 상이하도록 구성된 제2 상관기; 및
    상기 제1 출력 상의 상기 데이터가 상기 제2 출력과 정렬되도록 상기 제1 출력 및 상기 제2 출력을 처리하여 상기 캐리어 주파수에 대한 주파수 정보를 제공하도록 구성된 처리기;를 포함하고,
    상기 주파수 정보는 위상 정보를 포함하고,
    상기 위상 정보는 상기 제1 채널의 캐리어 주파수 및 상기 제2 채널의 캐리어 주파수 사이의 위상차를 포함하는 것을 특징으로 하는 장치.
  2. 제 1항에 있어서, 상기 제1 출력을 지연시키고 상기 처리기에 지연된 제1 출력을 제공하도록 구성된 지연부를 포함하는 것을 특징으로 하는 장치.
  3. 제 2항에 있어서, 상기 지연부는 상기 제1 출력 내의 상기 데이터가 상기 제2 채널 내의 데이터와 정렬되도록 상기 제1 출력을 지연시키도록 구성된 것을 특징으로 하는 장치
  4. 제 1항에 있어서, 상기 제2 채널 내의 상기 데이터는 상기 제1 채널 내의 상기 데이터에 대해서 n 심볼(n은 1 이상의 정수) 만큼 지연되는 것을 특징으로 하는 장치.
  5. 제 4항에 있어서, n 은 1과 동일한 것을 특징으로 하는 장치.
  6. 제 1항에 있어서, 상기 캐리어 주파수는 F -/+ x 값을 가지며, 여기서 F 는 목표 전송 주파수이고 x 는 에러인 것을 특징으로 하는 장치.
  7. 제 6항에 있어서, 상기 제1 채널 및 상기 제2 채널을 F 주파수 값만큼 다운-컨버팅하도록 구성된 다운 컨버터를 포함하는 것을 특징으로 하는 장치.
  8. 제 6항 또는 7항에 있어서, 상기 처리기는 상기 제1 및 제2 출력을 처리하여 상기 제1 및 제2 채널의 성분을 제거(cancel out)하여 주파수 정보를 제공하도록 구성된 것을 특징으로 하는 장치.
  9. 삭제
  10. 삭제
  11. 제 4항에 있어서,
    상기 주파수 정보는 위상 정보를 포함하고,
    상기 위상 정보는 상기 제1 채널의 캐리어 주파수 및 상기 제2 채널의 캐리어 주파수 사이의 위상차를 포함하고,
    상기 위상차는 n 심볼들에 대해 결정되는 것을 특징으로 하는 장치.
  12. 삭제
  13. 제 1항에 있어서, 상기 제1 및 제2 출력을 상관 검출하여 제3 출력을 제공하도록 배치된 믹서를 더 포함하는 것을 특징으로 하는 장치.
  14. 제 1항에 있어서, 상기 상관기 중 적어도 하나는 믹서를 포함하는 것을 특징으로 하는 장치.
  15. 제 1항에 있어서, 상기 제1 및 제2 출력을 수신하도록 동작하는 데이터 복구 회로를 더 포함하는 것을 특징으로 하는 장치.
  16. 제 15항에 있어서, 상기 데이터 복구 회로는 상기 제1 및 제2 출력을 조합하고, 상기 데이터를 표현하는 차이에 기준하여 데이터 신호를 출력하도록 동작하는 것을 특징으로 하는 장치.
  17. 제 16항에 있어서, 상기 제2 채널은 상기 제2 상관기의 상기 제2 출력에서 파일럿 신호를 추출하도록 동작이 가능한 믹서를 특징으로 하는 장치.
  18. 제 1항의 장치를 포함하는 것을 특징으로 하는 집적 회로.
  19. 제 1항의 장치를 포함하는 것을 특징으로 하는 위치 추적 장치.
  20. 제 19항에 있어서, 상기 위치 추적 장치는 위성 항법 장치 및 이동 통신 장치 중 하나를 포함하는 것을 특징으로 하는 위치 추적 장치.
  21. 제1 출력을 제공하기 위해 캐리어 주파수 및 데이터를 포함하는 수신된 신호의 제1 채널과 제1 코드에 대해 상관 검출하는 단계;
    제2 출력을 제공하기 위해 상기 제1 채널과 동일한 캐리어 주파수 및 상기 제1 채널 상의 데이터와 동일하며 상기 제1 채널 상의 데이터에 대해 지연된 데이터를 가지는 상기 수신된 신호의 제2 채널과 제2 코드에 대해 상관 검출하는 단계, 여기서 상기 제2 코드는 상기 제1 코드와 상이하고; 및
    상기 제1 출력 상의 상기 데이터가 상기 제2 출력과 정렬되도록 상기 제1 출력 및 상기 제2 출력을 처리하여 상기 캐리어 주파수에 대한 주파수 정보를 제공하는 단계;를 포함하고,
    상기 주파수 정보는 위상 정보를 포함하고,
    상기 위상 정보는 상기 제1 채널의 캐리어 주파수 및 상기 제2 채널의 캐리어 주파수 사이의 위상차를 포함하는 것을 특징으로 하는 방법.
  22. 제 21항에 있어서, 상기 제1 출력을 지연하고 상기 지연된 제1 출력을 처리하는 단계를 포함하는 것을 특징으로 하는 방법.
  23. 제 22항에 있어서, 상기 제1 출력을 지연하는 단계는 상기 제1 출력 내부의 상기 데이터가 상기 제2 채널 내의 데이터와 정렬되도록 상기 제1 출력을 지연하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  24. 제 21항 내지 23항 중 어느 한 항에 있어서, 상기 제2 채널 내부의 상기 데이터는 제1 채널 내의 상기 데이터에 대해 n 심볼(n은 1 이상의 정수) 만큼 지연되는 것을 특징으로 하는 방법.
  25. 제 24항에 있어서, n 은 1과 동일한 것을 특징으로 하는 방법.
  26. 제 21항에 있어서, 상기 캐리어 주파수는 F -/+ x 값을 가지며, 여기서 F 는 목표 전송 주파수이고 x 는 에러인 것을 특징으로 하는 방법.
  27. 제 26항에 있어서, 상기 제1 채널 및 상기 제2 채널을 F 주파수 값 만큼 다운-컨버팅하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  28. 제 26항 또는 제 27항에 있어서, 상기 제1 및 제2 출력의 처리 단계는, 상기 제1 및 제2 출력을 처리하여 상기 신호의 성분을 제거(cancel out)하여 주파수 정보를 제공하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  29. 삭제
  30. 삭제
  31. 제 24항에 있어서,
    상기 주파수 정보는 위상 정보를 포함하고,
    상기 위상 정보는 상기 제1 채널의 캐리어 주파수 및 상기 제2 채널의 캐리어 주파수 사이의 위상차를 포함하고,
    상기 위상차를 n 심볼들에 대해 결정하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  32. 제 21항에 있어서, 상기 제1 및 제2 코드는 상이한 것을 특징으로 하는 방법.
  33. 제 21항에 있어서, 상기 제1 및 제2 출력을 믹싱하여 제3 출력을 제공하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  34. 제 21항에 있어서, 상기 상관 검출 단계 중 적어도 하나는 믹싱 단계를 더 포함하는 것을 특징으로 하는 방법.
  35. 제 21항에 있어서, 데이터 복구 회로에 의해 상기 제1 및 제2 출력을 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  36. 제 35항에 있어서, 상기 제1 및 제2 출력을 조합하는 단계 및 상기 데이터를 표현하는 차이에 기준하여 데이터 신호를 출력하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  37. 제 36항에 있어서, 상기 방법은 상기 제2 출력에서 믹서에 의해 파일럿 신호를 추출하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  38. 삭제
  39. 삭제
  40. 캐리어 주파수 및 데이터를 포함하는 제1 채널 성분과 제1 코드에 대해 상관 검출하여 제1 출력을 제공하는 제1 상관기;
    상기 제1 채널과 동일한 캐리어 주파수 및 상기 제1 채널 상의 데이터와 동일하며 상기 제1 채널 상의 데이터에 대해 지연된 데이터를 가지는 제2 채널과, 제2 코드에 대해 상관 검출하여 제2 출력을 제공하고, 상기 제2 코드는 상기 제1 코드와 상이하도록 구성된 제2 상관기; 및
    상기 제1 출력 상의 상기 데이터가 상기 제2 출력과 정렬되도록 상기 제1 출력 및 상기 제2 출력을 처리하여 상기 캐리어 주파수에 대한 주파수 정보를 제공하도록 구성된 처리기;를 포함하고,
    상기 주파수 정보는 위상 정보를 포함하고,
    상기 위상 정보는 상기 제1 채널의 캐리어 주파수 및 상기 제2 채널의 캐리어 주파수 사이의 위상차를 포함하는 것을 특징으로 하는 장치.
  41. 제 1항의 장치를 포함하는 것을 특징으로 하는 칩셋.



KR1020137010389A 2010-09-24 2011-09-22 장치 및 방법 KR101860328B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1016079.4 2010-09-24
GBGB1016079.4A GB201016079D0 (en) 2010-09-24 2010-09-24 Apparatus & method
PCT/EP2011/066478 WO2012038496A1 (en) 2010-09-24 2011-09-22 Apparatus and method

Publications (2)

Publication Number Publication Date
KR20130114146A KR20130114146A (ko) 2013-10-16
KR101860328B1 true KR101860328B1 (ko) 2018-05-23

Family

ID=43127907

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137010389A KR101860328B1 (ko) 2010-09-24 2011-09-22 장치 및 방법

Country Status (15)

Country Link
US (1) US9453918B2 (ko)
EP (1) EP2619607B1 (ko)
JP (1) JP5933559B2 (ko)
KR (1) KR101860328B1 (ko)
CN (1) CN103339526B (ko)
AU (1) AU2011306909B2 (ko)
BR (1) BR112013006724B1 (ko)
CA (1) CA2811830C (ko)
ES (1) ES2620364T3 (ko)
GB (1) GB201016079D0 (ko)
MX (1) MX2013003234A (ko)
NZ (1) NZ609085A (ko)
RU (1) RU2570837C2 (ko)
TW (1) TWI510801B (ko)
WO (1) WO2012038496A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784845B2 (en) * 2013-12-23 2017-10-10 Samsung Electronics Co., Ltd Method and apparatus for implementing reduced bandwidth processing of navigation satellites
FR3017719B1 (fr) * 2014-02-14 2016-03-04 Thales Sa Methode de correlation d'un signal de radio-navigation par satellite recu et dispositif de correlation mettant en oeuvre la methode
US9270323B2 (en) * 2014-04-04 2016-02-23 Broadcom Corporation Wireless communication synchronization system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060285581A1 (en) * 2005-05-10 2006-12-21 Stmicroelectronics (Research & Development) Ltd. System and method for acquisition of signals
JP2007128431A (ja) * 2005-11-07 2007-05-24 Matsushita Electric Ind Co Ltd リモートメンテナンスシステム及びシステム機器のリモートメンテナンス方法
WO2010098468A1 (ja) * 2009-02-27 2010-09-02 古野電気株式会社 Gnss受信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157663A (en) * 1990-09-24 1992-10-20 Novell, Inc. Fault tolerant computer system
JP3412882B2 (ja) * 1993-11-02 2003-06-03 日本無線株式会社 衛星受信機
US5535278A (en) 1994-05-02 1996-07-09 Magnavox Electronic Systems Company Global positioning system (GPS) receiver for recovery and tracking of signals modulated with P-code
US6239743B1 (en) 1999-07-28 2001-05-29 Trimble Navigation Limited Integrated split spectrum positioning system receiver
JP2002359607A (ja) * 2001-05-30 2002-12-13 Sanyo Electric Co Ltd 受信方法、その方法を利用可能な検波回路、およびその方法を利用可能な移動通信端末。
US6922167B2 (en) 2003-07-14 2005-07-26 European Space Agency Hardware architecture for processing galileo alternate binary offset carrier (AltBOC) signals
JP2005283203A (ja) * 2004-03-29 2005-10-13 Japan Radio Co Ltd 衛星航法装置
US7773034B2 (en) * 2006-12-27 2010-08-10 Intel Corporation Method for acquisition of GPS signals and GPS receiver with sample time error and frequency offset compensation
US8571510B2 (en) * 2008-08-18 2013-10-29 Qualcomm Incorporated High linearity low noise receiver with load switching
US8571485B2 (en) * 2008-10-15 2013-10-29 Elektrobit System Test Oy Data collection and simulation
US8265022B2 (en) * 2009-02-10 2012-09-11 Apple Inc. Apparatus and methods for transmission of emergency call data over wireless networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060285581A1 (en) * 2005-05-10 2006-12-21 Stmicroelectronics (Research & Development) Ltd. System and method for acquisition of signals
JP2007128431A (ja) * 2005-11-07 2007-05-24 Matsushita Electric Ind Co Ltd リモートメンテナンスシステム及びシステム機器のリモートメンテナンス方法
WO2010098468A1 (ja) * 2009-02-27 2010-09-02 古野電気株式会社 Gnss受信装置

Also Published As

Publication number Publication date
RU2570837C2 (ru) 2015-12-10
KR20130114146A (ko) 2013-10-16
US20130257652A1 (en) 2013-10-03
MX2013003234A (es) 2013-07-22
BR112013006724A2 (pt) 2016-06-14
EP2619607B1 (en) 2016-12-21
GB201016079D0 (en) 2010-11-10
RU2013118630A (ru) 2014-10-27
BR112013006724B1 (pt) 2021-09-28
JP5933559B2 (ja) 2016-06-15
NZ609085A (en) 2015-05-29
CA2811830C (en) 2018-03-27
CN103339526B (zh) 2015-08-19
JP2013541004A (ja) 2013-11-07
US9453918B2 (en) 2016-09-27
AU2011306909A1 (en) 2013-05-30
AU2011306909B2 (en) 2015-08-13
CA2811830A1 (en) 2012-03-29
TWI510801B (zh) 2015-12-01
WO2012038496A1 (en) 2012-03-29
EP2619607A1 (en) 2013-07-31
CN103339526A (zh) 2013-10-02
TW201232011A (en) 2012-08-01
ES2620364T3 (es) 2017-06-28

Similar Documents

Publication Publication Date Title
JP5694418B2 (ja) ナビゲーション受信機
US7042930B2 (en) Spread spectrum bit boundary correlation search acquisition system
US8442095B2 (en) Multiple correlation processing in code space search
US20110273332A1 (en) Method for processing combined navigation signals
Paonni et al. GNSS meta signals: Coherently composite processing of multiple GNSS signals
Braasch et al. Tutorial: GPS receiver architectures, front-end and baseband signal processing
US6154173A (en) Method and apparatus for processing multipath reflection effects in timing systems
Blunt et al. Ultra-high sensitivity state-of-the-art receiver for space applications
KR101860328B1 (ko) 장치 및 방법
Khan et al. Acquisition strategies of GNSS receiver
EP1336860B1 (en) High sensitivity GPS receiver
Shanmugam New enhanced sensitivity detection techniques for GPS L 1 C/A and modernized signal acquisition
Pany et al. Real-time processing and multipath mitigation of high-bandwidth L1/L2 GPS signals with a PC-based software receiver
Heinrichs et al. Galileo/GPS receiver architecture for high sensitivity acquisition
Söderholm et al. A multi-GNSS software receiver
Dionisio et al. gLab a fully software tool to generate, process and analyze GNSS signals
Pisoni et al. A Galileo Hardware Receiver for the Multi-Constellation Mass Market
Li et al. Tracking accuracy of narrow correlator spacing GPS receiver
Yang Frequency-domain receiver for modernization GPS signals via full-band multi-code processing
Sosa et al. Cross-platform evaluation for Software Defined Radio GNSS receiver
Bright GPS L2 C signal survey and the development of the emergent MATLAB L2 C (EMAL2) receiver
Kim Low-cost and flexible USRP based real-time global navigation satellite system receiver for ionospheric sounder
Liu et al. Tracking performance of the coherent and noncoherent discriminators in strong multipath
Petovello et al. Impact of notch filtering on tracking loops for GNSS applications
Kondo et al. Evaluation of GPS dual frequency application using L2 Civilian signal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant